Science.gov

Sample records for disturbed rock zone

  1. The disturbed rock zone at the Waste Isolation Pilot Plant.

    SciTech Connect

    Hansen, Francis D.

    2003-12-01

    The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

  2. Discrete fracture hydromechanical model for the disturbed rock zone in a clay rock

    NASA Astrophysics Data System (ADS)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2013-12-01

    We have developed a coupled thermal-hydrological-mechanical (THM) fracture damage model, TOUGH-RBSN, to investigate the behavior of fracture generation and evolution in rock in the presence of perturbations to THM conditions. This model combines the capabilities of the TOUGH2 simulator to represent thermal-hydrological processes with a rigid-body-spring-network (RBSN) model, a type of discrete modeling, to treat geomechanical and fracture-damage processes. In particular, the development and evolution of fractures in the excavation damaged zone (EDZ) of a clay rock, with application to high-level nuclear waste disposal, is a focus for this model development. Previously, the TOUGH-RBSN approach has been used to model fracture damage under tensile conditions as a result of desiccation shrinkage. The next phase of model testing will be application to the HG-A test being conducted at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. This test is being conducted in a 13-m long, 1-m diameter microtunnel in the Opalinus clay rock in which a test section at the far end of the microtunnel is isolated using a packer. The test is specifically targeted to observe how fluids injected into the test section penetrate into the rock, with particular emphasis on the EDZ. The HG-A microtunnel was excavated in 2005 and subsequent mapping of the tunnel surface shows preferential fracturing and tunnel breakouts along zones where bedding planes are tangential to the tunnel wall and where faults intercept the tunnel. It appears that the EDZ fracture damage can be attributed to both tensile and shear fracturing mechanisms. A series of injection tests with water and gas have been performed which also show preferential invasion of the fluid pressure along the observed damage zones, as well as fracture self-sealing over time. The TOUGH-RBSN approach has been successfully applied to modeling fracture driven by predominately tensile loading, whereas only

  3. Extent of the Disturbed Rock Zone Around a WIPP Disposal Room

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Park, B. Y.; Holcomb, D. J.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is operated by the U.S. Department of Energy (DOE) as the underground disposal facility for transuranic (TRU) nuclear waste. It is located in a bedded salt formation at a depth of about 650 m. Salt at this depth behaves as a viscous material having an initially lithostatic state of stress. Mining of an opening disturbs the static equilibrium to a degree where fracturing of the rock surrounding a room occurs, changing its mechanical and hydrologic properties. This disturbed rock zone (DRZ) is an important geomechanical feature included in the performance assessment process models used to predict future repository conditions as a part of certification by the EPA as meeting regulatory compliance. Based on ongoing scientific investigations and evaluation of published data since the original certification in 1998, our understanding of the DRZ has continued to progress. Three deformation processes are activated as deviatoric stresses are induced upon excavation of a room in a salt formation: (1) elastic response, (2) inelastic viscoplastic flow, and (3) inelastic- damage induced flow. Damage, the least understood of these processes, is manifested by the time- dependent initiation, growth, coalescence, and healing of microfractures with a deviatoric stress state. Since the ability to model the spatial and temporal changes in salt damage is not available at this time, various means to measure it have been attempted. At the WIPP, for this study, we used sonic velocity measurements obtained over a 12 year period as the principal field method to describe the extent of the DRZ. Predictions of the DRZ extent based on these experimental results are substantiated by permeability measurements and microfracture density analysis from other places in the repository. Extensive laboratory salt creep data demonstrate that damage can be assessed in terms of volumetric strain and principal stresses. Stress states

  4. Evaluation of Spalling Fallout on Excavation Disturbed Zone under Deep Hard Rock Tunnel

    NASA Astrophysics Data System (ADS)

    Azit, Romziah; Ashraf Mohamaed Ismail, Mohd; You Jiang, Thang

    2017-08-01

    The prediction of compressive stress-induced failures is of concern when designing and constructing facilities in rock for deep underground excavation. The purpose of this study is to model compressive stress-induced failure and fallouts with appropriate material models and strength parameters for deep hard rock tunnel excavation. Three method of numerical modelling are used, which are Generalised Hoek-Brown; Mohr-Coulomb; and Mohr-Coulomb with Cohesion Softening Friction Hardening (CSFH) material models for capturing the observed rock behaviour. A parametric study was also carried out to verify that the peak friction angle of 10° used in CSFH model. The results show that numerical models used only Generalised Hoek-Brown and Mohr Coulomb strength parameters does not show a good agreement with the observed fallout. The comparison revealed that the numerical models using the Mohr-Coulomb with CSFH provides most realistic to the observation fallout length. This model is valid for prediction of failure and fallouts in hard rock masses with high quality (GSI >65 MPa; intact rock compressive strength >70MPa).

  5. Disturbed zone effects: Two phase flow in regionally water-saturated fractured rock

    SciTech Connect

    Geller, J.T.; Doughty, C.; Long, J.C.S.

    1995-01-01

    Field evidence suggests that two-phase flow may develop near underground excavations in regionally-saturated fractured crystalline rock, resulting in lower inflow rates compared to undisturbed rock. Mechanisms for the development of two-phase flow conditions include depressurization of formation water that is supersaturated with dissolved gas and buoyancy-driven air invasion into fractures from the drift. Models that assume gas-liquid phase equilibrium indicate that for constant head boundary conditions, the build-up of pressure behind the gas phase evolving from depressurization should redissolve the gas and maintain higher flowrates, requiring unreasonably high dissolved gas concentrations to produce observed flow reductions at the Stripa Mine in Sweden. This discrepancy initiated a laboratory-scale investigation. Gas evolution following depressurization is simulated in two different 8 cm x 8 cm transparent fracture replicas for linear flow with constant head boundary conditions. Gas forms and accumulates in the large apertures and the extent of flow reduction is greater when the flow through the fracture is controlled by a large aperture channel, compared to a fracture where large aperture regions are relatively isolated. An effective continuum numerical model (TOUGH2) is used to describe the development of two-phase flow under degassing conditions. Numerical simulations were made for a homogeneous porous medium and for a heterogeneous medium using the aperture distribution of one of the fractures used in the laboratory experiments, which allows a direct comparison between laboratory and numerical results. The incorporation of kinetic expressions into the numerical model will allow the prediction of resaturation rates of a repository following closure.

  6. Coupled Biological-Geomechanical-Geochemical Effects of the Disturbed Rock Zone on the Performance of the Waste Isolation Pilot Plant

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia

  7. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    SciTech Connect

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-12-31

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs.

  8. Geomechanical and Fluid-Flow Modeling to Estimate Disturbed Rock Zone Properties and Design Parameters for a Hydro-Mechanical Field Test in a Deep Borehole in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, S.; Kelley, M. E.; Trick, T.

    2016-12-01

    Stress disturbance due to drilling a deep borehole in crystalline rock could lead to the development of a disturbed rock zone (DRZ) with altered hydro-mechanical characteristics surrounding the borehole. The presence of a DRZ could increase hydraulic conductivity and cause preferential flow in both the radial and the vertical direction around the borehole. Simulating fluid flow and mechanical processes due to drilling enables understanding characteristics of the DRZ including its thickness, radial distribution around the borehole, and pressure diffusion within DRZ. It also provides a tool for designing a hydro-mechanical field test to characterize the DRZ around a planned deep borehole. We modeled a hypothetical deep borehole in granite rock similar to a U.S.-mