Sample records for disturbed functional connectivity

  1. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    PubMed

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  2. The role of sleep on cognition and functional connectivity in patients with multiple sclerosis.

    PubMed

    van Geest, Quinten; Westerik, B; van der Werf, Y D; Geurts, J J G; Hulst, H E

    2017-01-01

    Sleep disturbances are common in multiple sclerosis (MS), but its impact on cognition and functional connectivity (FC) of the hippocampus and thalamus is unknown. Therefore, we investigated the relationship between sleep disturbances, cognitive functioning and resting-state (RS) FC of the hippocampus and thalamus in MS. 71 MS patients and 40 healthy controls underwent neuropsychological testing and filled out self-report questionnaires (anxiety, depression, fatigue, and subjective cognitive problems). Sleep disturbances were assed with the five-item version of the Athens Insomnia Scale. Hippocampal and thalamic volume and RS FC of these regions were determined. Twenty-three patients were categorized as sleep disturbed and 48 as normal sleeping. No differences were found between disturbed and normal sleeping patients concerning cognition and structural MRI. Sleep disturbed patients reported more subjective cognitive problems, and displayed decreased FC between the thalamus and middle and superior frontal gyrus, inferior frontal operculum, anterior cingulate cortex, inferior parietal gyrus, precuneus, and angular gyrus compared to normal sleeping patients. We conclude that sleep disturbances in MS are not (directly) related to objective cognitive functioning, but rather to subjective cognitive problems. In addition, sleep disturbances in MS seem to coincide with a specific pattern of decreased thalamic FC.

  3. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease

    PubMed Central

    Harrington, Deborah L.; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D.; Paulsen, Jane S.

    2015-01-01

    Cognitive, motor and psychiatric changes in prodromal Huntington’s disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington’s disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington’s disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington’s disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington’s disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease burden increased. These disturbances were often related to long-range connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker connectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington’s disease, which instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingulate) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington’s disease. Both analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symptoms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers of disease progression. PMID:26059655

  4. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    PubMed

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease burden increased. These disturbances were often related to long-range connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker connectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington's disease, which instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingulate) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington's disease. Both analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symptoms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers of disease progression. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder.

    PubMed

    Monsa, R; Peer, M; Arzy, S

    2018-06-01

    Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.

  6. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  7. Using High Resolution Remote Sensing Images to Investigate Hydrologic Connectivity and Degradation Thresholds along a Precipitation Gradient in Semiarid Australia

    NASA Astrophysics Data System (ADS)

    Azadi, S.; Saco, P. M.; Moreno-de las Heras, M.; Willgoose, G. R.

    2016-12-01

    Arid and semiarid landscapes are particularly sensitive to climatic and anthropogenic disturbances. Previous work has identified that these landscapes are prone to undergo critical degradation thresholds above which rehabilitation is difficult to achieve. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity associated with the climatic or anthropogenic disturbances. In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects can eventually affect ecosystem functionality (e.g. Rainfall Use Efficiency). In this study, we explore the impact of degradation processes induced by vegetation disturbances (mostly due to grazing pressure) on ecosystem functionality and connectivity along a precipitation gradient (250 mm to 490 mm annual average rainfall) using a combination of remote sensing observations and Digital Elevation Model data. The sites were carefully selected in the Mulga landscapes bioregion (New South Wales, Queensland) and in sites of the Northern Territory in Australia, which display similar vegetation characteristics and good quality rainfall information. Vegetation patterns and the percent of fractional cover were obtained from high resolution remote sensing images (IKONOS, QuickBird and Pleiades). We computed rainfall use efficiency and precipitation marginal response using local precipitation data and MODIS vegetation indices. We estimated mean Flowlength as an indicator of structural hydrologic connectivity using vegetation binary maps and digital elevation models. We compared the trends for several sites along the precipitation gradient, and found that disturbances substantially increase hydrologic connectivity following a threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes show evidence of higher resilience.

  8. Experimental evidence that simplified forest structure interacts with snow cover to influence functional connectivity for Pacific martens

    Treesearch

    Katie M. Moriarty; Clinton W. Epps; Matthew G. Betts; Dalton J. Hance; J. D. Bailey; William J. Zielinski

    2015-01-01

    Context Functional connectivity—the facilitation of individual movements among habitat patches—is essential for species’ persistence in fragmented landscapes. Evaluating functional connectivity is critical for predicting range shifts, developing conservation plans, and anticipating effects of disturbance, especially for species affected by climate change. Objectives We...

  9. Flocking with connectivity preservation for disturbed nonlinear multi-agent systems by output feedback

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhang, Baoyong; Ma, Qian; Xu, Shengyuan; Chen, Weimin; Zhang, Zhengqiang

    2018-05-01

    This paper considers the problem of flocking with connectivity preservation for a class of disturbed nonlinear multi-agent systems. In order to deal with the nonlinearities in the dynamic of all agents, some auxiliary variables are introduced into the state observer for stability analysis. By proposing a bounded potential function and using adaptive theory, a novel output feedback consensus algorithm is developed to guarantee that the states of all agents achieve flocking with connectivity preservation.

  10. Disrupted neural processing of emotional faces in psychopathy.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Bosque, Javier; Ibern-Regàs, Immaculada; Hernández-Ribas, Rosa; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2014-04-01

    Psychopaths show a reduced ability to recognize emotion facial expressions, which may disturb the interpersonal relationship development and successful social adaptation. Behavioral hypotheses point toward an association between emotion recognition deficits in psychopathy and amygdala dysfunction. Our prediction was that amygdala dysfunction would combine deficient activation with disturbances in functional connectivity with cortical regions of the face-processing network. Twenty-two psychopaths and 22 control subjects were assessed and functional magnetic resonance maps were generated to identify both brain activation and task-induced functional connectivity using psychophysiological interaction analysis during an emotional face-matching task. Results showed significant amygdala activation in control subjects only, but differences between study groups did not reach statistical significance. In contrast, psychopaths showed significantly increased activation in visual and prefrontal areas, with this latest activation being associated with psychopaths' affective-interpersonal disturbances. Psychophysiological interaction analyses revealed a reciprocal reduction in functional connectivity between the left amygdala and visual and prefrontal cortices. Our results suggest that emotional stimulation may evoke a relevant cortical response in psychopaths, but a disruption in the processing of emotional faces exists involving the reciprocal functional interaction between the amygdala and neocortex, consistent with the notion of a failure to integrate emotion into cognition in psychopathic individuals.

  11. Altered functional connectivity during self- and close other-reflection in patients with bipolar disorder with past psychosis and patients with schizophrenia.

    PubMed

    Zhang, Liwen; Vander Meer, Lisette; Opmeer, Esther M; Marsman, Jan-Bernard C; Ruhé, Henricus G; Aleman, André

    2016-12-01

    Disturbances in implicit self-processing have been reported both in psychotic patients with bipolar disorder (BD) and schizophrenia. It remains unclear whether these two psychotic disorders show disturbed functional connectivity during explicit self-reflection, which is associated with social functioning and illness symptoms. Therefore, we investigated functional connectivity during explicit self-reflection in BD with past psychosis and schizophrenia. Twenty-three BD-patients, 17 schizophrenia-patients and 21 health controls (HC) performed a self-reflection task, including the conditions self-reflection, close other-reflection and semantic control. Functional connectivity was investigated with generalized psycho-physiological interaction (gPPI). During self-reflection compared to semantic, BD-patients had decreased connectivity between several cortical-midline structures (CMS) nodes (i.e., anterior cingulate cortex, ventromedial prefrontal cortex), the insula and the head of the caudate while HC showed increased connectivities. Schizophrenia-patients, during close other-reflection compared to semantic, demonstrated reduced ventral-anterior insula-precuneus/posterior cingulate cortex (PCC) functional connectivity, whereas this was increased in HC. There were no differences between BD and schizophrenia during self- and close other-reflection. We propose that decreased functional connectivity between the CMS nodes/insula and head of the caudate in BD-patients may imply a reduced involvement of the motivational system during self-reflection; and the reduced functional connectivity between the ventral-anterior insula and precuneus/PCC during close other-reflection in schizophrenia-patients may subserve difficulties in information integration of autobiographical memory and emotional awareness in relation to close others. These distinctive impaired patterns of functional connectivity in BD and schizophrenia (compared to HC) deserve further investigation to determine their robustness and associations with differences in clinical presentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gender Differences in Peer and Parental Influences: Body Image Disturbance, Self-Worth, and Psychological Functioning in Preadolescent Children.

    ERIC Educational Resources Information Center

    Phares, Vicky; Steinberg, Ari R.; Thompson, J. Kevin

    2004-01-01

    The connections between body image disturbance and psychological functioning have been well established in samples of older adolescent girls and young women. Little is known, however, about body image in younger children. In particular, little is known about possible gender differences in preadolescent children. The current study explored…

  13. Environmental offsets, resilience and cost-effective conservation

    PubMed Central

    Little, L. R.; Grafton, R. Q.

    2015-01-01

    Conservation management agencies are faced with acute trade-offs when dealing with disturbance from human activities. We show how agencies can respond to permanent ecosystem disruption by managing for Pimm resilience within a conservation budget using a model calibrated to a metapopulation of a coral reef fish species at Ningaloo Reef, Western Australia. The application is of general interest because it provides a method to manage species susceptible to negative environmental disturbances by optimizing between the number and quality of migration connections in a spatially distributed metapopulation. Given ecological equivalency between the number and quality of migration connections in terms of time to recover from disturbance, our approach allows conservation managers to promote ecological function, under budgetary constraints, by offsetting permanent damage to one ecological function with investment in another. PMID:26587260

  14. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    PubMed

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  15. Structural and functional connectivity as a driver of hillslope erosion following disturbance

    USDA-ARS?s Scientific Manuscript database

    Hydrologic response to rainfall input on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet, cross-scale process connectivity is seldom evaluated in field studies due scale limitations in experimental design. This study quantified...

  16. Brain functional network abnormality extends beyond the sensorimotor network in brachial plexus injury patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong

    2016-12-01

    Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.

  17. Structural Connectivity Relates to Perinatal Factors and Functional Impairment at 7 Years in Children Born Very Preterm

    PubMed Central

    Thompson, Deanne K.; Chen, Jian; Beare, Richard; Adamson, Christopher L.; Ellis, Rachel; Ahmadzai, Zohra M.; Kelly, Claire E.; Lee, Katherine J.; Zalesky, Andrew; Yang, Joseph Y.M.; Hunt, Rodney W.; Cheong, Jeanie L.Y.; Inder, Terrie E.; Doyle, Lex W.; Seal, Marc L.; Anderson, Peter J.

    2016-01-01

    Objective To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children. Methods 26 full-term and 107 very preterm 7-year-old children (born <30 weeks’ gestational age and/or <1250 g) underwent T1- and diffusion-weighted imaging. Global white matter fiber networks were produced using 80 cortical and subcortical nodes, and edges created using constrained spherical deconvolution-based tractography. Global graph theory metrics were analysed, and regional networks were identified using network-based statistics. Cognitive and motor function were assessed at 7 years of age. Results Compared with full-term children, very preterm children had reduced density, lower global efficiency and higher local efficiency. Those with lower gestational age at birth, infection or higher neonatal brain abnormality score had reduced connectivity. Reduced connectivity within a widespread network was predictive of impaired IQ, while reduced connectivity within the right parietal and temporal lobes was associated with motor impairment in very preterm children. Conclusions This study utilized an innovative structural connectivity pipeline to reveal that children born very preterm have less connected and less complex brain networks compared with typically developing term-born children. Adverse perinatal factors led to disturbances in white matter connectivity, which in turn are associated with impaired functional outcomes, highlighting novel structure-function relationships. PMID:27046108

  18. Balance Deficit and Brain Connectivity in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Kim, Sun Mi; Hyun, Gi Jung; Jung, Tae-Woon; Son, Young Don; Cho, In-Hee; Kee, Baik Seok; Han, Doug Hyun

    2017-07-01

    We aimed to assess disturbances in postural and gait balance and functional connectivity within the brain regions controlling balance in children with attention-deficit/hyperactivity disorder (ADHD). Thirteen children with ADHD and 13 age- and sex-matched controls were recruited. Gait balance was assessed by the difference in the center of pressure (COP) between the left and right foot, as well as the difference in plantar pressure between the left and right foot during gait. Neuroimaging data were acquired using a 3.0 Tesla MRI scanner. Functional connectivity between the vermis of the cerebellum and all other brain regionswas assessed. The difference in plantar pressure between the left foot and right foot in the ADHD group was greater than that observed in the control group. The average COP jerk score of the right foot in the ADHD group was higher than that observed in the control group. A higher functional connectivity between the cerebellum and the right middle frontal gyrus (premotor cortex) and medial frontal gyrus (cingulate gyrus) was observed in the control group relative to the ADHD group. In the ADHD group, the difference in plantar pressure between the left and right foot was also negatively correlated with the beta-value within the middle frontal gyrus. Children with ADHD had disturbance of balance as assessed by plantar pressure. Decreased brain connectivity from the cerebellum to the premotor cortex and anterior cingulate was associated with disturbances of posture and balance in children with ADHD.

  19. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.

    PubMed

    Yang, Genevieve J; Murray, John D; Wang, Xiao-Jing; Glahn, David C; Pearlson, Godfrey D; Repovs, Grega; Krystal, John H; Anticevic, Alan

    2016-01-12

    Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.

  20. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia

    PubMed Central

    Yang, Genevieve J.; Murray, John D.; Wang, Xiao-Jing; Glahn, David C.; Pearlson, Godfrey D.; Repovs, Grega; Krystal, John H.; Anticevic, Alan

    2016-01-01

    Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia. PMID:26699491

  1. Structural and functional connectivity as a driver of hillslope erosion following disturbance

    Treesearch

    C. Jason Williams; Frederick B. Pierson; Pete Robichaud; Osama Z. Al-Hamdan; Jan Boll; Eva K. Strand

    2016-01-01

    Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to...

  2. Wetland Suitability and Connectivity for Trans-Saharan Migratory Waterbirds

    PubMed Central

    Teunen, Joachim; Saura, Santiago; Koedam, Nico

    2015-01-01

    To complete their life cycle waterbirds rely on patchily distributed and often ephemeral wetlands along their migration route in a vast unsuitable matrix. However, further loss and degradation of remaining wetland habitats might lead to a configuration and size of stopovers that is no longer sufficient to ensure long-term survival of waterbird populations. By identifying optimal conservation targets to maintain overall habitat availability en route, we can accommodate an as yet absent functional connectivity component in larger management frameworks for migratory waterbirds, such as the Ramsar Convention and the EU Natura 2000 Network. Using a graph-based habitat availability metric (Equivalent Connected Area) we determine the functional connectivity of wetland networks for seven migratory waterbirds with divergent habitat requirements. Analyses are performed at two spatial extents both spanning the Mediterranean Sea and centered around Greece (Balkan-Cyrenaica and Greece-Cyrenaica). We create species-specific suitable habitat maps and account for human disturbance by species-specific disturbance buffers, based on expert estimates of Flight Initiation Distances. At both spatial extents we quantitatively determine the habitat networks’ overall functional connectivity and identify wetland sites that are crucial for maintaining a well-connected network. We show that the wetland networks for both spatial extents are relatively well connected and identify several wetland sites in Greece and Libya as important for maintaining connectivity. The application of disturbance buffers results in wetland site-specific reduction of suitable habitat area (0.90–7.36%) and an overall decrease of the network’s connectivity (0.65–6.82%). In addition, we show that the habitat networks of a limited set of species can be combined into a single network which accounts for their autoecological requirements. We conclude that targeted management in few but specific wetland complexes could benefit migratory waterbird populations. Deterioration of these vital wetland sites in Greece and Libya will have disproportionate consequences to the waterbird populations they support. PMID:26258590

  3. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis☆

    PubMed Central

    Kim, Dae-Jin; Bolbecker, Amanda R.; Howell, Josselyn; Rass, Olga; Sporns, Olaf; Hetrick, William P.; Breier, Alan; O'Donnell, Brian F.

    2013-01-01

    Disruption of functional connectivity may be a key feature of bipolar disorder (BD) which reflects disturbances of synchronization and oscillations within brain networks. We investigated whether the resting electroencephalogram (EEG) in patients with BD showed altered synchronization or network properties. Resting-state EEG was recorded in 57 BD type-I patients and 87 healthy control subjects. Functional connectivity between pairs of EEG channels was measured using synchronization likelihood (SL) for 5 frequency bands (δ, θ, α, β, and γ). Graph-theoretic analysis was applied to SL over the electrode array to assess network properties. BD patients showed a decrease of mean synchronization in the alpha band, and the decreases were greatest in fronto-central and centro-parietal connections. In addition, the clustering coefficient and global efficiency were decreased in BD patients, whereas the characteristic path length increased. We also found that the normalized characteristic path length and small-worldness were significantly correlated with depression scores in BD patients. These results suggest that BD patients show impaired neural synchronization at rest and a disruption of resting-state functional connectivity. PMID:24179795

  4. Differential effect of quetiapine and lithium on functional connectivity of the striatum in first episode mania.

    PubMed

    Dandash, Orwa; Yücel, Murat; Daglas, Rothanthi; Pantelis, Christos; McGorry, Patrick; Berk, Michael; Fornito, Alex

    2018-03-06

    Mood disturbances seen in first-episode mania (FEM) are linked to disturbed functional connectivity of the striatum. Lithium and quetiapine are effective treatments for mania but their neurobiological effects remain largely unknown. We conducted a single-blinded randomized controlled maintenance trial in 61 FEM patients and 30 healthy controls. Patients were stabilized for a minimum of 2 weeks on lithium plus quetiapine then randomly assigned to either lithium (serum level 0.6 mmol/L) or quetiapine (dosed up to 800 mg/day) treatment for 12 months. Resting-state fMRI was acquired at baseline, 3 months (patient only) and 12 months. The effects of treatment group, time and their interaction, on striatal functional connectivity were assessed using voxel-wise general linear modelling. At baseline, FEM patients showed reduced connectivity in the dorsal (p = 0.05) and caudal (p = 0.008) cortico-striatal systems when compared to healthy controls at baseline. FEM patients also showed increased connectivity in a circuit linking the ventral striatum with the medial orbitofrontal cortex, cerebellum and thalamus (p = 0.02). Longitudinally, we found a significant interaction between time and treatment group, such that lithium was more rapid, compared to quetiapine, in normalizing abnormally increased functional connectivity, as assessed at 3-month and 12-month follow-ups. The results suggest that FEM is associated with reduced connectivity in dorsal and caudal corticostriatal systems, as well as increased functional connectivity of ventral striatal systems. Lithium appears to act more rapidly than quetiapine in normalizing hyperconnectivity of the ventral striatum with the cerebellum. The study was registered on the Australian and New Zealand Clinical Trials Registry (ACTRN12607000639426). http://www.anzctr.org.au.

  5. Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2017-04-01

    Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.

  6. Functional resting-state networks are differentially affected in schizophrenia

    PubMed Central

    Woodward, Neil D.; Rogers, Baxter; Heckers, Stephan

    2011-01-01

    Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia. PMID:21458238

  7. Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem-engineering coral, linked to rising temperature.

    PubMed

    Riegl, Bernhard; Johnston, Matthew; Purkis, Sam; Howells, Emily; Burt, John; Steiner, Sascha C C; Sheppard, Charles R C; Bauman, Andrew

    2018-03-05

    As in the tropical Atlantic, Acropora populations in the southern Persian/Arabian Gulf plummeted within two decades after having been ecosystem engineers on most wave-exposed reefs since the Pleistocene. Since 1996/1998 live coral cover in the Gulf declined by over 90% in many areas, primarily due to bleaching and diseases caused by rising temperatures. In the formerly dominant table-coral species A. downingi, population dynamics corresponding to disturbance regimes was quantified in three transition matrices (lower disturbance pre-1996; moderate disturbance from 1998 to 2010 and 2013 to 2017, disturbed in 1996/1998, 2010/11/12, 2017). Increased disturbance frequency and severity caused progressive reduction in coral size, cover, and population fecundity. Small size-classes were bolstered more by partial colony mortality than sexual recruitment. Some large corals had a size refuge and resisted die-back but were also lost with increasing disturbance. Matrix and biophysical larval flow models suggested one metapopulation. Southern, Arabian, populations could be connected to northern, Iranian, populations but this connectivity was lost under assumptions of pelagic larval duration at rising temperatures shortened to a third. Then, the metapopulation disintegrated into isolated populations. Connectivity required to avoid extinctions increased exponentially with disturbance frequency and correlation of disturbances across the metapopulation. Populations became unsustainable at eight disturbances in 15 years, when even highest theoretical recruitment no longer compensated mortality. This lethal disturbance frequency was 3-fold that of the moderately disturbed monitoring period and 4-fold of the preceding low-disturbance period-suggesting ongoing shortening of the disturbance-free period. Observed population collapse and environmental changes in the Gulf suggest that A. downingi is heading toward at least functional extinction mainly due to increasingly frequent temperature-induced mortality events, clearly linked to climate change. © 2018 John Wiley & Sons Ltd.

  8. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    The amygdala is a large grey matter complex in the limbic system, and it may contribute in the neurolimbic pain network in migraine. However, the detailed neuromechanism remained to be elucidated. The objective of this study is to investigate the amygdala structural and functional changes in migraine and to elucidate the mechanism of neurolimbic pain-modulating in the migraine pathogenesis. Conventional MRI, 3D structure images and resting state functional MRI were performed in 18 normal controls (NC), 18 patients with episodic migraine (EM), and 16 patients with chronic migraine (CM). The amygdala volume was measured using FreeSurfer software and the functional connectivity (FC) of bilateral amygdala was computed over the whole brain. Analysis of covariance was performed on the individual FC maps among groups. The increased FC of left amygdala was observed in EM compared with NC, and the decreased of right amygdala was revealed in CM compared with NC. The increased FC of bilateral amygdala was observed in CM compared with EM. The correlation analysis showed a negative correlation between the score of sleep quality (0, normal; 1, mild sleep disturbance; 2, moderate sleep disturbance; 3, serious sleep disturbance) and the increased FC strength of left amygdala in EM compared with NC, and a positive correlation between the score of sleep quality and the increased FC strength of left amygdala in CM compared with EM, and other clinical variables showed no significant correlation with altered FC of amygdala. The altered functional connectivity of amygdala demonstrated that neurolimbic pain network contribute in the EM pathogenesis and CM chronicization.

  9. Objective sleep disturbances are associated with greater waking resting-state connectivity between the retrosplenial cortex/ hippocampus and various nodes of the default mode network.

    PubMed

    Regen, Wolfram; Kyle, Simon D; Nissen, Christoph; Feige, Bernd; Baglioni, Chiara; Hennig, Jürgen; Riemann, Dieter; Spiegelhalder, Kai

    2016-08-01

    Psychological models highlight the bidirectional role of self-referential processing, introspection, worry and rumination in the development and maintenance of insomnia; however, little is known about the underlying neural substrates. Default mode network (DMN) functional connectivity has been previously linked to these cognitive processes. We used fMRI to investigate waking DMN functional connectivity in a well-characterized sample of patients with primary insomnia (PI) and good sleeper controls. We included 20 patients with PI (8 men and 12 women, mean age 42.7 ± 13.4 yr) and 20 controls (8 men and 12 women, mean age 44.1 ± 10.6 yr) in our study. While no between-group differences in waking DMN connectivity were observed, exploratory analyses across all participants suggested that greater waking connectivity between the retrosplenial cortex/hippocampus and various nodes of the DMN was associated with lower sleep efficiency, lower amounts of rapid eye movement sleep and greater sleep-onset latency. Owing to the cross-sectional nature of the study, conclusions about causality cannot be drawn. As sleep disturbances represent a transdiagnostic symptom that is characteristic of nearly all psychiatric disorders, our results may hold particular relevance to previous findings of increased DMN connectivity levels in patients with psychiatric disorders.

  10. Design of passive interconnections in tall buildings subject to earthquake disturbances to suppress inter-storey drifts

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Smith, MC

    2016-09-01

    This paper studies the problem of passive control of a multi-storey building subjected to an earthquake disturbance. The building is represented as a homogeneous mass chain model, i.e., a chain of identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The paper considers passive interconnections of the most general type, which may require the use of inerters in addition to springs and dampers. It is shown that the scalar transfer functions from the disturbance to a given inter-storey drift can be represented as complex iterative maps. Using these expressions, two graphical approaches are proposed: one gives a method to achieve a prescribed value for the uniform boundedness of these transfer functions independent of the length of the mass chain, and the other is for a fixed length of the mass chain. A case study is presented to demonstrate the effectiveness of the proposed techniques using a 10-storey building model. The disturbance suppression performance of the designed interconnection is also verified for a 10-storey building model which has a different stiffness distribution but with the same undamped first natural frequency as the homogeneous model.

  11. Connecting soil microbial communities to soil functioning and soil health

    USDA-ARS?s Scientific Manuscript database

    One of the most important functions soils perform, is the capacity to buffer anthropogenic disturbances to sustain productivity while improving water and air quality. At the core of a healthy soil is a biological active and diverse community that provides internal nutrient cycling and is resilient t...

  12. Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    PubMed

    Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R

    2014-07-22

    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.

  13. Structural network efficiency is associated with cognitive impairment in small-vessel disease

    PubMed Central

    Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.

    2014-01-01

    Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477

  14. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    PubMed

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  15. Functions of personal and vicarious life stories: identity and empathy.

    PubMed

    Lind, Majse; Thomsen, Dorthe Kirkegaard

    2018-05-01

    The present study investigates functions of personal and vicarious life stories focusing on identity and empathy. Two-hundred-and-forty Danish high school students completed two life story questionnaires: one for their personal life story and one for a close other's life story. In both questionnaires, they identified up to 10 chapters and self-rated the chapters on valence and valence of causal connections. In addition, they completed measures of identity disturbance and empathy. More positive personal life stories were related to lower identity disturbance and higher empathy. Vicarious life stories showed a similar pattern with respect to identity but surprisingly were unrelated to empathy. In addition, we found positive correlations between personal and vicarious life stories for number of chapters, chapter valence, and valence of causal connections. The study indicates that both personal and vicarious life stories may contribute to identity.

  16. Disturbed functional connectivity of cortical activation during semantic discrimination in patients with schizophrenia and subjects at genetic high-risk.

    PubMed

    Li, Xiaobo; Branch, Craig A; Nierenberg, Jay; Delisi, Lynn E

    2010-03-01

    Schizophrenia has a strong genetic component that is relevant to the understanding of the pathophysiology of the syndrome. Thus, recent investigations have shifted from studies of diagnosed patients with schizophrenia to examining their unaffected relatives. Previous studies found that during language processing, relatives thought to be at genetic high-risk for the disorder exhibit aberrant functional activation in regions of language processing, specifically in the left inferior frontal gyrus (Broca's area). However, functional connectivity among the regions involved in language pathways is not well understood. In this study, we examined the functional connectivity between a seed located in Broca's area and the remainder of the brain during a visual lexical decision task, in 20 schizophrenia patients, 21 subjects at genetic high risk for the disorder and 21 healthy controls. Both the high-risk subjects and patients showed significantly reduced activation correlations between seed and regions related to visual language processing. Compared to the high-risk subjects, the schizophrenia patients showed even fewer regions that were correlated with the seed regions. These results suggest that there is aberrant functional connectivity within cortical language circuitry in high-risk subjects and patients with schizophrenia. Broca's area, which is one of the important regions for language processing in healthy controls, had a significantly reduced role in the high-risk subjects and patients with schizophrenia. Our findings are consistent with the existence of an underlying biological disturbance that begins in genetically at risk individuals and progresses to a greater extent in those who eventually develop schizophrenia.

  17. Longitudinal functional connectivity changes correlate with mood improvement after regular exercise in a dose-dependent fashion.

    PubMed

    Tozzi, Leonardo; Carballedo, Angela; Lavelle, Grace; Doolin, Kelly; Doyle, Myles; Amico, Francesco; McCarthy, Hazel; Gormley, John; Lord, Anton; O'Keane, Veronica; Frodl, Thomas

    2016-04-01

    Exercise increases wellbeing and improves mood. It is however unclear how these mood changes relate to brain function. We conducted a randomized controlled trial investigating resting-state modifications in healthy adults after an extended period of aerobic physical exercise and their relationship with mood improvements. We aimed to identify novel functional networks whose activity could provide a physiological counterpart to the mood-related benefits of exercise. Thirty-eight healthy sedentary volunteers were randomised to either the aerobic exercise group of the study or a control group. Participants in the exercise group attended aerobic sessions with a physiotherapist twice a week for 16 weeks. Resting-state modifications using magnetic resonance imaging were assessed before and after the programme and related to mood changes. An unbiased approach using graph metrics and network-based statistics was adopted. Exercise reduced mood disturbance and improved emotional wellbeing. It also induced a decrease in local efficiency in the parahippocampal lobe through strengthening of the functional connections from this structure to the supramarginal gyrus, precentral area, superior temporal gyrus and temporal pole. Changes in mood disturbance following exercise were correlated with those in connectivity between parahippocampal gyrus and superior temporal gyrus as well as with the amount of training. No changes were detected in the control group. In conclusion, connectivity from the parahippocampal gyrus to motor, sensory integration and mood regulation areas was strengthened through exercise. These functional changes might be related to the benefits of regular physical activity on mood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia

    PubMed Central

    Vértes, Petra E.; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T.; Gogtay, Nitin

    2013-01-01

    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive “pruning” of short-distance functional connections in schizophrenia. PMID:22275481

  19. Rendezvous with connectivity preservation for multi-robot systems with an unknown leader

    NASA Astrophysics Data System (ADS)

    Dong, Yi

    2018-02-01

    This paper studies the leader-following rendezvous problem with connectivity preservation for multi-agent systems composed of uncertain multi-robot systems subject to external disturbances and an unknown leader, both of which are generated by a so-called exosystem with parametric uncertainty. By combining internal model design, potential function technique and adaptive control, two distributed control strategies are proposed to maintain the connectivity of the communication network, to achieve the asymptotic tracking of all the followers to the output of the unknown leader system, as well as to reject unknown external disturbances. It is also worth to mention that the uncertain parameters in the multi-robot systems and exosystem are further allowed to belong to unknown and unbounded sets when applying the second fully distributed control law containing a dynamic gain inspired by high-gain adaptive control or self-tuning regulator.

  20. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.

    PubMed

    Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A

    2018-01-01

    Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks.

  1. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  2. Can you escape the beat? Modelling spatiotemporal biodegradation dynamics during periodic disturbances

    NASA Astrophysics Data System (ADS)

    König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin

    2016-04-01

    Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.

  3. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment.

    PubMed

    Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun

    2009-06-01

    Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

  4. [Connective tissue dysplasia in patients with celiac desease as a problem of violation of adaptation reserve islands of the body].

    PubMed

    Tkachenko, E; Oreshko, L S; Soloveva, E A; Shabanova, A A; Zhuravleva, M S

    2015-01-01

    Clinically significant dysplasia of connective tissue in patients with celiac disease is often responsible for various visceral disorders. Different disturbances of motor and evacuation functions are often determined in this patients (gastroesophageal reflux, duodenogastral reflux, spastic and hyperkinetic dyskinesia). The clinical course of the celiac disease, associated with connective tissue dysplasia, is characterized by asthenovegetative syndrome, reduced tolerance to physical activity, general weakness, fatigue and emotional instability. These data should be considered in choosing a treatment.

  5. The effects of patch shape and connectivity on nest site selection and reproductive success of the Indigo Bunting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Aimee Jean

    2004-07-01

    Description – Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abatract - Habitat fragmentation and its associated effects have been blamed for the recent population declines of many Neotropical migratory bird species. Increased predation and parasitism resulting from edge-related effects have been implicated for poor nesting success in many studies, mostly of forest interior species. However, little attention has been devoted to disturbance-dependent birds. In this study, I examine how patch shape and connectivity in fragmented landscapes affects the reproductive success of disturbance-dependent bird species, specifically the Indigo Bunting (Passerina cyanea). I conducted my study in amore » landscape-scale experimental system of similar-area habitat patches that differed in connectivity and in shape. Shapes differed between edgy and rectangular forms, where edgy patches contained 50% more edge than rectangular patches. I tested whether edgy patches function as ecological traps for species with strong edge preferences, by leading them to select dangerous habitats. Indigo Buntings preferentially selected edgy patches over rectangular patches, but experienced significantly lower reproductive success in edgy patches early in the season. Although predation pressure intensified in rectangular patches late in the season, seasonal fecundity was still significantly lower in edgy patches, providing the first empirical evidence that edges can function as ecological traps for Indigo Buntings. A second objective of my study was to evaluate the efficacy of conservation corridors for disturbance-dependent bird species. Conservation corridors have become a popular strategy to preserve biodiversity and promote gene flow in fragmented landscapes, but corridors may also have negative consequences. I tested the hypothesis that corridors can increase nest predation risk in connected patches relative to unconnected patches. Nest predation rates increased significantly in connected patches compared to unconnected rectangular patches, but were similar between connected patches and unconnected edgy patches. This suggests that the increase in predator activity in connected patches is largely attributable to edge effects incurred through the addition of a corridor. This is the first landscape-scale study to experimentally demonstrate the potential negative effects of conservation corridors.« less

  6. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder.

    PubMed

    Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong

    2013-06-26

    Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in patients with ADHD.

  7. Functional Disconnectivity during Inter-Task Resting State in Dementia with Lewy Bodies.

    PubMed

    Chabran, Eléna; Roquet, Daniel; Gounot, Daniel; Sourty, Marion; Armspach, Jean-Paul; Blanc, Frédéric

    2018-01-01

    Limited research has been done on the functional connectivity in visuoperceptual regions in dementia with Lewy bodies (DLB) patients. This study aimed to investigate the functional connectivity differences between a task condition and an inter-task resting state condition within a visuoperceptual paradigm, in DLB patients compared with Alzheimer disease (AD) patients and healthy elderly control subjects. Twenty-six DLB, 29 AD, and 22 healthy subjects underwent a detailed clinical and neuropsychological examination along with a functional MRI during the different conditions of a visuoperceptual paradigm. Functional images were analyzed using group-level spatial independent component analysis and seed-based connectivity analyses. While the DLB patients scored well and did not differ from the control and AD groups in terms of functional activity and connectivity during the task conditions, they showed decreased functional connectivity in visuoperceptual regions during the resting state condition, along with a temporal impairment of the default-mode network activity. Functional connectivity disturbances were also found within two attentional-executive networks and between these networks and visuoperceptual regions. We found a specific functional profile in the switching between task and resting state conditions in DLB patients. This result could help better characterize functional impairments in DLB and their contribution to several core symptoms of this pathology such as visual hallucinations and cognitive fluctuations. © 2018 S. Karger AG, Basel.

  8. Functional connectivity changes in adults with developmental stuttering: a preliminary study using quantitative electro-encephalography

    PubMed Central

    Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven

    2014-01-01

    Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is maladaptive. PMID:25352797

  9. The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness.

    PubMed

    Zhao, Hua; Zhang, Bei-Lin; Yang, Shao-Jun; Rusak, Benjamin

    2015-01-15

    Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    PubMed

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.

  11. Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally Connected Rivers

    PubMed Central

    Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641

  12. Macroinvertebrate and diatom metrics as indicators of water-quality conditions in connected depression wetlands in the Mississippi Alluvial Plain

    USGS Publications Warehouse

    Justus, Billy; Burge, David; Cobb, Jennifer; Marsico, Travis; Bouldin, Jennifer

    2016-01-01

    Methods for assessing wetland conditions must be established so wetlands can be monitored and ecological services can be protected. We evaluated biological indices compiled from macroinvertebrate and diatom metrics developed primarily for streams to assess their ability to indicate water quality in connected depression wetlands. We collected water-quality and biological samples at 24 connected depressions dominated by water tupelo (Nyssa aquatica) or bald cypress (Taxodium distichum) (water depths = 0.5–1.0 m). Water quality of the least-disturbed connected depressions was characteristic of swamps in the southeastern USA, which tend to have low specific conductance, nutrient concentrations, and pH. We compared 162 macroinvertebrate metrics and 123 diatom metrics with a water-quality disturbance gradient. For most metrics, we evaluated richness, % richness, abundance, and % relative abundance values. Three of the 4 macroinvertebrate metrics that were most beneficial for identifying disturbance in connected depressions decreased along the disturbance gradient even though they normally increase relative to stream disturbance. The negative relationship to disturbance of some taxa (e.g., dipterans, mollusks, and crustaceans) that are considered tolerant in streams suggests that the tolerance scale for some macroinvertebrates can differ markedly between streams and wetlands. Three of the 4 metrics chosen for the diatom index reflected published tolerances or fit the usual perception of metric response to disturbance. Both biological indices may be useful in connected depressions elsewhere in the Mississippi Alluvial Plain Ecoregion and could have application in other wetland types. Given the paradoxical relationship of some macroinvertebrate metrics to dissolved O2 (DO), we suggest that the diatom metrics may be easier to interpret and defend for wetlands with low DO concentrations in least-disturbed conditions.

  13. Interhemispheric Functional Brain Connectivity in Neonates with Prenatal Alcohol Exposure: Preliminary Findings.

    PubMed

    Donald, Kirsten A; Ipser, Jonathan C; Howells, Fleur M; Roos, Annerine; Fouche, Jean-Paul; Riley, Edward P; Koen, Nastassja; Woods, Roger P; Biswal, Bharat; Zar, Heather J; Narr, Katherine L; Stein, Dan J

    2016-01-01

    Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children. Copyright © 2016 by the Research Society on Alcoholism.

  14. Disturbed default mode network connectivity patterns in Alzheimer's disease associated with visual processing.

    PubMed

    Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2014-01-01

    Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.

  15. Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine.

    PubMed

    Hodkinson, Duncan J; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R A; Wilcox, Sophie L; Scrivani, Steven J; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients ( N = 40) and matched healthy control subjects ( N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.

  16. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    PubMed

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  17. Connectivity in river deltas

    NASA Astrophysics Data System (ADS)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  18. Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex.

    PubMed

    Feng, Pan; Becker, Benjamin; Zheng, Yong; Feng, Tingyong

    2018-02-01

    Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.

  19. The brain network reflecting bodily self-consciousness: a functional connectivity study

    PubMed Central

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  20. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    PubMed

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p < .05, family-wise error-corrected). Moreover, fractional anisotropy in some of these fiber bundles correlated with attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p < .05, family-wise error-corrected) predominantly linking frontal, cingulate, and supplementary motor areas. Fractional anisotropy in this network was also correlated with continuous performance test scores. Using an unbiased, whole-brain, data-driven approach, we demonstrated abnormal white matter connectivity in ADHD. The correlations observed with measures of attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Global and regional functional connectivity maps of neural oscillations in focal epilepsy

    PubMed Central

    Englot, Dario J.; Hinkley, Leighton B.; Kort, Naomi S.; Imber, Brandon S.; Mizuiri, Danielle; Honma, Susanne M.; Findlay, Anne M.; Garrett, Coleman; Cheung, Paige L.; Mantle, Mary; Tarapore, Phiroz E.; Knowlton, Robert C.; Chang, Edward F.; Nagarajan, Srikantan S.

    2015-01-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning. PMID:25981965

  2. Distributed optimisation problem with communication delay and external disturbance

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu

    2017-12-01

    This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.

  3. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance

    PubMed Central

    Preisner, Eva C.; Fichot, Erin B.; Norman, Robert S.

    2016-01-01

    The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011–2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models. PMID:27799927

  4. Imbalance in subregional connectivity of the right temporoparietal junction in major depression.

    PubMed

    Poeppl, Timm B; Müller, Veronika I; Hoffstaedter, Felix; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Langguth, Berthold; Rupprecht, Rainer; Sorg, Christian; Riedl, Valentin; Goya-Maldonado, Roberto; Gruber, Oliver; Eickhoff, Simon B

    2016-08-01

    Major depressive disorder (MDD) involves impairment in cognitive and interpersonal functioning. The right temporoparietal junction (RTPJ) is a key brain region subserving cognitive-attentional and social processes. Yet, findings on the involvement of the RTPJ in the pathophysiology of MDD have so far been controversial. Recent connectivity-based parcellation data revealed a topofunctional dualism within the RTPJ, linking its anterior and posterior part (aRTPJ/pRTPJ) to antagonistic brain networks for attentional and social processing, respectively. Comparing functional resting-state connectivity of the aRTPJ and pRTPJ in 72 MDD patients and 76 well-matched healthy controls, we found a seed (aRTPJ/pRTPJ) × diagnosis (MDD/controls) interaction in functional connectivity for eight regions. Employing meta-data from a large-scale neuroimaging database, functional characterization of these regions exhibiting differentially altered connectivity with the aRTPJ/pRTPJ revealed associations with cognitive (dorsolateral prefrontal cortex, parahippocampus) and behavioral (posterior medial frontal cortex) control, visuospatial processing (dorsal visual cortex), reward (subgenual anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex), as well as memory retrieval and social cognition (precuneus). These findings suggest that an imbalance in connectivity of subregions, rather than disturbed connectivity of the RTPJ as a whole, characterizes the connectional disruption of the RTPJ in MDD. This imbalance may account for key symptoms of MDD in cognitive, emotional, and social domains. Hum Brain Mapp 37:2931-2942, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  6. The New Neurobiology of Autism

    PubMed Central

    Minshew, Nancy J.; Williams, Diane L.

    2008-01-01

    This review covers a fraction of the new research developments in autism but establishes the basic elements of the new neurobiologic understanding of autism. Autism is a polygenetic developmental neurobiologic disorder with multiorgan system involvement, though it predominantly involves central nervous system dysfunction. The evidence supports autism as a disorder of the association cortex, both its neurons and their projections. In particular, it is a disorder of connectivity, which appears, from current evidence, to primarily involve intrahemispheric connectivity. The focus of connectivity studies thus far has been on white matter, but alterations in functional magnetic resonance imaging activation suggest that intracortical connectivity is also likely to be disturbed. Furthermore, the disorder has a broad impact on cognitive and neurologic functioning. Deficits in high-functioning individuals occur in processing that places high demands on integration of information and coordination of multiple neural systems. Intact or enhanced abilities share a dependence on low information-processing demands and local neural connections. This multidomain model with shared characteristics predicts an underlying pathophysiologic mechanism that impacts the brain broadly, according to a common neurobiologic principle. The multiorgan system involvement and diversity of central nervous system findings suggest an epigenetic mechanism. PMID:17620483

  7. Cognition and Resting-State Functional Connectivity in Schizophrenia

    PubMed Central

    Sheffield, Julia M; Barch, Deanna M

    2015-01-01

    Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain-behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising 1) the cortico-cerebellar-striatal-thalamic loop and 2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the “generalized” cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature. PMID:26698018

  8. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults.

    PubMed

    Kullmann, Stephanie; Pape, Anna-Antonia; Heni, Martin; Ketterer, Caroline; Schick, Fritz; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert; Veit, Ralf

    2013-05-01

    In order to adequately explore the neurobiological basis of eating behavior of humans and their changes with body weight, interactions between brain areas or networks need to be investigated. In the current functional magnetic resonance imaging study, we examined the modulating effects of stimulus category (food vs. nonfood), caloric content of food, and body weight on the time course and functional connectivity of 5 brain networks by means of independent component analysis in healthy lean and overweight/obese adults. These functional networks included motor sensory, default-mode, extrastriate visual, temporal visual association, and salience networks. We found an extensive modulation elicited by food stimuli in the 2 visual and salience networks, with a dissociable pattern in the time course and functional connectivity between lean and overweight/obese subjects. Specifically, only in lean subjects, the temporal visual association network was modulated by the stimulus category and the salience network by caloric content, whereas overweight and obese subjects showed a generalized augmented response in the salience network. Furthermore, overweight/obese subjects showed changes in functional connectivity in networks important for object recognition, motivational salience, and executive control. These alterations could potentially lead to top-down deficiencies driving the overconsumption of food in the obese population.

  9. Altered Effective Connectivity among Core Neurocognitive Networks in Idiopathic Generalized Epilepsy: An fMRI Evidence

    PubMed Central

    Wei, Huilin; An, Jie; Shen, Hui; Zeng, Ling-Li; Qiu, Shijun; Hu, Dewen

    2016-01-01

    Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures (GTCS) suffer long-term cognitive impairments, and present a higher incidence of psychosocial and psychiatric disturbances than healthy people. It is possible that the cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from disturbed causal relationship among core neurocognitive brain networks. To test this hypothesis, we examined the effective connectivity across the salience network (SN), default mode network (DMN), and central executive network (CEN) using resting-state functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients and 29 healthy controls. In the study, a combination framework of time domain and frequency domain multivariate Granger causality analysis was firstly proposed, and proved to be valid and accurate by simulation experiments. Using this method, we then observed significant differences in the effective connectivity graphs between the patient and control groups. Specifically, between-group statistical analysis revealed that relative to the healthy controls, the patients established significantly enhanced Granger causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate cortex, which is coherent both in the time and frequency domains analyses. Meanwhile, time domain analysis also revealed decreased Granger causal influence from the right fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may provide new evidence for functional brain organization disruption underlying cognitive dysfunctions and psychopathological risk in IGE-GTCS. PMID:27656137

  10. BDNF in fragile X syndrome.

    PubMed

    Castrén, Maija L; Castrén, Eero

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Self-Reported Sleep Correlates with Prefrontal-Amygdala Functional Connectivity and Emotional Functioning

    PubMed Central

    Killgore, William D. S.

    2013-01-01

    Study Objectives: Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Design: Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. Interventions: N/A. Measurements and Results: Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Conclusions: Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength. Citation: Killgore WDS. Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning. SLEEP 2013;36(11):1597-1608. PMID:24179291

  12. Informing conservation management about structural versus functional connectivity: a case-study of Cross River gorillas.

    PubMed

    Imong, Inaoyom; Robbins, Martha M; Mundry, Roger; Bergl, Richard; Kühl, Hjalmar S

    2014-10-01

    Connectivity among subpopulations is vital for the persistence of small and fragmented populations. For management interventions to be effective conservation planners have to make the critical distinction between structural connectivity (based on landscape structure) and functional connectivity (which considers both landscape structure and organism-specific behavioral attributes) which can differ considerably within a given context. We assessed spatial and temporal changes in structural and functional connectivity of the Cross River gorilla Gorilla gorilla diehli (CRG) population in a 12,000 km(2) landscape in the Nigeria-Cameroon border region over a 23-year period, comparing two periods: 1987-2000 and 2000-2010. Despite substantial forest connections between occupied areas, genetic evidence shows that only limited dispersal occurs among CRG subpopulations. We used remotely sensed land-cover data and simulated human pressure (using a spatially explicit agent-based model) to assess human impact on connectivity of the CRG population. We calculated cost-weighted distances between areas occupied by gorillas as measures of connectivity (structural based on land-cover only, functional based on both land-cover and simulated human pressure). Whereas structural connectivity decreased by 5% over the 23-year period, functional connectivity decreased by 11%, with both decreasing more during the latter compared to the earlier period. Our results highlight the increasing threat of isolation of CRG subpopulations due to human disturbance, and provide insight into how increasing human influence may lead to functional isolation of wildlife populations despite habitat continuity, a pressing and common issue in tropical Africa often not accounted for when deciding management interventions. In addition to quantifying threats to connectivity, our study provides crucial evidence for management authorities to identify actions that are more likely to be effective for conservation of species in human-dominated landscapes. Our approach can be easily applied to other species, regions, and scales. © 2014 Wiley Periodicals, Inc.

  13. Hydrologic Connectivity: a Framework to Understand Threshold Behaviour in Semi-Arid Landscapes.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Rodriguez, Jose; Keesstra, Saskia; Moreno-de las Heras, Mariano; Sandi, Steven; Baartman, Jantiene; Cerdà, Artemi

    2017-04-01

    Anthropogenic activities and climate change are imposing an unprecedented pressure on arid and semi-arid ecosystems, where shortage of water can trigger shifts in landscapes' structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated to runoff and sediment production, since human and/or natural disturbances alter the surface water availability and pathways increasing/decreasing connectivity. In this presentation, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of co-evolution of system structures and function, and how they drive threshold behaviour leading to desertification and degradation. We first analyse the case of semi-arid rangelands, where feedbacks between decline in vegetation density and landscape erosion reinforces degradation processes driven by changes in connectivity until a threshold is crossed above which the return to a functional system is unlikely. We then focus on semi-arid wetlands, where decreases in water volumes promotes dryland vegetation encroachment that changes drainage conditions and connectivity potentially reinforcing redistribution of flow paths to other wetland areas. The examples presented highlight the need to incorporate a co-evolutionary framework for the analysis of changing connectivity patterns and the emergence of thresholds in arid and semi-arid systems.

  14. Altered Resting State Effective Connectivity of Anterior Insula in Depression.

    PubMed

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas-anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls ( N  = 20) and medicated depressed patients ( N  = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions.

  15. Altered Resting State Effective Connectivity of Anterior Insula in Depression

    PubMed Central

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas—anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls (N = 20) and medicated depressed patients (N = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions. PMID:29599728

  16. The reorganization of functional architecture in the early-stages of Parkinson's disease.

    PubMed

    Tuovinen, Noora; Seppi, Klaus; de Pasquale, Francesco; Müller, Christoph; Nocker, Michael; Schocke, Michael; Gizewski, Elke R; Kremser, Christian; Wenning, Gregor K; Poewe, Werner; Djamshidian, Atbin; Scherfler, Christoph; Seki, Morinobu

    2018-05-01

    The study aim was to identify longitudinal abnormalities of functional connectivity and its relation with motor disability in early to moderately advanced stages of Parkinson's disease patients. 3.0T structural and resting-state functional MRI was performed in healthy subjects (n = 16) and Parkinson's disease patients (n = 16) with mean disease duration of 2.2 ± 1.2 years at baseline with a clinical follow-up of 1.5 ± 0.3 years. Resting-state fMRI analysis included region-to-region connectivity in correlation with UPDRS-III scores and computation of Global Efficiency and Degree Centrality. At baseline, patients' connectivity increased between the cerebellum and somatomotor network, and decreased between motor regions (Rolandic operculum, precentral gyrus, supplementary motor area, postcentral gyrus) and cingulate connectivity. At 1.5 years follow-up, connectivity remained altered in the same regions identified at baseline. The cerebellum showed additional hyperconnectivity within itself and to the caudate nucleus, thalamus and amygdala compared to controls. These differences correlated with UPDRS-III scores. Seed-based connectivity revealed increased involvement of the default mode network with precentral gyrus in patients at follow-up investigation. Resting-state fMRI identified marked disturbances of the overall architecture of connectivity in Parkinson's disease. The noted alterations in cortical motor areas were associated with cerebellar hyperconnectivity in early to moderately advanced stages of Parkinson's disease suggesting ongoing attempts of recovery and compensatory mechanism for affected functions. The potential to identify connectivity alterations in regions related to both motor and attentional functions requires further evaluation as an objective marker to monitor disease progression, and medical, as well as surgical interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. MEG connectivity analysis in patients with Alzheimer's disease using cross mutual information and spectral coherence.

    PubMed

    Alonso, Joan Francesc; Poza, Jesús; Mañanas, Miguel Angel; Romero, Sergio; Fernández, Alberto; Hornero, Roberto

    2011-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder which represents the most common form of dementia in western countries. An early and accurate diagnosis of AD would enable to develop new strategies for managing the disease; however, nowadays there is no single test that can accurately predict the development of AD. In this sense, only a few studies have focused on the magnetoencephalographic (MEG) AD connectivity patterns. This study compares brain connectivity in terms of linear and nonlinear couplings by means of spectral coherence and cross mutual information function (CMIF), respectively. The variables defined from these functions provide statistically significant differences (p < 0.05) between AD patients and control subjects, especially the variables obtained from CMIF. The results suggest that AD is characterized by both decreases and increases of functional couplings in different frequency bands as well as by an increase in regularity, that is, more evident statistical deterministic relationships in AD patients' MEG connectivity. The significant differences obtained indicate that AD could disturb brain interactions causing abnormal brain connectivity and operation. Furthermore, the combination of coherence and CMIF features to perform a diagnostic test based on logistic regression improved the tests based on individual variables for its robustness.

  18. River Sensitivity and Catchment Connectivity: Key Controls on Geomorphic Response and Effectiveness

    NASA Astrophysics Data System (ADS)

    Lisenby, P.; Fryirs, K.; Croke, J.

    2016-12-01

    The sensitivity of river channels to adjustment and the dynamics of sediment connectivity along a channel network are key controls on the capacity (ability) for a river system to adjust, i.e. the severity, distribution, and type of geomorphic response to disturbance events. In turn, the cumulative impact of geomorphic responses compared with event magnitude will determine the geomorphic effectiveness of a single disturbance event. River sensitivity and sediment connectivity can change significantly over space and time, and vary with changes in internal factors such as channel type and geomorphic landform and external factors such as event sequencing and lithological controls. Correspondingly, the capacity for a geomorphic system to respond to disturbance events will also vary, so that geomorphic effectiveness is not definitively characterized by a static relationship between event magnitude and geomorphic response, but rather is a dynamic comparison between geomorphic response and an actively changing capacity for geomorphic adjustment. Herein, we use the Lockyer Valley, Queensland as a case study to illustrate the variability of river sensitivity and sediment connectivity. We relate this variability to the potential and capacity for geomorphic channel response. We find that the sensitivity to and capacity for geomorphic adjustment varies significantly with channel morphometry and valley position. Additionally, the nature of bedload sediment connectivity changes with the distribution of geomorphic landforms and channel weirs that can impede sediment transference through the system. This variability of river sensitivity and sediment connectivity will control the nature of geomorphic response to disturbance events within the Lockyer Valley. Ultimately, determinations of geomorphic effectiveness for disturbance events will depend on comparisons of their geomorphic impacts with the capacity of the Lockyer geomorphic system to respond.

  19. The Interface between Neuroscience and Neuro-Psychoanalysis: Focus on Brain Connectivity

    PubMed Central

    Salone, Anatolia; Di Giacinto, Alessandra; Lai, Carlo; De Berardis, Domenico; Iasevoli, Felice; Fornaro, Michele; De Risio, Luisa; Santacroce, Rita; Martinotti, Giovanni; Giannantonio, Massimo Di

    2016-01-01

    Over the past 20 years, the advent of advanced techniques has significantly enhanced our knowledge on the brain. Yet, our understanding of the physiological and pathological functioning of the mind is still far from being exhaustive. Both the localizationist and the reductionist neuroscientific approaches to psychiatric disorders have proven to be largely unsatisfactory and are outdated. Accruing evidence suggests that psychoanalysis can engage the neurosciences in a productive and mutually enriching dialogue that may further our understanding of psychiatric disorders. In particular, advances in brain connectivity research have provided evidence supporting the convergence of neuroscientific findings and psychoanalysis and helped characterize the circuitry and mechanisms that underlie higher brain functions. In the present paper we discuss how knowledge on brain connectivity can impact neuropsychoanalysis, with a particular focus on schizophrenia. Brain connectivity studies in schizophrenic patients indicate complex alterations in brain functioning and circuitry, with particular emphasis on the role of cortical midline structures (CMS) and the default mode network (DMN). These networks seem to represent neural correlates of psychodynamic concepts central to the understanding of schizophrenia and of core psychopathological alterations of this disorder (i.e., ego disturbances and impaired primary process thinking). PMID:26869904

  20. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    USGS Publications Warehouse

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson

    2017-01-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  1. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    NASA Astrophysics Data System (ADS)

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.

    2017-07-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  2. Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder.

    PubMed

    Harrison, Ben J; Pujol, Jesus; Cardoner, Narcis; Deus, Joan; Alonso, Pino; López-Solà, Marina; Contreras-Rodríguez, Oren; Real, Eva; Segalàs, Cinto; Blanco-Hinojo, Laura; Menchon, José M; Soriano-Mas, Carles

    2013-02-15

    Functional neuroimaging studies have provided consistent support for the idea that obsessive-compulsive disorder (OCD) is associated with disturbances of brain corticostriatal systems. However, in general, these studies have not sought to account for the disorder's prominent clinical heterogeneity. To address these concerns, we investigated the influence of major OCD symptom dimensions on brain corticostriatal functional systems in a large sample of OCD patients (n = 74) and control participants (n = 74) examined with resting-state functional magnetic resonance imaging. We employed a valid method for mapping ventral and dorsal striatal functional connectivity, which supported both standard group comparisons and linear regression analyses with patients' scores on the Dimensional Yale-Brown Obsessive-Compulsive Scale. Consistent with past findings, patients demonstrated a common connectivity alteration involving the ventral striatum and orbitofrontal cortex that predicted overall illness severity levels. This common alteration was independent of the effect of particular symptom dimensions. Instead, we observed distinct anatomical relationships between the severity of symptom dimensions and striatal functional connectivity. Aggression symptoms modulated connectivity between the ventral striatum, amygdala, and ventromedial frontal cortex, while sexual/religious symptoms had a specific influence on ventral striatal-insular connectivity. Hoarding modulated the strength of ventral and dorsal striatal connectivity with distributed frontal regions. Taken together, these results suggest that pathophysiological changes among orbitofrontal-striatal regions may be common to all forms of OCD. They suggest that a further examination of certain dimensional relationships will also be relevant for advancing current neurobiological models of the disorder. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics.

    PubMed

    Maria, Zahra; Yin, Wei; Rubenstein, David Alan

    2014-07-01

    Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.

  4. Impact of landscape disturbance on the quality of terrestrial sediment carbon in temperate streams

    NASA Astrophysics Data System (ADS)

    Fox, James F.; Ford, William I.

    2016-09-01

    Recent studies have shown the super saturation of fluvial networks with respect to carbon dioxide, and the concept that the high carbon dioxide is at least partially the result of turnover of sediment organic carbon that ranges in age from years to millennia. Currently, there is a need for more highly resolved studies at stream and river scales that enable estimates of terrestrial carbon turnover within fluvial networks. Our objective was to develop a new isotope-based metric to estimate the quality of sediment organic carbon delivered to temperate streams and to use the new metric to estimate carbon quality across landscape disturbance gradients. Carbon quality is defined to be consistent with in-stream turnover and our metric is used to measure the labile or recalcitrant nature of the terrestrial-derived carbon within streams. Our hypothesis was that intensively-disturbed landscapes would tend to produce low quality carbon because deep, recalcitrant soil carbon would be eroded and transported to the fluvial system while moderately disturbed or undisturbed landscapes would tend to produce higher quality carbon from well-developed surface soils and litter. The hypothesis was tested by applying the new carbon quality metric to 15 temperate streams with a wide range of landscape disturbance levels. We find that our hypothesis premised on an indirect relationship between the extent of landscape disturbance and the quality of sediment carbon in streams holds true for moderate and high disturbances but not for un-disturbed forests. We explain the results based on the connectivity, or dis-connectivity, between terrestrial carbon sources and pathways for sediment transport. While pathways are typically un-limited for disturbed landscapes, the un-disturbed forests have dis-connectivity between labile carbon of the forest floor and the stream corridor. Only in the case when trees fell into the stream corridor due to severe ice storms did the quality of sediment carbon increase in the streams. We argue that as scientists continue to estimate the in-stream turnover of terrestrially-derived carbon in fluvial carbon budgets, the assumption of pathway connectivity between carbon sources to the stream should be justified.

  5. Neural traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity

    PubMed Central

    Vaisvaser, Sharon; Lin, Tamar; Admon, Roee; Podlipsky, Ilana; Greenman, Yona; Stern, Naftali; Fruchter, Eyal; Wald, Ilan; Pine, Daniel S.; Tarrasch, Ricardo; Bar-Haim, Yair; Hendler, Talma

    2013-01-01

    Stressful experiences modulate neuro-circuitry function, and the temporal trajectory of these alterations, elapsing from early disturbances to late recovery, heavily influences resilience and vulnerability to stress. Such effects of stress may depend on processes that are engaged during resting-state, through active recollection of past experiences and anticipation of future events, all known to involve the default mode network (DMN). By inducing social stress and acquiring resting-state functional magnetic resonance imaging (fMRI) before stress, immediately following it, and 2 h later, we expanded the time-window for examining the trajectory of the stress response. Throughout the study repeated cortisol samplings and self-reports of stress levels were obtained from 51 healthy young males. Post-stress alterations were investigated by whole brain resting-state functional connectivity (rsFC) of two central hubs of the DMN: the posterior cingulate cortex (PCC) and hippocampus. Results indicate a ’recovery’ pattern of DMN connectivity, in which all alterations, ascribed to the intervening stress, returned to pre-stress levels. The only exception to this pattern was a stress-induced rise in amygdala-hippocampal connectivity, which was sustained for as long as 2 h following stress induction. Furthermore, this sustained enhancement of limbic connectivity was inversely correlated to individual stress-induced cortisol responsiveness (AUCi) and characterized only the group lacking such increased cortisol (i.e., non-responders). Our observations provide evidence of a prolonged post-stress response profile, characterized by both the comprehensive balance of most DMN functional connections and the distinct time and cortisol dependent ascent of intra-limbic connectivity. These novel insights into neuro-endocrine relations are another milestone in the ongoing search for individual markers in stress-related psychopathologies. PMID:23847492

  6. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520

  7. Coral reef recovery dynamics in a changing world

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.; Kool, J. T.

    2011-06-01

    Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.

  8. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    PubMed Central

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D.; O'Neil, Brian J.; Haacke, E. Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances. PMID:26819765

  9. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury.

    PubMed

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D; O'Neil, Brian J; Haacke, E Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  10. A supplementary functional connectivity microstate attached to the default mode network in depression revealed by resting-state magnetoencephalography.

    PubMed

    Zhang, Siqi; Tian, Shui; Chattun, Mohammad Ridwan; Tang, Hao; Yan, Rui; Bi, Kun; Yao, Zhijian; Lu, Qing

    2018-04-20

    Default mode network (DMN) has discernable involvement in the representation of negative, self-referential information in depression. Both increased and decreased resting-state functional connectivity between the anterior and posterior DMN have been observed in depression. These conflicting connectivity differences necessitated further exploration of the resting-state DMN dysfunction in depression. Hence, we investigated the time-varying dynamic interactions within the DMN via functional connectivity microstates in a sub-second level. 25 patients with depression and 25 matched healthy controls were enrolled in the MEG analysis. Spherical K-means algorithms embedded within an iterative optimization frame were applied to sliding windowed correlation matrices, resulting in sub-second alternations of two functional connectivity microstates for groups and highlighting the presence of functional variability. In the power dominant state, depressed patients showed a transient decreased pattern that reflected inter/intra-subnetwork deregulation. A supplementary negatively correlated state simultaneously presented with increased connectivity between the ventromedial prefrontal cortex (vmPFC) and the posterior cingulate cortex (PCC), two core nodes for the anterior and posterior DMN respectively. Additionally, depressed patients stayed longer in the supplementary microstate compared to healthy controls. During the time spent in the supplementary microstate, an attempt to compensate for the aberrant effect of vmPFC on PCC across DMN subnetworks was possibly made to balance the self-related processes disturbed by the dominant pattern. The functional compensation mechanism of the supplementary microstate attached to the dominant disrupted one provided a possible explanation to the existing inconsistent findings between the anterior and posterior DMN in depression. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure

    PubMed Central

    Wozniak, Jeffrey R.; Mueller, Bryon A.; Muetzel, Ryan L.; Bell, Christopher J.; Hoecker, Heather L.; Nelson, Miranda L.; Chang, Pi-Nian; Lim, Kelvin O.

    2010-01-01

    Background MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of Fetal Alcohol Spectrum Disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine if inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition. Methods Twenty-one children with FASD and 23 matched controls underwent a six minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semiautomated method, we parsed the corpus callosum and delineated seven inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs and group comparisons were done. Correlations with facial dysmorphology, cognition, and DTI measures were computed. Results A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than controls in this region. Sub-group analyses were not possible due to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures and Wechsler perceptual reasoning ability. Conclusions Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning. PMID:21303384

  12. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  13. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  14. Functional brain networks in schizophrenia: a review.

    PubMed

    Calhoun, Vince D; Eichele, Tom; Pearlson, Godfrey

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event-related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA) which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large-scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their inter-relationships with fMRI has great potential to improve our understanding of schizophrenia.

  15. Brain Connectivity Patterns Dissociate Action of Specific Acupressure Treatments in Fatigued Breast Cancer Survivors.

    PubMed

    Harris, Richard E; Ichesco, Eric; Cummiford, Chelsea; Hampson, Johnson P; Chenevert, Thomas L; Basu, Neil; Zick, Suzanna M

    2017-01-01

    Persistent fatigue is a pernicious symptom in many cancer survivors. Existing treatments are limited or ineffective and often lack any underlying biologic rationale. Acupressure is emerging as a promising new intervention for persistent cancer-related fatigue; however, the underlying mechanisms of action are unknown. Our previous investigations suggested that fatigued breast cancer survivors have alterations in brain neurochemistry within the posterior insula and disturbed functional connectivity to the default mode network (DMN), as compared to non-fatigued breast cancer survivors. Here, we investigated if insula and DMN connectivity were modulated by self-administered acupressure by randomizing breast cancer survivors ( n  = 19) to two distinct treatments: relaxing acupressure or stimulating acupressure. All participants underwent proton magnetic resonance spectroscopy of the posterior insula and functional connectivity magnetic resonance imaging at baseline and immediately following 6 weeks of acupressure self-treatment. As compared to baseline measures, relaxing acupressure decreased posterior insula to dorsolateral prefrontal cortex connectivity, whereas stimulating acupressure enhanced this connectivity ( p  < 0.05 corrected). For relaxing but not stimulating acupressure, reduced connectivity was associated with sleep improvement. In addition, connectivity of the DMN to the superior colliculus was increased with relaxing acupressure and decreased with stimulating acupressure, whereas DMN connectivity to the bilateral pulvinar was increased with stimulating and decreased with relaxing acupressure ( p  < 0.05 corrected). These data suggest that self-administered acupressure at different acupoints has specificity in relation to their mechanisms of action in fatigued breast cancer survivors.

  16. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  17. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder.

    PubMed

    Konrad, Kerstin; Eickhoff, Simon B

    2010-06-01

    In recent years, a change in perspective in etiological models of attention deficit hyperactivity disorder (ADHD) has occurred in concordance with emerging concepts in other neuropsychiatric disorders such as schizophrenia and autism. These models shift the focus of the assumed pathology from regional brain abnormalities to dysfunction in distributed network organization. In the current contribution, we report findings from functional connectivity studies during resting and task states, as well as from studies on structural connectivity using diffusion tensor imaging, in subjects with ADHD. Although major methodological limitations in analyzing connectivity measures derived from noninvasive in vivo neuroimaging still exist, there is convergent evidence for white matter pathology and disrupted anatomical connectivity in ADHD. In addition, dysfunctional connectivity during rest and during cognitive tasks has been demonstrated. However, the causality between disturbed white matter architecture and cortical dysfunction remains to be evaluated. Both genetic and environmental factors might contribute to disruptions in interactions between different brain regions. Stimulant medication not only modulates regionally specific activation strength but also normalizes dysfunctional connectivity, pointing to a predominant network dysfunction in ADHD. By combining a longitudinal approach with a systems perspective in ADHD in the future, it might be possible to identify at which stage during development disruptions in neural networks emerge and to delineate possible new endophenotypes of ADHD. (c) 2010 Wiley-Liss, Inc.

  18. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction.

    PubMed

    Hu, Yuzheng; Salmeron, Betty Jo; Gu, Hong; Stein, Elliot A; Yang, Yihong

    2015-06-01

    Converging evidence has long identified both impulsivity and compulsivity as key psychological constructs in drug addiction. Although dysregulated striatal-cortical network interactions have been identified in cocaine addiction, the association between these brain networks and addiction is poorly understood. To test the hypothesis that cocaine addiction is associated with disturbances in striatal-cortical communication as captured by resting-state functional connectivity (rsFC), measured from coherent spontaneous fluctuations in the blood oxygenation level-dependent functional magnetic resonance imaging signal, and to explore the relationships between striatal rsFC, trait impulsivity, and uncontrolled drug use in cocaine addiction. A case-control, cross-sectional study was conducted at the National Institute on Drug Abuse Intramural Research Program outpatient magnetic resonance imaging facility. Data used in the present study were collected between December 8, 2005, and September 30, 2011. Participants included 56 non-treatment-seeking cocaine users (CUs) (52 with cocaine dependence and 3 with cocaine abuse) and 56 healthy individuals serving as controls (HCs) matched on age, sex, years of education, race, estimated intelligence, and smoking status. Voxelwise statistical parametric analysis testing the rsFC strength differences between CUs and HCs in brain regions functionally connected to 6 striatal subregions defined a priori. Increased rsFC strength was observed predominantly in striatal-frontal circuits; decreased rsFC was found between the striatum and cingulate, striatal, temporal, hippocampal/amygdalar, and insular regions in the CU group compared with the HCs. Increased striatal-dorsal lateral prefrontal cortex connectivity strength was positively correlated with the amount of recent cocaine use (uncorrected P < .046) and elevated trait impulsivity in the CUs (uncorrected P < .012), and an index reflecting the balance between striatal-dorsal anterior cingulate cortex and striatal-anterior prefrontal/orbitofrontal cortex circuits was significantly associated with loss of control over cocaine use (corrected P < .012). Cocaine addiction is associated with disturbed rsFC in several specific striatal-cortical circuits. Specifically, compulsive cocaine use, a defining characteristic of dependence, was associated with a balance of increased striatal-anterior prefrontal/orbitofrontal and decreased striatal-dorsal anterior cingulate connectivity; trait impulsivity, both a risk factor for and a consequence of cocaine use, was associated with increased dorsal striatal-dorsal lateral prefrontal cortex connectivity uniquely in CUs. These findings provide new insights toward the neurobiological mechanisms of addiction and suggest potential novel therapeutic targets for treatment.

  19. Cross-scale interactions, legacies, and spatial connectivity: integrating time and space to predict post-disturbance response across scales

    USDA-ARS?s Scientific Manuscript database

    Emergent properties and cross-scale interactions are important in driving landscape-scale dynamics during a disturbance event, such as wildfire. We used these concepts related to changing pattern-process relationships across scales to explain ecological responses following disturbance that resulted ...

  20. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    PubMed

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Pathogenesis of skin scleroderma--literature review].

    PubMed

    Wojas-Pelc, Anna; Lipko-Godlewska, Sylwia

    2005-01-01

    The pathogenesis of skin scleroderma (LS) is still unknown. Disturbances of vessels system, connective tissue metabolism and humoral and cellular immunological response is observed. Antinuclear antibodies are detected in 30-80% of patients with different types of skin scleroderma. They are present more often in patients with disseminated lesions and linear type of LS compared to morphoea au plaque. In our own analysis 28.5% of patients had also antibodies directed against Borrelia burgdorferi. It is believed that the injury of endothelial cells and proliferation in medial part of small vessels - which both lead to chronic ischemia - are the earliest disturbances observed in histopathological examination of the skin taken from systemic as well as from skin scleroderma patients. During last few years, there were some interesting reports concerning functional changes of endothelial cells which led to disturbances in tension of vessels smooth muscles. Free radicals - in genetically predispose people--can also provoke scleroderma lesions through their injury action on endothelial cells and stimulation of fibroblasts. In morphoea, the process of fibrosis begins around vessels. Deposition of connective tissue matrix is observed, especially collagen type I and III. This stimulation of fibroblasts as well as accumulation of connective tissue matrix are secondary to some stimulatory factors. These are: PDF, bFGF, TGFbeta and some cytokines. In morphoea patients serum levels of IL-1, IL-2, IL-4, IL-6 and IL-8 were elevated. In literature, levels and production of collagenases were decreased, although more authors say that tissue inhibitors of metalloproteinases are the main factor in fibrosis. The analysis of data tends to suspicion that enormous fibrosis observed in different types of scleroderma can be the result of increased production of collagen and other components of connective tissue as well as their incomplete degradation. Presented clinical and laboratory data show how many different factors influence etiopathogenesis of morphoea.

  2. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders

    PubMed Central

    Czéh, Boldizsár; Nagy, Szilvia A.

    2018-01-01

    Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder. PMID:29535607

  3. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics.

    PubMed

    Baliki, Marwan N; Geha, Paul Y; Apkarian, A Vania; Chialvo, Dante R

    2008-02-06

    Chronic pain patients suffer from more than just pain; depression and anxiety, sleep disturbances, and decision-making abnormalities (Apkarian et al., 2004a) also significantly diminish their quality of life. Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain (Apkarian et al., 2004b; Acerra and Moseley, 2005), but whether these structural impairments and behavioral deficits are connected by a single mechanism is as of yet unknown. Here we propose that long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the "default mode network" (DMN). This DMN (Raichle et al., 2001; Greicius et al., 2003; Vincent et al., 2007) is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted (Fox and Raichle, 2007). Using well validated functional magnetic resonance imaging (fMRI) paradigms to study the DMN (Fox et al., 2005), we investigated whether the impairments of chronic pain patients could be rooted in disturbed DMN dynamics. Studying with fMRI a group of chronic back pain (CBP) patients and healthy controls while executing a simple visual attention task, we discovered that CBP patients, despite performing the task equally well as controls, displayed reduced deactivation in several key DMN regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the DMN may underlie the cognitive and behavioral impairments accompanying chronic pain.

  4. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    PubMed

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a soil bacterial community to disturbance. The resultant postdisturbance bacterial community composition dynamics and functionality were analyzed. The paper demonstrates the relatedness of community structure and stability under cultivation conditions prevalent in an arid area under irrigation with water of different qualities. The use of common agricultural practices to demonstrate these features has not been described before. The combination of a fundamental theoretical issue in ecology with common and concerning disturbances caused by agricultural practice makes this study unique. Furthermore, the results of the present study have applicable importance regarding soil conservation, as it enables a better characterization and monitoring of stressed soil bacterial communities and possible intervention to reduce the stress. It will also be of valued interest in coming years, as fresh water scarcity and the use of alternative water sources are expected to rise globally. Copyright © 2018 American Society for Microbiology.

  5. [Cognitive disturbances observed in chronic hepatitis C patients during pegylated interferon alpha and ribavirin therapy].

    PubMed

    Pawełczyk, Tomasz; Pawełczyk, Agnieszka; Białkowska, Jolanta; Jabłkowski, Maciej; Strzelecki, Dominik; Dworniak, Daniela; Rabe-Jabłońska, Jolanta

    2008-01-01

    Chronic hepatitis C (CHC) patients treated with peg-interferon alpha and ribavirin (peg-IFNalpha/RBV) complain of irritability, attention and memory disturbances which may indicate cognitive impairment associated with treatment. Assessment of the probable connection between peg-IFNalpha/RBV treatment and the development of cognitive disturbances in CHC patients. 47 CHC patients were divided into two groups: experimental (n=26) and control (n=21). The experimental group patients were given peg-IFNalpha2a (n=18) or peg-IFNalpha2b (n=8) plus RBV in standard doses as recommended by the manufacturers. Control group patients did not receive the above treatment. Both groups underwent a neuropsychological examination consisting of R. Brickenkamp d2 test, Auditory Verbal Learning Test and Hooper Visual Organization Test at the beginning (t=0) and after 12 weeks of treatment or observation (t=1). The experimental group patients showed significant deterioration in all the measured cognitive functions in t=1 comparing to t=0. Cognitive decline was not seen in the control group. The observed cognitive performance changes could not be correlated sufficiently enough with the presence of organic affective disorders diagnosed according to ICD-10 criteria. The findings suggest that peg-IFNalpha/RBV therapy of CHC patients is connected with the deterioration in cognitive functioning including attention, auditory verbal memory and visuo-spatial skills. These changes may be the effect of peg-IFNalpha-induced neurotransmission abnormalities in the dorso-lateral prefrontal cortex, anterior cingulate cortex, hippocampus and parieto-orbital cortical regions and can impair patients' ability to drive a motor vehicle, operate machinery, or their engagement in hazardous activities requiring attention and coordination. Medical professionals should thoroughly inform patients about the possibility of cognitive decline associated with peg-IFNalpha/RBV therapy.

  6. A graph-theory framework for evaluating landscape connectivity and conservation planning.

    PubMed

    Minor, Emily S; Urban, Dean L

    2008-04-01

    Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A). We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.

  7. Glutathione, Glutaredoxins, and Iron.

    PubMed

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  8. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  9. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Towards Optimal Connectivity on Multi-layered Networks.

    PubMed

    Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang

    2017-10-01

    Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.

  11. Disrupted functional connectome in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  12. Disrupted functional connectome in antisocial personality disorder

    PubMed Central

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  13. Local disturbance cycles and the maintenance of heterogeneity across scales in marine metapopulations.

    PubMed

    Gouhier, Tarik C; Guichard, Frédéric

    2007-03-01

    In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.

  14. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation.

    PubMed

    Farb, Norman A S; Grady, Cheryl L; Strother, Stephen; Tang-Wai, David F; Masellis, Mario; Black, Sandra; Freedman, Morris; Pollock, Bruce G; Campbell, Karen L; Hasher, Lynn; Chow, Tiffany W

    2013-01-01

    Degraded social function, disinhibition, and stereotypy are defining characteristics of frontotemporal dementia (FTD), manifesting in both the behavioral variant of frontotemporal dementia (bvFTD) and semantic dementia (SD) subtypes. Recent neuroimaging research also associates FTD with alterations in the brain's intrinsic connectivity networks. The present study explored the relationship between neural network connectivity and specific behavioral symptoms in FTD. Resting-state functional magnetic resonance imaging was employed to investigate neural network changes in bvFTD and SD. We used independent components analysis (ICA) to examine changes in frontolimbic network connectivity, as well as several metrics of local network strength, such as the fractional amplitude of low-frequency fluctuations, regional homogeneity, and seed-based functional connectivity. For each analysis, we compared each FTD subgroup to healthy controls, characterizing general and subtype-unique network changes. The relationship between abnormal connectivity in FTD and behavior disturbances was explored. Across multiple analytic approaches, both bvFTD and SD were associated with disrupted frontolimbic connectivity and elevated local connectivity within the prefrontal cortex. Even after controlling for structural atrophy, prefrontal hyperconnectivity was robustly associated with apathy scores. Frontolimbic disconnection was associated with lower disinhibition scores, suggesting that abnormal frontolimbic connectivity contributes to positive symptoms in dementia. Unique to bvFTD, stereotypy was associated with elevated default network connectivity in the right angular gyrus. The behavioral variant was also associated with marginally higher apathy scores and a more diffuse pattern of prefrontal hyperconnectivity than SD. The present findings support a theory of FTD as a disorder of frontolimbic disconnection leading to unconstrained prefrontal connectivity. Prefrontal hyperconnectivity may represent a compensatory response to the absence of affective feedback during the planning and execution of behavior. Increased reliance upon prefrontal processes in isolation from subcortical structures appears to be maladaptive and may drive behavioral withdrawal that is commonly observed in later phases of neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. When small changes matter: the role of cross-scale interactions between habitat and ecological connectivity in recovery.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D

    2013-01-01

    Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.

  16. Insular subdivisions functional connectivity dysfunction within major depressive disorder.

    PubMed

    Peng, Xiaolong; Lin, Pan; Wu, Xiaoping; Gong, Ruxue; Yang, Rui; Wang, Jue

    2018-02-01

    Major depressive disorder (MDD) is a mental disorder characterized by cognitive and affective deficits. Previous studies suggested that insula is a crucial node of the salience network for initiating network switching, and dysfunctional connection to this region may be related to the mechanism of MDD. In this study, we systematically investigated and quantified the altered functional connectivity (FC) of the specific insular subdivisions and its relationship to psychopathology of MDD. Resting-state FC of insular subdivisions, including bilateral ventral/dorsal anterior insula and posterior insula, were estimated in 19 MDD patients and 19 healthy controls. Abnormal FC was quantified between groups. Additionally, we investigated the relationships between insular connectivity and depressive symptom severity. MDD patients demonstrated aberrant FC for insular subdivisions to superior temporal sulcus, inferior prefrontal gyrus, amygdala and posterior parietal cortex. Moreover, depression symptoms (Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale scorers) were associated with the FC values of insular subdivisions. First, the sample size of our current study is relatively small, which may affect the statistic power. Second, using standardized insular subdivision seeds for FC analyses may neglect subtle natural differences in size and location of functional area across individuals and may thus affect connectivity maps. Abnormal FC of insular subdivisions to default network and central executive network may represent impaired intrinsic networks switching which may affect the underlying emotional and sensory disturbances in MDD. And our findings can help to understand the pathophysiology and underlying neural mechanisms of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function.

    PubMed

    Bronfman, F C; Lazo, O M; Flores, C; Escudero, C A

    2014-01-01

    Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.

  18. Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis.

    PubMed

    Wotruba, Diana; Michels, Lars; Buechler, Roman; Metzler, Sibylle; Theodoridou, Anastasia; Gerstenberg, Miriam; Walitza, Susanne; Kollias, Spyros; Rössler, Wulf; Heekeren, Karsten

    2014-09-01

    The task-positive network (TPN) is anticorrelated with activity in the default mode network (DMN), and possibly reflects competition between the processing of external and internal information, while the salience network (SN) is pivotal in regulating TPN and DMN activity. Because abnormal functional connectivity in these networks has been related to schizophrenia, we tested whether alterations are also evident in subjects at risk for psychosis. Resting-state functional magnetic resonance imaging was tested in 28 subjects with basic symptoms reporting subjective cognitive-perceptive symptoms; 19 with attenuated or brief, limited psychotic symptoms; and 29 matched healthy controls. We characterized spatial differences in connectivity patterns, as well as internetwork connectivity. Right anterior insula (rAI) was selected as seed region for identifying the SN; medioprefrontal cortex (MPFC) for the DMN and TPN. The 3 groups differed in connectivity patterns between the MPFC and right dorsolateral prefrontal cortex (rDLPFC), and between the rAI and posterior cingulate cortex (PCC). In particular, the typically observed antagonistic relationship in MPFC-rDLPFC, rAI-PCC, and internetwork connectivity of DMN-TPN was absent in both at-risk groups. Notably, those connectivity patterns were associated with symptoms related to reality distortions, whereas enhanced connectivity strengths of MPFC-rDLPFC and TPN-DMN were related to poor performance in cognitive functions. We propose that the loss of a TPN-DMN anticorrelation, accompanied by an aberrant spatial extent in the DMN, TPN, and SN in the psychosis risk state, reflects the confusion of internally and externally focused states and disturbance of cognition, as seen in psychotic disorders. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder.

    PubMed

    Xing, Lihong; Yuan, Kai; Bi, Yanzhi; Yin, Junsen; Cai, Chenxi; Feng, Dan; Li, Yangding; Song, Min; Wang, Hongmei; Yu, Dahua; Xue, Ting; Jin, Chenwang; Qin, Wei; Tian, Jie

    2014-10-24

    The association between the impaired cognitive control and brain regional abnormalities in Internet gaming disorder (IGD) adolescents had been validated in numerous studies. However, few studies focused on the role of the salience network (SN), which regulates dynamic communication among brain core neurocognitive networks to modulate cognitive control. Seventeen IGD adolescents and 17 healthy controls participated in the study. By combining resting-state functional connectivity and diffusion tensor imaging (DTI) tractography methods, we examined the changes of functional and structural connections within SN in IGD adolescents. The color-word Stroop task was employed to assess the impaired cognitive control in IGD adolescents. Correlation analysis was carried out to investigate the relationship between the neuroimaging indices and behavior performance in IGD adolescents. The impaired cognitive control in IGD was validated by more errors during the incongruent condition in color-word Stroop task. The right SN tract showed the decreased fractional anisotropy (FA) in IGD adolescents, though no significant differences of functional connectivity were detected. Moreover, the FA values of the right SN tract were negatively correlated with the errors during the incongruent condition in IGD adolescents. Our results revealed the disturbed structural connectivity within SN in IGD adolescents, which may be related with impaired cognitive control. It is hoped that the brain-behavior relationship from network perspective may enhance the understanding of IGD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Approaching a network connectivity-driven classification of the psychosis continuum: a selective review and suggestions for future research.

    PubMed

    Schmidt, André; Diwadkar, Vaibhav A; Smieskova, Renata; Harrisberger, Fabienne; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan

    2014-01-01

    Brain changes in schizophrenia evolve along a dynamic trajectory, emerging before disease onset and proceeding with ongoing illness. Recent investigations have focused attention on functional brain interactions, with experimental imaging studies supporting the disconnection hypothesis of schizophrenia. These studies have revealed a broad spectrum of abnormalities in brain connectivity in patients, particularly for connections integrating the frontal cortex. A critical point is that brain connectivity abnormalities, including altered resting state connectivity within the fronto-parietal (FP) network, are already observed in non-help-seeking individuals with psychotic-like experiences. If we consider psychosis as a continuum, with individuals with psychotic-like experiences at the lower and psychotic patients at the upper ends, individuals with psychotic-like experiences represent a key population for investigating the validity of putative biomarkers underlying the onset of psychosis. This paper selectively addresses the role played by FP connectivity in the psychosis continuum, which includes patients with chronic psychosis, early psychosis, clinical high risk, genetic high risk, as well as the general population with psychotic experiences. We first discuss structural connectivity changes among the FP pathway in each domain in the psychosis continuum. This may provide a basis for us to gain an understanding of the subsequent changes in functional FP connectivity. We further indicate that abnormal FP connectivity may arise from glutamatergic disturbances of this pathway, in particular from abnormal NMDA receptor-mediated plasticity. In the second part of this paper we propose some concepts for further research on the use of network connectivity in the classification of the psychosis continuum. These concepts are consistent with recent efforts to enhance the role of data in driving the diagnosis of psychiatric spectrum diseases.

  2. Approaching a network connectivity-driven classification of the psychosis continuum: a selective review and suggestions for future research

    PubMed Central

    Schmidt, André; Diwadkar, Vaibhav A.; Smieskova, Renata; Harrisberger, Fabienne; Lang, Undine E.; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan

    2015-01-01

    Brain changes in schizophrenia evolve along a dynamic trajectory, emerging before disease onset and proceeding with ongoing illness. Recent investigations have focused attention on functional brain interactions, with experimental imaging studies supporting the disconnection hypothesis of schizophrenia. These studies have revealed a broad spectrum of abnormalities in brain connectivity in patients, particularly for connections integrating the frontal cortex. A critical point is that brain connectivity abnormalities, including altered resting state connectivity within the fronto-parietal (FP) network, are already observed in non-help-seeking individuals with psychotic-like experiences. If we consider psychosis as a continuum, with individuals with psychotic-like experiences at the lower and psychotic patients at the upper ends, individuals with psychotic-like experiences represent a key population for investigating the validity of putative biomarkers underlying the onset of psychosis. This paper selectively addresses the role played by FP connectivity in the psychosis continuum, which includes patients with chronic psychosis, early psychosis, clinical high risk, genetic high risk, as well as the general population with psychotic experiences. We first discuss structural connectivity changes among the FP pathway in each domain in the psychosis continuum. This may provide a basis for us to gain an understanding of the subsequent changes in functional FP connectivity. We further indicate that abnormal FP connectivity may arise from glutamatergic disturbances of this pathway, in particular from abnormal NMDA receptor-mediated plasticity. In the second part of this paper we propose some concepts for further research on the use of network connectivity in the classification of the psychosis continuum. These concepts are consistent with recent efforts to enhance the role of data in driving the diagnosis of psychiatric spectrum diseases. PMID:25628553

  3. Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers.

    PubMed

    Bonhomme, Vincent; Vanhaudenhuyse, Audrey; Demertzi, Athena; Bruno, Marie-Aurélie; Jaquet, Oceane; Bahri, Mohamed Ali; Plenevaux, Alain; Boly, Melanie; Boveroux, Pierre; Soddu, Andrea; Brichant, Jean François; Maquet, Pierre; Laureys, Steven

    2016-11-01

    Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.

  4. Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin.

    PubMed

    Lebedev, Alexander V; Lövdén, Martin; Rosenthal, Gidon; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2015-08-01

    Ego-disturbances have been a topic in schizophrenia research since the earliest clinical descriptions of the disorder. Manifesting as a feeling that one's "self," "ego," or "I" is disintegrating or that the border between one's self and the external world is dissolving, "ego-disintegration" or "dissolution" is also an important feature of the psychedelic experience, such as is produced by psilocybin (a compound found in "magic mushrooms"). Fifteen healthy subjects took part in this placebo-controlled study. Twelve-minute functional MRI scans were acquired on two occasions: subjects received an intravenous infusion of saline on one occasion (placebo) and 2 mg psilocybin on the other. Twenty-two visual analogue scale ratings were completed soon after scanning and the first principal component of these, dominated by items referring to "ego-dissolution", was used as a primary measure of interest in subsequent analyses. Employing methods of connectivity analysis and graph theory, an association was found between psilocybin-induced ego-dissolution and decreased functional connectivity between the medial temporal lobe and high-level cortical regions. Ego-dissolution was also associated with a "disintegration" of the salience network and reduced interhemispheric communication. Addressing baseline brain dynamics as a predictor of drug-response, individuals with lower diversity of executive network nodes were more likely to experience ego-dissolution under psilocybin. These results implicate MTL-cortical decoupling, decreased salience network integrity, and reduced inter-hemispheric communication in psilocybin-induced ego disturbance and suggest that the maintenance of "self"or "ego," as a perceptual phenomenon, may rest on the normal functioning of these systems. © 2015 Wiley Periodicals, Inc.

  5. Skin, fascias, and scars: symptoms and systemic connections

    PubMed Central

    Bordoni, Bruno; Zanier, Emiliano

    2014-01-01

    Every element or cell in the human body produces substances that communicate and respond in an autocrine or paracrine mode, consequently affecting organs and structures that are seemingly far from each other. The same also applies to the skin. In fact, when the integrity of the skin has been altered, or when its healing process is disturbed, it becomes a source of symptoms that are not merely cutaneous. The skin is an organ, and similar to any other structure, it has different functions in addition to connections with the central and peripheral nervous system. This article examines pathological responses produced by scars, analyzing definitions and differences. At the same time, it considers the subcutaneous fascias, as this connective structure is altered when there is a discontinuous cutaneous surface. The consequence is an ample symptomatology, which is not limited to the body area where the scar is located, such as a postural or trigeminal disorder. PMID:24403836

  6. [Brain concussion].

    PubMed

    Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha

    2011-01-01

    Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.

  7. [Prophylaxis of nutrition disturbances project "Time for Health"].

    PubMed

    Bargiel-Matusiewicz, Kamilla; Bak-Sosnowska, Monika; Trzcieniecka-Green, Anna; Kapica, Janina

    2004-01-01

    More than half of girls and women treat themselves as obese persons. It is connected with the ideal of slimness, predominating in our culture. The consequences of this cult of slimness involve more and more frequent disturbances in nutrition. Problems, which are the basis for obesity, anorexia and bulimia cannot be related merely to nutrition, weight and body size issues. They are indissolubly connected with low self-esteem, difficulties in one's identity as well as with a lack of interpersonal relation satisfactions. The presented project's aim is prophylaxis concerning nutrition disturbances. It is addressed to girls at the age of 14 and 15. According to the project, classes are organized for the 1st and 2nd year students of secondary schools. The program includes eight meetings devoted to the questions which are significant elements of creating positive image of self-image, a feeling of one's identity as well as developing abilities to make independent opinions and decisions. These factors may prevent girls from following trends e.g. connected with the cult of slimness.

  8. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention

    PubMed Central

    Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.

    2010-01-01

    We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433

  9. Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood.

    PubMed

    McCarthy, Hazel; Skokauskas, Norbert; Mulligan, Aisling; Donohoe, Gary; Mullins, Diane; Kelly, John; Johnson, Katherine; Fagan, Andrew; Gill, Michael; Meaney, James; Frodl, Thomas

    2013-12-01

    The neurobiological underpinnings of attention-deficit/hyperactivity disorder (ADHD) and particularly those associated with the persistence of ADHD into adulthood are not yet well understood. The correlation patterns in spontaneous neural fluctuations at rest are known as resting-state functional connectivity (RSFC) and could characterize ADHD-specific connectivity changes. To determine the specific location of possible ADHD-related differences in RSFC between adults diagnosed as having ADHD in childhood and control subjects. DESIGN Using resting-state functional magnetic resonance imaging, we calculated and compared functional connectivity from attention, affective, default, and cognitive control networks involved in the psychopathology of ADHD between the ADHD and control groups. SETTING University psychiatric service and magnetic resonance imaging research center. Sixteen drug-free adults (5 women and 11 men; mean age, 24.5 years) diagnosed with combined-type ADHD in childhood and 16 healthy controls matched for age (mean age, 24.4 years), sex, handedness, and educational level recruited from the community. Functional magnetic resonance imaging. Connectivity data from ventral and dorsal attention, affective, default, and cognitive control networks and ADHD symptoms derived from ADHD-specific rating instruments. Adults with ADHD showed significantly decreased RSFC within the attention networks and increased RSFC within the affective and default mode and the right lateralized cognitive control networks compared with healthy controls (P < .01, familywise error for whole-brain cluster correction). Lower RSFC in the ventral and dorsal attention network was significantly correlated with higher levels of ADHD symptoms (P < .001). These RSFC findings might underpin a biological basis for adult ADHD and are functionally related to persistent inattention, disturbance in cognitive control, and emotional dysregulation in adults with ADHD. These findings need to be understood in the context of all aspects of brain function in ADHD.

  10. Disturbed functional connectivity within the left prefrontal cortex and sensorimotor areas predicts impaired cognitive speed in patients with first-episode schizophrenia.

    PubMed

    Krukow, Paweł; Jonak, Kamil; Karakuła-Juchnowicz, Hanna; Podkowiński, Arkadiusz; Jonak, Katarzyna; Borys, Magdalena; Harciarek, Michał

    2018-05-30

    This study aimed at identifying abnormal cortico-cortical functional connectivity patterns that could predict cognitive slowing in patients with schizophrenia. A group of thirty-two patients with the first-episode schizophrenia and comparable healthy controls underwent resting-state qEEG and cognitive assessment. Phase Lag Index (PLI) was applied as a connectivity index and the synchronizations were analyzed in six frequencies. Pairs of electrodes were grouped to separately cover frontal, temporal, central, parietal and occipital regions. PLI was calculated for intra-regional connectivity and between-regions connectivity. Computer version processing speed tests were applied to control for possible fluctuations in cognitive efficiency during the performance of the tasks. In the group of patients, in comparison to healthy controls, significantly higher PLI values were recorded in theta frequency, especially in the posterior areas and decreased PLI in low-alpha frequency within the frontal regions. Mean PLI in gamma frequency was also lower in the patients group. Regression analysis showed that lower intra-regional PLI for left frontal cortex and higher PLI within somatosensory cortex in theta band, together with the duration of untreated psychosis, proved to be significant predictors of impaired processing speed in first-episode patients. Our investigation confirmed that disrupted cortico-cortical synchronization contributes to cognitive slowing in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry

    2017-01-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  12. The effects of road building on arbuscular mycorrhizal fungal diversity in Huangshan Scenic Area.

    PubMed

    Yang, Anna; Tang, Dongmei; Jin, Xiulong; Lu, Lin; Li, Xiaohong; Liu, Kun

    2018-01-22

    Arbuscular mycorrhizal (AM) fungi are vital soil microbes that connect many individual plants into a large functional organism via a vast mycelial network under the ground. In this study, the changes of soil AM fungal community in response to road-building disturbance caused by tourism development in Huangshan (Yellow Mountain) Scenic Area are assessed. Road building have brought negative effects on AM fungal community, inducing lower diversity parameters, including species number, spore density and diversity indices. However, the dominant genus and species of AM fungi which play key roles in the AM fungal community composition are quite similar before and after road building. Moreover, there are no significant differences in species richness of AM fungi associated with plants, suggesting the tolerance of AM fungal community to the disturbance of road building.

  13. Magnetic suspension and pointing system. [on a carrier vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  14. Environmental disturbance increases social connectivity in a passerine bird.

    PubMed

    Lantz, Samantha M; Karubian, Jordan

    2017-01-01

    Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience.

  15. Environmental disturbance increases social connectivity in a passerine bird

    PubMed Central

    Lantz, Samantha M.; Karubian, Jordan

    2017-01-01

    Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience. PMID:28854197

  16. Functional connectivity in prenatally stressed rats with and without maternal treatment with ladostigil, a brain-selective monoamine oxidase inhibitor.

    PubMed

    Goelman, G; Ilinca, R; Zohar, I; Weinstock, M

    2014-09-01

    Stress during pregnancy in humans is known to be a risk factor for neuropsychiatric disorders in the offspring. Prenatal stress in rats caused depressive-like behavior that was restored to that of controls by maternal treatment with ladostigil (8.5 mg/kg per day), a brain-selective monoamine oxidase (MAO) inhibitor that prevented increased anxiety-like behavior in stressed mothers. Ladostigil inhibited maternal striatal MAO-A and -B by 45-50% at the time the pups were weaned. Using resting state-functional connectivity magnetic resonance imaging on rat male offspring of control mothers, and mothers stressed during gestation with and without ladostigil treatment, we identified neuronal connections that differed between these groups. The percentage of significant connections within a predefined predominantly limbic network in control rats was 23.3 within the right and 22.0 within the left hemisphere. Prenatal stress disturbed hemispheric symmetry, resulting in 30.2 and 21.6%, significant connections in the right and left hemispheres, respectively, but this was fully restored in the maternal ladostigil group to 24.6% in both hemispheres. All connections that were modified in prenatally stressed rats and restored by maternal drug treatment were associated with the dopaminergic system. Specifically, we observed that restoration of the connections of the right nucleus accumbens shell with frontal areas, the cingulate, septum and motor and sensory cortices, and those of the right globus pallidus with the infra-limbic and the dentate gyrus, were most important for prevention of depressive-like behavior. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults.

    PubMed

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults ( N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.

  18. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults

    PubMed Central

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55–85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels. PMID:29163003

  19. [Platelet function in acute myeloid leukemia. II. Aggregation of isolated platelets].

    PubMed

    Zawilska, K; Komarnicki, M; Mańka, B

    1978-01-01

    In 22 patients with acute myeloid leukaemia (17 cases of myeloblastic leukaemia, 4 cases of myelomonocytic leukaemia and 1 case of undifferentiated-cell leukaemia) platelets were isolated from the plasma by the method of Nicholls and Hampton as modified by Levy-Toledano by centrifugation in albumin gradient. The aim of platelet isolation was their "concentration" in cases of thrombocytopenia to values making possible aggregation tests, and platelet separation from the influence of plasma factors. Then aggregation of isolated platelets caused by ADP was studied. In 16 out of 22 patients a fall of aggregation was observed, with the mean values of aggregation rate and intensity were significantly lower. Parallelly done determinations of aggregating activity released from the platelets by thrombin showed lower values as compared with platelets from healthy subjects. In might be thought, in this connection, that the demonstrated reduction of isolated platelets is associated with a diminution of the nucleotide pool or disturbances of the platelet release reaction. The disturbances of the platelet release reaction. The disturbances of aggregation of isolated platelets and reduction of the aggregating activity were most pronounced in acute myelomonocytic leukaemia.

  20. Adaptive tracking control of leader-following linear multi-agent systems with external disturbances

    NASA Astrophysics Data System (ADS)

    Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen

    2016-10-01

    In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

  1. Ecohydrology and tipping points in semiarid australian rangelands

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.

    2017-12-01

    Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed

  2. Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation.

    PubMed

    Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M

    2015-11-15

    Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    NASA Astrophysics Data System (ADS)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.

  4. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.

  5. Towards Solving the Riddle of Forgetting in Functional Amnesia: Recent Advances and Current Opinions

    PubMed Central

    Staniloiu, Angelica; Markowitsch, Hans J.

    2012-01-01

    Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological, and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically, and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in “forgetting” in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events, and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion). This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing. PMID:23125838

  6. Towards solving the riddle of forgetting in functional amnesia: recent advances and current opinions.

    PubMed

    Staniloiu, Angelica; Markowitsch, Hans J

    2012-01-01

    Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological, and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically, and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in "forgetting" in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events, and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion). This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.

  7. Intrinsic brain abnormalities in young healthy adults with childhood trauma: A resting-state functional magnetic resonance imaging study of regional homogeneity and functional connectivity.

    PubMed

    Lu, Shaojia; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang

    2017-06-01

    Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.

  8. A 37-year-old Menkes disease patient-Residual ATP7A activity and early copper administration as key factors in beneficial treatment.

    PubMed

    Tümer, Z; Petris, M; Zhu, S; Mercer, J; Bukrinski, J; Bilz, S; Baerlocher, K; Horn, N; Møller, L B

    2017-11-01

    Menkes disease (MD) is a lethal disorder characterized by severe neurological symptoms and connective tissue abnormalities; and results from malfunctioning of cuproenzymes, which cannot receive copper due to a defective intracellular copper transporting protein, ATP7A. Early parenteral copper-histidine supplementation may modify disease progression substantially but beneficial effects of long-term treatment have been recorded in only a few patients. Here we report on the eldest surviving MD patient (37 years) receiving early-onset and long-term copper treatment. He has few neurological symptoms without connective tissue disturbances; and a missense ATP7A variant, p.(Pro852Leu), which results in impaired protein trafficking while the copper transport function is spared. These findings suggest that some cuproenzymes maintain their function when sufficient copper is provided to the cells; and underline the importance of early initiated copper treatment, efficiency of which is likely to be dependent on the mutant ATP7A function. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia

    PubMed Central

    Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail

    2015-01-01

    Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635

  10. Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder

    PubMed Central

    Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng

    2016-01-01

    Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320

  11. Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease

    PubMed Central

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E.; Criaud, Marion

    2014-01-01

    Patients with Parkinson’s disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson’s disease. The insula is affected in Parkinson’s disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson’s disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson’s disease non-motor symptoms. PMID:24736308

  12. Tolerable hearing-aid delays: IV. effects on subjective disturbance during speech production by hearing-impaired subjects.

    PubMed

    Stone, Michael A; Moore, Brian C J

    2005-04-01

    We assessed the effects of time delay in a hearing aid on subjective disturbance and reading rates while the user of the aid was speaking, using hearing-impaired subjects and real-time processing. The time delay was constant across frequency. A digital signal processor was programmed as a four-channel, fast-acting, wide-dynamic-range compression hearing aid. One of four delays could be selected on the aid to produce a total delay of 13, 21, 30, or 40 msec between microphone and receiver. Twenty-five subjects, mostly with near-symmetric hearing impairment of cochlear origin, were fitted bilaterally with behind-the-ear aids connected to the processor. The aids were programmed with insertion gains prescribed by the CAMEQ loudness equalization procedure for each subject and ear. Subjects were asked to read aloud from scripts: speech production rates were measured and subjective ratings of the disturbance of the delay were obtained. Subjects required some training to recognize the effects of the delay to rate it consistently. Subjective disturbance increased progressively with increasing delay and was a nonmonotonic function of low-frequency hearing loss. Subjects with mild or severe low-frequency hearing loss were generally less disturbed by the delay than those with moderate loss. Disturbance ratings tended to decrease over successive tests. Word production rates were not significantly affected by delay over the range of delays tested. The results follow a pattern similar to those presented in , obtained using a simulation of hearing loss and normally hearing subjects, except for the nonmonotonic variation of disturbance with low-frequency hearing loss. We hypothesize that disturbance is maximal when the levels in the ear canal of the low-frequency components are similar for the unaided and aided sounds. A rating of 3, which is probably just acceptable, was obtained for delays ranging from 14 to 30 msec, depending on the hearing loss. Some acclimatization to the subjective disturbance occurred over a time scale of about 1 hour.

  13. Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment

    PubMed Central

    Baldwin, Susan A.; Taylor, Jon; Gurr, David B.; Denesiuk, Daniel R.; Van Hamme, Jonathan D.; Fraser, Lauchlan H.

    2018-01-01

    We investigated the impacts of the Mount Polley tailings impoundment failure on chemical, physical, and microbial properties of substrates within the affected watershed, comprised of 70 hectares of riparian wetlands and 40 km of stream and lake shore. We established a biomonitoring network in October of 2014, two months following the disturbance, and evaluated riparian and wetland substrates for microbial community composition and function via 16S and full metagenome sequencing. A total of 234 samples were collected from substrates at 3 depths and 1,650,752 sequences were recorded in a geodatabase framework. These data revealed a wealth of information regarding watershed-scale distribution of microbial community members, as well as community composition, structure, and response to disturbance. Substrates associated with the impact zone were distinct chemically as indicated by elevated pH, nitrate, and sulphate. The microbial community exhibited elevated metabolic capacity for selenate and sulfate reduction and an abundance of chemolithoautotrophs in the Thiobacillus thiophilus/T. denitrificans/T. thioparus clade that may contribute to nitrate attenuation within the affected watershed. The most impacted area (a 6 km stream connecting two lakes) exhibited 30% lower microbial diversity relative to the remaining sites. The tailings impoundment failure at Mount Polley Mine has provided a unique opportunity to evaluate functional and compositional diversity soon after a major catastrophic disturbance to assess metabolic potential for ecosystem recovery. PMID:29694379

  14. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  15. Human alterations, dynamic equilibrium, and riparian ecosystem responses along selected rivers in Tuscany, Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Hupp, C. R.; Rinaldi, M.

    2010-12-01

    Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.

  16. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes.

    PubMed

    Spencer, Kate L; Carr, Simon J; Diggens, Lucy M; Tempest, James A; Morris, Michelle A; Harvey, Gemma L

    2017-06-01

    Saltmarshes are being lost or degraded as a result of human activity resulting in loss of critical ecosystem services including the provision of wild species diversity, water quality regulation and flood regulation. To compensate, saltmarshes are being restored or re-created, usually driven by legislative requirements for increased habitat diversity, flood regulation and sustainable coastal defense. Yet, there is increasing evidence that restoration may not deliver anticipated ecosystem services; this is frequently attributed to poor drainage and sediment anoxia. However, physical sediment characteristics, hydrology and the sediment geochemical environment are rarely examined in restoration schemes, despite such factors being critical for plant succession. This study presents the novel integration of 3D-computed X-ray microtomography to quantify sediment structure and porosity, with water level and geochemical data to understand the impact of pre-restoration land use and disturbance on the structure and functioning of restored saltmarshes. The study combines a broad-scale investigation of physical sediment characteristics in nine de-embanked saltmarshes across SE England, with an intensive study at one site examining water levels, sediment structure and the sediment geochemical environment. De-embankment does not restore the hydrological regime, or the physical/chemical framework in the saltmarshes and evidence of disturbance includes a reduction in microporosity, pore connectivity and water storage capacity, a lack of connectivity between the sub-surface environment and overlying floodwaters, and impeded sub-surface water flow and drainage. This has significant consequences for the sediment geochemical environment. This disturbance is evident for at least two decades following restoration and is likely to be irreversible. It has important implications for plant establishment in particular, ecosystem services including flood regulation, nutrient cycling and wild species diversity and for future restoration design. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade.

    PubMed

    Thiebes, Stephanie; Steinmann, Saskia; Curic, Stjepan; Polomac, Nenad; Andreou, Christina; Eichler, Iris-Carola; Eichler, Lars; Zöllner, Christian; Gallinat, Jürgen; Leicht, Gregor; Mulert, Christoph

    2018-06-01

    Auditory verbal hallucinations (AVH) are a common positive symptom of schizophrenia. Excitatory-to-inhibitory (E/I) imbalance related to disturbed N-methyl-D-aspartate receptor (NMDAR) functioning has been suggested as a possible mechanism underlying altered connectivity and AVH in schizophrenia. The current study examined the effects of ketamine, a NMDAR antagonist, on glutamate-related mechanisms underlying interhemispheric gamma-band connectivity, conscious auditory perception during dichotic listening (DL), and the emergence of auditory verbal distortions and hallucinations (AVD/AVH) in healthy volunteers. In a single-blind, pseudo-randomized, placebo-controlled crossover design, nineteen male, right-handed volunteers were measured using 64 channel electroencephalography (EEG). Psychopathology was assessed with the PANSS interview and the 5D-ASC questionnaire, including a subscale to detect auditory alterations with regard to AVD/AVH (AUA-AVD/AVH). Interhemispheric connectivity analysis was performed using eLORETA source estimation and lagged phase synchronization (LPS) in the gamma-band range (30-100 Hz). Ketamine induced positive symptoms such as hallucinations in a subgroup of healthy subjects. In addition, interhemispheric gamma-band connectivity was found to be altered under ketamine compared to placebo, and subjects with AUA-AVD/AVH under ketamine showed significantly higher interhemispheric gamma-band connectivity than subjects without AUA-AVD/AVH. These findings demonstrate a relationship between NMDAR functioning, interhemispheric connectivity in the gamma-band frequency range between bilateral auditory cortices and the emergence of AVD/AVH in healthy subjects. The result is in accordance with the interhemispheric miscommunication hypothesis of AVH and argues for a possible role of glutamate in AVH in schizophrenia.

  18. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  19. Hydrologic connectivity of floodplains, northern Missouri: implications for management and restoration of floodplain forest communities in disturbed landscapes

    USGS Publications Warehouse

    Jacobson, R.; Faust, T.

    2014-01-01

    Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2-year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain-connecting events decrease. Flow durations above the active-channel shelf vary little with increasing drainage area, indicating that the active-channel shelf is in quasi-equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape-scale variations in composition of floodplain forest communities in northern Missouri. Faust (2006) had tentatively explained increases of flood-dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain-connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood-dependent trees at larger drainage area result from increasing size of disturbance patches. Bank-overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade-intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non-incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape-scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities.

  20. Automated acquisition system for routine, noninvasive monitoring of physiological data.

    PubMed

    Ogawa, M; Tamura, T; Togawa, T

    1998-01-01

    A fully automated, noninvasive data-acquisition system was developed to permit long-term measurement of physiological functions at home, without disturbing subjects' normal routines. The system consists of unconstrained monitors built into furnishings and structures in a home environment. An electrocardiographic (ECG) monitor in the bathtub measures heart function during bathing, a temperature monitor in the bed measures body temperature, and a weight monitor built into the toilet serves as a scale to record weight. All three monitors are connected to one computer and function with data-acquisition programs and a data format rule. The unconstrained physiological parameter monitors and fully automated measurement procedures collect data noninvasively without the subject's awareness. The system was tested for 1 week by a healthy male subject, aged 28, in laboratory-based facilities.

  1. Altered inhibition-related frontolimbic connectivity in obsessive-compulsive disorder.

    PubMed

    van Velzen, Laura S; de Wit, Stella J; Ćurĉić-Blake, Branislava; Cath, Daniëlle C; de Vries, Froukje E; Veltman, Dick J; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2015-10-01

    Recent studies have shown that response inhibition is impaired in patients with obsessive-compulsive disorder and their unaffected siblings, suggesting that these deficits may be considered a cognitive endophenotype of obsessive-compulsive disorder. Structural and functional neural correlates of altered response inhibition have been identified in patients and siblings. This study aims to examine the functional integrity of the response inhibition network in patients with obsessive-compulsive disorder and their unaffected siblings. Forty-one unmedicated patients with obsessive-compulsive disorder, 17 of their unaffected siblings and 37 healthy controls performed a stop signal task during functional magnetic resonance imaging. Psycho-physiological interaction analysis was used to examine functional connectivity between the following regions of interest: the bilateral inferior frontal gyri, presupplementary motor area, subthalamic nuclei, inferior parietal lobes, anterior cingulate cortex, and amygdala. We then used dynamic causal modeling to investigate the directionality of the networks involved. Patients, and to a lesser extent also their unaffected siblings, show altered connectivity between the inferior frontal gyrus and the amygdala during response inhibition. The follow-up dynamic causal modeling suggests a bottom-up influence of the amygdala on the inferior frontal gyrus in healthy controls, whereas processing occurs top-down in patients with obsessive-compulsive, and in both directions in siblings. Our findings suggest that amygdala activation in obsessive-compulsive disorder interferes differently with the task-related recruitment of the inhibition network, underscoring the role of limbic disturbances in cognitive dysfunctions in obsessive-compulsive disorder. © 2015 Wiley Periodicals, Inc.

  2. Assessing Impervious Surface Connectivity and Applications for Watershed Management

    EPA Science Inventory

    Although total impervious area (TIA) is often used as an indicator of urban disturbance, recent studies suggest that the subset of impervious surfaces that route stormwater runoff directly to streams via stormwater pipes, called directly connected impervious area (DCIA), may be a...

  3. Restoring fire-prone Inland Pacific landscapes: seven core principles

    Treesearch

    Paul F. Hessburg; Derek J. Churchill; Andrew J. Larson; Ryan D. Haugo; Carol Miller; Thomas A. Spies; Malcolm P. North; Nicholas A. Povak; R. Travis Belote; Peter H. Singleton; William L. Gaines; Robert E. Keane; Gregory H. Aplet; Scott L. Stephens; Penelope Morgan; Peter A. Bisson; Bruce E. Rieman; R. Brion Salter; Gordon H. Reeves

    2015-01-01

    Context More than a century of forest and fire management of Inland Pacific landscapes has transformed their successional and disturbance dynamics. Regional connectivity of many terrestrial and aquatic habitats is fragmented, flows of some ecological and physical processes have been altered in space and time, and the frequency, size and intensity of many disturbances...

  4. Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

    PubMed

    Favre, Pauline; Polosan, Mircea; Pichat, Cédric; Bougerol, Thierry; Baciu, Monica

    2015-01-01

    Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict. Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach. Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network. Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

  5. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  6. OPTIMIZING STORMWATER MANAGEMENT RETROFITS BASED ON IMPERVIOUS SURFACE CONNECTIONS TO SEWERS

    EPA Science Inventory

    Although total impervious area (TIA) is often used as an indicator of urban disturbance, recent studies suggest that the subset of impervious surfaces that route stormwater runoff directly to streams via stormwater pipes, called directly connected impervious area (DCIA), may be a...

  7. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi.

    PubMed

    Lindahl, Björn D; de Boer, Wietse; Finlay, Roger D

    2010-07-01

    Ectomycorrhizal fungi dominate the humus layers of boreal forests. They depend on carbohydrates that are translocated through roots, via fungal mycelium to microsites in the soil, wherein they forage for nutrients. Mycorrhizal fungi are therefore sensitive to disruptive disturbances that may restrict their carbon supply. By disrupting root connections, we induced a sudden decline in mycorrhizal mycelial abundance and studied the consequent effects on growth and activity of free living, saprotrophic fungi and bacteria in pine forest humus, using molecular community analyses in combination with enzyme activity measurements. Ectomycorrhizal fungi had decreased in abundance 14 days after root severing, but the abundance of certain free-living ascomycetes was three times higher within 5 days of the disturbance compared with undisturbed controls. Root disruption also increased laccase production by an order of magnitude and cellulase production by a factor of 5. In contrast, bacterial populations seemed little affected. The results indicate that access to an external carbon source enables mycorrhizal fungi to monopolise the humus, but disturbances may induce rapid growth of opportunistic saprotrophic fungi that presumably use the dying mycorrhizal mycelium. Studies of such functional shifts in fungal communities, induced by disturbance, may shed light on mechanisms behind nutrient retention and release in boreal forests. The results also highlight the fundamental problems associated with methods that study microbial processes in soil samples that have been isolated from living roots.

  8. The human and fire connection

    Treesearch

    Theresa B. Jain

    2014-01-01

    We refer to fire as a natural disturbance, but unlike other disturbances such as forest insects and diseases, fire has had an intimate relationship with humans. Fire facilitated human evolution over two million years ago when our ancestors began to use fire to cook. Fire empowered our furbearers to adapt to cold climates, allowing humans to disperse and settle into...

  9. The role of recurrent disturbances for ecosystem multifunctionality.

    PubMed

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  10. Low-frequency connectivity is associated with mild traumatic brain injury.

    PubMed

    Dunkley, B T; Da Costa, L; Bethune, A; Jetly, R; Pang, E W; Taylor, M J; Doesburg, S M

    2015-01-01

    Mild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges.

  11. Differential Functional Connectivity Alterations of Two Subdivisions within the Right dlPFC in Parkinson's Disease

    PubMed Central

    Caspers, Julian; Mathys, Christian; Hoffstaedter, Felix; Südmeyer, Martin; Cieslik, Edna C.; Rubbert, Christian; Hartmann, Christian J.; Eickhoff, Claudia R.; Reetz, Kathrin; Grefkes, Christian; Michely, Jochen; Turowski, Bernd; Schnitzler, Alfons; Eickhoff, Simon B.

    2017-01-01

    Patients suffering from Parkinson's disease (PD) often show impairments in executive function (EF) like decision-making and action control. The right dorsolateral prefrontal cortex (dlPFC) has been strongly implicated in EF in healthy subjects and has repeatedly been reported to show alterations related to EF impairment in PD. Recently, two key regions for cognitive action control have been identified within the right dlPFC by co-activation based parcellation. While the posterior region is engaged in rather basal EF like stimulus integration and working memory, the anterior region has a more abstract, supervisory function. To investigate whether these functionally distinct subdivisions of right dlPFC are differentially affected in PD, we analyzed resting-state functional connectivity (FC) in 39 PD patients and 44 age- and gender-matched healthy controls. Patients were examined both after at least 12 h withdrawal of dopaminergic drugs (OFF) and under their regular dopaminergic medication (ON). We found that only the posterior right dlPFC subdivision shows FC alterations in PD, while the anterior part remains unaffected. PD-related decreased FC with posterior right dlPFC was found in the bilateral medial posterior parietal cortex (mPPC) and left dorsal premotor region (PMd) in the OFF state. In the medical ON, FC with left PMd normalized, while decoupling with bilateral mPPC remained. Furthermore, we observed increased FC between posterior right dlPFC and the bilateral dorsomedial prefrontal cortex (dmPFC) in PD in the ON state. Our findings point to differential disturbances of right dlPFC connectivity in PD, which relate to its hierarchical organization of EF processing by stronger affecting the functionally basal posterior aspect than the hierarchically higher anterior part. PMID:28611616

  12. Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure

    PubMed Central

    Escobedo, Víctor M.; Rios, Rodrigo S.; Salgado-Luarte, Cristian; Stotz, Gisela C.

    2017-01-01

    Abstract Background and Aims Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus, measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel’s lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. PMID:28087661

  13. Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease.

    PubMed

    van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A

    2015-07-01

    Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function.

  14. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  15. Connect-disconnect coupling for preadjusted rigid shafts

    NASA Technical Reports Server (NTRS)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  16. Treatment of Combined Spinal Deformity in Patient with Ollier Disease and Abnormal Vertebrae

    PubMed Central

    Ryabykh, S. О.; Gubin, A. V.; Prudnikova, О. G.; Kobyzev, А. Е.

    2012-01-01

    We report staged treatment of severe combined spinal deformity in an 11-year-old patient with Ollier disease and abnormal cervical vertebra. Combined scoliosis with systemic pathology and abnormal vertebrae is a rare condition and features atypical deformity location and rapid progression rate and frequently involves the rib cage and pelvis, disturbing the function of chest organs and skeleton. Progressive deformity resulted in cachexia and acute respiratory failure. A halo-pelvic distraction device assembled of Ilizarov components was employed for a staged surgical treatment performed for lifesaving indications. After vital functions stabilized, the scoliosis curve of the cervical spine was corrected and fixed with a hybrid system of transpedicular supporting points, connecting rods, and connectors that provided staged distraction during growth. The treatment showed good functional and cosmetic result. PMID:24436859

  17. How Robust is Your System Resilience?

    NASA Astrophysics Data System (ADS)

    Homayounfar, M.; Muneepeerakul, R.

    2017-12-01

    Robustness and resilience are concepts in system thinking that have grown in importance and popularity. For many complex social-ecological systems, however, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. Most studies have either focused on qualitative approaches to discuss their connections or considered only one of them under particular classes of disturbances. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. Our analysis is based on a stylized dynamical model that operationalizes a widely used concept framework for social-ecological systems. The model enables us to rigorously define robustness and resilience and consequently investigate their connections. The results reveal the tradeoffs among performance, robustness, and resilience. They also show how the nature of the such tradeoffs varies with the choices of certain policies (e.g., taxation and investment in public infrastructure), internal stresses and external disturbances.

  18. What is special about the adolescent (JME) brain?

    PubMed

    Craiu, Dana

    2013-07-01

    Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The influence of the great inequality on the secular disturbing function of the planetary system.

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1971-01-01

    This paper derives the contribution by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations. The Krylov-Bogoliubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing function derived in this paper can be included in existing theories of the secular effects of principal planets.

  20. Human influence on the abundance and connectivity of high-risk fuels in mixed forests of northern Wisconsin, USA

    Treesearch

    Brian R. Sturtevant; Patrick A. Zoller; Eric J. Gustafson; David T. Cleland

    2004-01-01

    Though fire is considered a "natural" disturbance, humans heavily influence modern wildfire regimes. Humans influence fires both directly, by igniting and suppressing fires, and indirectly, by either altering vegetation, climate, or both. We used the LANDIS disturbance and succession model to compare the relative importance of a direct human influence (...

  1. Human influence on the abundance and connectivity of high-risk fuels in mixed forests of northern Wisconsin, USA

    Treesearch

    Brian R. Sturtevant; Patrick A. Zollner; Eric J. Gustafson; David T. Cleland

    2004-01-01

    Though fire is considered a "natural" disturbance, humans heavily influence modern wildfire regimes. Humans influence fires both directly, by igniting and suppressing fires, and indirectly, by either altering vegetation, climate, or both. We used the LANDIS disturbance and succession model to compare the relative importance of a direct human influence...

  2. Intensive MHD-structures penetration in the middle atmosphere initiated in the ionospheric cusp under quiet geomagnetic conditions

    NASA Technical Reports Server (NTRS)

    Mateev, L. N.; Nenovski, P. I.; Vellinov, P. I.

    1989-01-01

    In connection with the recently detected quasiperiodical magnetic disturbances in the ionospheric cusp, the penetration of compressional surface magnetohydrodynamic (MHD) waves through the middle atmosphere is modelled numerically. For the COSPAR International Reference Atmosphere (CIRA) 72 model the respective energy density flux of the disturbances in the middle atmosphere is determined. On the basis of the developed model certain conclusions are reached about the height distribution of the structures (energy losses, currents, etc.) initiated by intensive magnetic cusp disturbances.

  3. Managing landscape connectivity for a fragmented area using spatial analysis model at town scale

    NASA Astrophysics Data System (ADS)

    Liu, Shiliang; Dong, Yuhong; Fu, Wei; Zhang, Zhaoling

    2009-10-01

    Urban growth has great effect on land uses of its suburbs. The habitat loss and fragmentation in those areas are a main threat to conservation of biodiversity. Enhancing landscape functional connectivity is usually an effective way to maintain high biodiversity level in disturbed area. Taking a small town in Beijing as an example, we designed potential landscape corridors based on identification of landscape element quality and "least-cost" path analysis. We described a general approach to establish the corridor network in such fragmented area at town scale. The results showed that landscape elements position has various effects on landscape suitability. Small forest patches and other green lands such as meadow, shrub, even farmland could be a potential stepping-stone or corridor for animal movements. Also, the analysis reveals that critical areas should be managed to facilitate the movement of dispersers among habitat patches.

  4. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    PubMed

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  5. Severe bradycardia and hypotension after connecting negative pressure to the subgaleal drain during craniotomy closure.

    PubMed

    Karamchandani, K; Chouhan, R S; Bithal, P K; Dash, H H

    2006-05-01

    Negative pressure drainage systems are often used after craniotomy for evacuation of potential bleeding. There are several reports of haemodynamic disturbances with epidural negative pressure drainage, but such reports are very few for subgaleal drains placed over the bone flap. We report a case in which a patient developed severe cardiovascular disturbances after the vacuum drainage was connected to a subgaleal drain after craniotomy for aneurysm clipping. The patient had no significant cardiac history, had an uneventful intra-operative course and yet developed bradycardia and hypotension, which were reproducible and severe enough to require atropine administration. Anaesthetists must be aware of these effects, so that they can anticipate and treat such complications.

  6. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE PAGES

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott; ...

    2017-09-15

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  7. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  8. Language disturbance and functioning in first episode psychosis.

    PubMed

    Roche, Eric; Segurado, Ricardo; Renwick, Laoise; McClenaghan, Aisling; Sexton, Sarah; Frawley, Timothy; Chan, Carol K; Bonar, Maurice; Clarke, Mary

    2016-01-30

    Language disturbance has a central role in the presentation of psychotic disorders however its relationship with functioning requires further clarification, particularly in first episode psychosis (FEP). Both language disturbance and functioning can be evaluated with clinician-rated and performance-based measures. We aimed to investigate the concurrent association between clinician-rated and performance-based measures of language disturbance and functioning in FEP. We assessed 108 individuals presenting to an Early Intervention in Psychosis Service in Ireland. Formal thought disorder (FTD) dimensions and bizarre idiosyncratic thinking (BIT) were rated with structured assessment tools. Functioning was evaluated with a performance-based instrument, a clinician-rated measure and indicators of real-world functioning. The disorganisation dimension of FTD was significantly associated with clinician-rated measures of occupational and social functioning (Beta=-0.19, P<0.05 and Beta=-0.31, P<0.01, respectively). BIT was significantly associated with the performance-based measure of functioning (Beta=-0.22, P<0.05). Language disturbance was of less value in predicting real-world measures of functioning. Clinician-rated and performance-based assessments of language disturbance are complementary and each has differential associations with functioning. Communication disorders should be considered as a potential target for intervention in FEP, although further evaluation of the longitudinal relationship between language disturbance and functioning should be undertaken. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Estimation of the interference coupling into cables within electrically large multiroom structures

    NASA Astrophysics Data System (ADS)

    Keghie, J.; Kanyou Nana, R.; Schetelig, B.; Potthast, S.; Dickmann, S.

    2010-10-01

    Communication cables are used to transfer data between components of a system. As a part of the EMC analysis of complex systems, it is necessary to determine which level of interference can be expected at the input of connected devices due to the coupling into the irradiated cable. For electrically large systems consisting of several rooms with cables connecting components located in different rooms, an estimation of the coupled disturbances inside cables using commercial field computation software is often not feasible without several restrictions. In many cases, this is related to the non-availability of computing memory and processing power needed for the computation. In this paper, we are going to show that, starting from a topological analysis of the entire system, weak coupling paths within the system can be can be identified. By neglecting these coupling paths and using the transmission line approach, the original system will be simplified so that a simpler estimation is possible. Using the example of a system which is composed of two rooms, multiple apertures, and a network cable located in both chambers, it is shown that an estimation of the coupled disturbances due to external electromagnetic sources is feasible with this approach. Starting from an incident electromagnetic field, we determine transfer functions describing the coupling means (apertures, cables). Using these transfer functions and the knowledge of the weak coupling paths above, a decision is taken regarding the means for paths that can be neglected during the estimation. The estimation of the coupling into the cable is then made while taking only paths with strong coupling into account. The remaining part of the wiring harness in areas with weak coupling is represented by its input impedance. A comparison with the original network shows a good agreement.

  10. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  11. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.

    PubMed

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.

  12. Neural circuitry of emotional face processing in autism spectrum disorders.

    PubMed

    Monk, Christopher S; Weng, Shih-Jen; Wiggins, Jillian Lee; Kurapati, Nikhil; Louro, Hugo M C; Carrasco, Melisa; Maslowsky, Julie; Risi, Susan; Lord, Catherine

    2010-03-01

    Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces. Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces. In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces. The small sample size may have affected our ability to detect additional group differences. When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.

  13. Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure.

    PubMed

    Escobedo, Víctor M; Rios, Rodrigo S; Salgado-Luarte, Cristian; Stotz, Gisela C; Gianoli, Ernesto

    2017-03-01

    Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Long-Term Behavior of Simulated Partial Lead Service Line Replacements

    PubMed Central

    St. Clair, Justin; Cartier, Clement; Triantafyllidou, Simoni; Clark, Brandi; Edwards, Marc

    2016-01-01

    Abstract In this 48-month pilot study, long-term impacts of copper:lead galvanic connections on lead release to water were assessed without confounding differences in pipe exposure prehistory or disturbances arising from cutting lead pipe. Lead release was tracked from three lead service line configurations, including (1) 100% lead, (2) traditional partial replacement with 50% copper upstream of 50% lead, and (3) 50% lead upstream of 50% copper as a function of flow rate, connection types, and sampling methodologies. Elevated lead from galvanic corrosion worsened with time, with 140% more lead release from configurations representing traditional partial replacement configurations at 14 months compared to earlier data in the first 8 months. Even when sampled consistently at moderate flow rate (8 LPM) and collecting all water passing through service lines, conditions representing traditional partial service line configurations were significantly worse (≈40%) when compared to 100% lead pipe. If sampled at a high flow rate (32 LPM) and collecting 2 L samples from service lines, 100% of samples collected from traditional partial replacement configurations exceeded thresholds posing an acute health risk versus a 0% risk for samples from 100% lead pipe. Temporary removal of lead accumulations near Pb:Cu junctions and lead deposits from other downstream plastic pipes reduced risk of partial replacements relative to that observed for 100% lead. When typical brass compression couplings were used to connect prepassivated lead pipes, lead release spiked up to 10 times higher, confirming prior concerns raised at bench and field scale regarding adverse impacts of crevices and service line disturbances on lead release. To quantify semirandom particulate lead release from service lines in future research, whole-house filters have many advantages compared to other approaches. PMID:26989344

  15. Analysis of Changes of Cardiological Parameters at Middle Latitude Region in Relation to Geomagnetic Disturbances and Cosmic Ray Variations

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Dimitrova, S.; Babayev, E. S.; Mavromichalaki, H.

    2010-01-01

    Collaborating scientific groups from Athens (Greece), Baku (Azerbaijan) and Sofia (Bulgaria) have conducted a research work on the possible effects of geomagnetic field disturbances (GMF) and cosmic ray intensity (CRI) variations on human homeostasis, particularly, the cardio-health state. Electrocardiograms (ECGs) of seven functionally healthy persons were digitally registered at the joint Laboratory of Heliobiology located in the Medical Centre INAM, Baku, on working days and Saturdays. Heart rate values, estimated from ECGs, were analysed in relation to daily values of CRI, as measured by the Neutron Monitor of the University of Athens and daily variations of Dst and Ap geomagnetic indices and some significant results had been revealed in previous studies. Researches were continued by study of additional cardiologic parameters estimated from the same ECG data. In this study digital data of RR interval (the time elapsing between two consecutive R waves in the ECG), namely RRminimum, RRmaximum and RRaverage were analyzed taking into consideration different levels of GMF disturbances (estimated through variations of Dst and Ap indices) and cosmic ray activity (through CRI variations). The data refer to the time period 15 July 2006-31 March 2008. Variations of RR intervals show connection to GMF disturbances and CRI variations. The revealed effects are more pronounced for high levels of geomagnetic activity (when geomagnetic storms occur) and large CRI decreases as well as on the days before and after these variations.

  16. Altered Brain Long-Range Functional Interactions Underlying the Link Between Aberrant Self-experience and Self-other Relationship in First-Episode Schizophrenia

    PubMed Central

    Ebisch, Sjoerd J. H.; Mantini, Dante; Northoff, Georg; Salone, Anatolia; De Berardis, Domenico; Ferri, Francesca; Ferro, Filippo M.; Di Giannantonio, Massimo; Romani, Gian L.; Gallese, Vittorio

    2014-01-01

    Self-experience anomalies are elementary features of schizophrenic pathology. Such deficits can have a profound impact on self-other relationship, but how they are related through aberrant brain function remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, we provide new evidence for a cortical link between aberrant self-experience and social cognition in first-episode schizophrenia (FES). As identified in previous studies, ventral premotor cortex (vPMC) and posterior insula (pIC) are candidate brain regions underlying disturbances in both self-experience and self-other relationship due to their processing of predominantly externally guided (vPMC; goal-oriented behavior) and internally guided (pIC; interoception) stimuli. Results from functional interaction analysis in a sample of 24 FES patients and 22 healthy controls show aberrant functional interactions (background/intrinsic connectivity) of right vPMC and bilateral pIC with posterior cingulate cortex (PCC), a midline region that has been shown central in mediating self-experience. More specifically, our results show increased functional coupling between vPMC and PCC, which positively correlated with basic symptoms (subjective self-experience disturbances). pIC showed reduced functional coupling with PCC and postcentral gyrus and increased functional interactions with anterior insula. Taken together, our results suggest an imbalance in the processing between internally and externally guided information and its abnormal integration with self-referential processing as mediated by PCC. Due to our correlation findings, we suggest this imbalance to be closely related to basic symptoms in FES and thus anomalous self-experience. The findings further disentangle the cortical basis of how self-experience anomalies may pervade the social domain. PMID:24191160

  17. Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests.

    PubMed

    Baker, Timothy R; Vela Díaz, Dilys M; Chama Moscoso, Victor; Navarro, Gilberto; Monteagudo, Abel; Pinto, Ruy; Cangani, Katia; Fyllas, Nikolaos M; Lopez Gonzalez, Gabriela; Laurance, William F; Lewis, Simon L; Lloyd, Jonathan; Ter Steege, Hans; Terborgh, John W; Phillips, Oliver L

    2016-03-01

    Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance.We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 × 20 m subplots within 55, one-hectare, long-term forest inventory plots.Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests.Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 - 4% depending on the parameter) and similar among forests. Synthesis . This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems.

  18. Effects of canopy opening and debris deposition on fungal connectivity, phosphorus movement between litter cohorts and mass loss

    Treesearch

    D. Jean Lodge; Sharon A. Cantrell; Grizelle Gonzalez

    2014-01-01

    Fungi are important for maintaining fast rates of decomposition in low quality tropical leaf litter via immobilization and translocation of limiting nutrients from sources to sinks and conserving nutrients after disturbance. Tropical trees often have low nutrient to carbon ratios. Disturbances such as hurricanes and logging transfer a large mass of green leaves with...

  19. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    Treesearch

    Helen M. Neville; R. E. Gresswell; J. B. Dunham

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems (Waples and others 2008) where disturbance events vary in frequency, magnitude, timing, and duration (Gresswell 1999; Dale and others 2001), as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry; Reeves and others 1995; Benda and...

  20. Drug discovery based on genetic and metabolic findings in schizophrenia.

    PubMed

    Dwyer, Donard S; Weeks, Kathrine; Aamodt, Eric J

    2008-11-01

    Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.

  1. Amygdala-prefrontal connectivity during appraisal of symptom-related stimuli in obsessive-compulsive disorder.

    PubMed

    Paul, Sandra; Beucke, Jan C; Kaufmann, Christian; Mersov, Anna; Heinzel, Stephan; Kathmann, Norbert; Simon, Daniela

    2018-04-06

    Cognitive models of obsessive-compulsive disorder (OCD) posit dysfunctional appraisal of disorder-relevant stimuli in patients, suggesting disturbances in the processes relying on amygdala-prefrontal connectivity. Recent neuroanatomical models add to the traditional view of dysfunction in corticostriatal circuits by proposing alterations in an affective circuit including amygdala-prefrontal connections. However, abnormalities in amygdala-prefrontal coupling during symptom provocation, and particularly during conditions that require stimulus appraisal, remain to be demonstrated directly. Amygdala-prefrontal connectivity was examined in unmedicated OCD patients during appraisal (v. distraction) of symptom-provoking stimuli compared with an emotional control condition. Subsequent analyses tested whether hypothesized connectivity alterations could be also identified during passive viewing and the resting state in two independent samples. During symptom provocation, reductions in positive coupling between amygdala and orbitofrontal cortex were observed in OCD patients relative to healthy control participants during appraisal and passive viewing of OCD-relevant stimuli, whereas abnormally high amygdala-ventromedial prefrontal cortex coupling was found when appraisal was distracted by a secondary task. In contrast, there were no group differences in amygdala connectivity at rest. Our finding of abnormal amygdala-prefrontal connectivity during appraisal of symptom-related (relative to generally aversive) stimuli is consistent with the involvement of affective circuits in the functional neuroanatomy of OCD. Aberrant connectivity can be assumed to impact stimulus appraisal and emotion regulation, but might also relate to fear extinction deficits, which have recently been described in OCD. Taken together, we propose to integrate abnormalities in amygdala-prefrontal coupling in affective models of OCD.

  2. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer's disease.

    PubMed

    Krajcovicova, Lenka; Barton, Marek; Elfmarkova-Nemcova, Nela; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2017-12-01

    Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.

  3. Sleep Disturbance, Daytime Symptoms, and Functional Performance in Patients With Stable Heart Failure: A Mediation Analysis.

    PubMed

    Jeon, Sangchoon; Redeker, Nancy S

    2016-01-01

    Sleep disturbance is common among patients with heart failure (HF) who also experience symptom burden and poor functional performance. We evaluated the extent to which sleep-related, daytime symptoms (fatigue, excessive daytime sleepiness, and depressive symptoms) mediate the relationship between sleep disturbance and functional performance among patients with stable HF. We recruited patients with stable HF for this secondary analysis of data from a cross-sectional, observational study. Participants completed unattended ambulatory polysomnography from which the Respiratory Disturbance Index was calculated, along with a Six-Minute Walk Test, questionnaires to elicit sleep disturbance (Pittsburgh Sleep Quality Index, Insomnia Symptoms from the Sleep Habits Questionnaire), daytime symptoms (Center for Epidemiologic Studies Depression Scale, Global Fatigue Index, Epworth Sleepiness Scale), and self-reported functional performance (Medical Outcomes Study SF36 V2 Physical Function Scale). We used structural equation modeling with latent variables for the key analysis. Follow-up, exploratory regression analysis with bootstrapped samples was used to examine the extent to which individual daytime symptoms mediated effects of sleep disturbance on functional performance after controlling for clinical and demographic covariates. The sample included 173 New York Heart Association Class I-IV HF patients (n = 60/34.7% women; M = 60.7, SD = 16.07 years of age). Daytime symptoms mediated the relationship between sleep disturbance and functional performance. Fatigue and depression mediated the relationship between insomnia symptoms and self-reported functional performance, whereas fatigue and sleepiness mediated the relationship between sleep quality and functional performance. Sleepiness mediated the relationship between the respiratory index and self-reported functional performance only in people who did not report insomnia. Daytime symptoms explain the relationships between sleep disturbance and functional performance in stable HF.

  4. Family boundary structures and child adjustment: the indirect role of emotional reactivity.

    PubMed

    Lindahl, Kristin M; Bregman, Hallie R; Malik, Neena M

    2012-12-01

    Structural and system theories propose that disruptions in family subsystem functioning increase risk for youth maladjustment. While there is growing evidence to support this proposition, studies that specifically focus on the larger family system remain relatively rare. Furthermore, the pathways that connect problems in family subsystem alliances to externalizing or internalizing problems in youth are as yet largely unexplored. This study examined youth emotional reactivity (anger and sadness) to family conflict as an indirect pathway of the association between family boundary disturbances and youth adjustment in a sample of two-parent families (N = 270). Observational coding was used to group families into Balanced, Dyadic, or Disengaged family alliance structures and to assess youth emotional reactivity, and parent-report was used to assess youth psychopathology. Structural equation modeling indicated both anger and sadness served as indirect pathways through which family boundary disturbances are linked with youth adjustment. In addition, gender was tested as a moderator and important gender differences were found. Specifically, boys were directly impacted by dyadic disturbances while girls were directly impacted by family disengagement. The findings help target goals for intervention and indicate that worthwhile objectives may include realigning family subsystem boundaries, changing family communication patterns, and improving affective coping skills for youth. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  5. [Effect of Earth magnetic field on circadian rhythm of total antioxidant capacity of human saliva in the North].

    PubMed

    Borisenkov, M F

    2007-01-01

    In the inhabitants of the North during increase of geomagnetic activity and during magnetic calm the decrease of amplitude of circadian rhythm of total antioxidant capacity of saliva is observed. The most favorable conditions to display the circadian rhythm are observed at Kp from 0,5 up to 2. The long residing in the North is connected to influence of irregularly varying geomagnetic activity causing disturbance of function of circadian and antioxidant systems that, probably, is one of the reasons of acceleration of process of aging at northerner and of higher risk of occurrence in them the age associated diseases.

  6. [The problems in dealing with the incest experiences of borderline patients].

    PubMed

    Dulz, B; Schreyer, D

    1997-11-01

    Sexual and/or physical abuse can be found in large numbers in the history of severely disturbed borderline patients. The treatment of experiences of incest can induce new symptoms as well as reinforce still existing symptoms. Thus the free-floating anxiety, which is connected with the anxiety of impending doom in early childhood, can be reduced. During in-patient treatment the extent of free-floating anxiety of borderline patients can be reduced by the holding function of the therapeutic team. Reduction of the other symptoms can take place only subsequent to this. A therapy geared to the reduction of singular symptoms might be less successful.

  7. 77 FR 24952 - Staff Technical Conference on Geomagnetic Disturbances to the Bulk-Power System; Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... risks and impacts from geomagnetically induced currents to transformers and other equipment on the Bulk... this event in the Calendar. The event will contain a link to the webcast. The Capitol Connection... for a fee. If you have any questions, visit www.CapitolConnection.org or call 703-993-3100. Commission...

  8. Enhancement of the efficiency of the automatic control system to control the thermal load of steam boilers fired with fuels of several types

    NASA Astrophysics Data System (ADS)

    Ismatkhodzhaev, S. K.; Kuzishchin, V. F.

    2017-05-01

    An automatic control system to control the thermal load (ACS) in a drum-type boiler under random fluctuations in the blast-furnace and coke-oven gas consumption rates and to control action on the natural gas consumption is considered. The system provides for use of a compensator by the basic disturbance, the blast-furnace gas consumption rate. To enhance the performance of the system, it is proposed to use more accurate mathematical second-order delay models of the channels of the object under control in combination with calculation by frequency methods of the controller parameters as well as determination of the structure and parameters of the compensator considering the statistical characteristics of the disturbances and using simulation. The statistical characteristics of the random blast-furnace gas consumption signal based on experimental data are provided. The random signal is presented in the form of the low-frequency (LF) and high-frequency (HF) components. The models of the correlation functions and spectral densities are developed. The article presents the results of calculating the optimal settings of the control loop with the controlled variable in the form of the "heat" signal with the restricted frequency variation index using three variants of the control performance criteria, viz., the linear and quadratic integral indices under step disturbance and the control error variance under random disturbance by the blastfurnace gas consumption rate. It is recommended to select a compensator designed in the form of series connection of two parts, one of which corresponds to the operator inverse to the transfer function of the PI controller, i.e., in the form of a really differentiating element. This facilitates the realization of the second part of the compensator by the invariance condition similar to transmitting the compensating signal to the object input. The results of simulation under random disturbance by the blast-furnace gas consumption are reported. Recommendations are made on the structure and parameters of the shaping filters for modeling the LF and HF components of the random signal. The results of the research may find applications in the systems to control the thermal processes with compensation of basic disturbances, in particular, in boilers for combustion of accompanying gases.

  9. Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state.

    PubMed

    Andreou, Christina; Leicht, Gregor; Nolte, Guido; Polomac, Nenad; Moritz, Steffen; Karow, Anne; Hanganu-Opatz, Ileana L; Engel, Andreas K; Mulert, Christoph

    2015-02-01

    Disturbed functional connectivity is assumed to underlie neurocognitive deficits in patients with schizophrenia. As neurocognitive deficits are already present in the high-risk state, identification of the neural networks involved in this core feature of schizophrenia is essential to our understanding of the disorder. Resting-state studies enable such investigations, while at the same time avoiding the known confounder of impaired task performance in patients. The aim of the present study was to investigate EEG resting-state connectivity in high-risk individuals (HR) compared to first episode patients with schizophrenia (SZ) and to healthy controls (HC), and its association with cognitive deficits. 64-channel resting-state EEG recordings (eyes closed) were obtained for 28 HR, 19 stable SZ, and 23 HC, matched for age, education, and parental education. The imaginary coherence-based multivariate interaction measure (MIM) was used as a measure of connectivity across 80 cortical regions and six frequency bands. Mean connectivity at each region was compared across groups using the non-parametric randomization approach. Additionally, the network-based statistic was applied to identify affected networks in patients. SZ displayed increased theta-band resting-state MIM connectivity across midline, sensorimotor, orbitofrontal regions and the left temporoparietal junction. HR displayed intermediate theta-band connectivity patterns that did not differ from either SZ or HC. Mean theta-band connectivity within the above network partially mediated verbal memory deficits in SZ and HR. Aberrant theta-band connectivity may represent a trait characteristic of schizophrenia associated with neurocognitive deficits. As such, it might constitute a promising target for novel treatment applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease

    PubMed Central

    van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A

    2015-01-01

    Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function. PMID:25652248

  11. Static and Dynamic Characteristics of Cerebral Blood Flow During the Resting State in Schizophrenia

    PubMed Central

    Kindler, Jochen; Jann, Kay; Homan, Philipp; Hauf, Martinus; Walther, Sebastian; Strik, Werner; Dierks, Thomas; Hubl, Daniela

    2015-01-01

    Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = −16/−64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub—which is considered the strongest part of the DMN—showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances. PMID:24327756

  12. Sleep disturbances in individuals at clinical high risk for psychosis

    PubMed Central

    Poe, Sarah-Lucy; Brucato, Gary; Bruno, Nicolina; Arndt, Leigh Y.; Ben-David, Shelly; Gill, Kelly E.; Colibazzi, Tiziano; Kantrowitz, Joshua T.; Corcoran, Cheryl M.; Girgis, Ragy R.

    2018-01-01

    There has been recent interest in understanding the role that sleep disturbance plays in patients at Clinical High Risk for psychosis (CHR). We assessed sleep disturbance in 194 CHR patients and 66 healthy control subjects and their relationship to symptoms (positive, negative and general functioning). Patients experienced significantly more sleep disturbance than healthy control subjects and their sleep disturbance was related to greater positive and negative symptoms and worse overall functioning. Targeting sleep disturbance in CHR individuals may provide alternative means of treating the CHR syndrome. PMID:28126579

  13. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities. These findings clearly demonstrate that in watersheds which are disturbed by intensive land use, the eco-hydrological linkages between biota and fluvial processes significantly differ from those in more natural and forested landscapes.

  14. Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder.

    PubMed

    Posner, Jonathan; Rauh, Virginia; Gruber, Allison; Gat, Inbal; Wang, Zhishun; Peterson, Bradley S

    2013-07-30

    Current neurocognitive models of attention-deficit/hyperactivity disorder (ADHD) suggest that neural circuits involving both attentional and affective processing make independent contributions to the phenomenology of the disorder. However, a clear dissociation of attentional and affective circuits and their behavioral correlates has yet to be shown in medication-naïve children with ADHD. Using resting-state functional connectivity MRI (rs-fcMRI) in a cohort of medication naïve children with (N=22) and without (N=20) ADHD, we demonstrate that children with ADHD have reduced connectivity in two neural circuits: one underlying executive attention (EA) and the other emotional regulation (ER). We also demonstrate a double dissociation between these two neural circuits and their behavioral correlates such that reduced connectivity in the EA circuit correlates with executive attention deficits but not with emotional lability, while on the other hand, reduced connectivity in the ER circuit correlates with emotional lability but not with executive attention deficits. These findings suggest potential avenues for future research such as examining treatment effects on these two neural circuits as well as the potential prognostic and developmental significance of disturbances in one circuit vs the other. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Neural network alterations across eating disorders: a narrative review of fMRI studies.

    PubMed

    Steward, Trevor; Menchón, José M; Jiménez-Murcia, Susana; Soriano-Mas, Carles; Fernández-Aranda, Fernando

    2017-10-17

    Functional magnetic resonance imaging (fMRI) has provided insight on how neural abnormalities are related to the symptomatology of the eating disorders (EDs): anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). More specifically, an increasingly growing number of brain imaging studies has shed light on how functionally connected brain networks contribute not only to disturbed eating behavior, but also to transdiagnostic alterations in body/interoceptive perception, reward processing and executive functions. This narrative review aims to summarize recent advances in fMRI studies of patients with EDs by highlighting studies investigating network alterations that are shared across EDs. Findings on reward processing in both AN and BN patients point to the presence of altered sensitivity to salient food stimuli in striatal regions and to the possibility of hypothalamic inputs being overridden by top-down cognitive control regions. Additionally, innovative new lines of research suggest that increased activations in fronto-striatal circuits are strongly associated with the maintenance of restrictive eating habits in AN patients. Although significantly fewer studies have been carried out in patients with BN and BED, aberrant neural responses to both food cues and anticipated food receipt appear to occur in these populations. These altered responses, coupled with diminished recruitment of prefrontal cognitive control circuitry, are believed to contribute to the binge eating of palatable foods. Results from functional network connectivity studies are diverse, but findings tend to converge on indicating disrupted resting-state connectivity in executive networks, the default-mode network and the salience network across EDs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Can species traits predict the susceptibility of riverine fish to water resource development? An Australian case study.

    PubMed

    Rolls, Robert J; Sternberg, David

    2015-06-01

    Water resource developments alter riverine environments by disrupting longitudinal connectivity, transforming lotic habitats, and modifying in-stream hydraulic conditions. Effective management of anthropogenic disturbances therefore requires an understanding of the range of potential ecosystem effects and the inherent traits symptomatic of elevated vulnerability to disturbance. Using 42 riverine fish native to South Eastern Australia as a case study, we quantified six morphological, behavioral, and life-history traits to classify species into groups reflecting potential differences in their response to ecosystem changes as a result of water resource development. Classification analysis identified five strategies based on fish life-history dispersal requirements, climbing potential, and habitat preference. These strategies in turn highlight the potential species at risk from the separate impacts of water resource development and inform management decisions to mitigate those risks. Swimming ability did not contribute to distinguishing species into functional groups, likely due to methodological inconsistencies in quantifying swimming performance that may ultimately hinder the ability of fish passage facilities to function within the physical capabilities of species at risk of habitat fragmentation. This study improves our ability to predict the performance of groups of species at risk from the multiple environmental changes imposed by humans and goes beyond broad-scale dispersal requirements as a predictor of individual species response.

  17. Role of the Sensorimotor Cortex in Tourette Syndrome using Multimodal Imaging

    PubMed Central

    Tinaz, Sule; Belluscio, Beth A.; Malone, Patrick; van der Veen, Jan Willem; Hallett, Mark; Horovitz, Silvina G.

    2016-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal tics. Most patients describe uncomfortable premonitory sensations preceding the tics and a subjective experience of increased sensitivity to tactile stimuli. These reports indicate that a sensory processing disturbance is an important component of TS together with motor phenomena. Thus, we focused our investigation on the role of the sensorimotor cortex (SMC) in TS using multimodal neuroimaging techniques. We measured the gamma-aminobutyric acid (GABA)+/Creatine (Cre) ratio in the SMC using GABA 1H magnetic resonance spectroscopy. We recorded the baseline beta activity in the SMC using magnetoencephalography and correlated GABA+/Cre ratio with baseline beta band power. Finally, we examined the resting state functional connectivity (FC) pattern of the SMC using functional magnetic resonance imaging (fMRI). GABA+/Cre ratio in the SMC did not differ between patients and controls. Correlation between the baseline beta band power and GABA+/Cre ratio was abnormal in patients. The anterior insula showed increased FC with the SMC in patients. These findings suggest that altered limbic input to the SMC and abnormal GABA-mediated beta oscillations in the SMC may underpin some of the sensorimotor processing disturbances in TS and contribute to tic generation. PMID:25044024

  18. Job dissatisfaction as a contributor to stress-related mental health problems among Japanese civil servants.

    PubMed

    Tatsuse, Takashi; Sekine, Michikazu

    2013-01-01

    Although studies on the association of job dissatisfaction with mental health have been conducted in the past, few studies have dealt with the complicated links connecting job stress, job dissatisfaction, and stress-related illness. This study seeks to determine how job dissatisfaction is linked to common mental health issues. This study surveyed 3,172 civil servants (2,233 men and 939 women) in 1998, taking poor mental functioning, fatigue, and sleep disturbance as stress-related mental health problems. We examine how psychosocial risk factors at work and job dissatisfaction are associated independently with poor mental functioning, fatigue, and sleep disturbance after adjustment for other known risk factors, and how job dissatisfaction contributes to change in the degree of association between psychosocial risk factors at work and mental health problems. In general, psychosocial risk factors were independently associated with mental health problems. When adjusted for job dissatisfaction, not only was job satisfaction independently associated with mental health problems but it was also found that the association of psychosocial risk factors with mental health problems declined. Our results suggest that, although longitudinal research is necessary, attitudes toward satisfaction at work can potentially decrease the negative effects of psychosocial risk factors at work on mental health.

  19. Uncovering the role of the insula in non-motor symptoms of Parkinson's disease.

    PubMed

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E; Criaud, Marion; Strafella, Antonio P

    2014-08-01

    Patients with Parkinson's disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson's disease. The insula is affected in Parkinson's disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson's disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson's disease non-motor symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Beyond classic ecological assessment: The use of functional indices to indicate fish assemblages sensitivity to human disturbance in estuaries.

    PubMed

    Teichert, Nils; Lepage, Mario; Lobry, Jérémy

    2018-10-15

    Assessing ecological health of aquatic ecosystems is crucial in the current context of biodiversity loss to guide and prioritize management actions. Although several fish-based indices were developed to assess the ecological status of estuarine ecosystems, they do not provide guidance on the causal responses of communities to disturbances. The functional trait-based approach provides an understanding of how human disturbance affects the composition of biological and ecological traits in assemblages, as well as their consequences for ecosystem functioning. Here, we evaluate the responses of fish assemblages to human disturbance in 30 French estuaries using several taxonomic and functional indices (e.g. diversity, evenness or redundancy). We tested whether these indices can provide additional information on the human impacts and health of assemblages that are not reflected by the ecological indicator (fish-based index ELFI). Results indicated that high values of local human disturbances were associated to a decrease in fish abundance, decrease in species richness and reduced functional redundancy, whereas taxonomic and functional evenness increased. In contrast, the functional richness remained stable suggesting that the functional traits of species removed by stressors were maintained by more tolerant species. Indeed, we found that the local disturbances mainly resulted in a decrease in the proportions of small benthic species feeding on macro-invertebrates, which were dominant in the studied estuaries. Some functional alterations were detected by the fish-based index, but the decline of functional redundancy was not reflected, highlighting a serious concern for management. Indeed, the abrupt collapse of functional redundancy in response to local disturbances can decrease the ability of assemblages to maintain certain species traits in the face of future environmental disturbance, including climate change. From a management perspective, the application of such functional redundancy measure in monitoring programs can help stakeholders identify sensitive areas where conservation efforts need to be planned. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community.

    PubMed

    Sjöstedt, Johanna; Langenheder, Silke; Kritzberg, Emma; Karlsson, Christofer M G; Lindström, Eva S

    2018-05-07

    Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of different types of moderate severity disturbance on forest structural complexity and ecosystem functioning: A story of ice and fire

    NASA Astrophysics Data System (ADS)

    Fahey, R. T.; Atkins, J.; Gough, C. M.; Hardiman, B. S.; Haber, L.; Stuart-Haentjens, E.; David, O.; Campbell, J. L.; Rustad, L.; Duffy, M.

    2017-12-01

    Disturbances that alter the structure and function of forest ecosystems occur along a continuum of severity. In contrast to the extremes of the disturbance gradient (i.e., stand-replacing disturbance and small gap formation), moderate severity disturbances are poorly understood, even though they make up the majority of the gradient and their spatial extent (and likely overall importance to regional disturbance regimes) often exceeds that of more severe disturbances. Moderate severity disturbances originate from a variety of causes, such as fires, ice storms, or pest and pathogen outbreaks, and each of these could reshape structure and function in different ways. Observational data from a limited number of sites shows that moderate disturbance can increase ecosystem complexity, but the generality of this effect has not been tested across a broad range of disturbance types and severities. Here, we utilize data from a set of five case studies of experimental or natural moderate disturbance to assess the effects of different types and severities of disturbance on forest canopy structural complexity (CSC) and the relationship of canopy structure with ecosystem functioning. Using pre- and post-disturbance measures of CSC derived from aerial and terrestrial LiDAR, UAV imagery, and Landsat data we quantified changes in CSC following an experimental ice storm, a low-severity surface fire, Beech Bark Disease and Hemlock Wooly Adelgid outbreaks, and experimental accelerated succession. Our initial findings indicate that different disturbance types have highly variable effects on CSC, and also that progressive increases in disturbance severity alter CSC differently among disturbance types. Differential effects of variable disturbance types on CSC has implications for the carbon cycle, as forest structure is strongly linked with both growth-limiting resource (e.g., nutrients and light) acquisition and net primary productivity. Understanding how different types and severities of moderate disturbance affect canopy structural complexity is thus crucial to informing and improving modeling the earth system and predicting how global shifts in moderate disturbance type, frequency, and severity will alter the land carbon sink.

  3. Luria revisited: cognitive research in schizophrenia, past implications and future challenges.

    PubMed

    Zaytseva, Yuliya; Chan, Raymond C K; Pöppel, Ernst; Heinz, Andreas

    2015-02-27

    Contemporary psychiatry is becoming more biologically oriented in the attempt to elicit a biological rationale of mental diseases. Although mental disorders comprise mostly functional abnormalities, there is a substantial overlap between neurology and psychiatry in addressing cognitive disturbances. In schizophrenia, the presence of cognitive impairment prior to the onset of psychosis and early after its manifestation suggests that some neurocognitive abnormalities precede the onset of psychosis and may represent a trait marker. These cognitive alterations may arise from functional disconnectivity, as no significant brain damage has been found. In this review we aim to revise A.R. Luria's systematic approach used in the neuropsychological evaluation of cognitive functions, which was primarily applied in patients with neurological disorders and in the cognitive evaluation in schizophrenia and other related disorders. As proposed by Luria, cognitive processes, associated with higher cortical functions, may represent functional systems that are not localized in narrow, circumscribed areas of the brain, but occur among groups of concertedly working brain structures, each of which makes its own particular contribution to the organization of the functional system. Current developments in neuroscience provide evidence of functional connectivity in the brain. Therefore, Luria's approach may serve as a frame of reference for the analysis and interpretation of cognitive functions in general and their abnormalities in schizophrenia in particular. Having said that, modern technology, as well as experimental evidence, may help us to understand the brain better and lead us towards creating a new classification of cognitive functions. In schizophrenia research, multidisciplinary approaches must be utilized to address specific cognitive alterations. The relationships among the components of cognitive functions derived from the functional connectivity of the brain may provide an insight into cognitive machinery.

  4. Do Quercus ilex Woodlands Undergo Abrupt Non-linear Changes in their Functional Dynamics in Response to Human Disturbance and Climatic Variation?

    NASA Astrophysics Data System (ADS)

    Bochet, E.; García-Fayos, P.; Molina, M. J.; Moreno de las Heras, M.; Espigares, T.; Nicolau, J. M.; Monleon, V. J.

    2017-12-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. How drylands undergo functional change has become an important issue in ecology which needs empirical data to validate theoretical models. We aim at determining the response of Mediterranean holm oak woodlands to human disturbance in three different climatic areas from Eastern Spain, under the hypothesis that semiarid and dry-transition landscapes are more prone to suffer abrupt functional changes than sub-humid ones. We used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231 x 231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) soil parameter (enzyme activity, organic matter) and (c) vegetation parameter (functional groups) determinations from soil sampling and vegetation surveys, respectively, performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE, soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites in the three climatic areas. Although no threshold of abrupt change is observed, important differences in the functional response of holm oak woodlands to disturbance exist between climatic conditions. Overall, semiarid and dry-transition woodlands suffer a non-linear functional decrease in terms of PUE, soil organic matter and enzyme activity with disturbance intensity. Differently, sub-humid woodlands experience a linear decrease of PUE with disturbance intensity and an increase of both soil parameters at high disturbance intensities after an important decrease at low disturbance intensities. The structural change from woody- to herbaceous-dominated landscapes in sub-humid areas explains the recovery of the functional state of the system at high disturbance intensities. This structural change in the vegetation provides resilience to sub-humid woodlands at high intensity levels where semiarid and dry-transition woodlands suffer a pronounced degradation.

  5. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia.

    PubMed

    Whitfield-Gabrieli, Susan; Thermenos, Heidi W; Milanovic, Snezana; Tsuang, Ming T; Faraone, Stephen V; McCarley, Robert W; Shenton, Martha E; Green, Alan I; Nieto-Castanon, Alfonso; LaViolette, Peter; Wojcik, Joanne; Gabrieli, John D E; Seidman, Larry J

    2009-01-27

    We examined the status of the neural network mediating the default mode of brain function, which typically exhibits greater activation during rest than during task, in patients in the early phase of schizophrenia and in young first-degree relatives of persons with schizophrenia. During functional MRI, patients, relatives, and controls alternated between rest and performance of working memory (WM) tasks. As expected, controls exhibited task-related suppression of activation in the default network, including medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus. Patients and relatives exhibited significantly reduced task-related suppression in MPFC, and these reductions remained after controlling for performance. Increased task-related MPFC suppression correlated with better WM performance in patients and relatives and with less psychopathology in all 3 groups. For WM task performance, patients and relatives had greater activation in right dorsolateral prefrontal cortex (DLPFC) than controls. During rest and task, patients and relatives exhibited abnormally high functional connectivity within the default network. The magnitudes of default network connectivity during rest and task correlated with psychopathology in the patients. Further, during both rest and task, patients exhibited reduced anticorrelations between MPFC and DLPFC, a region that was hyperactivated by patients and relatives during WM performance. Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia. Hyperactivation (reduced task-related suppression) of default regions and hyperconnectivity of the default network may contribute to disturbances of thought in schizophrenia and risk for the illness.

  6. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia

    PubMed Central

    Whitfield-Gabrieli, Susan; Thermenos, Heidi W.; Milanovic, Snezana; Tsuang, Ming T.; Faraone, Stephen V.; McCarley, Robert W.; Shenton, Martha E.; Green, Alan I.; Nieto-Castanon, Alfonso; LaViolette, Peter; Wojcik, Joanne; Gabrieli, John D. E.; Seidman, Larry J.

    2009-01-01

    We examined the status of the neural network mediating the default mode of brain function, which typically exhibits greater activation during rest than during task, in patients in the early phase of schizophrenia and in young first-degree relatives of persons with schizophrenia. During functional MRI, patients, relatives, and controls alternated between rest and performance of working memory (WM) tasks. As expected, controls exhibited task-related suppression of activation in the default network, including medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus. Patients and relatives exhibited significantly reduced task-related suppression in MPFC, and these reductions remained after controlling for performance. Increased task-related MPFC suppression correlated with better WM performance in patients and relatives and with less psychopathology in all 3 groups. For WM task performance, patients and relatives had greater activation in right dorsolateral prefrontal cortex (DLPFC) than controls. During rest and task, patients and relatives exhibited abnormally high functional connectivity within the default network. The magnitudes of default network connectivity during rest and task correlated with psychopathology in the patients. Further, during both rest and task, patients exhibited reduced anticorrelations between MPFC and DLPFC, a region that was hyperactivated by patients and relatives during WM performance. Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia. Hyperactivation (reduced task-related suppression) of default regions and hyperconnectivity of the default network may contribute to disturbances of thought in schizophrenia and risk for the illness. PMID:19164577

  7. Altered motor network activation and functional connectivity in adult Tourette's syndrome.

    PubMed

    Werner, Cornelius J; Stöcker, Tony; Kellermann, Thilo; Bath, Jessica; Beldoch, Margarete; Schneider, Frank; Wegener, Hans Peter; Shah, Jon N; Neuner, Irene

    2011-11-01

    Tourette's syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics as well as psychiatric comorbidities. Disturbances of the fronto-striatal-thalamic pathways responsible for motor control and impulse inhibition have been previously described in other studies. Although differences in motor performance are well recognized, imaging data elucidating the neuronal correlates are scarce. Here, we examined 19 adult TS patients (13 men, aged 22-52 years, mean = 34.3 years) and 18 age- and sex-matched controls (13 men, aged 24-57 years, mean = 37.6 years) in a functional magnetic resonance imaging study at 1.5 T. We corrected for possible confounds introduced by tics, motion, and brain-structural differences as well as age, sex, comorbidities, and medication. Patients and controls were asked to perform a sequential finger-tapping task using their right, left, and both hands, respectively. Task performance was monitored by simultaneous MR-compatible video recording. Although behavioral data obtained during scanning did not show significant differences across groups, we observed differential neuronal activation patterns depending on both handedness (dominant vs. nondominant) and tapping frequency in frontal, parietal, and subcortical areas. When controlling for open motor performance, a failure of deactivation in easier task conditions was found in the subgenual cingulate cortex in the TS patients. In addition, performance-related functional connectivity of lower- and higher-order motor networks differed between patients and controls. In summary, although open performance was comparable, patients showed different neuronal networks and connectivity patterns when performing increasingly demanding tasks, further illustrating the impact of the disease on the motor system. Copyright © 2011 Wiley-Liss, Inc.

  8. [Perception of physiological visual illusions by individuals with schizophrenia].

    PubMed

    Ciszewski, Słowomir; Wichowicz, Hubert Michał; Żuk, Krzysztof

    2015-01-01

    Visual perception by individuals with schizophrenia has not been extensively researched. The focus of this review is the perception of physiological visual illusions by patients with schizophrenia, a differences of perception reported in a small number of studies. Increased or decreased susceptibility of these patients to various illusions seems to be unconnected to the location of origin in the visual apparatus, which also takes place in illusions connected to other modalities. The susceptibility of patients with schizophrenia to haptic illusions has not yet been investigated, although the need for such investigation has been is clear. The emerging picture is that some individuals with schizophrenia are "resistant" to some of the illusions and are able to assess visual phenomena more "rationally", yet certain illusions (ex. Müller-Lyer's) are perceived more intensely. Disturbances in the perception of visual illusions have neither been classified as possible diagnostic indicators of a dangerous mental condition, nor included in the endophenotype of schizophrenia. Although the relevant data are sparse, the ability to replicate the results is limited, and the research model lacks a "gold standard", some preliminary conclusions may be drawn. There are indications that disturbances in visual perception are connected to the extent of disorganization, poor initial social functioning, poor prognosis, and the types of schizophrenia described as neurodevelopmental. Patients with schizophrenia usually fail to perceive those illusions that require volitional controlled attention, and show lack of sensitivity to the contrast between shape and background.

  9. Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery

    Treesearch

    John R. Squires; Nicholas J. DeCesare; Lucretia E. Olson; Jay A. Kolbe; Mark Hebblewhite; Sean A. Parks

    2013-01-01

    Maintaining connectivity with source populations is especially important for populations of boreal species at the southern edge of their distributions, where anthropogenic disturbance and climate change can be a threat. In the conterminous United States, Canada lynx Lynx canadensis is a federally threatened boreal species that may require connectivity with northern...

  10. The influence of network structure upon sediment routing in two disturbed catchments, East Cape, New Zealand

    NASA Astrophysics Data System (ADS)

    Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary

    2018-04-01

    Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.

  11. White matter and cognition: making the connection

    PubMed Central

    Fields, R. Douglas

    2016-01-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019

  12. [Lipodystrophy and metabolic disturbances as complications of antiretroviral therapy].

    PubMed

    Bociaga-Jasik, Monika; Kieć-Wilk, Beata; Kalinowska-Nowak, Anna; Mach, Tomasz; Garlicki, Aleksander

    2010-01-01

    Effective treatment of HIV infection with antiretroviral drugs significantly improve prognosis. Reduction of mortality and life prolongations in patients receiving such therapy have been also connected with the risk of side effects development. Among these complications metabolic disturbances such as lipodystrophy, dyslipidaemia, and insulin resistance which are present according some authors in up to 50% of patients receiving HAART play an important role. In spite of different investigations molecular basis of lipodystrophy development during HAART have not be fully understood, and the latest research revealed a lot of new aspects connected w adipocyte tissue pathophysiology, which were not taken up to know into consideration. In the presented publication the most important information about pathogenesis of lipodystrophy development in HIV infected patients treated with ARV drugs have been presented.

  13. Consciousness, Functional Networks and Delirium Screening.

    PubMed

    Eeles, Eamonn; Burianova, Hana; Pandy, Shaun; Pinsker, Donna

    2017-01-01

    Consciousness, the medium of sentient thought, requires integrity of functional networks and their connectivity. In health, they function as a co-operative but mutually exclusive paradigm of introspection versus external awareness subserved via the Default Mode Network and Task Positive State, respectively. Higher thinking in the conscious state is then segregated according to need. There is research evidence to suggest that functional networks may be impacted in disorders of consciousness and conceptual support for a mechanistic role in delirium. This potentially central aspect of delirium manifestation is relatively unexplored. This article describes the role of disrupted functional networks in delirium. How this relates to current understanding of delirium neurobiology and the ramifications for clinical diagnosis is discussed. A review of the role of functional networks, particularly DMN and TPN, has been undertaken with respect to health and delirium. An exploration of how symptoms of delirium may be related to functional network aberrancy has been undertaken. Implications for research and clinical practice in delirium have been presented. In delirium, a disturbance of consciousness, the DMN is pathologically co-activated and functional cortical connectivity is compromised. The clinical correlate is of an experiential singularity where internal and external drivers become indistinguishable, reality and delusion merge and the notion of self is effaced. Our group propose that functional network disruption in conjunction with cortical disconnectivity is central to the mechanism of delirium. Clinical tools may exploit the neurobiology of delirium to improve its diagnosis and an example of such a simple screening instrument (SQeeC) is provided. Functional networks are critically disrupted in delirium and may be central to clinical features. A better understanding of the neurobiology of delirium will generate research opportunities with potential for therapeutic gains in detection, diagnosis, and management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Sleep disturbances in individuals at clinical high risk for psychosis.

    PubMed

    Poe, Sarah-Lucy; Brucato, Gary; Bruno, Nicolina; Arndt, Leigh Y; Ben-David, Shelly; Gill, Kelly E; Colibazzi, Tiziano; Kantrowitz, Joshua T; Corcoran, Cheryl M; Girgis, Ragy R

    2017-03-01

    There has been recent interest in understanding the role that sleep disturbance plays in patients at Clinical High Risk for psychosis (CHR). We assessed sleep disturbance in 194 CHR patients and 66 healthy control subjects and their relationship to symptoms (positive, negative and general functioning). Patients experienced significantly more sleep disturbance than healthy control subjects and their sleep disturbance was related to greater positive and negative symptoms and worse overall functioning. Targeting sleep disturbance in CHR individuals may provide alternative means of treating the CHR syndrome. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Range-wide connectivity of priority areas for Greater Sage-Grouse: Implications for long-term conservation from graph theory

    USGS Publications Warehouse

    Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.

    2017-01-01

    The delineation of priority areas in western North America for managing Greater Sage-Grouse (Centrocercus urophasianus) represents a broad-scale experiment in conservation biology. The strategy of limiting spatial disturbance and focusing conservation actions within delineated areas may benefit the greatest proportion of Greater Sage-Grouse. However, land use under normal restrictions outside priority areas potentially limits dispersal and gene flow, which can isolate priority areas and lead to spatially disjunct populations. We used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected networks in the Bi-State, Central, and Washington regions of the Greater Sage-Grouse range. The Bi-State and Central networks were highly centralized; the dominant pathways and shortest linkages primarily connected a small number of large and centrally located priority areas. These priority areas are likely strongholds for Greater Sage-Grouse populations and might also function as refugia and sources. Priority areas in the Central network were more connected than those in the Bi-State and Washington networks. Almost 90% of the priority areas in the Central network had ≥2 pathways to other priority areas when movement through the landscape was set at an upper threshold (effective resistance, ER12). At a lower threshold (ER4), 83 of 123 priority areas in the Central network were clustered in 9 interconnected subgroups. The current conservation strategy has risks; 45 of 61 priority areas in the Bi-State network, 68 of 123 in the Central network, and all 4 priority areas in the Washington network had ≤1 connection to another priority area at the lower ER4threshold. Priority areas with few linkages also averaged greater environmental resistance to movement along connecting pathways. Without maintaining corridors to larger priority areas or a clustered group, isolation of small priority areas could lead to regional loss of Greater Sage-Grouse

  16. Monitoring of sporadic plasma layers in the lower ionosphere in the communication link satellite-to-satellite

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Matyugov, Stanislav; Wickert, Jens; Liou, Yuei An; Yakovlev, Oleg

    Method of global monitoring of sporadic plasma layers in the lower ionosphere is developed. In-vestigations were carried out by use of analysis of the amplitude and phase components of radio holograms obtained during the radio occultation missions CHAMP, FORMOSAT-3. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and de-pend on solar activity. The geographical and seasonal distributions of sporadic layers in the lower ionosphere as function of solar activity in the period 2002-2008 years is obtained. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily averaged S4 index measured during CHAllenging Minisatellite Payload (CHAMP) mission depends essentially on solar ac-tivity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavior of S4 index has been detected for polar (with latitude greater than 55 degrees) and low latitude (moderate and equatorial) regions. For polar regions S4 index is slowly decreasing with solar activity. In the low latitude areas S4 index is sharply oscillat-ing, depending on the solar ultraviolet emission variations. The geographical distribution of S4 index variations indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Analysis reveals global oscillations of S4 index with the periods of 5-7 months. Analysis of these oscillations may provide additional connection with solar activity. Therefore, the S4 index of RO signal is important radio physical indicator of solar activity.

  17. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    PubMed

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    PubMed

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with degree of soil disturbance. There were moderately divergent responses to disturbance between functional feeding groups. Disturbance was most strongly correlated with compositional differences of herbivores within beetles and nematodes and humus feeders within termites. Our results suggest that consideration of the impact of different forms of disturbance on species and functional composition, rather than on net numbers of species, is important when assessing the impacts of disturbance on biodiversity. © 2016 Society for Conservation Biology.

  19. Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis.

    PubMed

    Ilmberger, Josef; Ruge, Maximilian; Kreth, Friedrich-Wilhelm; Briegel, Josef; Reulen, Hans-Juergen; Tonn, Joerg-Christian

    2008-10-01

    This prospective longitudinally designed study was conducted to evaluate language functions pre- and postoperatively in patients who underwent microsurgical treatment of tumors in close proximity to or within language areas and to detect those patients at risk for a postoperative aphasic disturbance. Between 1991 and 2005, 153 awake craniotomies with subsequent cortical mapping of language functions were performed in 149 patients. Language functions were assessed using a standardized test battery. Risk factors were obtained from multivariate logistic regression models. Language mapping was able to be performed in all patients, and complete tumor resection was achieved in 48.4%. Within 21 days after surgery a new language deficit (aphasic disturbance) was observed in 41 (32%) of the 128 cases without preoperative deficits. There were a total of 60 cases involving postoperative aphasic disturbances, including cases both with and without preoperative disturbances. Risk factors for postoperative aphasic disturbance were preoperative aphasia (p<0.0002), intraoperative complications (p<0.02), language-positive sites within the tumor (p<0.001), and nonfrontal lesion location (p<0.001). In patients without a preoperative deficit, a normal (yet submaximal) naming performance was a powerful predictor for an early postoperative aphasic disturbance (p<0.0003). Seven months after treatment 10.9% of the 128 cases without preoperative aphasic disturbances continued to demonstrate new postoperative language disturbances. A total of 17.6% of all cases demonstrated new postoperative language disturbances after 7 months. Risk factors for persistent aphasic disturbance were increased age (>40 years, p<0.02) and preoperative aphasia (p<0.001). Every attempt should be undertaken to preserve language-relevant areas intraoperatively, even when they are located within the tumor. New postoperative deficits resolve in the majority of patients, which may be a result of cortical mapping as well as functional reorganization.

  20. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    PubMed Central

    Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei

    2014-01-01

    Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974

  1. Lake Superior Coastal Wetland Fish Assemblages and ...

    EPA Pesticide Factsheets

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  2. Information flow between interacting human brains: Identification, validation, and relationship to social expertise

    PubMed Central

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D.; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-01-01

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender’s and receiver’s temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050

  3. Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem

    PubMed Central

    König, Sara; Worrich, Anja; Banitz, Thomas; Harms, Hauke; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.; Frank, Karin; Thullner, Martin; Centler, Florian

    2018-01-01

    Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass. PMID:29696013

  4. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  5. [The effects of small amounts of alcohol on in-flight activity].

    PubMed

    Dionisi, A

    1981-10-06

    Alcohol metabolism is described prior to an account of its effect on vigilance. The psychological and psychosomatic influence of alcohol is also illustrated in the light of experimental data indicating how it alters the response to stimuli. Alterations in various parameters following the administration of significantly small doses of alcohol were studied. Reaction time decreased, then increased, followed by a further decrease after about 1 1/2 hr. Even 1/8th litre depresses receptiveness of the reticular substance, and leads to lengthening of reaction times due to diminished ability to concentrate attention on a given task. CNS depression is also in proportion to the complexity of the performance required. This is particularly and dangerous in pilots, whose tasks are extremely precise and require close attention. Functional alterations induced by alcohol during flight may be numerous, due to disturbances connected with the specific conditions created by flying, and apparatuses whose physiological functions are susceptible to disturbance by flying itself. Alcohol, itself a harmful influence on piloting an aircraft, deteriorates these functions and conditions. Toxic substances present during flying and their potentiation by alcohol are considered. The effects of alcohol, added to these specific pathogenetic toxic effects, quickly and readily lead to a fall in overall psychophysical efficiency, and prejudice flight safety. the reason why a decrease in the limit intake doses to less than 2 cc/kg, equivalent to a blood value of 0.5 g 0/00, to ensure safe control of the plane, is desirable is explained.

  6. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  7. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.

    PubMed

    Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo

    2017-02-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales. © 2015 Cambridge Philosophical Society.

  8. Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function.

    PubMed

    Lefort-Besnard, Jérémy; Bassett, Danielle S; Smallwood, Jonathan; Margulies, Daniel S; Derntl, Birgit; Gruber, Oliver; Aleman, Andre; Jardri, Renaud; Varoquaux, Gaël; Thirion, Bertrand; Eickhoff, Simon B; Bzdok, Danilo

    2018-02-01

    Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. © 2017 Wiley Periodicals, Inc.

  9. [Analysis of relationships between perimenopausal symptoms and professional functioning and life satisfaction--Subjective perception of the dependence in women aged 40+].

    PubMed

    Nowakowska, Iwona; Rasińska, Renata; Głowacka, Maria Danuta

    2015-01-01

    The aim of the study was to analyse and present the opinions of women in perimenopause on subjectively perceived symptoms characteristic of the climacteric period, and connected with their professional functioning, as well as to evaluate the effects of selected variables on the incidence and severity of these symptoms and the women's life satisfaction. The study included 250 professionally active women in perimenopausal age (40-57 years). The study used the Satisfaction with Life Scale (SWLS) to evaluate life satisfaction of women and the Kupperman Index (KI) as quantitative and qualitative self-assessment of climacteric symptoms. The authors also used a questionnaire of their own design that contains an index of defined symptoms of perimenopause, which warrants the use of Pareto-Lorenz analysis. The obtained results prove the presence of statistically significant correlations between the occurrence and severity of menopausal symptoms and the place of enployment (p=0.04912), gynecological care (p=0.00325), hormone replacement therapy (HRT) (p=0.01523) and assessment of life satisfaction (p=0.0325). Among the symptoms particularly influencing effective professional functioning, women pointed out hot flashes, irritability, reduced concentration and coordination, sleep disturbances, and increased sweating. There is a statistically significant correlation between the woman's place of employment, gynecological care, HRT, the evaluation of life satisfaction and the severity of perimenopausal symptoms. A set of symptoms whose presence and severity influence the sense of life satisfaction and evaluation of professional functioning was observed. Among the most frequently reported symptoms that exert an adverse effect on professional functioning of women are: hot flushes, irritability, reduced concentration and coordination, sleep disturbances, and increased sweating. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    PubMed

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.

  11. Soil Disturbance as a Grassland Restoration Measure—Effects on Plant Species Composition and Plant Functional Traits

    PubMed Central

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745

  12. Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness.

    PubMed

    Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang

    2017-05-01

    Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of Structural Covariance From Childhood to Adolescence: A Longitudinal Study in 22q11.2DS.

    PubMed

    Sandini, Corrado; Zöller, Daniela; Scariati, Elisa; Padula, Maria C; Schneider, Maude; Schaer, Marie; Van De Ville, Dimitri; Eliez, Stephan

    2018-01-01

    Background: Schizophrenia is currently considered a neurodevelopmental disorder of connectivity. Still few studies have investigated how brain networks develop in children and adolescents who are at risk for developing psychosis. 22q11.2 Deletion Syndrome (22q11DS) offers a unique opportunity to investigate the pathogenesis of schizophrenia from a neurodevelopmental perspective. Structural covariance (SC) is a powerful approach to explore morphometric relations between brain regions that can furthermore detect biomarkers of psychosis, both in 22q11DS and in the general population. Methods: Here we implement a state-of-the-art sliding-window approach to characterize maturation of SC network architecture in a large longitudinal cohort of patients with 22q11DS (110 with 221 visits) and healthy controls (117 with 211 visits). We furthermore propose a new clustering-based approach to group regions according to trajectories of structural connectivity maturation. We correlate measures of SC with development of working memory, a core executive function that is highly affected in both idiopathic psychosis and 22q11DS. Finally, in 22q11DS we explore correlations between SC dysconnectivity and severity of internalizing psychopathology. Results: In HCs network architecture underwent a quadratic developmental trajectory maturing up to mid-adolescence. Late-childhood maturation was particularly evident for fronto-parietal cortices, while Default-Mode-Network-related regions showed a more protracted linear development. Working memory performance was positively correlated with network segregation and fronto-parietal connectivity. In 22q11DS, we demonstrate aberrant maturation of SC with disturbed architecture selectively emerging during adolescence and correlating more severe internalizing psychopathology. Patients also presented a lack of typical network development during late-childhood, that was particularly prominent for frontal connectivity. Conclusions: Our results suggest that SC maturation may underlie critical cognitive development occurring during late-childhood in healthy controls. Aberrant trajectories of SC maturation may reflect core developmental features of 22q11DS, including disturbed cognitive maturation during childhood and predisposition to internalizing psychopathology and psychosis during adolescence.

  14. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea).

    PubMed

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-13

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.

  15. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea)

    PubMed Central

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-01-01

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs. PMID:27622504

  16. Response diversity can increase ecological resilience to disturbance in coral reefs.

    PubMed

    Baskett, Marissa L; Fabina, Nicholas S; Gross, Kevin

    2014-08-01

    Community-level resilience depends on the interaction between multiple populations that vary in individual responses to disturbance. For example, in tropical reefs, some corals can survive higher stress (resistance) while others exhibit faster recovery (engineering resilience) following disturbances such as thermal stress. While each type will negatively affect the other through competition, each might also benefit the other by reducing the potential for an additional competitor such as macroalgae to invade after a disturbance. To determine how community composition affects ecological resilience, we modeled coral-macroalgae interactions given either a resistant coral, a resilient coral, or both together. Having both coral types (i.e., response diversity) can lead to observable enhanced ecological resilience if (1) the resilient coral is not a superior competitor and (2) disturbance levels are high enough such that the resilient coral would collapse when considered alone. This enhanced resilience occurs through competitor-enabled rescue where each coral increases the potential for the other to recover from disturbance through external recruitment, such that both corals benefit from the presence of each other in terms of total cover and resilience. Therefore, conservation management aimed at protecting resilience under global change requires consideration of both diversity and connectivity between sites experiencing differential disturbance.

  17. Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di

    2015-01-01

    In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164

  18. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    PubMed

    Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  19. Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain.

    PubMed

    Cardoso-Cruz, Helder; Sousa, Mafalda; Vieira, Joana B; Lima, Deolinda; Galhardo, Vasco

    2013-11-01

    The medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) form interconnected neural circuits that are important for spatial cognition and memory, but it is not known whether the functional connectivity between these areas is affected by the onset of an animal model of inflammatory pain. To address this issue, we implanted 2 multichannel arrays of electrodes in the mPFC and MD of adult rats and recorded local field potential activity during a food-reinforced spatial working memory task. Recordings were performed for 3weeks, before and after the establishment of the pain model. Our results show that inflammatory pain caused an impairment of spatial working memory performance that is associated with changes in the activity of the mPFC-MD circuit; an analysis of partial directed coherence between the areas revealed a global decrease in the connectivity of the circuit. This decrease was observed over a wide frequency range in both the frontothalamic and thalamofrontal directions of the circuit, but was more evident from MD to mPFC. In addition, spectral analysis revealed significant oscillations of power across frequency bands, namely with a strong theta component that oscillated after the onset of the painful condition. Finally, our data revealed that chronic pain induces an increase in theta/gamma phase coherence and a higher level of mPFC-MD coherence, which is partially conserved across frequency bands. The present results demonstrate that functional disturbances in mPFC-MD connectivity are a relevant cause of deficits in pain-related working memory. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Neural networks related to dysfunctional face processing in autism spectrum disorder

    PubMed Central

    Nickl-Jockschat, Thomas; Rottschy, Claudia; Thommes, Johanna; Schneider, Frank; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    One of the most consistent neuropsychological findings in autism spectrum disorders (ASD) is a reduced interest in and impaired processing of human faces. We conducted an activation likelihood estimation meta-analysis on 14 functional imaging studies on neural correlates of face processing enrolling a total of 164 ASD patients. Subsequently, normative whole-brain functional connectivity maps for the identified regions of significant convergence were computed for the task-independent (resting-state) and task-dependent (co-activations) state in healthy subjects. Quantitative functional decoding was performed by reference to the BrainMap database. Finally, we examined the overlap of the delineated network with the results of a previous meta-analysis on structural abnormalities in ASD as well as with brain regions involved in human action observation/imitation. We found a single cluster in the left fusiform gyrus showing significantly reduced activation during face processing in ASD across all studies. Both task-dependent and task-independent analyses indicated significant functional connectivity of this region with the temporo-occipital and lateral occipital cortex, the inferior frontal and parietal cortices, the thalamus and the amygdala. Quantitative reverse inference then indicated an association of these regions mainly with face processing, affective processing, and language-related tasks. Moreover, we found that the cortex in the region of right area V5 displaying structural changes in ASD patients showed consistent connectivity with the region showing aberrant responses in the context of face processing. Finally, this network was also implicated in the human action observation/imitation network. In summary, our findings thus suggest a functionally and structurally disturbed network of occipital regions related primarily to face (but potentially also language) processing, which interact with inferior frontal as well as limbic regions and may be the core of aberrant face processing and reduced interest in faces in ASD. PMID:24869925

  1. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest.

    PubMed

    Arnan, Xavier; Arcoverde, Gabriela B; Pie, Marcio R; Ribeiro-Neto, José D; Leal, Inara R

    2018-08-01

    Anthropogenic disturbance and climate change are major threats to biodiversity. The Brazilian Caatinga is the world's largest and most diverse type of seasonally dry tropical forest. It is also one of the most threatened, but remains poorly studied. Here, we analyzed the individual and combined effects of anthropogenic disturbance (three types: livestock grazing, wood extraction, and miscellaneous use of forest resources) and increasing aridity on taxonomic, phylogenetic and functional ant diversity in the Caatinga. We found no aridity and disturbance effects on taxonomic diversity. In spite of this, functional diversity, and to a lesser extent phylogenetic diversity, decreased with increased levels of disturbance and aridity. These effects depended on disturbance type: livestock grazing and miscellaneous resource use, but not wood extraction, deterministically filtered both components of diversity. Interestingly, disturbance and aridity interacted to shape biodiversity responses. While aridity sometimes intensified the negative effects of disturbance, the greatest declines in biodiversity were in the wettest areas. Our results imply that anthropogenic disturbance and aridity interact in complex ways to endanger biodiversity in seasonally dry tropical forests. Given global climate change, neotropical semi-arid areas are habitats of concern, and our findings suggest Caatinga conservation policies must prioritize protection of the wettest areas, where biodiversity loss stands to be the greatest. Given the major ecological relevance of ants, declines in both ant phylogenetic and functional diversity might have downstream effects on ecosystem processes, insect populations, and plant populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A Comparison of Structurally Connected and Multiple Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Crawley, Edward F.

    1996-01-01

    Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.

  3. Functional diversity of fish communities in two tropical estuaries subjected to anthropogenic disturbance.

    PubMed

    Dolbeth, M; Vendel, A L; Pessanha, A; Patrício, J

    2016-11-15

    The functional diversity of fish communities was studied along the salinity gradient of two estuaries in Northeast Brazil subjected to different anthropogenic pressures, to gain a better understanding of the response of fish communities to disturbance. We evaluated functional complementarity indices, redundancy and analysed functional composition through functional groups based on combinations of different traits. The fish communities in both estuaries share similar functions performed by few functional groups. The upstream areas had generally lower taxonomic, functional diversity and lower redundancy, suggesting greater vulnerability to impacts caused by human activities. Biomass was slightly more evenly distributed among functional groups in the less disturbed estuary, but total biomass and redundancy were lower in comparison to the urbanized estuary. The present findings lend strength to the notion that the less disturbed estuary may be more susceptible to anthropogenic impacts, underscoring the need for more effective conservation measures directed at this estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model.

    PubMed

    Lindahl, Mikael; Hellgren Kotaleski, Jeanette

    2016-01-01

    The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.

  5. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Liu, Shenghua; Lv, Han; Bo, Fan; Feng, Yuan; Chen, Huiyou; Xu, Jin-Jing; Yin, Xindao; Wang, Shukui; Gu, Jian-Ping

    2018-01-01

    Purpose: The anterior cingulate cortex (ACC) has been suggested to be involved in chronic subjective tinnitus. Tinnitus may arise from aberrant functional coupling between the ACC and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to illuminate the functional connectivity (FC) network of the ACC subregions in chronic tinnitus patients. Methods: Resting-state fMRI scans were obtained from 31 chronic right-sided tinnitus patients and 40 healthy controls (age, sex, and education well-matched) in this study. Rostral ACC and dorsal ACC were selected as seed regions to investigate the intrinsic FC with the whole brain. The resulting FC patterns were correlated with clinical tinnitus characteristics including the tinnitus duration and tinnitus distress. Results: Compared with healthy controls, chronic tinnitus patients showed disrupted FC patterns of ACC within several brain networks, including the auditory cortex, prefrontal cortex, visual cortex, and default mode network (DMN). The Tinnitus Handicap Questionnaires (THQ) scores showed positive correlations with increased FC between the rostral ACC and left precuneus (r = 0.507, p = 0.008) as well as the dorsal ACC and right inferior parietal lobe (r = 0.447, p = 0.022). Conclusions: Chronic tinnitus patients have abnormal FC networks originating from ACC to other selected brain regions that are associated with specific tinnitus characteristics. Resting-state ACC-cortical FC disturbances may play an important role in neuropathological features underlying chronic tinnitus. PMID:29410609

  6. Finite time state and disturbance estimation for robust performance of motion control systems using sliding modes

    NASA Astrophysics Data System (ADS)

    Tamhane, Bhagyashri; Kurode, Shailaja

    2018-05-01

    In this paper, simultaneous state and disturbance estimation of a drive system composed of motor connected to a load is proposed. Such a system is represented by a two mass model realising in a fourth-order plant. Backlash is introduced as the nonlinear disturbance in gears which is proposed to be estimated and in turn compensated. For this motion control system, a two-stage higher order sliding-mode observer is proposed for state and backlash estimation. The novelty lies in the fact that for this fourth-order system, output is considered from the motor end only, i.e. its angular displacement. The unmeasured states consisting of output derivative, load-side angular displacement and its derivative along with backlash are estimated in finite time. This disturbance due to backlash is unmatched in nature. The estimated states and disturbance are used to devise a robust sliding-mode control. This proposed scheme is validated in simulation and experimentation.

  7. Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks

    PubMed Central

    Piazzon, Martín; Larrinaga, Asier R.; Santamaría, Luis

    2011-01-01

    Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions. PMID:21589931

  8. Environmental Assessment for Proposed Royal Saudi Air Force F-15SA Beddown at Mountain Home Air Force Base

    DTIC Science & Technology

    2012-08-16

    designed for sophisticated air-to- ground attack capabilities and air-to-air superiority missions, using two crewmembers, a pilot and a weapon systems ...was added to the area of potential ground disturbance. This area comprises a total of 14.08 acres for all projects. As yet undefined infrastructure...upgrades, such as connecting new facilities to water and power systems would also add to the affected areas/ potential area of ground disturbance on

  9. Synchronization and survival of connected bacterial populations

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  10. Influence of compounding fires on coast redwood regeneration and stand structure

    Treesearch

    Matthew R. Brousil; Sarah Bisbing

    2017-01-01

    Disturbance is fundamental to forest ecosystem function, but climate change will continue to increase both disturbance frequency and intensity in the future. Forests subject to increasingly frequent and intense disturbances are more likely to experience overlapping (compounding) disturbance effects. Compounding disturbances may exert unpredicted, non-additive stresses...

  11. The interplay between climate change, forests, and disturbances

    Treesearch

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson

    2000-01-01

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently....

  12. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  13. Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia.

    PubMed

    Ebisch, Sjoerd J H; Mantini, Dante; Northoff, Georg; Salone, Anatolia; De Berardis, Domenico; Ferri, Francesca; Ferro, Filippo M; Di Giannantonio, Massimo; Romani, Gian L; Gallese, Vittorio

    2014-09-01

    Self-experience anomalies are elementary features of schizophrenic pathology. Such deficits can have a profound impact on self-other relationship, but how they are related through aberrant brain function remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, we provide new evidence for a cortical link between aberrant self-experience and social cognition in first-episode schizophrenia (FES). As identified in previous studies, ventral premotor cortex (vPMC) and posterior insula (pIC) are candidate brain regions underlying disturbances in both self-experience and self-other relationship due to their processing of predominantly externally guided (vPMC; goal-oriented behavior) and internally guided (pIC; interoception) stimuli. Results from functional interaction analysis in a sample of 24 FES patients and 22 healthy controls show aberrant functional interactions (background/intrinsic connectivity) of right vPMC and bilateral pIC with posterior cingulate cortex (PCC), a midline region that has been shown central in mediating self-experience. More specifically, our results show increased functional coupling between vPMC and PCC, which positively correlated with basic symptoms (subjective self-experience disturbances). pIC showed reduced functional coupling with PCC and postcentral gyrus and increased functional interactions with anterior insula. Taken together, our results suggest an imbalance in the processing between internally and externally guided information and its abnormal integration with self-referential processing as mediated by PCC. Due to our correlation findings, we suggest this imbalance to be closely related to basic symptoms in FES and thus anomalous self-experience. The findings further disentangle the cortical basis of how self-experience anomalies may pervade the social domain. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. NCAM2 deletion in a boy with macrocephaly and autism: Cause, association or predisposition?

    PubMed

    Scholz, Caroline; Steinemann, Doris; Mälzer, Madeleine; Roy, Mandy; Arslan-Kirchner, Mine; Illig, Thomas; Schmidtke, Jörg; Stuhrmann, Manfred

    2016-10-01

    We report on an 8-year-old boy with autism spectrum disorder (ASD), speech delay, behavioural problems, disturbed sleep and macrosomia including macrocephaly carrying a microdeletion that contains the entire NCAM2 gene and no other functional genes. Other family members with the microdeletion show a large skull circumference but do not exhibit any symptoms of autism spectrum disorder. Among many ASD-candidate genes, NCAM2 has been assumed to play a pivotal role in the development of ASD because of its function in the outgrowth and bundling of neurites. Our reported case raises the questions whether the NCAM2-deletion is the true cause of the ASD or only a risk factor and whether there might be any connection in NCAM2 with skull-size autism spectrum disorder, macrocephaly, neural cell adhesion molecule 2 protein (NCAM2), array comparative genomic hybridization (microarray). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability

    USGS Publications Warehouse

    Hunter, Richard D.; Fisher, Robert N.; Crooks, Kevin R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeus]) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  16. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This highlights the importance of considering interactive effects with disturbance when evaluating long-term effects of N enrichment on boreal forest ecosystem structure and function.

  17. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.

  18. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738

  19. [Functional condition of the spine in female workers in the cotton-processing industry evaluated on the basis of subjective and radiological studies].

    PubMed

    Split, W; Kotwica, S

    1987-01-01

    Studies involved 179 weaving and 173 spinning women. All of them underwent functional tests of the spine supported by X-ray tests. In approximately 45% of weavers and 29% of spinners functional disturbances in the lower segment of the spine were found. The incidence of the motorial disturbances of the spine was found to increase with age. The analysis of the impact of employment length upon the rate of motorial disturbances demonstrated that the disturbances occurred within the first years of work and reached the highest level after 10 years.

  20. Supplementary value of functional imaging in forensic medicine.

    PubMed

    Mirzaei, Siroos; Sonneck-Koenne, Charlotte; Bruecke, Thomas; Aryana, Kamran; Knoll, Peter; Zakavi, Rasoul

    2012-01-01

    The aim of this study is to evaluate the role of functional imaging for forensic purposes. We reviewed a few outpatient cases that were sent to our department for examination after traumatic events and one case with neuropsychic disturbances. Functional imaging showed signs of traumatic lesions in the skeletal system, of brain metabolism and of renal failure. Functional disturbances following traumatic events are in some cases more important than morphological abnormalities. Targeted scintigraphic examinations could be applied for visualisation of traumatic lesions or evaluation of functional disturbances caused by traumatic events. These examinations can be used as evidence in the courtroom.

  1. Impacts of insect disturbance on the structure, composition, and functioning of oak-pine forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Schafer, K. V.; Clark, K. L.

    2011-12-01

    Episodic disturbance is an essential feature of terrestrial ecosystems, and strongly modulates their structure, composition, and functioning. However, dynamic global vegetation models that are commonly used to make ecosystem and terrestrial carbon budget predictions rarely have an explicit representation of disturbance. One reason why disturbance is seldom included is that disturbance tends to operate on spatial scales that are much smaller than typical model resolutions. In response to this problem, the Ecosystem Demography model 2 (ED2) was developed as a way of tracking the fine-scale heterogeneity arising from disturbances. In this study, we used ED2 to simulate an oak-pine forest that experiences episodic defoliation by gypsy moth (Lymantria dispar L). The model was carefully calibrated against site-level data, and then used to simulate changes in ecosystem composition, structure, and functioning on century time scales. Compared to simulations that include gypsy moth defoliation, we show that simulations that ignore defoliation events lead to much larger ecosystem carbon stores and a larger fraction of deciduous trees relative to evergreen trees. Furthermore, we find that it is essential to preserve the fine-scale nature of the disturbance. Attempts to "smooth out" the defoliation event over an entire grid cells led to large biases in ecosystem structure and functioning.

  2. Goal disturbance changes pre/post-renal transplantation are related to changes in distress.

    PubMed

    de Vries, Alicia M; Schulz, Torben; Westerhuis, Ralf; Navis, Gerjan J; Niesing, Jan; Ranchor, Adelita V; Schroevers, Maya J

    2017-09-01

    Renal transplantation (RTx) is considered the treatment of choice for end-stage renal disease (ESRD) given its association with lower mortality, and improved overall quality of life and psychological functioning compared to dialysis. However, much less is known about which factors underlie these psychological improvements across RTx. Goal theory suggests that experienced disturbances in important goals are related to lower psychological functioning. This study aimed to (1) identify the most disturbed and most important goals for patients before RTx, (2) to examine changes in goal disturbance and goal importance pre/post-RTx, and (3) to examine whether changes in goal disturbance are associated with changes in psychological distress over time, and whether this relationship is mediated by changes in perceived control. In this longitudinal study, 220 patients completed questionnaires before and after RTx, including questionnaires to assess goals (GOALS questionnaire), psychological distress (GHQ-12), and perceived control (Mastery scale). End-stage renal disease affected both general and disease-specific goals. Approximately 30% of the patients indicated to experience high or very high disturbance before transplantation. Goal disturbance generally decreased significantly pre- to post-RTx, whereas goal importance did not change significantly pre- to post-RTx. No mediation effect of perceived control was found. Instead, both changes in goal disturbance and perceived control showed independent effects on changes in distress. Intervention strategies targeting attainable and realistic goal setting, and perceived control in RTx recipients who do not benefit optimally from RTx, might enhance psychological functioning in this population. Statement of contribution What is already known on this subject? Kidney transplantation improves patients' psychological functioning. Experienced disturbances in important life goals are related to lower psychological functioning in chronic illness. What does this study add? Goal disturbance decreases after renal transplantation, and this is related to a decrease in distress over time. Perceived control does not mediate the relationship between goal disturbance and distress pre/post-transplantation. Changes in perceived control have an additional main effect on changes in distress. © 2017 The British Psychological Society.

  3. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  4. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  5. The caudate: a key node in the neuronal network imbalance of insomnia?

    PubMed Central

    Altena, Ellemarije; van der Werf, Ysbrand D.; Sanz-Arigita, Ernesto J.; Voorn, Thom A.; Astill, Rebecca G.; Strijers, Rob L. M.; Waterman, Dé; Van Someren, Eus J. W.

    2014-01-01

    Insomnia is prevalent, severe and partially heritable. Unfortunately, its neuronal correlates remain enigmatic, hampering the development of mechanistic models and rational treatments. Consistently reported impairments concern fragmented sleep, hyper-arousal and executive dysfunction. Because fronto-striatal networks could well play a role in sleep, arousal regulation and executive functioning, the present series of studies used an executive task to evaluate fronto-striatal functioning in disturbed sleep. Patients with insomnia showed reduced recruitment of the head of the left caudate nucleus during executive functioning, which was not secondary to altered performance or baseline perfusion. Individual differences in caudate recruitment were associated with hyper-arousal severity. Seed-based functional connectivity analysis suggested that attenuated input from a projecting orbitofrontal area with reduced grey matter density contributes to altered caudate recruitment in patients with insomnia. Attenuated caudate recruitment persisted after successful treatment of insomnia, warranting evaluation as a potential vulnerability trait. A similar selective reduction in caudate recruitment could be elicited in participants without sleep complaints by slow-wave sleep fragmentation, providing a model to facilitate investigation of the causes and consequences of insomnia. PMID:24285642

  6. Uniform stable observer for the disturbance estimation in two renewable energy systems.

    PubMed

    Rubio, José de Jesús; Ochoa, Genaro; Balcazar, Ricardo; Pacheco, Jaime

    2015-09-01

    In this study, an observer for the states and disturbance estimation in two renewable energy systems is introduced. The restrictions of the gains in the proposed observer are found to guarantee its stability and the convergence of its error; furthermore, these results are utilized to obtain a good estimation. The introduced technique is applied for the states and disturbance estimation in a wind turbine and an electric vehicle. The wind turbine has a rotatory tower to catch the incoming air to be transformed in electricity and the electric vehicle has generators connected with its wheels to catch the vehicle movement to be transformed in electricity. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Continuous theta-burst stimulation may improve visuospatial neglect via modulating the attention network: a randomized controlled study.

    PubMed

    Fu, Wei; Cao, Lei; Zhang, Yanming; Huo, Su; Du, JuBao; Zhu, Lin; Song, Weiqun

    2017-05-01

    Visuospatial neglect (VSN) is devastating and common after stroke, and is thought to involve functional disturbance of the attention network. Non-invasive theta-burst stimulation (TBS) may help restore the normal function of attention network, therefore facilitating recovery from VSN. This study investigated the effects of continuous TBS on resting-state functional connectivity (RSFC) in the attention network, and behavioral performances of patients with VSN after stroke. Twelve patients were randomly assigned to receive 10-day cTBS of the left posterior parietal cortex delivered at 80% (the cTBS group), or 40% (the active control group) of the resting motor threshold. Both groups received daily visual scanning training and motor function treatment. Resting-state functional MRI (fMRI) and behavioral tests including line bisection test and star cancelation test were conducted at baseline and after the treatment. At baseline, the two groups showed comparable results in the resting-state fMRI experiments and behavioral tests. After treatment, the cTBS group showed lower functional connectivity between right temporoparietal junction (TPJ) and right anterior insula, and between right superior temporal sulcus and right anterior insula, as compared with the active control group; both groups showed improvement in the behavioral tests, with the cTBS group showing larger changes from baseline than the active control group. cTBS of the left posterior parietal cortex in patients with VSN may induce changes in inter-regional RSFC in the right ventral attention network. These changes may be associated with improved recovery of behavioral deficits after behavioral training. The TPJ and superior temporal sulcus may play crucial roles in recovery from VSN.

  8. Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer.

    PubMed

    Wu, Yun-Jie; Zuo, Jing-Xing; Sun, Liang-Hua

    2017-11-01

    In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Disturbance history and stand dynamics in secondary and old-growth forests of the Southern Appalachain Mountains, USA

    Treesearch

    Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S. Seymour

    2014-01-01

    Understanding the patterns of past disturbance allows further insight into the complex composition, structure, and function of current and future forests, which is increasingly important in a world where disturbance characteristics are changing. Our objectives were to define disturbance causes, rates (percent disturbance per decade), magnitudes and frequency (time...

  10. On parameters identification of computational models of vibrations during quiet standing of humans

    NASA Astrophysics Data System (ADS)

    Barauskas, R.; Krušinskienė, R.

    2007-12-01

    Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.

  11. Disturbance dynamics of forested ecosystems

    Treesearch

    John A. Stanturf

    2004-01-01

    Forested ecosystems are dynamic, subject to natural developmental processes as well as natural and anthropogenic stresses and disturbances. Degradation is a related term. for lowered productive capacity from changes to forest structure of function (FAO. 2001). Degradation is not synonymous with disturbance, however; disturbance becomes degradation when natural...

  12. Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia.

    PubMed

    Kindler, Jochen; Jann, Kay; Homan, Philipp; Hauf, Martinus; Walther, Sebastian; Strik, Werner; Dierks, Thomas; Hubl, Daniela

    2015-01-01

    The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = -16/-64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). In schizophrenia patients, the posterior hub--which is considered the strongest part of the DMN--showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    PubMed

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  14. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... instructions on connecting to eLibrary, refer to the last page of this notice. Land Requirements for.... However, there would be some ground disturbance associated with offshore disconnects within federal waters...

  15. Large-Scale Variation in Combined Impacts of Canopy Loss and Disturbance on Community Structure and Ecosystem Functioning

    PubMed Central

    Crowe, Tasman P.; Cusson, Mathieu; Bulleri, Fabio; Davoult, Dominique; Arenas, Francisco; Aspden, Rebecca; Benedetti-Cecchi, Lisandro; Bevilacqua, Stanislao; Davidson, Irvine; Defew, Emma; Fraschetti, Simonetta; Golléty, Claire; Griffin, John N.; Herkül, Kristjan; Kotta, Jonne; Migné, Aline; Molis, Markus; Nicol, Sophie K.; Noël, Laure M-L J.; Pinto, Isabel Sousa; Valdivia, Nelson; Vaselli, Stefano; Jenkins, Stuart R.

    2013-01-01

    Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts. PMID:23799082

  16. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning.

    PubMed

    Crowe, Tasman P; Cusson, Mathieu; Bulleri, Fabio; Davoult, Dominique; Arenas, Francisco; Aspden, Rebecca; Benedetti-Cecchi, Lisandro; Bevilacqua, Stanislao; Davidson, Irvine; Defew, Emma; Fraschetti, Simonetta; Golléty, Claire; Griffin, John N; Herkül, Kristjan; Kotta, Jonne; Migné, Aline; Molis, Markus; Nicol, Sophie K; Noël, Laure M-L J; Pinto, Isabel Sousa; Valdivia, Nelson; Vaselli, Stefano; Jenkins, Stuart R

    2013-01-01

    Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts.

  17. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  18. [Connections between sleep and Alzheimer's disease : Insomnia, amnesia and amyloid].

    PubMed

    Busche, M A; Kekuš, M; Förstl, H

    2017-03-01

    Sleep plays an essential role in memory consolidation. Although sleep problems are common in Alzheimer's disease, they are not usually thought to be key features of the disease; however, new experimental research has shown that sleep disturbances not only occur before the onset of typical cognitive deficits but are also associated with the pathogenesis of Alzheimer's disease and may have a decisive influence on the symptoms and course. Thus, sleep disturbances may be potentially modifiable risk factors for Alzheimer's disease that deserve more attention in research, diagnostics and treatment.

  19. Constrained dynamics approach for motion synchronization and consensus

    NASA Astrophysics Data System (ADS)

    Bhatia, Divya

    In this research we propose to develop constrained dynamical systems based stable attitude synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint potential energy functions that enforce communication constraints. Euler-Lagrange equations are employed to develop the non-linear constrained dynamics of multiple vehicle systems. The constraint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle communication. Constraint stabilization is achieved via Baumgarte's method. The performance of these constrained dynamics based formations is evaluated for bounded control authority. The above method has been applied to various cases and the results have been obtained using MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The first case corresponds to an N-pendulum formation without external disturbances, in which the springs and the dampers connected between the pendulums act as the communication constraints. The damper helps in stabilizing the system by damping the motion whereas the spring acts as a communication link relaying relative position information between two connected pendulums. Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude stabilization and boundedness. Various scenarios involving different values of springs and dampers are simulated and studied. Motivated by the first case study, we study the formation of N 2-link robotic manipulators. The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set of communication constraints are developed for this system using graph theory. The constraints are stabilized using Baumgarte's techniques. The attitude SCT is established for this system and the results are shown for the special case of three 2-link robotic manipulators. These methods are then applied to the formation of N-spacecraft. Modified Rodrigues Parameters (MRP) are used for attitude representation of the spacecraft because of their advantage of being a minimum parameter representation. Constrained non-linear equations of motion for this system are developed and stabilized using a Proportional-Derivative (PD) controller derived based on Baumgarte's method. A system of 3 spacecraft is simulated and the results for SCT are shown and analyzed. Another problem studied in this research is that of maintaining SCT under unknown external disturbances. We use an adaptive control algorithm to derive control laws for the actuator torques and develop an estimation law for the unknown disturbance parameters to achieve SCT. The estimate of the disturbance is added as a feed forward term in the actual control law to obtain the stabilization of a 3-spacecraft formation. The disturbance estimates are generated via a Lyapunov analysis of the closed loop system. In summary, the constrained dynamics method shows a lot of potential in formation control, achieving stabilization, synchronization, consensus and tracking of a set of dynamical systems.

  20. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans

    PubMed Central

    Kihara, Terue C.; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima’s D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid populations are generally large and continuously undergoing population growth. Benthic and pelagic species abundance data support these findings. PMID:27732624

  1. Assessing Landscape Connectivity and River Water Quality Changes Using an 8-Day, 30-Meter Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2014-12-01

    Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions affect water quality.

  2. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans.

    PubMed

    Gollner, Sabine; Stuckas, Heiko; Kihara, Terue C; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima's D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid populations are generally large and continuously undergoing population growth. Benthic and pelagic species abundance data support these findings.

  3. Persistent Sleep Disturbances Independently Predict Poorer Functional and Social Outcomes 1 Year After Mild Traumatic Brain Injury.

    PubMed

    Chan, Lai Gwen; Feinstein, Anthony

    2015-01-01

    To investigate the effect of sleep disturbances on functional and social outcomes after mild traumatic brain injury. Outpatient traumatic brain injury clinic in a tertiary trauma center. A total of 374 mild traumatic brain injury patients were assessed within 3 months of injury and followed up every 3 months for 1 year. Analysis of a historical cohort in a naturalistic clinical setting. At each visit, symptoms of concussion and psychological distress and indices of functional and social outcomes were measured with the Rivermead Postconcussion Questionnaire, 28-item General Health Questionnaire, and Rivermead Head Injury Follow-up Questionnaire, respectively. Changes in outcome scores over time were explored using repeated measures analysis of variance and compared between subjects with persistent (SD) and recovered (SR) sleep disturbances. Predictors of functional/social outcome were determined using linear regression. The percentages of subjects reporting sleep disturbances at each time point were 71.9%, 57.2%, 55.1%, and 53.7%, respectively. For functional and social outcomes, significant effects of time (F3,315 = 9.54; P < .001), group (SD vs SR) F1,317 = 5.32; P = .022, and time X group interaction F3,315 = 4.14; P = .007 were found. Persistent sleep disturbance (P = 0.011) and higher symptom burden at 6 months postinjury (P < .0001) were independent predictors of poorer outcome. Sleep disturbance, independent of psychological distress, is an important prognostic factor of functional and social outcomes after mild traumatic brain injury.

  4. The Central Role of Biometals Maintains Oxidative Balance in the Context of Metabolic and Neurodegenerative Disorders

    PubMed Central

    Pokusa, Michal

    2017-01-01

    Traditionally, oxidative stress as a biological aspect is defined as an imbalance between the free radical generation and antioxidant capacity of living systems. The intracellular imbalance of ions, disturbance in membrane dynamics, hypoxic conditions, and dysregulation of gene expression are all molecular pathogenic mechanisms closely associated with oxidative stress and underpin systemic changes in the body. These also include aspects such as chronic immune system activation, the impairment of cellular structure renewal, and alterations in the character of the endocrine secretion of diverse tissues. All of these mentioned features are crucial for the correct function of the various tissue types in the body. In the present review, we summarize current knowledge about the common roots of metabolic and neurodegenerative disorders induced by oxidative stress. We discuss these common roots with regard to the way that (1) the respective metal ions are involved in the maintenance of oxidative balance and (2) the metabolic and signaling disturbances of the most important biometals, such as Mg2+, Zn2+, Se2+, Fe2+, or Cu2+, can be considered as the central connection point between the pathogenesis of both types of disorders and oxidative stress. PMID:28751933

  5. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy.

    PubMed

    Bernstein, Hans-Gert; Steiner, Johann; Guest, Paul C; Dobrowolny, Henrik; Bogerts, Bernhard

    2015-01-01

    The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Steneck, R. S.; Paris, C. B.; Arnold, S. N.; Ablan-Lagman, M. C.; Alcala, A. C.; Butler, M. J.; McCook, L. J.; Russ, G. R.; Sale, P. F.

    2009-06-01

    As the science of connectivity evolves, so too must the management of coral reefs. It is now clear that the spatial scale of disturbances to coral reef ecosystems is larger and the scale of larval connectivity is smaller than previously thought. This poses a challenge to the current focus of coral reef management, which often centers on the establishment of no-take reserves (NTRs) that in practice are often too small, scattered, or have low stakeholder compliance. Fished species are generally larger and more abundant in protected reserves, where their reproductive potential is often greater, yet documented demographic benefits of these reproductive gains outside reserves are modest at best. Small reproductive populations and limited dispersal of larvae play a role, as does the diminished receptivity to settling larvae of degraded habitats that can limit recruitment by more than 50%. For “demographic connectivity” to contribute to the resilience of coral reefs, it must function beyond the box of no-take reserves. Specifically, it must improve nursery habitats on or near reefs and enhance the reproductive output of ecologically important species throughout coral reef ecosystems. Special protection of ecologically important species (e.g., some herbivores in the Caribbean) and size-regulated fisheries that capitalize on the benefits of NTRs and maintain critical ecological functions are examples of measures that coalesce marine reserve effects and improve the resilience of coral reef ecosystems. Important too is the necessity of local involvement in the management process so that social costs and benefits are properly assessed, compliance increased and success stories accrued.

  7. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turnsmore » the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.« less

  8. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides.

    PubMed

    Wang, N; Yu, F-H; Li, P-X; He, W-M; Liu, J; Yu, G-L; Song, Y-B; Dong, M

    2009-05-01

    Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed (Alternanthera philoxeroides) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.

  9. Fine-scale habitat use by orang-utans in a disturbed peat swamp forest, central Kalimantan, and implications for conservation management.

    PubMed

    Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J

    2014-01-01

    This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.

  10. Altered Effective Connectivity Network of the Basal Ganglia in Low-Grade Hepatic Encephalopathy: A Resting-State fMRI Study with Granger Causality Analysis

    PubMed Central

    Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Jiao, Qing; Liao, Wei; Zheng, Gang; Lu, Guangming

    2013-01-01

    Background The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE). Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI). Methodology/Principal Findings Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC), cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. Conclusions/Significance Low-grade HE patients had disrupted effective connectivity network of basal ganglia. Our findings may help to understand the neurophysiological mechanisms underlying the HE. PMID:23326484

  11. Functional traits help predict post-disturbance demography of tropical trees.

    PubMed

    Flores, Olivier; Hérault, Bruno; Delcamp, Matthieu; Garnier, Éric; Gourlet-Fleury, Sylvie

    2014-01-01

    How tropical tree species respond to disturbance is a central issue of forest ecology, conservation and resource management. We define a hierarchical model to investigate how functional traits measured in control plots relate to the population change rate and to demographic rates for recruitment and mortality after disturbance by logging operations. Population change and demographic rates were quantified on a 12-year period after disturbance and related to seven functional traits measured in control plots. The model was calibrated using a Bayesian Network approach on 53 species surveyed in permanent forest plots (37.5 ha) at Paracou in French Guiana. The network analysis allowed us to highlight both direct and indirect relationships among predictive variables. Overall, 89% of interspecific variability in the population change rate after disturbance were explained by the two demographic rates, the recruitment rate being the most explicative variable. Three direct drivers explained 45% of the variability in recruitment rates, including leaf phosphorus concentration, with a positive effect, and seed size and wood density with negative effects. Mortality rates were explained by interspecific variability in maximum diameter only (25%). Wood density, leaf nitrogen concentration, maximum diameter and seed size were not explained by variables in the analysis and thus appear as independent drivers of post-disturbance demography. Relationships between functional traits and demographic parameters were consistent with results found in undisturbed forests. Functional traits measured in control conditions can thus help predict the fate of tropical tree species after disturbance. Indirect relationships also suggest how different processes interact to mediate species demographic response.

  12. Embodying analysis: the body and the therapeutic process.

    PubMed

    Martini, Salvatore

    2016-02-01

    This paper considers the transfer of somatic effects from patient to analyst, which gives rise to embodied countertransference, functioning as an organ of primitive communication. By means of processes of projective identification, the analyst experiences somatic disturbances within himself or herself that are connected to the split-off complexes of the analysand. The analysty's own attempt at mind-body integration ushers the patient towards a progressive understanding and acceptance of his or her inner suffering. Such experiences of psychic contagion between patient and analyst are related to Jung's 'psychology of the transference' and the idea of the 'subtle body' as an unconscious shared area. The re-attribution of meaning to pre-verbal psychic experiences within the 'embodied reverie' of the analyst enables the analytic dyad to reach the archetypal energies and structuring power of the collective unconscious. A detailed case example is presented of how the emergence of the vitalizing connection between the psyche and the soma, severed through traumatic early relations with parents or carers, allows the instinctual impulse of the Self to manifest, thereby reactivating the process of individuation. © 2016, The Society of Analytical Psychology.

  13. Climate change and forest disturbances

    Treesearch

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson; Matthew P. Ayres; Michael D. Flannigan; Paul J. Hanson; Lloyd C. Irland; Ariel E. Lugo; Chris J. Peterson; Daniel Simberloff; Frederick J. Swanson; Brian J. Stocks; Michael Wotton

    2001-01-01

    This article examines how eight disturbances influence forest structure, composition, and function, and how climate change may influence the severity, frequency, and magnitude of disturbances to forests. We focus on examples from the United States, although these influences occur worldwide. We also consider options for coping with disturbance under changing climate....

  14. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    PubMed

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  15. Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model

    PubMed Central

    2016-01-01

    Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function. PMID:28101525

  16. Using environmental features to model highway crossing behavior of Canada lynx in the Southern Rocky Mountains.

    DOT National Transportation Integrated Search

    2015-07-21

    Carnivores are particularly sensitive to reductions in population connectivity caused by human disturbance and habitat fragmentation. Permeability of transportation corridors to carnivore movements is central to species conservation given the large s...

  17. Residual depressive symptoms, sleep disturbance and perceived cognitive impairment as determinants of functioning in patients with bipolar disorder.

    PubMed

    Samalin, Ludovic; Boyer, Laurent; Murru, Andrea; Pacchiarotti, Isabella; Reinares, María; Bonnin, Caterina Mar; Torrent, Carla; Verdolini, Norma; Pancheri, Corinna; de Chazeron, Ingrid; Boucekine, Mohamed; Geoffroy, Pierre-Alexis; Bellivier, Frank; Llorca, Pierre-Michel; Vieta, Eduard

    2017-03-01

    Many patients with bipolar disorder (BD) experience residual symptoms during their inter-episodic periods. The study aimed to analyse the relationship between residual depressive symptoms, sleep disturbances and self-reported cognitive impairment as determinants of psychosocial functioning in a large sample of euthymic BD patients. This was a cross-sectional study of 468 euthymic BD outpatients. We evaluated the residual depressive symptoms with the Bipolar Depression Rating Scale, the sleep disturbances with the Pittsburgh Sleep Quality Index, the perceived cognitive performance using visual analogic scales and functioning with the Functioning Assessment Short Test. Structural equation modelling (SEM) was used to describe the relationships among the residual depressive symptoms, sleep disturbances, perceived cognitive performance and functioning. SEM showed good fit with normed chi square=2.46, comparative fit index=0.94, root mean square error of approximation=0.05 and standardized root mean square residuals=0.06. This model revealed that residual depressive symptoms (path coefficient =0.37) and perceived cognitive performance (path coefficient=0.27) were the most important features significantly related to psychosocial functioning. Sleep disturbances were indirectly associated with functioning via residual depressive symptoms and perceived cognitive performance (path coefficient=0.23). This study contributes to a better understanding of the determinants of psychosocial functioning during the inter-episodic periods of BD patients. These findings should facilitate decision-making in therapeutics to improve the functional outcomes of BD during this period. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    PubMed

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Connectivity and systemic resilience of the Great Barrier Reef

    PubMed Central

    Wolff, Nicholas H.; Ortiz, Juan C.; Condie, Scott A.; Anthony, Kenneth R. N.; Blackwell, Paul G.; Mumby, Peter J.

    2017-01-01

    Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change. PMID:29182630

  1. Connectivity and systemic resilience of the Great Barrier Reef.

    PubMed

    Hock, Karlo; Wolff, Nicholas H; Ortiz, Juan C; Condie, Scott A; Anthony, Kenneth R N; Blackwell, Paul G; Mumby, Peter J

    2017-11-01

    Australia's iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.

  2. The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibitmore » that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.« less

  3. Maltreatment, Conscience Functioning and Dopamine Beta Hydroxylase in Emotionally Disturbed Boys.

    ERIC Educational Resources Information Center

    Galvin, Matthew R.; And Others

    1997-01-01

    Nineteen hospitalized, emotionally disturbed boys screened for maltreatment either before or after age 3 were compared with a normal control group for enzyme activity and conscience functions in moral valuation. Subjects who experienced early maltreatment had more developmental delays and more interferences with conscience functions than other…

  4. Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences.

    PubMed

    Janssen, Alisha L; Boster, Aaron; Patterson, Beth A; Abduljalil, Amir; Prakash, Ruchika Shaurya

    2013-11-01

    Multiple sclerosis (MS) is a neurodegenerative, inflammatory disease of the central nervous system, resulting in physical and cognitive disturbances. The goal of the current study was to examine the association between network integrity and composite measures of cognition and disease severity in individuals with relapsing-remitting MS (RRMS), relative to healthy controls. All participants underwent a neuropsychological and neuroimaging session, where resting-state data was collected. Independent component analysis and dual regression were employed to examine network integrity in individuals with MS, relative to healthy controls. The MS sample exhibited less connectivity in the motor and visual networks, relative to healthy controls, after controlling for group differences in gray matter volume. However, no alterations were observed in the frontoparietal, executive control, or default-mode networks, despite previous evidence of altered neuronal patterns during tasks of exogenous processing. Whole-brain, voxel-wise regression analyses with disease severity and processing speed composites were also performed to elucidate the brain-behavior relationship with neuronal network integrity. Individuals with higher levels of disease severity demonstrated reduced intra-network connectivity of the motor network, and the executive control network, while higher disease burden was associated with greater inter-network connectivity between the medial visual network and areas involved in visuomotor learning. Our findings underscore the importance of examining resting-state oscillations in this population, both as a biomarker of disease progression and a potential target for therapeutic intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A Disturbance Rejection Framework for the Study of Traditional Chinese Medicine

    PubMed Central

    Sun, Yan

    2014-01-01

    The traditional Chinese medicine (TCM) is explained in the language of engineering cybernetics (EC), an engineering science with the tradition of rigor and long history of practice. The inherent connection is articulated between EC, as a science of interrelations, and the Chinese conception of Wuxing. The combined cybernetic model of Wuxing seems to have significant explaining power for the TCM and could potentially facilitate better communications of the insights of the TCM to the West. In disturbance rejection, an engineering concept, a great metaphor, is found to show how the TCM is practiced, using the liver cancer pathogenesis and treatment as a case study. The results from a series of experimental studies seem to lend support to the cybernetic model of Wuxing and the principles of disturbance rejection. PMID:24995034

  6. Functional connectivity studies of patients with auditory verbal hallucinations.

    PubMed

    Hoffman, Ralph E; Hampson, Michelle

    2011-12-02

    Functional connectivity (FC) studies of brain mechanisms leading to auditory verbal hallucinations (AVHs) utilizing functional magnetic resonance imaging (fMRI) data are reviewed. Initial FC studies utilized fMRI data collected during performance of various tasks, which suggested frontotemporal disconnection and/or source-monitoring disturbances. Later FC studies have utilized resting (no-task) fMRI data. These studies have produced a mixed picture of disconnection and hyperconnectivity involving different pathways associated with AVHs. Results of our most recent FC study of AVHs are reviewed in detail. This study suggests that the core mechanism producing AVHs involves not a single pathway, but a more complex functional loop. Components of this loop include Wernicke's area and its right homologue, the left inferior frontal cortex, and the putamen. It is noteworthy that the putamen appears to play a critical role in the generation of spontaneous language, and in determining whether auditory stimuli are registered consciously as percepts. Excessive functional coordination linking this region with the Wernicke's seed region in patients with schizophrenia could, therefore, generate an overabundance of potentially conscious language representations. In our model, intact FC in the other two legs of corticostriatal loop (Wernicke's with left IFG, and left IFG with putamen) appeared to allow hyperconnectivity linking the putamen and Wernicke's area (common to schizophrenia overall) to be expressed as conscious hallucinations of speech. Recommendations for future studies are discussed, including inclusion of multiple methodologies applied to the same subjects in order to compare and contrast different mechanistic hypotheses, utilizing EEG to better parse time-course of neural synchronization leading to AVHs, and ascertaining experiential subtypes of AVHs that may reflect distinct mechanisms.

  7. Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System.

    PubMed

    Trost, Sarah; Diekhof, Esther K; Mohr, Holger; Vieker, Henning; Krämer, Bernd; Wolf, Claudia; Keil, Maria; Dechent, Peter; Binder, Elisabeth B; Gruber, Oliver

    2016-10-01

    Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1.

  8. ntermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tianyu NMI; Evans, Katherine J; Deng, Yi

    In this study, an atmospheric river (AR) detection algorithm is developed to investigate the downstream modulation of the eastern North Pacific ARs by another weather extreme, known as the East Asian cold surge (EACS), in both reanalysis data and high-resolution global model simulations. It is shown that following the peak of an EACS, atmospheric disturbances of intermediate frequency (IF; 10 30 day period) are excited downstream. This leads to the formation of a persistent cyclonic circulation anomaly over the eastern North Pacific that dramatically enhances the AR occurrence probability and the surface precipitation over the western U.S. between 30 Nmore » and 50 N. A diagnosis of the local geopotential height tendency further confirms the essential role of IF disturbances in establishing the observed persistent anomaly. This downstream modulation effect is then examined in the two simulations of the National Center for Atmospheric Research Community Climate System Model version 4 with different horizontal resolutions (T85 and T341) for the same period (1979 2005). The connection between EACS and AR is much better captured by the T341 version of the model, mainly due to a better representation of the scale interaction and the characteristics of IF atmospheric disturbances in the higher-resolution model. The findings here suggest that faithful representations of scale interaction in a global model are critical for modeling and predicting the occurrences of hydrological extremes in the western U.S. and for understanding their potential future changes.« less

  9. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor.

    PubMed

    Fortunati, A; Piconese, S; Tassone, P; Ferrari, S; Migliaccio, F

    2008-01-01

    A new mutant of Arabidopsis named rha1 is characterized and the gene involved cloned. In roots, the mutant shows minimal right-handed slanting, reduced gravitropic response, notable resistance to 2,4-D, but scarce resistance to IAA and NAA. The roots also show a clear resistance to the auxin transport inhibitors TIBA and NPA, and to ethylene. Other characteristics are a reduced number of lateral roots and reduced size of shoot and root in the seedlings. The gene, cloned through TAIL-PCR, was found to be a heat-shock factor that maps on chromosome 5, close to and above the RFLP marker m61. The rha1 structure, mRNA, and translation product are reported. Since, so far, no other gravitropic mutant has been described as mutated in a heat-shock factor, rha1 belongs to a new group of mutants disturbed in slanting, gravitropism, and auxin physiology. As shown through the RT-PCR analyses of its expression, the gene retains the function connected with heat shock. If the characteristics connected with auxin physiology are considered, however, it is also likely that the gene, as a transcription factor, could be involved in root circumnutation, gravitropic response, and hormonal control of differentiation. Since GUS staining under the gene promoter was localized mainly in the mature tissues, rha1 does not seem to be involved in the first steps of gravitropism, but is rather related to the general response to auxin. The alterations in slanting (mainly due to reduced chiral circumnutation) and gravitropism lead to the supposition that the two processes may have, at least in part, common origins.

  10. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  11. An improved predictive functional control method with application to PMSM systems

    NASA Astrophysics Data System (ADS)

    Li, Shihua; Liu, Huixian; Fu, Wenshu

    2017-01-01

    In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.

  12. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities.

    PubMed

    García de León, David; Davison, John; Moora, Mari; Öpik, Maarja; Feng, Huyuan; Hiiesalu, Inga; Jairus, Teele; Koorem, Kadri; Liu, Yongjun; Phosri, Cherdchai; Sepp, Siim-Kaarel; Vasar, Martti; Zobel, Martin

    2018-03-24

    The arbuscular mycorrhizal (AM) symbiosis is a key plant-microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure. © 2018 John Wiley & Sons Ltd.

  13. Disturbance Distance: Using a process based ecosystem model to estimate and map potential thresholds in disturbance rates that would give rise to fundamentally altered ecosystems

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Hurtt, G. C.; Fisk, J.; Flanagan, S.; LePage, Y.; Sahajpal, R.

    2014-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. As recent studies highlight novel disturbance regimes resulting from pollution, invasive pests and climate change, there is a need to include these alterations in predictions of future forest function and structure. The Ecosystem Demography (ED) model is a mechanistic model of forest ecosystem dynamics in which individual-based forest dynamics can be efficiently implemented over regional to global scales due to advanced scaling methods. We utilize ED to characterize the sensitivity of potential vegetation structure and function to changes in rates of density independent mortality. Disturbance rate within ED can either be altered directly or through the development of sub-models. Disturbance sub-models in ED currently include fire, land use and hurricanes. We use a tiered approach to understand the sensitivity of North American ecosystems to changes in background density independent mortality. Our first analyses were conducted at half-degree spatial resolution with a constant rate of disturbance in space and time, which was altered between runs. Annual climate was held constant at the site level and the land use and fire sub-models were turned off. Results showed an ~ 30% increase in non-forest area across the US when disturbance rates were changed from 0.6% a year to 1.2% a year and a more than 3.5 fold increase in non-forest area when disturbance rates doubled again from 1.2% to 2.4%. Continued runs altered natural background disturbance rates with the existing fire and hurricane sub models turned on as well as historic and future land use. By quantify differences between model outputs that characterize ecosystem structure and function related to the carbon cycle across the US, we are identifying areas and characteristics that display higher sensitivities to change in disturbance rates.

  14. The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moser, Robert D.

    1991-01-01

    The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.

  15. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  16. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    PubMed Central

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  17. Neurologic manifestations of electrolyte disturbances.

    PubMed

    Riggs, Jack E

    2002-02-01

    Electrolyte disturbances occur commonly and are associated with a variety of characteristic neurologic manifestations involving both the central and peripheral nervous systems. Electrolyte disturbances are essentially always secondary processes. Effective management requires identification and treatment of the underlying primary disorder. Since neurological symptoms of electrolyte disorders are generally functional rather than structural, the neurologic manifestations of electrolyte disturbances are typically reversible. The neurologic manifestations of serum sodium, potassium, calcium, and magnesium disturbances are reviewed.

  18. Psychological Disturbance and Life Event Differences Among Patients With Low Back Pain.

    ERIC Educational Resources Information Center

    Leavitt, Frank; And Others

    1980-01-01

    Results of this study emphasized the importance of considering psychological disturbance in assessing functional components of low back pain. Psychologically disturbed patients had higher life-event scores regardless of organic pathology. (Author/BEF)

  19. beta-diversity and species accumulation in antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Cummings, Vonda J; Norkko, Alf; Chiantore, Mariachiara

    2010-07-30

    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.

  20. Sex-Specific Patterns of Aberrant Brain Function in First-Episode Treatment-Naive Patients with Schizophrenia.

    PubMed

    Lei, Wei; Li, Mingli; Deng, Wei; Zhou, Yi; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Han, Yuanyuan; Huang, Chaohua; Hu, Xun; Li, Tao

    2015-07-16

    Male and female patients with schizophrenia show significant differences in a number of important clinical features, yet the neural substrates of these differences are still poorly understood. Here we explored the sex differences in the brain functional aberrations in 124 treatment-naïve patients with first-episode schizophrenia (61 males), compared with 102 age-matched healthy controls (50 males). Maps of degree centrality (DC) and amplitude of low-frequency fluctuations (ALFF) were constructed using resting-state functional magnetic resonance imaging data and compared between groups. We found that: (1) Selective DC reduction was observed in the right putamen (Put_R) in male patients and the left middle frontal gyrus (MFG) in female patients; (2) Functional connectivity analysis (using Put_R and MFG as seeds) found that male and female patients have disturbed functional integration in two separate networks, i.e., the sensorimotor network and the default mode network; (3) Significant ALFF alterations were also observed in these two networks in both genders; (4) Sex specific brain functional alterations were associated with various symptoms in patients. These results suggested that sex-specific patterns of functional aberration existed in schizophrenia, and these patterns were associated with the clinical features both in male and female patients.

  1. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  2. The interplay between climate change, forests, and disturbances.

    PubMed

    Dale, V H; Joyce, L A; McNulty, S; Neilson, R P

    2000-11-15

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.

  3. Corridors and some ecological and evolutionary consequences of connectivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John L

    2004-07-01

    Abstract - By connecting disjunct patches, corridors may offset the effects of fragmentation by promoting gene flow and population persistence. However, the ultimate effect of corridors on a focal species may hinge upon two considerations: how corridors may affect ecological interactions that impinge upon that species, and how corridors might affect the fixation of novel alleles that ultimately determine fitness and persistence. Using an experimental landscape, I show that corridor-mediated changes in patch shape change seed predation in connected and unconnected patches, and shift the behavior, abundance, and distribution of seed predators. Rodent seed predators removed more seeds in connectedmore » patches, arthropod seed predators removed more seeds in rectangular patches, and avian seed predation did not differ due to patch type. Rodent foraging was greater in the interior of connected patches because changes in patch shape influenced risk perceived by rodents while foraging. Ant communities were also affected by changes in patch shape caused by corridors, rather than corridor effects per se. The distribution and abundance of ants differed among edge-rich areas (corridors and wings), edges, and the patch interior. In rectangular patches, fire ants (Solenopsis spp.) had negative impacts on other ant species. By changing the activity of rodents, and the composition of ant communities, corridors may have important impacts on seeds. Bird-dispersed seeds may benefit from increased dispersal among connected patches, but connected patches also have greater predation risk. Using a simulation model, I demonstrate that gene flow between a stable population and a population that experiences local extinction or a reduction in size (e.g. due to natural or anthropogenic disturbance) can dramatically affect fixation of alleles in the stable population. Alone or in concert, frequent disturbance, high rates of movement, and low habitat quality make it more likely that connectivity-mediated fixation will promote fixation of harmful alleles and reduce fixation of beneficial alleles.« less

  4. Variation in responses of late-seral herbs to disturbance and environmental stress.

    Treesearch

    Cara R. Nelson; Charles B. Halpern; Joseph A. Antos

    2007-01-01

    Clonal herbs that attain maximum development in late-seral forest are often assumed to have similar responses to disturbance and to be functionally equivalent. However, little is known about the demographic or physiological responses of these plants to disturbance or to the altered conditions of the post-disturbance environment. Following harvest of a mature coniferous...

  5. Kinematics, influence functions and field quantities for disturbance propagation from moving disturbance sources

    NASA Technical Reports Server (NTRS)

    Das, A.

    1984-01-01

    A unified method is presented for deriving the influence functions of moving singularities which determine the field quantities in aerodynamics and aeroacoustics. The moving singularities comprise volume and surface distributions having arbitrary orientations in space and to the trajectory. Hence one generally valid formula for the influence functions which reveal some universal relationships and remarkable properties in the disturbance fields. The derivations used are completely consistent with the physical processes in the propagation field, such that treatment renders new descriptions for some standard concepts. The treatment is uniformly valid for subsonic and supersonic Mach numbers.

  6. The disturbing function for polar Centaurs and transneptunian objects

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2017-10-01

    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.

  7. Long-term results of treatment of urethral strictures by transpubic urethroplasty.

    PubMed

    Zvara, V; Hornák, M

    1986-01-01

    Intrapelvic ruptures of membraneous urethra connected with pelvis fractures lead, as a rule, to strictures. Relative inaccessibility of these strictures above diaphragma urogenitale and behind symphysis makes their surgical treatment difficult. Transpubic approach with removal of wedge of pubic bones enables a direct approach to stricture and its modification under sight control. Technique of transpubic approach is described and long-term results obtained in 10 patients being 29-54 months after operation are evaluated. In one patient urinary continence in a sense of stress incontinence was disturbed, in one patient impotence occurred and one patient had disturbed gait.

  8. Cognitive and behavioral comorbidities in Rolandic epilepsy and their relation with default mode network's functional connectivity and organization.

    PubMed

    Ofer, Isabell; Jacobs, Julia; Jaiser, Nathalie; Akin, Burak; Hennig, Jürgen; Schulze-Bonhage, Andreas; LeVan, Pierre

    2018-01-01

    Rolandic epilepsy (RE) is characterized by typical interictal-electroencephalogram (EEG) patterns mainly localized in centrotemporal and parietooccipital areas. An aberrant intrinsic organization of the default mode network (DMN) due to repeated disturbances from spike-generating areas may be able to account for specific cognitive deficits and behavioral problems in RE. The aim of the present study was to investigate cognitive development (CD) and socioemotional development (SED) in patients with RE during active disease in relation to DMN connectivity and network topology. In 10 children with RE and active EEG, CD was assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV); SED was assessed using the Fünf-Faktoren-Fragebogen für Kinder (FFFK), a Big-Five inventory for the assessment of personality traits in children. Functional connectivity (FC) in the DMN was determined from a 15-minute resting state functional magnetic resonance imaging (fMRI), and network properties were calculated using standard graph-theoretical measures. More severe deficits of verbal abilities tended to be associated with an earlier age at epilepsy onset, but were not directly related to the number of seizures and disease duration. Nonetheless, at the network level, disease duration was associated with alterations of the efficiency and centrality of parietal network nodes and midline structures. Particularly, centrality of the left inferior parietal lobe (IPL) was found to be linked with CD. Reduced centrality of the left IPL and alterations supporting a rather segregated processing within DMN's subsystems was associated with a more favorable CD. A more complicated SED was associated with high seizure frequency and long disease duration, and revealed links with a less favorable CD. An impaired CD and - because of their interrelation - SED might be mediated by a common pathomechanism reflected in an aberrant organization, and thus, a potential functional deficit of the DMN. A functional segregation of (left) parietal network nodes from the DMN and a rather segregated processing mode within the DMN might have positive implications/protective value for CD in patients with RE. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Endocrinology and Suicide.

    ERIC Educational Resources Information Center

    Rich, Charles L

    1986-01-01

    Concludes that thyroid and adrenal gland disease unquestionably can produce severe mental disturbances. Most of these are "organic" in nature, but depressive symptoms are common as well. Cautions that a connection between these diseases and suicide has not been established. Advises treating all depressed, suicidal persons with the same…

  10. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion

    PubMed Central

    Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh

    2017-01-01

    Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. PMID:27751940

  11. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion.

    PubMed

    Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh

    2017-02-01

    Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    PubMed

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge, this is among the first studies to report a negative significant relationship between a component of RD and ecosystem functioning, namely coniferous RD and forest ecosystem productivity after a stand-replacing disturbance. © 2018 by the Ecological Society of America.

  13. Learning and Memory Impairments in Patients with Minimal Hepatic Encephalopathy are Associated with Structural and Functional Connectivity Alterations in Hippocampus.

    PubMed

    García-García, Raquel; Cruz-Gómez, Álvaro Javier; Urios, Amparo; Mangas-Losada, Alba; Forn, Cristina; Escudero-García, Desamparados; Kosenko, Elena; Torregrosa, Isidro; Tosca, Joan; Giner-Durán, Remedios; Serra, Miguel Angel; Avila, César; Belloch, Vicente; Felipo, Vicente; Montoliu, Carmina

    2018-06-25

    Patients with minimal hepatic encephalopathy (MHE) show mild cognitive impairment associated with alterations in attentional and executive networks. There are no studies evaluating the relationship between memory in MHE and structural and functional connectivity (FC) changes in the hippocampal system. This study aimed to evaluate verbal learning and long-term memory in cirrhotic patients with (C-MHE) and without MHE (C-NMHE) and healthy controls. We assessed the relationship between alterations in memory and the structural integrity and FC of the hippocampal system. C-MHE patients showed impairments in learning, long-term memory, and recognition, compared to C-NMHE patients and controls. Cirrhotic patients showed reduced fimbria volume compared to controls. Larger volumes in hippocampus subfields were related to better memory performance in C-NMHE patients and controls. C-MHE patients presented lower FC between the L-presubiculum and L-precuneus than C-NMHE patients. Compared to controls, C-MHE patients had reduced FC between L-presubiculum and subiculum seeds and bilateral precuneus, which correlated with cognitive impairment and memory performance. Alterations in the FC of the hippocampal system could contribute to learning and long-term memory impairments in C-MHE patients. This study demonstrates the association between alterations in learning and long-term memory and structural and FC disturbances in hippocampal structures in cirrhotic patients.

  14. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    NASA Astrophysics Data System (ADS)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  15. "Missing links" in borderline personality disorder: loss of neural synchrony relates to lack of emotion regulation and impulse control.

    PubMed

    Williams, Leanne M; Sidis, Anna; Gordon, Evian; Meares, Russell A

    2006-05-01

    Symptoms of borderline personality disorder (BPD) may reflect distinct breakdowns in the integration of posterior and frontal brain networks. We used a high temporal resolution measure (40-Hz gamma phase synchrony) of brain activity to examine the connectivity of brain function in BPD. Unmedicated patients with BPD (n = 15) and age-and sex-matched healthy control subjects (n = 15) undertook a task requiring discrimination of salient from background tones. In response to salient stimuli, the magnitude and latency of peak gamma phase synchrony for early (0-150 ms post stimulus) and late (250-500 ms post stimulus) phases were calculated for frontal and posterior regions and for left and right hemispheres. We recorded skin conductance responses (SCRs) and reaction time (RT) simultaneously to examine the contribution of arousal and performance. Compared with controls, patients with BPD had a significant delay in early posterior gamma synchrony and a reduction in right hemisphere late gamma synchrony in response to salient stimuli. Both SCR onset and RT were also delayed in BPD, but independently from differences in synchrony. The delay in posterior synchrony was associated with cognitive symptoms, and reduced right hemisphere synchrony was associated with impulsivity. These findings suggest that distinct impairments in the functional connectivity of neural systems for orienting to salient input underlie core dimensions of cognitive disturbance and poor impulse control in BPD.

  16. Modeling and real time simulation of an HVDC inverter feeding a weak AC system based on commutation failure study.

    PubMed

    Mankour, Mohamed; Khiat, Mounir; Ghomri, Leila; Chaker, Abdelkader; Bessalah, Mourad

    2018-06-01

    This paper presents modeling and study of 12-pulse HVDC (High Voltage Direct Current) based on real time simulation where the HVDC inverter is connected to a weak AC system. In goal to study the dynamic performance of the HVDC link, two serious kind of disturbance are applied at HVDC converters where the first one is the single phase to ground AC fault and the second one is the DC link to ground fault. The study is based on two different mode of analysis, which the first is to test the performance of the DC control and the second is focalized to study the effect of the protection function on the system behavior. This real time simulation considers the strength of the AC system to witch is connected and his relativity with the capacity of the DC link. The results obtained are validated by means of RT-lab platform using digital Real time simulator Hypersim (OP-5600), the results carried out show the effect of the DC control and the influence of the protection function to reduce the probability of commutation failures and also for helping inverter to take out from commutation failure even while the DC control fails to eliminate them. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    PubMed Central

    Park, Bumhee; Eo, Jinseok; Park, Hae-Jeong

    2017-01-01

    The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions) has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session). Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference) were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that structural connectivity not only constrains the strength of functional connectivity, but also the within-a-day variability of functional connectivity and connectivity patterns, particularly the direct functional connectivity among brain regions. PMID:28848416

  18. Eating disorders and the serotonin connection: state, trait and developmental effects

    PubMed Central

    Steiger, Howard

    2004-01-01

    Alterations in brain serotonin (5-hydroxytryptamine [5-HT]) function are thought to contribute to diverse aspects of eating disorders, including binge eating, perfectionism, impulsivity and mood-regulation problems. In addition, 5-HT anomalies in individuals with eating disorders are believed to have multiple determinants associated with secondary (state-related) effects of their nutritional status, hereditary effects (related to such trait variations as impulsivity or perfectionism) and, possibly, long-term neurobiologic sequelae of developmental stressors (such as childhood abuse). On the strength of the available neurobiologic and genetic data, this paper presents the idea that 5-HT variations in those with eating disorders represent (1) a structured coaggregation of biologic, psychologic and social influences and (2) converging state, trait and developmental effects. Data are taken to support a multidimensional model of 5-HT function in eating disorders that, it is argued, can serve as a prototype for etiologic modelling, diagnostic classification and clinical decision-making bearing not only upon eating disorders but also upon other psychiatric disturbances. PMID:14719047

  19. Decoupling the Effects of Mass Density and Hydrogen-, Oxygen-, and Aluminum-Based Defects on Optoelectronic Properties of Realistic Amorphous Alumina.

    PubMed

    Riffet, Vanessa; Vidal, Julien

    2017-06-01

    The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).

  20. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    NASA Astrophysics Data System (ADS)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  1. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys

    PubMed Central

    O’Reilly, Jill X.; Croxson, Paula L.; Jbabdi, Saad; Sallet, Jerome; Noonan, MaryAnn P.; Mars, Rogier B.; Browning, Philip G.F.; Wilson, Charles R. E.; Mitchell, Anna S.; Miller, Karla L.; Rushworth, Matthew F. S.; Baxter, Mark G.

    2013-01-01

    In the absence of external stimuli or task demands, correlations in spontaneous brain activity (functional connectivity) reflect patterns of anatomical connectivity. Hence, resting-state functional connectivity has been used as a proxy measure for structural connectivity and as a biomarker for brain changes in disease. To relate changes in functional connectivity to physiological changes in the brain, it is important to understand how correlations in functional connectivity depend on the physical integrity of brain tissue. The causal nature of this relationship has been called into question by patient data suggesting that decreased structural connectivity does not necessarily lead to decreased functional connectivity. Here we provide evidence for a causal but complex relationship between structural connectivity and functional connectivity: we tested interhemispheric functional connectivity before and after corpus callosum section in rhesus monkeys. We found that forebrain commissurotomy severely reduced interhemispheric functional connectivity, but surprisingly, this effect was greatly mitigated if the anterior commissure was left intact. Furthermore, intact structural connections increased their functional connectivity in line with the hypothesis that the inputs to each node are normalized. We conclude that functional connectivity is likely driven by corticocortical white matter connections but with complex network interactions such that a near-normal pattern of functional connectivity can be maintained by just a few indirect structural connections. These surprising results highlight the importance of network-level interactions in functional connectivity and may cast light on various paradoxical findings concerning changes in functional connectivity in disease states. PMID:23924609

  2. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    NASA Astrophysics Data System (ADS)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  3. A Hilbert transform-based smart sensor for detection, classification, and quantification of power quality disturbances.

    PubMed

    Granados-Lieberman, David; Valtierra-Rodriguez, Martin; Morales-Hernandez, Luis A; Romero-Troncoso, Rene J; Osornio-Rios, Roque A

    2013-04-25

    Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage (Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through HT and Parseval's theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

  4. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  5. An Active Micro Vibration Isolator with Zero-Power Controlled Magnetic Suspension Technology

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Emdadul; Takasaki, Masaya; Ishino, Yuji; Suzuki, Hirohisa; Mizuno, Takeshi

    In this paper, a three-degree-of-freedom vibration isolation system using active zero-power controlled magnetic suspension is presented in order to isolate vibrations transmitted from the ground and to attenuate the effect of direct disturbances on the table. The zero-compliance of the isolator for direct disturbances was realized by connecting a conventional mechanical spring in series with a negative spring produced by an active magnetic suspension mechanism. In this work, each degree-of-freedom-of-motion of the vibration isolator is treated analytically and it is shown that the developed system is capable to generate infinite stiffness in each mode. Experimental studies have been conducted as well to measure the effectiveness of the isolator under both types of disturbances. Further improvements for the developed system as well as the control techniques are also discussed.

  6. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease

    PubMed Central

    Puigdellívol, Mar; Cherubini, Marta; Brito, Verónica; Giralt, Albert; Suelves, Núria; Ballesteros, Jesús; Zamora-Moratalla, Alfonsa; Martín, Eduardo D.; Eipper, Betty A.; Alberch, Jordi; Ginés, Silvia

    2015-01-01

    Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD. PMID:26464483

  7. Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Li, H. N.; Schmidt, R.; Müller, P. C.

    2014-02-01

    Thin-walled piezoelectric integrated smart structures are easily excited to vibrate by unknown disturbances. In order to design and simulate a control strategy, firstly, an electro-mechanically coupled dynamic finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Linear piezoelectric constitutive equations and the assumption of constant electric field through the thickness are considered. Based on the dynamic FE model, a disturbance rejection (DR) control with proportional-integral (PI) observer using step functions as the fictitious model of disturbances is developed for vibration suppression of smart structures. In order to achieve a better dynamic behavior of the fictitious model of disturbances, the PI observer is extended to generalized proportional-integral (GPI) observer, in which sine or polynomial functions can be used to represent disturbances resulting in better dynamics. Therefore the disturbances can be estimated either by PI or GPI observer, and then the estimated signals are fed back to the controller. The DR control is validated by various kinds of unknown disturbances, and compared with linear-quadratic regulator (LQR) control. The results illustrate that the vibrations are better suppressed by the proposed DR control.

  8. Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer

    NASA Astrophysics Data System (ADS)

    Monschke, Jason; White, Edward

    2015-11-01

    Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.

  9. "The Trashmaster": Literacy and New Media

    ERIC Educational Resources Information Center

    Merchant, Guy

    2013-01-01

    In large parts of the developed world, increased connectivity has led to changes in the communicational landscape. Meaning-making associated with new media disturbs established ways of describing and defining literacy, leading some academics and educators to identify "new literacies" as a distinct break from traditional and predominantly…

  10. Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients.

    PubMed

    van Geemen, Kim; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-04-01

    Despite previous lesional and functional neuroimaging studies, the actual role of the left ventral premotor cortex (vPMC), i.e., the lateral part of the precentral gyrus, is still poorly known. We report a series of eight patients with a glioma involving the left vPMC, who underwent awake surgery with intraoperative cortical and subcortical language mapping. The function of the vPMC, its subcortical connections, and its reorganization potential are investigated in the light of surgical findings and language outcome after resection. Electrostimulation of both the vPMC and subcortical white matter tract underneath the vPMC, that is, the anterior segment of the lateral part of the superior longitudinal fascicle (SLF), induced speech production disturbances with anarthria in all cases. Moreover, although some degrees of redistribution of the vPMC have been found in four patients, allowing its partial resection with no permanent speech disorders, this area was nonetheless still detected more medially in the precentral gyrus in the eight patients, despite its invasion by the glioma. Moreover, a direct connection of the vPMC with the SLF was preserved in all cases. Our original data suggest that the vPMC plays a crucial role in the speech production network and that its plastic potential is limited. We propose that this limitation is due to an anatomical constraint, namely the necessity for the left vPMC to remain connected to the lateral SLF. Beyond fundamental implications, such knowledge may have clinical applications, especially in surgery for tumors involving this cortico-subcortical circuit. Copyright © 2013 Wiley Periodicals, Inc.

  11. Compositional stability and diversity of vascular plant communities following logging disturbance in Appalachian forests.

    PubMed

    Belote, R Travis; Jones, Robert H; Wieboldt, Thomas F

    2012-03-01

    Human-caused changes in disturbance regimes and introductions of nonnative species have the potential to result in widespread, directional changes in forest community structure. The degree that plant community composition persists or changes following disturbances depends on the balance between local extirpation and colonization by new species, including nonnatives. In this study, we examined species losses and gains, and entry of native vs. exotic species to determine how oak forests in the Appalachian Mountains might shift in species composition following a gradient of pulse disturbances (timber harvesting). We asked (1) how compositional stability of the plant community (resistance and resilience) was influenced by disturbance intensity, (2) whether community responses were driven by extirpation or colonization of species, and (3) how disturbance intensity influenced total and functional group diversity, including the nonnative proportion of the flora through time. We collected data at three spatial scales and three times, including just before, one year post-disturbance, and 10 years post-disturbance. Resistance was estimated using community distance measures between pre- and one year post-disturbance, and resilience using community distance between pre- and 10-year post-disturbance conditions. The number of colonizing and extirpated species between sampling times was analyzed for all species combined and for six functional groups. Resistance and resilience decreased with increasing timber-harvesting disturbance; compositional stability was lower in the most disturbed plots, which was driven by colonization, but not extirpation, of species. Colonization of species also led to increases in diversity after disturbance that was typically maintained after 10 years following disturbance. Most of the community-level responses were driven by post-disturbance colonization of native forbs and graminoids. The nonnative proportion of plant species tended to increase following disturbance, especially at large spatial scales in the most disturbed treatments, but tended to decrease through time following disturbance due to canopy development. The results of this study are consistent with the theory that resources released by disturbance have strong influences on species colonization and community composition. The effects of management activities tested in this study, which span a gradient of timber-harvesting disturbance, shift species composition largely via an increase in species colonization and diversity.

  12. Studying the influence of strong meteorological disturbances in the Earth's lower atmosphere on variations of ionospheric parameters in the Asian region of Russia

    NASA Astrophysics Data System (ADS)

    Chernigovskaya, Marina; Kurkin, Vladimir; Orlov, Igor; Oinats, Alexey; Sharkov, Eugenii

    2010-05-01

    Short-period temporal variations of ionospheric parameters were analyzed to study probabilities of manifestation of strong meteorological disturbances in the Earth's lower atmosphere in variations of upper atmosphere parameters in a zone far removed from a disturbance source. In the analysis, we used data on maximum observed frequencies (MOF) of oblique sounding (OS) signals along Norilsk-Irkutsk, Magadan-Irkutsk, and Khabarovsk-Irkutsk paths in East Siberia and the Far East. These data were obtained during solar minimum at equinoxes (March, September) in 2008-2009. Analyzing effects of wave disturbances in ionospheric parameters, we take into account helio-geomagnetic and meteorological conditions in regions under study to do an effective separation between disturbances associated with magnetospheric-ionospheric coupling and those induced by the influence of the lower atmosphere on the upper one. The frequency analysis we conducted revealed time intervals with higher intensity of short-period oscillations which may have been interpreted as manifestation of large-scale traveling ionospheric disturbances (TIDs) whose sources were internal gravity waves (IGWs) with periods of 1-5 hours. The complex analysis of helio-geomagnetic, ionospheric, and atmospheric data as well as data on tropical cyclones established that the detected TIDs were unrelated to helio-geomagnetic disturbances (2008-2009 exhibited solar minimum and quiet geomagnetic conditions). The analysis of other potential sources of the observed short-period wave disturbances shows that observed TIDs do not always coincide in time with passage of local meteorological fronts through the region of subionospheric points of OS paths and are not associated with passage of solar terminator. An attempt was made to connect a number of detected TIDs with ionospheric responses to tropical cyclones (TC) which were in active phase in the north-west of the Pacific Ocean during the periods considered. A considerable increase in energy of short-period wave disturbances was observed along Khabarovsk-Irkutsk, Magadan-Irkutsk, and Norilsk-Irkutsk paths during the active tropical cyclogenesis in September 2008-2009. Intensity of the observed TIDs decreased as midpoints of OS paths moved westward away from potential IGW sources. Ionospheric responses to wave disturbance propagation from the same IGW sources differ in the OS paths under analysis. This must be associated with different geometry of the OS paths as well as with the fact that the IGW source under consideration changes in intensity and its coordinates (stages and motion paths of tropical cyclones) during TC development. Thus there is an angular dependence between the wave disturbance propagation direction and the line connecting midpoints of the OS paths. Velocities of wave disturbance propagation (~90-170 m/s) were measured from the delay period of TIDs passage in regions of midpoints of spaced-apart OS paths. Short-period TIDs can also be observed at spring equinox in March 2008-2009 under quiet helio-geomagnetic conditions and in the absence of active tropical cyclones in the north-west of the Pacific Ocean, but TIDs energy is much lower than that in autumn. Authors note it was not possible to identify potential IGW sources for some TIDs within the scope of this work. These TIDs may be related to ionospheric responses to seasonal transitions in the upper atmosphere dynamic regime during the equinoxes under study. Further systematic investigations in this area of study are required to store statistics of observations of ionospheric responses to strong meteorological disturbances. The study was supported by the RFBR grant № 09-05-00760.

  13. In Search of Neural Endophenotypes of Postpartum Psychopathology and Disrupted Maternal Caregiving

    PubMed Central

    Moses-Kolko, E. L.; Horner, M. S.; Phillips, M. L.; Hipwell, A. E.; Swain, J. E.

    2015-01-01

    This is a selective review that provides the context for the study of perinatal affective disorder mechanisms and outlines directions for future research. We integrate existing literature along neural networks of interest for affective disorders and maternal caregiving: (i) the salience/fear network; (ii) the executive network; (iii) the reward/social attachment network; and (iv) the default mode network. Extant salience/fear network research reveals disparate responses and corticolimbic coupling to various stimuli based upon a predominantly depressive versus anxious (post-traumatic stress disorder) clinical phenotype. Executive network and default mode connectivity abnormalities have been described in postpartum depression (PPD), although studies are very limited in these domains. Reward/social attachment studies confirm a robust ventral striatal response to infant stimuli, including cry and happy infant faces, which is diminished in depressed, insecurely attached and substance-using mothers. The adverse parenting experiences received and the attachment insecurity of current mothers are factors that are associated with a diminution in infant stimulus-related neural activity similar to that in PPD, and raise the need for additional studies that integrate mood and attachment concepts in larger study samples. Several studies examining functional connectivity in resting state and emotional activation functional magnetic resonance imaging paradigms have revealed attenuated corticolimbic connectivity, which remains an important outcome that requires dissection with increasing precision to better define neural treatment targets. Methodological progress is expected in the coming years in terms of refining clinical phenotypes of interest and experimental paradigms, as well as enlarging samples to facilitate the examination of multiple constructs. Functional imaging promises to determine neural mechanisms underlying maternal psychopathology and impaired caregiving, such that earlier and more precise detection of abnormalities will be possible. Ultimately, the discovery of such mechanisms will promote the refinement of treatment approaches toward maternal affective disturbance, parenting behaviours and the augmentation of parenting resiliency. PMID:25059408

  14. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer's disease.

    PubMed

    Kobeleva, Xenia; Firbank, Michael; Peraza, Luis; Gallagher, Peter; Thomas, Alan; Burn, David J; O'Brien, John; Taylor, John-Paul

    2017-07-01

    Attention and executive dysfunction are features of Lewy body dementia (LBD) but their neuroanatomical basis is poorly understood. To investigate underlying dysfunctional attention-executive network (EXEC) interactions, we examined functional connectivity (FC) in 30 patients with LBD, 20 patients with Alzheimer's disease (AD), and 21 healthy controls during an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a modified Attention Network Test (ANT), where they were instructed to press a button in response to the majority direction of arrows, which were either all pointing in the same direction or with one pointing in the opposite direction. Network activations during both target conditions and a baseline condition (no target) were derived by (ICA) Independent Component Analysis, and interactions between these networks were examined using the beta series correlations approach. Our study revealed that FC of ventral and dorsal attention networks DAN was reduced in LBD during all conditions, although most prominently during incongruent trials. These alterations in connectivity might be driven by a failure of engagement of ventral attention networks, and consequent over-reliance on the DAN. In contrast, when comparing AD patients with the other groups, we found hyperconnectivity between the posterior part of the default mode network (DMN) and the DAN in all conditions, particularly during incongruent trials. This might be attributable to either a compensatory effect to overcome DMN dysfunction, or be arising as a result of a disturbed transition of the DMN from rest to task. Our results demonstrate that dementia syndromes can be characterized both by hyper- and hypoconnectivity of distinct brain networks, depending on the interplay between task demand and available cognitive resources. However these are dependent upon the underlying pathology, which needs to be taken into account when developing specific cognitive therapies for LBD as compared to Alzheimer's. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Effect of Extended State Observer and Automatic Voltage Regulator on Synchronous Machine Connected to Infinite Bus Power System

    NASA Astrophysics Data System (ADS)

    Angu, Rittu; Mehta, R. K.

    2018-04-01

    This paper presents a robust controller known as Extended State Observer (ESO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The ESO-based control scheme is implemented with an automatic voltage regulator in conjunction with an excitation system to enhance the damping of low frequency power system oscillations, as the Power System Stabilizer (PSS) does. The implementation of PSS excitation control techniques however requires reliable information about the entire states, though they are not always directly measureable. To address this issue, the proposed ESO provides the estimate of system states as well as disturbance state together in order to improve not only the damping but also compensates system efficiently in presence of parameter uncertainties and external disturbances. The Closed-Loop Poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.

  16. Systemic sclerosis-scleroderma.

    PubMed

    Haustein, U-F

    2002-06-01

    Systemic sclerosis is a clinically heterogeneous, systemic disorder which affects the connective tissue of the skin, internal organs and the walls of blood vessels. It is characterized by alterations of the microvasculature, disturbances of the immune system and by massive deposition of collagen and other matrix substances in the connective tissue. This review discusses epidemiology and survival, clinical features including subsets and internal organ involvement, pathophysiology and genetics, microvasculature, immunobiology, fibroblasts and connective tissue metabolism and environmental factors. Early diagnosis and individually tailored therapy help to manage this disorder, which is treatable, but not curable. Therapy involves immunomodulation as well as the targeting of blood vessel mechanics and fibrosis. Physical therapy and psychotherapy are also important adjunctive therapies in this multifactorial disease.

  17. Acute treatment with doxorubicin induced neurochemical impairment of the function of dopamine system in rat brain structures.

    PubMed

    Antkiewicz-Michaluk, Lucyna; Krzemieniecki, Krzysztof; Romanska, Irena; Michaluk, Jerzy; Krygowska-Wajs, Anna

    2016-06-01

    The clinical studies have shown that chemotherapy may impair cognitive functions especially in the patients treated for breast cancer. It should be mention that only few studies have made use of animals to investigate the effects of chemotherapy on the brain function. Doxorubicin (Adriamycin) is an anthracycline antibiotic commonly used for chemotherapy of breast cancer. This study examined the effect of doxorubicin (1.5 and 3.0mg/kg ip) after acute administration on the levels of dopamine, noradrenaline, serotonin and their metabolites in the rat brain structures connected with cognition and psychiatric disorders. The data indicate that doxorubicin produced a significant and specific for the dopamine system inhibition of its activity in the investigated structures connected with the fall of dopamine concentration (decrease from 25 to 30% in the frontal cortex; from 30 to 60% in the hippocampus and about 20% of the control in the striatum, p<0.05) and its extraneuronal metabolite, 3-MT (from 35% in the frontal cortex to 60% in the hippocampus of the control level, p<0.01). However, doxorubicin did not affect others monoaminergic transmitters in the brain: noradrenaline and serotonin. Summing up, these data indicate that a single injection of doxorubicin produced a clear and significant inhibition of dopamine system activity in all investigated structures with the strongest effect in the hippocampus what may lead to the disturbances of the cognitive functions at the patients treated for cancer. Moreover, such treatment did not significantly affect others monoaminergic transmitters such as noradrenaline and serotonin. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Natural disturbance production functions

    Treesearch

    Jeffrey P. Prestemon; D. Evan Mercer; John M. Pye

    2008-01-01

    Natural disturbances in forests are driven by physical and biological processes. Large, landscape scale disturbances derive primarily from weather (droughts, winds, ice storms, and floods), geophysical activities (earthquakes, volcanic eruptions), fires, insects, and diseases. Humans have invented ways to minimize their negative impacts and reduce their rates of...

  19. Vegetation dynamics

    Treesearch

    Sammy L. King; Terry J. Antrobus; Sarah Billups

    2000-01-01

    A disturbance can be defined as "any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment" (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes...

  20. Proposed Hydrodynamic Model Improves Resolution of Species-Specific Responses to Drought and Disturbance

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.; Fiorella, R.; Mirfenderesgi, G.

    2015-12-01

    Plant functional types in land surface models (LSMs) are broadly defined, and often represent species with different physiologies within the same category. For example, trees of opposing hydraulic strategies and traits are commonly grouped together, as is the case of red oak and red maple. As a result, LSMs generate typical patterns of errors in predictions of transpiration and production. We studied sap flux, stem water storage, stomatal conductance, photosynthesis, rooting depth, and bole growth of these species at disturbed and undisturbed field sites in Michigan. Species-specific differences significantly impact temporal patterns of stomatal conductance and overall transpiration responses to both drought and disturbance. During drought, maples relied heavily on stem-stored water, while oaks did not. After disturbance, oaks increased stomatal conductance while maple conductance declined. Isotopic analysis of xylem water revealed that oak roots can access a deep groundwater source, which maple roots cannot. This deep rooting strategy permits transpiration and growth to continue in oaks during periods of water limitation, even when maples cease transpiration. Using 16 years of bole growth data, we show that maple growth is strongly correlated with mean annual precipitation, yet oak growth is not. We propose a framework to incorporate these species-specific differences into LSMs using the Finite-Element Tree-Crown Hydrodynamics model version 2 (FETCH2) that resolves the fast dynamics and diurnal hysteresis of stomatal conductance at the tree level. FETCH2 uses atmospheric and biological forcings from the LSM, simulates water movement through trees as flow through a system of porous media conduits, and calculates realistic hydraulic restrictions to stomatal conductance. This model replaces the current, non-physical link which empirically connects soil moisture to stomatal conductance in LSMs. FETCH2 resolved transpiration is then easily scaled to the plot level using remote sensing data. By incorporating species-specific constraints on water flux into predictions of transpiration, growth, and mortality, we can improve simulations of the surface energy budget and global carbon and water balances.

  1. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that ofmore » undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.« less

  2. Carbon cycling at the tipping point: Does ecosystem structure predict resistance to disturbance?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Bond-Lamberty, B. P.; Stuart-Haentjens, E.; Atkins, J.; Haber, L.; Fahey, R. T.

    2017-12-01

    Ecosystems worldwide are subjected to disturbances that reshape their physical and biological structure and modify biogeochemical processes, including carbon storage and cycling rates. Disturbances, including those from insect pests, pathogens, and extreme weather, span a continuum of severity and, accordingly, may have different effects on carbon cycling processes. Some ecosystems resist biogeochemical changes following disturbance, until a critical threshold of severity is exceeded. The ecosystem properties underlying such functional resistance, and signifying when a tipping point will occur, however, are almost entirely unknown. Here, we present observational and experimental results from forests in the Great Lakes region, showing ecosystem structure is closely coupled with carbon cycling responses to disturbance, with shifts in structure predicting thresholds of and, in some cases, increases in carbon storage. We find, among forests in the region, that carbon storage regularly exhibits a non-linear threshold response to increasing disturbance levels, but the severity at which a threshold is reached varies among disturbed forests. More biologically and structurally complex forest ecosystems sometimes exhibit greater functional resistance than simpler forests, and consequently may have a higher disturbance severity threshold. Counter to model predictions but consistent with some theoretical frameworks, empirical data show moderate levels of disturbance may increase ecosystem complexity to a point, thereby increasing rates of carbon storage. Disturbances that increase complexity therefore may stimulate carbon storage, while severe disturbances at or beyond thresholds may simplify structure, leading to carbon storage declines. We conclude that ecosystem structural attributes are closely coupled with biogeochemical thresholds across disturbance severity gradients, suggesting that improved predictions of disturbance-related changes in the carbon cycle require better representation of ecosystem structure in models.

  3. Representative regional models of post‐disturbance forest carbon accumulation: Integrating inventory data and a growth and yield model

    Treesearch

    Crystal L. Raymond; Sean P. Healey; Alicia Peduzzi; Paul L. Patterson

    2015-01-01

    Disturbance is a key driver of carbon (C) dynamics in forests. Insect epidemics, wildfires, and timber harvest have greatly affected North American C budgets in the last century. Research is needed to understand how forest C dynamics (source duration and recovery time) following disturbance vary as a function of disturbance type, severity, forest type, and...

  4. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management. PMID:27053913

  5. [Pathophysiological aspects of the brain stem in closed head injuries (author's transl)].

    PubMed

    Lausberg, G

    1981-07-01

    In a case of severe head injury, there is a disturbance of the functional cycle between hypothalamus/mesencephalon and the cortex cerebri. In this article, the causes and the pathophysiological, functional disturbances of primary and secondary unconsciousness will be discussed. In a case of a posttraumatic intracranial hypertension, the following causes are to be considered: cerebral oedema, intracerebral haematomas and the so-called pneumatocephalus: the collection of air in the ventricle system when open head injuries of the base of the skull occur. The midbrain syndrome which is caused by the compression of the midbrain is characterized by the disturbed reaction of the pupils, convulsive seizures and vegetative dysregulation of respiration, circulation and temperature. When the above-mentioned syndrome persists, it can develop into bulbar syndrome. This is recognized through a severe functional disturbance, which can lead to central brain if the cause of the rise of intracranial pressure is not overcome within one hour.

  6. Beyond the Write Answer: Mathematical Connections

    ERIC Educational Resources Information Center

    Haltiwanger, Leigh; Simpson, Amber M.

    2013-01-01

    As math teachers, the authors often encountered students who could ace a test but not explain their reasoning. This phenomenon was disturbing to them, and they fought for years to help students both understand mathematical concepts and develop meaning for them. Since their primary goal was to develop mathematically literate students, their…

  7. Indicating disturbance content and context for preserved areas

    Treesearch

    N. Zaccarelli; K.H. Riitters; I. Petrosillo; G. Zurlini

    2007-01-01

    An accepted goal of conservation is to build a conservation network that is resilient to environmental change. The conceptual patch-corridor-matrix model views individual conservation areas as connected components of a regional network capable of sustaining metapopulations and biodiversity, and assessment of contextual conditions in the matrix surrounding conservation...

  8. An interoceptive model of bulimia nervosa: A neurobiological systematic review.

    PubMed

    Klabunde, Megan; Collado, Danielle; Bohon, Cara

    2017-11-01

    The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Landscape pattern and productivity characteristics of the oasis landscape ecosystem in Linze, Gansu, China].

    PubMed

    Liu, Xuelu; Ren, Jizhou; Zhang, Zihe

    2002-08-01

    Oasis landscape ecosystem is composed of 10 landscape elements, i.e., residence land, cultivated land, grassland, forestland, water area, water system, road, rocky desert, sandy desert, and gravel desert. Among the elements, cultivated land formed by human being production covers the most of the area, is most connected, and hence, is the matrix of the oasis landscape ecosystem. Residence land, grassland, forestland, water area, rocky desert, sandy desert, and gravel desert are patches. Residence land and forestland generate from human being production, while rocky desert, gravel desert and sandy desert are the remnant with the human being disturbance. Water region and grassland are the environmental resources remnant after natural disturbance. Water system and road are corridors. Cultivated land dominated in plant production should be utilized with more productive layers through developing animal production other than expanding used-area to maintain the landscape heterogeneity and diversity of the oasis landscape ecosystem. For remnant and environmental resource patches, it should be profitable in preserving and stabilizing landscape heterogeneity and diversity, exploiting the functions of water and soil conservation, tourism, windbreak and sand fixation. For landscape elements remnant only, it should be fruitful in avoiding degeneration of the landscape pattern to explore their preceding plant production with moderate plant production.

  10. The Importance of Encoding-Related Neural Dynamics in the Prediction of Inter-Individual Differences in Verbal Working Memory Performance

    PubMed Central

    Majerus, Steve; Salmon, Eric; Attout, Lucie

    2013-01-01

    Studies of brain-behaviour interactions in the field of working memory (WM) have associated WM success with activation of a fronto-parietal network during the maintenance stage, and this mainly for visuo-spatial WM. Using an inter-individual differences approach, we demonstrate here the equal importance of neural dynamics during the encoding stage, and this in the context of verbal WM tasks which are characterized by encoding phases of long duration and sustained attentional demands. Participants encoded and maintained 5-word lists, half of them containing an unexpected word intended to disturb WM encoding and associated task-related attention processes. We observed that inter-individual differences in WM performance for lists containing disturbing stimuli were related to activation levels in a region previously associated with task-related attentional processing, the left intraparietal sulcus (IPS), and this during stimulus encoding but not maintenance; functional connectivity strength between the left IPS and lateral prefrontal cortex (PFC) further predicted WM performance. This study highlights the critical role, during WM encoding, of neural substrates involved in task-related attentional processes for predicting inter-individual differences in verbal WM performance, and, more generally, provides support for attention-based models of WM. PMID:23874935

  11. Relationship between Sleep Disturbance and Functional Outcomes in Daily Life Habits of Children with Down Syndrome

    PubMed Central

    Churchill, Shervin S.; Kieckhefer, Gail M.; Bjornson, Kristie F.; Herting, Jerald R.

    2015-01-01

    Objectives: The goal of this study was to describe sleep patterns and accomplishment of daily life habits in children with Down syndrome (DS) and to investigate the relationship between subjective indicators of sleep disturbance with functional outcomes in daily life. Design: Cross-sectional study with an Internet sample Setting: Online survey filled out at home Participants: 110 parents of children with DS and 29 parents of children with typical development (TD), age 5 to 18 years. Interventions: N/A. Measurements and Results: Children's Sleep Habits Questionnaire was employed to collect information about sleep disturbances in 8 domains (subscales) and a total score. The Life Habits questionnaire (Life-H) sampled information about daily life habits in 11 domains. Multivariable regression modeling was used to assess the associations between sleep disturbances and the accomplishment of daily life habits. Sleep disordered breathing (SDB) was a significant explanatory factor in 10 of 11 daily life habits and the total Life-H score. Sleep anxiety and parasomnias significantly influenced the accomplishment of life habits in children with DS as compared to children with typical development. When evaluated in multivariable models in conjunction with the other 7 domains of sleep disturbances, SDB was the most dominant explanatory factor for accomplishment of life habits. Conclusions: Sleep disturbances are negatively related to accomplishment of daily life functions. Prevention and treatment of sleep problems, particularly sleep disordered breathing, in children with Down syndrome may lead to enhanced accomplishment of daily life habits and activities. Citation: Churchill SS, Kieckhefer GM, Bjornson KF, Herting JR. Relationship between sleep disturbance and functional outcomes in daily life habits of children with Down syndrome. SLEEP 2015;38(1):61–71. PMID:25325444

  12. A preliminary investigation of sleep quality in functional neurological disorders: Poor sleep appears common, and is associated with functional impairment.

    PubMed

    Graham, Christopher D; Kyle, Simon D

    2017-07-15

    Functional neurological disorders (FND) are disabling conditions for which there are few empirically-supported treatments. Disturbed sleep appears to be part of the FND context; however, the clinical importance of sleep disturbance (extent, characteristics and impact) remains largely unknown. We described sleep quality in two samples, and investigated the relationship between sleep and FND-related functional impairment. We included a sample recruited online via patient charities (N=205) and a consecutive clinical sample (N=20). Participants completed validated measures of sleep quality and sleep characteristics (e.g. total sleep time, sleep efficiency), mood, and FND-related functional impairment. Poor sleep was common in both samples (89% in the clinical range), which was characterised by low sleep efficiency (M=65.40%) and low total sleep time (M=6.05h). In regression analysis, sleep quality was negatively associated with FND-related functional impairment, accounting for 16% of the variance and remaining significant after the introduction of mood variables. These preliminary analyses suggest that subjective sleep disturbance (low efficiency, short sleep) is common in FND. Sleep quality was negatively associated with the functional impairment attributed to FND, independent of depression. Therefore, sleep disturbance may be a clinically important feature of FND. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 76 FR 66057 - North American Electric Reliability Corporation; Order Approving Regional Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... system conditions when the system experiences dynamic events such as low frequency oscillations, or... R8 requires that dynamic disturbance recorders function continuously. To capture system disturbance... recording capability necessary to monitor the response of the Bulk-Power System to system disturbances...

  14. EVALUATING CUMULATIVE EFFECTS OF DISTURBANCE ON THE HYDROLOGIC FUNCTION OF BOGS, FENS, AND MIRES

    EPA Science Inventory

    Few quantitative studies have been done on the hydrology of fens, bogs and mires, and consequently any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. or example, few data are available on the role of bogs and fens with ...

  15. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers.

    PubMed

    Tomas, Fiona; Martínez-Crego, Begoña; Hernán, Gema; Santos, Rui

    2015-11-01

    Coastal communities are under threat from many and often co-occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient-enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance-induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems. © 2015 John Wiley & Sons Ltd.

  16. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.

    2018-07-01

    The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.

  17. Corridors promote fire via connectivity and edge effects.

    PubMed

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.

  18. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    PubMed

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  19. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition

    PubMed Central

    Deaver, Jessica A.; Eum, Sung Y.; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light–dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques, a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii, a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances. PMID:29706947

  20. Using networks to detect regime changes in aquatic communities across nutrient gradients

    NASA Astrophysics Data System (ADS)

    Taranu, Z. E.

    2015-12-01

    Networks capture links or interactions between organisms within ecological webs. When an environmental stress occurs, rapid changes in ecosystem state are expected in food webs with highly connected networks and functionally redundant species. These networks can dissipate local disturbances quickly and provide resistance to change at first until a threshold is reached, at which point, a critical transition occurs (nodes shift in synchrony). In contrast, in low connectivity (modular) heterogeneous networks, the response in ecosystem state to an environmental stressor is gradual. Given that these ecosystem-level shifts can be difficult to predict, hard to reverse and can have undesirable consequences, there is considerable interest in identifying what type of response (gradual vs. hysteresis) is most likely in nature. In this work, we thus aimed to test for the support for a bifurcated response in aquatic ecosystem across a landscape of human impact and track which of the above scenarios was most common. More specifically, using the US EPA National Lake Assessment water quality dataset (2007 sampling), we quantified differences in food-web structures across a spatial gradient of human impact (eutrophication). Preliminary results indicate that certain network properties vary nonlinearly with respect to nutrient enrichment.

  1. Amygdala in action: relaying biological and social significance to autobiographical memory.

    PubMed

    Markowitsch, Hans J; Staniloiu, Angelica

    2011-03-01

    The human amygdala is strongly embedded in numerous other structures of the limbic system, but is also a hub for a multitude of other brain regions it is connected with. Its major involvement in various kinds of integrative sensory and emotional functions makes it a cornerstone for self-relevant biological and social appraisals of the environment and consequently also for the processing of autobiographical events. Given its contribution to the integration of emotion, perception and cognition (including memory for past autobiographical events) the amygdala also forges the establishment and maintenance of an integrated self. Damage or disturbances of amygdalar connectivity may therefore lead to disconnection syndromes, in which the synchronous processing of affective and cognitive aspects of memory is impaired. We will provide support for this thesis by reviewing data from patients with a rare experiment of nature - Urbach-Wiethe disease - as well as other conditions associated with amygdala abnormalities. With respect to memory processing, we propose that the amygdala's role is to charge cues so that mnemonic events of a specific emotional significance can be successfully searched within the appropriate neural nets and re-activated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Is blue light, cryptochrome in the eye, and magnetite in the brain involved in the development of frontotemporal dementia and other diseases?

    PubMed

    Størmer, Fredrik C

    2015-04-01

    When cryptochrome in the retina is exposed to blue light, it undergo series of complicated chemical reactions. One of these intermediates has magnetic properties. It could be a link between the magnetic stage of cryptochrome in the retina and magnetite in the brain. A disturbance in this system could be involved in the development of frontotemporal dementia and other mental disturbances like Alzheimer's disease. There could also be a link between circadian rhythms and memory dysfunction connected to schizophrenia, type 2 diabetes, and blue light. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure.

    PubMed

    Yazdani, Sahar; Haeri, Mohammad

    2017-11-01

    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    PubMed

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  5. Connected cruise control: modelling, delay effects, and nonlinear behaviour

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor

    2016-08-01

    Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.

  6. Causal feedforward control of a stochastically excited fuselage structure with active sidewall panel.

    PubMed

    Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael

    2014-10-01

    This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.

  7. Identification of seismic activity sources on the subsatellite track by ionospheric plasma disturbances detected with the Sich-2 onboard probes

    NASA Astrophysics Data System (ADS)

    Shuvalov, Valentin A.; Lazuchenkov, Dmitry N.; Gorev, Nikolai B.; Kochubei, Galina S.

    2018-01-01

    Using a cylindrical Langmuir probe and the authors' proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011-2012) were measured. This paper is concerned with identifying the space-time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track. It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation.

  8. Role of Microglia Disturbances and Immune-Related Marker Abnormalities in Cortical Circuitry Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.

    2017-01-01

    Studies of genetics, serum cytokines, and autoimmune illnesses suggest that immune-related abnormalities are involved in the disease process of schizophrenia. Furthermore, direct evidence of cortical immune activation, including markedly elevated levels of many immune-related markers, have been reported in the prefrontal cortex in multiple cohorts of schizophrenia subjects. Within the prefrontal cortex in schizophrenia, deficits in the basilar dendritic spines of layer 3 pyramidal neurons and disturbances in inhibitory inputs to pyramidal neurons have also been commonly reported. Interestingly, microglia, the resident immune-related cells of the brain, also regulate excitatory and inhibitory input to pyramidal neurons. Consequently, in this review, we describe the cytological and molecular evidence of immune activation that has been reported in the brains of individuals with schizophrenia and the potential links between these immune-related disturbances with previously reported disturbances in pyramidal and inhibitory neurons in the disorder. Finally, we discuss the role that activated microglia may play in connecting these observations and as potential therapeutic treatment targets in schizophrenia. PMID:28007586

  9. Eczema and sleep and its relationship to daytime functioning in children.

    PubMed

    Camfferman, Danny; Kennedy, John D; Gold, Michael; Martin, Alfred J; Lushington, Kurt

    2010-12-01

    Chronic childhood eczema has significant morbidity characterised by physical discomfort, emotional distress, reduced child and family quality-of-life and, of particular note, disturbed sleep characterised by frequent and prolonged arousals. Sleep disturbance affects up to 60% of children with eczema, increasing to 83% during exacerbation. Even when in clinical remission, children with eczema demonstrate more sleep disturbance than healthy children. Notably, disturbed sleep in otherwise healthy children is associated with behavioural and neurocognitive deficits. Preliminary evidence suggests that disturbed sleep in children with eczema is also associated with behavioural deficits while the impact on neuropsychological functioning remains unexplored. In conclusion, a disease which affects up to 20% of children in some countries and may produce long-term behavioural and neurocognitive deficits merits further evaluation using standardised tests of sleep, behaviour and neurocognition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Application of Islanding Detection and Classification of Power Quality Disturbance in Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Sun, L. B.; Wu, Z. S.; Yang, K. K.

    2018-04-01

    Islanding and power quality (PQ) disturbances in hybrid energy system become more serious with the application of renewable energy sources. In this paper, a novel method based on wavelet transform (WT) and modified feed forward neural network (FNN) is proposed to detect islanding and classify PQ problems. First, the performance indices, i.e., the energy content and SD of the transformed signal are extracted from the negative sequence component of the voltage signal at PCC using WT. Afterward, WT indices are fed to train FNNs midfield by Particle Swarm Optimization (PSO) which is a novel heuristic optimization method. Then, the results of simulation based on WT-PSOFNN are discussed in MATLAB/SIMULINK. Simulations on the hybrid power system show that the accuracy can be significantly improved by the proposed method in detecting and classifying of different disturbances connected to multiple distributed generations.

  11. Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Andy

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.« less

  12. Functional neuroimaging in epileptic encephalopathies.

    PubMed

    Siniatchkin, Michael; Capovilla, Giuseppe

    2013-11-01

    Epileptic encephalopathies (EEs) represent a group of severe epileptic disorders associated with cognitive and behavioral disturbances. The mechanisms of cognitive disability in EEs remain unclear. This review summarized neuroimaging studies that have tried to describe specific fingerprints of brain activation in EE. Although the epileptic activity can be generated individually in different brain regions, it seems likely that the activity propagates in a syndrome-specific way. In some EEs, the epileptiform discharges were associated with an interruption of activity in the default mode network. In another EE, other mechanisms seem to underlie cognitive disability associated with epileptic activity, for example, abnormal connectivity pattern or interfering activity in the thalamocortical network. Further neuroimaging studies are needed to investigate the short-term and long-term impact of epileptic activity on cognition and development. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  13. Disturbance influences oyster community richness and evenness, but not diversity.

    PubMed

    Kimbro, David L; Grosholz, Edwin D

    2006-09-01

    Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function.

  14. Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...

  15. Brain functional connectivity and the pathophysiology of schizophrenia.

    PubMed

    Angelopoulos, E

    2014-01-01

    In the last decade there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neuronal responses are associated with synchronized oscillatory activity in various frequency ranges suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia. Consequently, disturbances in neural synchronization may represent the functional relationship of disordered connectivity of cortical networks underlying the characteristic fragmentation of mind and behavior in schizophrenia. In recent studies the synchronization of oscillatory activity in the experience of characteristic symptoms such as auditory verbal hallucinations and thought blocks have been studied in patients with schizophrenia. Studies involving analysis of EEG activity obtained from individuals in resting state (in cage Faraday, isolated from external influences and with eyes closed). In patients with schizophrenia and persistent auditory verbal hallucinations (AVHs) observed a temporary increase in the synchronization phase of α and high θ oscillations of the electroencephalogram (EEG) compared with those of healthy controls and patients without AVHs . This functional hyper-connection manifested in time windows corresponding to experience AVHs, as noted by the patients during the recording of EEG and observed in speech related cortical areas. In another study an interaction of theta and gamma oscillations engages in the production and experience of AVHs. The results showed increased phase coupling between theta and gamma EEG rhythms in the left temporal cortex during AVHs experiences. A more recent study, approaches the thought blocking experience in terms of functional brain connectivity. Thought blocks (TBs) are characterized by regular interruptions of the flow of thought. Outward signs are abrupt and repeated interruptions in the flow of conversation or actions while subjective experience is that of a total and uncontrollable emptying of the mind. In the very limited bibliography regarding TB, the phenomenon is thought to be conceptualized as a disturbance of consciousness that can be attributed to stoppages of continuous information processing due to an increase in the volume of information to be processed. In an attempt to investigate potential expression of the phenomenon on the functional properties of electroencephalographic (EEG) activity, an EEG study was contacted in schizophrenic patients with persisting auditory verbal hallucinations (AVHs) who additionally exhibited TBs. Phase synchronization analyses performed on EEG segments during the experience of TBs showed that synchrony values exhibited a long-range common mode of coupling (grouped behavior) among the left temporal area and the remaining central and frontal brain areas. These common synchrony-fluctuation schemes were observed for 0.5 to 2 s and were detected in a 4-s window following the estimated initiation of the phenomenon. The observation was frequency specific and detected in the broad alpha band region (6-12 Hz). The introduction of synchrony entropy (SE) analysis applied on the cumulative synchrony distribution showed that TB states were characterized by an explicit preference of the system to be functioned at low values of synchrony, while the synchrony values are broadly distributed during the recovery state. The results indicate that during TB states, the phase locking of several brain areas were converged uniformly in a narrow band of low synchrony values and in a distinct time window, impeding thus the ability of the system to recruit and to process information during this time window. The results of this study seem to have greater importance on neuronal correlation of consciousness. The brain is a highly distributed system in which numerous operations are executed in parallel and that lacks a single coordinating center. This raises the question of how the computations occurring simultaneously in spatially segregated processing areas are coordinated and bound together to give rise to coherent percepts and actions. One of the coordinating mechanisms appears to be the synchronization of neuronal activity by phase locking of self-generated network oscillations. This led to the hypothesis that the cerebral cortex might exploit the option to synchronize the discharges of neurons with millisecond ` theoretical formulations of the binding-by-synchrony hypothesis were proposed earlier by Milner (1974), but the Singer lab in the 1990s was the first to obtain experimental evidence supporting the potential role of synchrony as a relational code. The results concerning the functional connectivity of the brain during TBs further support the hypothesis of phase synchronization as a key mechanism for neuronal assemblies underlying mental representations in the human brain.

  16. Predicting primate local extinctions within "real-world" forest fragments: a pan-neotropical analysis.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2014-03-01

    Understanding the main drivers of species extinction in human-modified landscapes has gained paramount importance in proposing sound conservation strategies. Primates play a crucial role in maintaining the integrity of forest ecosystem functions and represent the best studied order of tropical terrestrial vertebrates, yet primate species diverge widely in their responses to forest habitat disturbance and fragmentation. Here, we present a robust quantitative review on the synergistic effects of habitat fragmentation on Neotropical forest primates to pinpoint the drivers of species extinction across a wide range of forest patches from Mexico to Argentina. Presence-absence data on 19 primate functional groups were compiled from 705 forest patches and 55 adjacent continuous forest sites, which were nested within 61 landscapes investigated by 96 studies. Forest patches were defined in terms of their size, surrounding matrix and level of hunting pressure on primates, and each functional group was classified according to seven life-history traits. Generalized linear mixed models showed that patch size, forest cover, level of hunting pressure, home range size and trophic status were the main predictors of species persistence within forest isolates for all functional groups pooled together. However, patterns of local extinction varied greatly across taxa, with Alouatta and Callicebus moloch showing the highest occupancy rates even within tiny forest patches, whereas Brachyteles and Leontopithecus occupied fewer than 50% of sites, even in relatively large forest tracts. Our results uncover the main predictors of platyrrhine primate species extinction, highlighting the importance of considering the history of anthropogenic disturbances, the structure of landscapes, and species life-history attributes in predicting primate persistence in Neotropical forest patches. We suggest that large-scale conservation planning of fragmented forest landscapes should prioritize and set-aside large, well-connected and strictly protected forest reserves to maximize species persistence across the entire spectrum of primate life-history. © 2013 Wiley Periodicals, Inc.

  17. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    PubMed

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  18. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder.

    PubMed

    Kaplan, Gary B; Leite-Morris, Kimberly A; Wang, Lei; Rumbika, Kendra K; Heinrichs, Stephen C; Zeng, Xiang; Wu, Liquan; Arena, Danielle T; Teng, Yang D

    2018-01-15

    The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.

  19. Alterations in Functional Cortical Hierarchy in Hemiparkinsonian Rats.

    PubMed

    Jávor-Duray, Borbála Nóra; Vinck, Martin; van der Roest, Marcel; Bezard, Erwan; Berendse, Henk W; Boraud, Thomas; Voorn, Pieter

    2017-08-09

    Parkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model. LFPs were recorded in resting and walking states, before and after unilateral 6-hydroxydopamine lesion. The hemiparkinsonian state was characterized by increased oscillatory activity in the 20-40 Hz range in resting and walking states, and increased interhemispheric coupling (phase lag index) that was more widespread at rest than during walking. Spectral Granger-causality analysis revealed that the change in symmetric functional connectivity comprised profound reorganization of hierarchical organization and directed influence patterns. First, in the lesioned hemisphere, the more anterior, nonprimary motor areas located at the top of the cortical hierarchy (i.e., receiving many directed influences) tended to increase their directed influence onto the posterior primary motor and somatosensory areas. This enhanced influence of "higher" areas may be related to the loss of motor control due to the 6-OHDA lesion. Second, the drive from the nonlesioned toward the lesioned hemisphere (in particular to striatum) increased, most prominently during walking. The nature of these adaptations (disturbed signaling or compensation) is discussed. The present study demonstrates that hemiparkinsonism is associated with a profound reorganization of the hierarchical organization of directed influence patterns among brain areas, perhaps reflecting compensatory processes. SIGNIFICANCE STATEMENT Parkinson's disease classically first becomes manifest in one hemibody before affecting both sides, suggesting that degeneration is asymmetrical. Our results suggest that asymmetrical degeneration of the dopaminergic system induces an increased drive from the nonlesioned toward the lesioned hemisphere and a profound reorganization of functional cortical hierarchical organization, leading to a stronger directed influence of hierarchically higher placed cortical areas over primary motor and somatosensory cortices. These changes may represent a compensatory mechanism for loss of motor control as a consequence of dopamine depletion. Copyright © 2017 the authors 0270-6474/17/377669-13$15.00/0.

  20. On the 485-day Mode in the Atmospheric Angular Momentum: Spectral Analysis of IERS Data

    NASA Astrophysics Data System (ADS)

    Tsurkis, I. Ya.; Kuchai, M. S.

    2018-05-01

    The modification of spectral analysis especially intended for studying the disturbing functions of the atmosphere and ocean, as well as the observed polar motion (Wiener-Liouville spectrum), is used. The time series of the atmospheric disturbing functions obtained by the U.S. National Centers for Environmental Prediction (NCEP) of the International Earth Rotation and Reference Systems Service (IERS) for the period from January 1, 1980 to June 20, 2014 (http://www.iers.org/.cs1?pid=43-1100116) are analyzed. It is shown that the baric disturbing function contains a regular mode with a period of 16 months; the contribution of this mode in the polar motion is estimated.

  1. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    PubMed Central

    Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.

    2016-01-01

    ABSTRACT Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems. PMID:27999158

  2. Deep reefs are not universal refuges: Reseeding potential varies among coral species

    PubMed Central

    Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R.; Hoegh-Guldberg, Ove

    2017-01-01

    Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon. PMID:28246645

  3. Post-disturbance sediment recovery: Implications for watershed resilience

    NASA Astrophysics Data System (ADS)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  4. [Effect of emotional-algesic stress on the hormonal function of thyroid and parathyroid glands].

    PubMed

    Kuripka, V I; Belokon', L E; Iakushev, V S

    1989-01-01

    Experiments on 215 Wistar rats have revealed that the state of the endured stress is an essential factor inducing disturbance in functioning of the hypothalamus-adenohypophysis-thyroid gland system accompanied by disturbance in regulation of the thyrotropin and triiodothyronine formation under conditions of myocardium necrosis development.

  5. Observation of TEC perturbation associated with medium-scale traveling ionospheric disturbance and possible seeding mechanism of atmospheric gravity wave at a Brazilian sector

    NASA Astrophysics Data System (ADS)

    Jonah, O. F.; Kherani, E. A.; De Paula, E. R.

    2016-03-01

    In the present study, we document daytime total electron content (TEC) disturbances associated with medium-scale traveling ionospheric disturbances (MSTIDs), on few chosen geomagnetically quiet days over Southern Hemisphere of Brazilian longitude sector. These disturbances are derived from TEC data obtained using Global Navigation Satellite System (GNSS) receiver networks. From the keograms and cross-correlation maps, the TEC disturbances are identified as the MSTIDs that are propagating equatorward-eastward, having most of their average wavelengths longer in latitude than in longitude direction. These are the important outcomes of the present study which suggest that the daytime MSTIDs over Southern Hemisphere are similar to their counterparts in the Northern Hemisphere. Another important outcome is that the occurrence characteristics of these MSTIDs and that of atmospheric gravity wave (AGW) activities in the thermosphere are found to be similar on day-to-day basis. This suggests a possible connection between them, confirming the widely accepted AGW forcing mechanism for the generation of these daytime MSTIDs. The source of this AGW is investigated using the Geostationary Operational Environmental Satellite system (GOES) and Constellation Observing System for Meteorology, Ionosphere, and Climate satellite data. Finally, we provided evidences that AGWs are generated by convection activities from the tropospheric region.

  6. Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.

    2018-04-01

    Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.

  7. A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances

    PubMed Central

    Granados-Lieberman, David; Valtierra-Rodriguez, Martin; Morales-Hernandez, Luis A.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.

    2013-01-01

    Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage (Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through HT and Parseval's theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively. PMID:23698264

  8. Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, USA.

    PubMed

    Veselka, Walter; Anderson, James T; Kordek, Walter S

    2010-05-01

    Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.

  9. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  10. New approaches to provide ride-through for critical loads in electric power distribution systems

    NASA Astrophysics Data System (ADS)

    Montero-Hernandez, Oscar C.

    2001-07-01

    The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly-phase voltage sags. Algorithms capable of detecting voltage disturbances such as voltage sags, voltage swells, flicker, frequency change, and harmonics in a fast and reliable way are investigated and developed in this dissertation as an essential part of the approaches previously described. Simulation and experimental work has been done to validate the feasibility of all approaches under the most common voltage disturbances such as single-phase voltage sags and three-phase voltage sags.

  11. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  12. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    PubMed

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  13. The Relationship between Attachment and Eating Disorders: A Review of the Literature.

    ERIC Educational Resources Information Center

    Lewis, Robin Marie

    A review was conducted of literature published over the past 15 years pertaining to attachment factors associated with the formation of anorexia and bulimia nervosa. This review first aims to shed light on the connections between disruption in attachment and psychological disturbances underlying eating disorders. The second purpose is to encourage…

  14. 40 CFR 63.2480 - What requirements must I meet for equipment leaks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Manufacturing Emission Limits, Work Practice Standards, and Compliance Requirements § 63.2480 What requirements... reconfiguration of an equipment train if flexible hose connections are the only disturbed equipment. (3) For an... accordance with § 65.117(b) is not required after reconfiguration of an equipment train if flexible hose...

  15. Sporadic radio emission connected with a definite manifestation of solar activity in the near Earth space

    NASA Technical Reports Server (NTRS)

    Dudnic, A. V.; Zaljubovski, I. I.; Kartashev, V. M.; Shmatko, E. S.

    1985-01-01

    Sporadic radio emission of near Earth space at the frequency of 38 MHz is shown to appear in the event of a rapid development of instabilities in the ionospheric plasma. The instabilities are generated due to primary ionospheric disturbances occurring under the influence of solar chromospheric flares.

  16. Sleep Trends and College Students: Does it Connect to Obesity?

    ERIC Educational Resources Information Center

    Melton, Bridget F.; Langdon, Jody; McDaniel, Tyler

    2013-01-01

    Purpose: The objective of this study was to investigate and compare local to national averages in college-aged students' sleep disturbances, as well as further investigate key demographics (obesity classification, gender, race, year in college) among sleep issues. Methods: This study investigated 636 undergraduate students (333 males, 303 Females,…

  17. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks

    PubMed Central

    Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.

    2016-01-01

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739

  18. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.

    PubMed

    Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G

    2016-11-15

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.

  19. Modeling mountain pine beetle disturbance in Glacier National Park using multiple lines of evidence

    USGS Publications Warehouse

    Assal, Timothy; Sibold, Jason

    2013-01-01

    Temperate forest ecosystems are subject to various disturbances which contribute to ecological legacies that can have profound effects on the structure of the ecosystem. Impacts of disturbance can vary widely in extent, duration and severity over space and time. Given that global climate change is expected to increase rates of forest disturbance, an understanding of these events are critical in the interpretation of contemporary forest patterns and those of the near future. We seek to understand the impact of the 1970s mountain pine beetle outbreak on the landscape of Glacier National Park and investigate any connection between this event and subsequent decades of extensive wildfire. The lack of spatially explicit data on the mountain pine beetle disturbance represents a major data gap and inhibits our ability to test for correlations between outbreak severity and fire severity. To overcome this challenge, we utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We used historical aerial and landscape photos, reports, aerial survey data, a six year collection of Landsat imagery and abiotic data in combination with regression analysis. The use of remotely sensed data is critical in large areas where subsequent disturbance (fire) has erased some of the evidence from the landscape. Results indicate that this method is successful in capturing the spatial heterogeneity of the outbreak in a topographically complex landscape. Furthermore, this study provides an example on the use of existing data to reduce levels of uncertainty associated with an historic disturbance.

  20. Sleep disturbance relates to neuropsychological functioning in late-life depression.

    PubMed

    Naismith, Sharon L; Rogers, Naomi L; Lewis, Simon J G; Terpening, Zoë; Ip, Tony; Diamond, Keri; Norrie, Louisa; Hickie, Ian B

    2011-07-01

    Sleep-wake disturbance in older people is a risk factor for depression onset and recurrence. The aim of this study was to determine if objective sleep-wake disturbance in late-life depression relates to neuropsychological functioning. Forty-four older patients with a lifetime history of major depression and 22 control participants underwent psychiatric, medical and neuropsychological assessments. Participants completed self-report sleep measures, sleep diaries and wore wrist actigraphy for two weeks. Outcome measures included sleep latency, the number and duration of nocturnal awakenings and the overall sleep efficiency. Patients with depression had a greater duration of nocturnal awakenings and poorer sleep efficiency, in comparison to control participants. Sleep disturbance in patients was associated with greater depression severity and later ages of depression onset. It also related to poorer psychomotor speed, poorer verbal and visual learning, poorer semantic fluency as well as poorer performance on tests of executive functioning. These relationships largely remained significant after controlling for depression and estimated apnoea severity. This sample had only mild levels of depression severity and results require replication in patients with moderate to severe depression. The inclusion of polysomnography and circadian markers would be useful to delineate the specific features of sleep-wake disturbance that are critical to cognitive performance. Sleep-wake disturbance in older patients with depression is related to neuropsychological functioning and to later ages of illness onset. This study suggests that common neurobiological changes may underpin these disease features, which may, in turn, warrant early identification and management. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Beyond the Coral Triangle: high genetic diversity and near panmixia in Singapore's populations of the broadcast spawning sea star Protoreaster nodosus.

    PubMed

    Tay, Y C; Chng, M W P; Sew, W W G; Rheindt, F E; Tun, K P P; Meier, R

    2016-08-01

    The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.

  2. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    PubMed

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  3. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects

    PubMed Central

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800

  4. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.

    PubMed

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.

  5. The Flora Mission for Ecosystem Composition, Disturbance and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.

    2005-01-01

    Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.

  6. Model-based setup assistant for progressive tools

    NASA Astrophysics Data System (ADS)

    Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar

    2018-05-01

    In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.

  7. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance

    NASA Astrophysics Data System (ADS)

    Morgan, N.; Baco-Taylor, A.; Roark, B.

    2016-02-01

    Resilience and the related concept of recovery provide insights into ecosystem function, connectivity, and succession. Most marine resilience studies have focused on shallow-water ecosystems. However, increasing anthropogenic impacts in the deep sea make studies of resilience and recovery in the deep sea time-critical, with deep-sea hard-substrate habitats and large-scale disturbances having received the least attention. Ironically one of the key anthropogenic impacts to the seafloor, trawling, provides an ideal experimental design to understand processes of recovery from large-scale disturbance in the deep sea. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. The goal of our project is to test the hypothesis of low resilience by examining a series of locations in the far Northwestern Hawaiian Islands and the Emperor Seamount Chain. These sites have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled as well as ones that have been protected since the establishment of the US Exclusive Economic Zone in 1977. We compare these to untrawled sites as part of a three "treatment" design. During two cruises in 2014 and 2015 we used the AUV Sentry to image nine features (three per treatment). CTD data were also collected. Images were analyzed for all visible megafauna as well as substrate parameters (rugosity, slope, composition, relief). Yuryaku, in the "still trawled" treatment was characterized by extensive areas of bare substrate with abundant trawl scars. This feature also had lower diversity and lower abundance of megafauna compared to the recovering and never trawled locations. Preliminary data suggest recovering and never trawled features have overlapping species, but not in comparable abundances.

  8. Body image disturbance in adults treated for cancer - a concept analysis.

    PubMed

    Rhoten, Bethany A

    2016-05-01

    To report an analysis of the concept of body image disturbance in adults who have been treated for cancer as a phenomenon of interest to nurses. Although the concept of body image disturbance has been clearly defined in adolescents and adults with eating disorders, adults who have been treated for cancer may also experience body image disturbance. In this context, the concept of body image disturbance has not been clearly defined. Concept analysis. PubMed, Psychological Information Database and Cumulative Index of Nursing and Allied Health Literature were searched for publications from 1937 - 2015. Search terms included body image, cancer, body image disturbance, adult and concept analysis. Walker and Avant's 8-step method of concept analysis was used. The defining attributes of body image disturbance in adults who have been treated for cancer are: (1) self-perception of a change in appearance and displeasure with the change or perceived change in appearance; (2) decline in an area of function; and (3) psychological distress regarding changes in appearance and/or function. This concept analysis provides a foundation for the development of multidimensional assessment tools and interventions to alleviate body image disturbance in this population. A better understanding of body image disturbance in adults treated for cancer will assist nurses and other clinicians in identifying this phenomenon and nurse scientists in developing instruments that accurately measure this condition, along with interventions that will promote a better quality of life for survivors. © 2016 John Wiley & Sons Ltd.

  9. [Physiopathology of autobiographical memory in aging: episodic and semantic distinction, clinical findings and neuroimaging studies].

    PubMed

    Piolino, Pascale; Martinelli, Pénélope; Viard, Armelle; Noulhiane, Marion; Eustache, Francis; Desgranges, Béatrice

    2010-01-01

    From an early age, autobiographical memory models our feeling of identity and continuity. It grows throughout lifetime with our experiences and is built up from general self-knowledge and specific memories. The study of autobiographical memory depicts the dynamic and reconstructive features of this type of long-term memory, combining both semantic and episodic aspects, its strength and fragility. In this article, we propose to illustrate the properties of autobiographical memory from the field of cognitive psychology, neuropsychology and neuroimaging research through the analysis of the mechanisms of disturbance in normal and Alzheimer's disease. We show that the cognitive and neural bases of autobiographical memory are distinct in both cases. In normal aging, autobiographical memory retrieval is mainly dependent on frontal/executive function and on sense of reexperiencing specific context connected to hippocampal regions regardless of memory remoteness. In Alzheimer's disease, autobiographical memory deficit, characterized by a Ribot's temporal gradient, is connected to different regions according to memory remoteness. Our functional neuroimaging results suggest that patients at the early stage can compensate for their massive deficit of episodic recent memories correlated to hippocampal alteration with over general remote memories related to prefrontal regions. On the whole, the research findings allowed initiating new autobiographical memory studies by comparing normal and pathological aging and developing cognitive methods of memory rehabilitation in patients based on preserved personal semantic capacity. © Société de Biologie, 2010.

  10. The fishermen were right: experimental evidence for tributary refuge hypothesis during floods.

    PubMed

    Koizumi, Itsuro; Kanazawa, Yukiyo; Tanaka, Yuuki

    2013-05-01

    Fishermen often anecdotally report an unexpected increase of fish caught in small tributary streams during floods, presumably due to refuge-seeking behavior from the main stem. From a population perspective, this implies the significance of refuge habitats and connectivity for population viability against natural disturbances. Despite the plausibility, however, surprisingly few studies have examined the tributary refuge hypothesis, mainly due to the difficulty in field survey during floods. Here, we made use of a large-scale controlled flood to assess whether fishes move into tributaries during flooding in the main stem. A planned water release from the Satsunai River Dam located on Hokkaido Island in Japan rapidly increased the main stem discharge by more than 20-fold. Before, during, and after flooding censuses in four tributaries provided evidence of the refuge-seeking behavior of fishes from the main stem. For example, more than 10 Dolly Varden char, a salmonid fish, were caught in a tributary during the flood, even though almost no individuals were captured before or after the flood. The fish responded immediately to the flooding, suggesting the need for studies during disturbances. In addition, the likelihood of refuge movements varied among tributaries, suggesting the importance of local environmental differences between tributary and the main stem habitats. This is the first study to experimentally confirm the tributary refuge hypothesis, and underscores the roles of habitat diversity and connectivity during disturbances, even though some habitats are not used during normal conditions.

  11. Identifying keystone habitats with a mosaic approach can improve biodiversity conservation in disturbed ecosystems.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-01-01

    Conserving native biodiversity in the face of human- and climate-related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal-habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance-related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3-km sites within the Upper Neosho River subdrainage, KS, from June-August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal-habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human-altered ecosystems. © 2017 John Wiley & Sons Ltd.

  12. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  13. [Gallbladder contractility in children with functional abdominal pain or irritable bowel syndrome].

    PubMed

    Iwańczak, Franciszek; Siedlecka-Dawidko, Jolanta; Iwanczak, Barbara

    2013-07-01

    III Rome Criteria of functional gastrointestinal disorders in children, distinguished the disturbances with abdominal pain, to which irritable bowel syndrome, functional abdominal pains, functional dyspepsia and abdominal migraine were included. THE AIM OF THE STUDY was sonographic assessment of the gallbladder and its contractility in functional abdominal pain and irritable bowel syndrome in children. The study comprised 96 children aged 6 to 18 years, 59 girls and 37 boys. Depending on diagnosis, the children were divided into three groups. 38 children with functional abdominal pain constituted the first group, 26 children with irritable bowel syndrome were included to the second group, the third group consisted of 32 healthy children (control group). Diagnosis of functional abdominal pain and irritable bowel syndrome was made based on the III Rome Criteria. In irritable bowel syndrome both forms with diarrhea (13) and with constipation (13) were observed. Anatomy and contractility of the gallbladder were assessed by ultrasound examination. The presence of septum, wall thickness, thick bile, vesicle volume in fasting state and 30th and 60th minute after test meal were taken into consideration. Test meal comprised about 15% of caloric requirement of moderate metabolism. Children with bile stones and organic diseases were excluded from the study. Thickened vesicle wall and thick bile were present more frequently in children with irritable bowel syndrome and functional abdominal pain than in control group (p < 0.02). Fasting vesicle volume was significantly greater in children with functional abdominal pain than in irritable bowel syndrome and control group (p = 0.003, p = 0.05). Vesicle contractility after test meal was greatest in children with functional abdominal pain. Evaluation of diminished (smaller than 30%) and enlarged (greater then 80%) gallbladder contractility at 30th and 60th minute after test meal demonstrated disturbances of contractility in children with irritable bowel syndrome and functional abdominal pain. In children with functional abdominal pain and irritable bowel syndrome disturbances of gallbladder anatomy, fasting volume and contractility after test meal were demonstrated. The observed disturbances require further studies for explanation of their role in functional gastrointestinal disturbances with abdominal pain in children.

  14. Community dynamics and ecosystem simplification in a high-CO2 ocean.

    PubMed

    Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza

    2013-07-30

    Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.

  15. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder

    PubMed Central

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-01-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's ‘small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function. PMID:27356764

  16. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder.

    PubMed

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-12-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.

  17. [Cognitive performance in schizophrenia (paranoid vs residual subtype)].

    PubMed

    Dillon, Carol; Taragano, Fernando; Sarasola, Diego; Iturry, Mónica; Serrano, Cecilia; Raczkowski, Amalia; Allegri, Ricardo

    2007-01-01

    Several studies refer to the relationship between schizophrenia and cognitive dysfunctions. The most frequent disturbances accepted are the deficits in the executive, memory and verbal tests. However, there are few comparative data about the cognitive functioning of the different subtypes of schizophrenia. Analyze and compare the neuropsychological disturbances present in patients with paranoid and residual schizophrenia. Eleven patients with paranoid schizophrenia, eleven patients with residual schizophrenia (DSM-IV criteria), and thirty one normal subjects matched by age, educational level, and general cognitive level (Mini Mental State Examination (Folstein, 1975), were assessed with a semistructured psychiatric examination and an extensive neuropsychological battery. Significant differences were found in memory, language, and executive functions when schizophrenics were compared with normal subjects. Differences in similarities were found between paranoid and residual schizophrenics. Residual schizophrenics had more disturbances in neuropsychological tests in comparison with paranoid schizophrenics. Schizophrenics demonstrated disturbances in memory, language, executive functions and attention. Residual schizophrenics had more impairment in neuropsychological tests than paranoid schizophrenics.

  18. Habitat structure mediates biodiversity effects on ecosystem properties

    PubMed Central

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  19. Benefits and risks of ovarian function and reproduction for cancer development and prevention.

    PubMed

    Schindler, Adolf E

    2011-12-01

    Ovarian function and menstrual cycle disturbances, pregnancy, and reproductive medicine procedures can either increase gynecological cancer risk or prevent cancer development. For ovarian cancer development, there are two hypotheses, which are connected with ovulation and gonadotropin secretion. Most of the ovarian cancers seem to be derived from displaced ovarian surfice epithelial cells. One year of ovulatory cycles increases the ovarian cancer risk by 6%. Ovulation between 22 and 29 years of age causes the highest risk increase per year. In contrast, progesterone or progestins appear to create protection. Lifestyle can affect or modify ovarian cancer risk. Breast cancer risk is very much related to age of menarche and menopause, pregnancy, and breast feeding. All of which are related to ovarian function and progestogenic impact that translates either into breast cancer risk increase or decrease. This is modified by body mass index, physical activity, and lifestyle in general. The risk of endometrial cancer is most closely related to endogenous progesterone during the menstrual cycle and pregnancy or by exogenous progestogens as in oral contraceptives. These effects are progestogen dose and time dependent. Endometrial cancer risk can also be increased by estrogen-producing tumors or long-term estrogen treatment.

  20. Habitat structure mediates biodiversity effects on ecosystem properties.

    PubMed

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  1. Effects of Pro-Cholinergic Treatment in Patients Suffering from Spatial Neglect

    PubMed Central

    Lucas, N.; Saj, A.; Schwartz, S.; Ptak, R.; Thomas, C.; Conne, P.; Leroy, R.; Pavin, S.; Diserens, K.; Vuilleumier, Patrik

    2013-01-01

    Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect. PMID:24062674

  2. Dose-Effect of Children's Psychosocial Rehabilitation on the Daily Functioning of Youth with Serious Emotional Disturbance

    ERIC Educational Resources Information Center

    Williams, Nathaniel J.

    2009-01-01

    Children's psychosocial rehabilitation (CPSR) is a promising but under-evaluated home- and community-based treatment for children with serious emotional disturbance (SED). CPSR addresses the functional impairments of children with SED through an asset-based, skill-building approach that involves multiple systems in the child's life. The present…

  3. The Missing Link: Connection Is the Key to Resilience in Medical Education.

    PubMed

    McKenna, Kathleen M; Hashimoto, Daniel A; Maguire, Michael S; Bynum, William E

    2016-09-01

    Awareness of the risks of burnout, depression, learner mistreatment, and suboptimal learning environments is increasing in academic medicine. A growing wellness and resilience movement has emerged in response to these disturbing trends; however, efforts to address threats to physician resilience have often emphasized strategies to improve life outside of work, with less attention paid to the role of belonging and connection at work. In this Commentary the authors propose that connection to colleagues, patients, and profession is fundamental to medical learners' resilience, highlighting "social resilience" as a key factor in overall well-being. They outline three specific forces that drive disconnection in medical education: the impact of shift work, the impact of the electronic medical record, and the impact of "work-life balance." Finally, the authors propose ways to overcome these forces in order to build meaningful connection and enhanced resilience in a new era of medicine.

  4. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter

    PubMed Central

    Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060

  5. [Reoperations in bradyarrhythmic forms of disorders of heart conductivity].

    PubMed

    Amanov, A A; Guliamov, D S; Umarov, V M; Khan, N I; Asanov, R V

    1990-06-01

    Under analysis were causes of reoperations in bradyarrhythmic forms of disturbances of conductivity of the heart. 565 operations connected with electrocardiostimulation were performed on 276 patients. Reoperations in patients with the myocardial stimulation were made on 63 patients, with the endocardial stimulation--in 226 patients. Causes of reoperations were as follows: depletion of the source of ECS--31.5%; dislocation of the electrode--8.2%; damage of the electrode--15%, suppuration of the bed, decubitus of the stimulator--28.8%; competing rate--7.4%; break of the contact in the connecting system of the electrode and cardiostimulator--9.4%.

  6. Elements and rationale for a common approach to assess and report soil disturbance.

    Treesearch

    Mike Curran; Doug Maynard; Ron Heninger; Tom Terry; Steve Howes; Doug Stone; Tom Niemann; Richard E. Miller

    2008-01-01

    Soil disturbance from forest practices ranges from barely perceptible to very obvious, and from positive to nil to negative effects on forest productivity and 1 or hydrologic function. Currently, most public and private landholders and various other interested parties have different approaches to describing this soil disturbance. More uniformity is needed to describe,...

  7. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: Dynamics of biome-wide bark beetle eruptions

    Treesearch

    Kenneth F. Raffa; Brian H. Aukema; Barbara J. Bentz; Allan L. Carroll; Jeffrey A. Hicke; Monica G. Turner; William H. Romme

    2008-01-01

    Biome-scale disturbances by eruptive herbivores provide valuable insights into species interactions, ecosystem-function, and impacts of global change. We present a conceptual framework using one system as a model, emphasizing interactions across levels of biological hierarchy and spatiotemporal scales. Bark beetles are major natural disturbance agents in western North...

  8. Snow-covered Landsat time series stacks improve automated disturbance mapping accuracy in forested landscapes

    Treesearch

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy B. Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2011-01-01

    Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated...

  9. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems

    PubMed Central

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

  11. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    PubMed

    de Waal, Hanneke; Stam, Cornelis J; Lansbergen, Marieke M; Wieggers, Rico L; Kamphuis, Patrick J G H; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C W

    2014-01-01

    Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. 179 drug-naïve mild AD patients who participated in the Souvenir II study. Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Dutch Trial Register NTR1975.

  12. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer’s Disease: A Randomised Controlled Study

    PubMed Central

    de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.

    2014-01-01

    Background Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. Design A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. Participants 179 drug-naïve mild AD patients who participated in the Souvenir II study. Intervention Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. Outcome In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. Results The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. Conclusions The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Trial registration Dutch Trial Register NTR1975. PMID:24475144

  13. Detecting Changes in Functional Traits of Forest after Extreme Climate Episode using Model Data Fusion

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Kawai, Y.; Toda, M.

    2016-12-01

    The increase in extreme climate episodes associated with ongoing climate change may induce extensive damage to terrestrial ecosystems, changing plant functional traits that regulate ecosystem carbon budget. Over the last two decades, an advanced observational operation of tower-based eddy covariance has enhanced our ability to understand spatial and temporal features of ecosystem carbon exchange worldwide. In contrast, there remain several unresolved issues regarding plant function responses to extreme climate episodes and the resulting effects on the terrestrial carbon balance. In this work, we examined the effects of an extreme climatic event (typhoon) on plant functional traits of a cool-temperate forest in Japan using a model data fusion technique. We used a semi-process model to describes the time changes in net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystem based on the distributions of foliage and size of an individual in a plant population, assuming the diameter profile and the pipe model theory (Shinozaki et al., 1964). The canopy photosynthesis model (Yokozawa et al., 1996) provides us the vertical distribution of gross photosynthetic rates within stand. It can allow us to examine the differences in photosynthetic rate with plant functional traits changed by climate disturbance. The DREAM(ZS) algorithm (ter Braak & Vrugt, 2008) was used to estimate the model parameters. To reduce the effects of heteroscedastic error, a generalized likelihood function was adopted (Schoup & Vrugt, 2010). The estimated annual parameter which represents the initial slope of light-photosynthetic rate curve, significantly changed after typhoon disturbance in 2004. Time changes in the profile of the maximum photosynthetic rate also shows the intensive response to the disturbance. After the disturbance, the values at upper foliage layer are higher than at lower foliage layer in contrast to that before disturbance. Specifically, just after disturbance in 2004b-5a, the value at uppermost foliage layer was estimated to be the highest value. It implies that the plant population recovered the damage by changing the distribution of leaves having different functional traits, i.e. resilient behavior.

  14. Validation of a Remote Sensing Based Index of Forest Disturbance Using Streamwater Nitrogen Data

    NASA Technical Reports Server (NTRS)

    Eshleman, Keith N.; McNeil, Brenden E.; Townsend, Philip A.

    2008-01-01

    Vegetation disturbances are known to alter the functioning of forested ecosystems by contributing to export ('leakage') of dissolved nitrogen (N), typically nitrate-N, from watersheds that can contribute to acidification of acid-sensitive streams, leaching of base cations, and eutrophication of downstream receiving waters. Yet, at a landscape scale, direct evaluation of how disturbance is linked to spatial variability in N leakage is complicated by the fact that disturbances operate at different spatial scales, over different timescales, and at different intensities. In this paper we explore whether data from synoptic streamwater surveys conducted in an Appalachian oak-dominated forested river basin in western MD (USA) can be used to test and validate a scalable, synthetic, and integrative forest disturbance index (FDI) derived from Landsat imagery. In particular, we found support for the hypothesis that the interannual variation in spring baseflow total dissolved nitrogen (TDN) and nitrate-N concentrations measured at 35 randomly selected stream stations varied as a linear function of the change in FDI computed for the corresponding set of subwatersheds. Our results demonstrate that the combined effects of forest disturbances can be detected using synoptic water quality data. It appears that careful timing of the synoptic baseflow sampling under comparable phenological and hydrometeorological conditions increased our ability to identify a forest disturbance signal.

  15. System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor

    DOEpatents

    Chen, Chingchi; Degner, Michael W.

    2002-11-19

    A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

  16. Sleep disturbances and reduced work functioning in depressive or anxiety disorders.

    PubMed

    van Mill, Josine G; Vogelzangs, Nicole; Hoogendijk, Witte J G; Penninx, Brenda W J H

    2013-11-01

    We aimed to examine the associations between sleep disturbances and work functioning in an epidemiologic cohort study in subjects with or without depressive or anxiety disorders. There were 707 subjects included in our analyses with depressive or anxiety disorders and 728 subjects without current depressive or anxiety disorders. Insomnia was defined as a score ≥9 using the Insomnia Rating Scale. Self-reported sleep duration was categorized in short, normal, and long (≤6, 7-9, and ≥10 h, respectively). Work absenteeism was defined as none, short (≤2 weeks), or long (>2 weeks). Work performance was defined as not impaired, reduced, or impaired. Logistic regression analyses were performed to examine the associations of sleep disturbances with work functioning. In subjects with psychopathology, insomnia and short sleep duration were significantly associated with impaired work performance (odds ratio [OR] for insomnia, 2.20; [95% confidence interval {CI}, 1.50-3.22]; OR for short sleep, 2.54 [95% CI, 1.66-3.88] compared to normal sleep duration). Insomnia (OR, 2.48 [95% CI, 1.67-3.69]) and short sleep duration (OR, 1.85 [95% CI, 1.23-2.78]) also were associated with long-term absenteeism. These findings remained the same after considering clinical characteristics including medication use and symptom severity. In subjects without psychopathology, no significant associations were found between insomnia and short sleep duration on work functioning after considering subthreshold depression symptoms. In subjects with psychopathology, sleep disturbances were negatively associated with work functioning, independent of disorder severity and use of psychotropic medication. Further research is needed to determine if treatment of sleep disturbances in subjects with psychopathology improves work functioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Assessing Brain–Muscle Connectivity in Human Locomotion through Mobile Brain/Body Imaging: Opportunities, Pitfalls, and Future Directions

    PubMed Central

    Gennaro, Federico; de Bruin, Eling D.

    2018-01-01

    Assessment of the cortical role during bipedalism has been a methodological challenge. While surface electroencephalography (EEG) is capable of non-invasively measuring cortical activity during human locomotion, it is associated with movement artifacts obscuring cerebral sources of activity. Recently, statistical methods based on blind source separation revealed potential for resolving this issue, by segregating non-cerebral/artifactual from cerebral sources of activity. This step marked a new opportunity for the investigation of the brains’ role while moving and was tagged mobile brain/body imaging (MoBI). This methodology involves simultaneous mobile recording of brain activity with several other body behavioral variables (e.g., muscle activity and kinematics), through wireless recording wearable devices/sensors. Notably, several MoBI studies using EEG–EMG approaches recently showed that the brain is functionally connected to the muscles and active throughout the whole gait cycle and, thus, rejecting the long-lasting idea of a solely spinal-driven bipedalism. However, MoBI and brain/muscle connectivity assessments during human locomotion are still in their fledgling state of investigation. Mobile brain/body imaging approaches hint toward promising opportunities; however, there are some remaining pitfalls that need to be resolved before considering their routine clinical use. This article discusses several of these pitfalls and proposes research to address them. Examples relate to the validity, reliability, and reproducibility of this method in ecologically valid scenarios and in different populations. Furthermore, whether brain/muscle connectivity within the MoBI framework represents a potential biomarker in neuromuscular syndromes where gait disturbances are evident (e.g., age-related sarcopenia) remains to be determined. PMID:29535995

  18. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    PubMed

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  19. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community and species levels, which can have significant implications for the ecosystem functioning of SDTF under increasing levels of disturbance, climate change and soil nutrient depletion.

  20. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    PubMed

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P < 0.001), demonstrating that the changes in the functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  1. Of Microbes and Minds: A Narrative Review on the Second Brain Aging.

    PubMed

    Calvani, Riccardo; Picca, Anna; Lo Monaco, Maria Rita; Landi, Francesco; Bernabei, Roberto; Marzetti, Emanuele

    2018-01-01

    In recent years, an extensive body of literature focused on the gut-brain axis and the possible role played by the gut microbiota in modulating brain morphology and function from birth to old age. Gut microbiota has been proposed as a relevant player during the early phases of neurodevelopment, with possible long-standing effects in later life. The reduction in gut microbiota diversity has also become one of the hallmarks of aging, and disturbances in its composition are associated with several (age-related) neurological conditions, including depression, Alzheimer's disease, and Parkinson's disease. Several pathways have been evoked for gut microbiota-brain communication, including neural connections (vagus nerve), circulating mediators derived by host-bacteria cometabolism, as well as the influence exerted by gut microbiota on host gut function, metabolism, and immune system. Although the most provoking data emerged from animal studies and despite the huge debate around the possible epiphenomenal nature of those findings, the gut microbiota-brain axis still remains a fascinating target to be exploited to attenuate some of the most burdensome consequences of aging.

  2. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    PubMed

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  3. Pilates and Dance to Breast Cancer Patients Undergoing Treatment

    ClinicalTrials.gov

    2017-08-12

    Breast Cancer; Quality of Life; Lymphedema; Fatigue; Depressive Symptoms; Body Image; Self Esteem; Optimism; Sexual Function Disturbances; Stress; Sleep Disturbance; Pain; Muscular Weakness; Postural Balance; Range of Motion; Cardiorespiratory Fitness

  4. [A novel proposal explaining sleep disturbance of children in Japan--asynchronization].

    PubMed

    Kohyama, Jun

    2008-07-01

    It has been reported that more than half of the children in Japan suffer from daytime sleepiness. In contrast, about one quarter of junior high-school students in Japan complain of insomnia. According to the International Classification of Sleep Disorders (Second edition), these children could be diagnosed as having behaviorally-induced insufficient sleep syndrome due to inadequate sleeping habits. Getting on adequate amount of sleep should solve such problems;however, such a therapeutic approach often fails. Although social factors are involved in these sleep disturbances, I feel that a novel notion - asynchronization - leads to an understanding of the pathophysiology of disturbances in these children. Further, it could contribute to resolve their problems. The essence of asynchronization is a disturbance of various aspects (e.g., cycle, amplitude, phase, and interrelationship) of the biological rhythms that normally exhibits circadian oscillation. The main cause of asynchronization is hypothesized to be the combination of light exposure during night and the lack of light exposure in the morning. Asynchronization results in the disturbance of variable systems. Thus, symptoms of asynchronization include disturbances of the autonomic nervous system (sleepiness, insomnia, disturbance of hormonal excretion, gastrointestinal problems, etc.) and higher brain function (disorientation, loss of sociality, loss of will or motivation, impaired alertness and performance, etc.). Neurological (attention deficit, aggression, impulsiveness, hyperactivity, etc.), psychiatric (depressive disorders, personality disorders, anxiety disorders, etc.) and somatic (tiredness, fatigue, etc.) disturbances could also be symptoms of asynchronization. At the initial phase of asynchronization, disturbances are functional and can be resolved relatively easily, such as by the establishment of a regular sleep-wakefulness cycle;however, without adequate intervention the disturbances could gradually worsen and become hard to resolve.

  5. The importance of sphingolipids and reactive oxygen species in cardiovascular development.

    PubMed

    de Faria Poloni, Joice; Chapola, Henrique; Feltes, Bruno César; Bonatto, Diego

    2014-06-01

    The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  6. Environmental controls on denitrifying communities and denitrification rates--Insights from molecular methods

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Myrold, David D.; Firestone, Mary; Voytek, Mary

    2006-01-01

    The advent of molecular techniques has improved our understanding of the microbial communities responsible for denitrification and is beginning to address their role in controlling denitrification processes. There is a large diversity of bacteria, archaea, and fungi capable of denitrification, and their community composition is structured by long-term environmental drivers. The range of temperature and moisture conditions, substrate availability, competition, and disturbances have long-lasting legacies on denitrifier community structure. These communities may differ in physiology, environmental tolerances to pH and O2, growth rate, and enzyme kinetics. Although factors such as O2, pH, C availability, and NO3− pools affect instantaneous rates, these drivers act through the biotic community. This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denitrifier community structure and function.

  7. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  8. [Legal aspects of hyperkinetic disorders/ADHD].

    PubMed

    Hässler, F; Reis, O; Buchmann, J; Bohne-Suraj, S

    2008-07-01

    With a prevalence of 2-6%, hyperkinetic disorders (F 90, ICD-10) and disturbances of activity and attention (F 90.0, ADHD, ICD-10) are among the psychiatric disorders most commonly diagnosed in children, adolescents, and adults. Children and adolescents diagnosed with ADHD suffer from hyperactivity and deficits in attention and impulse control. Adults usually have problems focusing on one goal, maintaining their attention, modulating emotions effectively, structuring their tasks, and controlling impulses and in executive functions. Legal implications derive from core symptoms and from treatment with stimulants governed by legislation on narcotics. This paper discusses juridical aspects of ADHD in connection with the administration of medication at school, trips abroad within and outside the Schengen area, driving, competitive sports, military service, the increased risk of delinquency, the individual capacity to incur criminal responsibility, developmental criteria for the ability to act responsibly, and modalities for withdrawal treatment or treatment during detention.

  9. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    PubMed Central

    Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A

    2015-01-01

    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480

  10. [Diabetes, dementia, depression, distress].

    PubMed

    Szatmári, Szabolcs; Orbán-Kis, Károly; Mihály, István; Lázár, Alpár Sándor

    2017-09-30

    The number of people living with diabetes continues to rise. Therefore neurologists or other health care practitioners may be increasingly faced with comorbid neuropsychiatric disorders commonly presented by diabetic patients. More recently there has been an increasing research interest not only in the interactions between diabetes and the nervous system, the fine structure and functional changes of the brain, but also in the cognitive aspects of antidiabetic treatments. Patients with both types of diabetes mellitus may show signs of cognitive decline, and depression. Comorbid insomnia, anxiety, and distress may also occur. The bidirectional relationships between all these phenomena as well as their connection with diabetes can lead to further health and quality of life deterioration. Therefore it is important that all practitioners involved in the care of diabetic patients recognize the presence of comorbid neuropsychiatric disturbances early on during the healthcare process. Identifying higher risk patients and early screening could improve the prognosis of diabetes and may prevent complications.

  11. Could Perinatal Asphyxia Induce a Synaptopathy? New Highlights from an Experimental Model

    PubMed Central

    Herrera, María Inés; Udovin, Lucas Daniel; Kusnier, Carlos; Kölliker-Frers, Rodolfo; de Souza, Wanderley

    2017-01-01

    Birth asphyxia also termed perinatal asphyxia is an obstetric complication that strongly affects brain structure and function. Central nervous system is highly susceptible to oxidative damage caused by perinatal asphyxia while activation and maturity of the proper pathways are relevant to avoiding abnormal neural development. Perinatal asphyxia is associated with high morbimortality in term and preterm neonates. Although several studies have demonstrated a variety of biochemical and molecular pathways involved in perinatal asphyxia physiopathology, little is known about the synaptic alterations induced by perinatal asphyxia. Nearly 25% of the newborns who survive perinatal asphyxia develop neurological disorders such as cerebral palsy and certain neurodevelopmental and learning disabilities where synaptic connectivity disturbances may be involved. Accordingly, here we review and discuss the association of possible synaptic dysfunction with perinatal asphyxia on the basis of updated evidence from an experimental model. PMID:28326198

  12. Olfactory learning prevents MK-801-induced psychosis-like behaviour in an animal model of schizophrenia.

    PubMed

    Naimark, Ari; Barkai, Edi; Michael, Matar A; Kozlovsky, Nitzan; Kaplan, Zeev; Cohen, Hagit

    2008-01-01

    There is mounting evidence to support the concept that education is associated with the formation of a functional reserve in the brain, a process that appears to provide some protection against certain aspects of severe central nervous system disorders. The goal of this study was to examine whether learning prevents psychosis-like behaviour in an animal model of schizophrenia. A series of behavioural tasks were used to assess olfactory learning-induced protection against the effects of NMDA channel blocker, MK801. This blocker caused sensory-motor disturbances, spatial learning acquisition deficit, and swimming strategy alterations in pseudo-trained and naive rats, but had a considerably lesser effect on trained rats. In sharp contrast, olfactory learning provided no protection against d-amphetamine application. Our data support the notion that learning-induced protection against schizophrenic behaviour is maintained by non-NMDA-mediated enhanced activation of local connections in the relevant cortical networks.

  13. Functional composition of epifauna in the south-eastern North Sea in relation to habitat characteristics and fishing effort

    NASA Astrophysics Data System (ADS)

    Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid

    2016-02-01

    Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.

  14. Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2014-01-01

    Biodiversity conservation within managed forests depends, in part, on management practices that restore or maintain plant community diversity and function. Because many plant communities are adapted to natural disturbances, gap-based management has potential to meet this need by using the historical range of variation in canopy disturbances to guide elements of harvest...

  15. FINDING THE SCALES OF ECOLOGICAL RESPONSE TO LANDSCAPE CHARACTER AND TRIBUTARY INPUTS TO OPEN NEARSHORE WATERS, A GREAT LAKES COAST-WIDE EXPERIENCE

    EPA Science Inventory

    In 2002 we sampled over 40 stretches of open coastline across the US portion of the Great Lakes with an equal effort planned for 2003. Sites were selected to represent an intended gradient of landscape disturbance in watersheds hydrologically-connected to nearshore waters. Half t...

  16. Chapter 2: Effects of fire on nonnative invasive plants and invasibility of wildland ecosystems

    Treesearch

    Kristin Zouhar; Jane Kapler Smith; Steve Sutherland

    2008-01-01

    Considerable experimental and theoretical work has been done on general concepts regarding nonnative species and disturbance, but experimental research on the effects of fire on nonnative invasive species is sparse. We begin this chapter by connecting fundamental concepts from the literature of invasion ecology to fire. Then we examine fire behavior characteristics,...

  17. Using environmental features to model highway crossing behavior of Canada lynx in the Southern Rocky Mountains

    Treesearch

    Phillip E. Baigas; John R. Squires; Lucretia E. Olson; Jacob S. Ivan; Elizabeth. K. Roberts

    2017-01-01

    Carnivores are particularly sensitive to reductions in population connectivity caused by human disturbance and habitat fragmentation. Permeability of transportation corridors to carnivore movements is central to species conservation given the large spatial extent of transportation networks and the high mobility of many carnivore species. We investigated the degree to...

  18. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    PubMed

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  19. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    PubMed Central

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-01-01

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption. PMID:28353649

  20. Sleep disturbance in psychiatric disorders: effects on function and quality of life in mood disorders, alcoholism, and schizophrenia.

    PubMed

    Krystal, Andrew D; Thakur, Mugdha; Roth, Thomas

    2008-01-01

    While the precise role of sleep in maintaining optimal health and function remains unknown, it is clear that disturbances of sleep have a profound impact on the lives of affected individuals. In psychiatric disorders, not only is there a relationship between sleep disturbances and impaired function, problems with sleep also appear to affect the course of the disorder. We carried out a literature review of sleep studies in mood disorders, alcoholism and schizophrenia to determine how associated alterations in sleep architecture and disturbances of sleep are related to patient function and quality of life, and the course of these disorders. The literature speaks to the need to address sleep problems in the overall management of mood disorders, alcoholism and schizophrenia. The support for this viewpoint is best established for mood disorders. There is also relatively strong support for treatment in alcoholism. Schizophrenia, however, has received scant attention and the literature suggests a need for more studies in this area. Further research is needed into the treatment of co-morbid insomnia and psychiatric disorders. Successful therapy is more likely to be achieved if the sleep difficulty and co-morbid disorder are simultaneously targeted for treatment.

Top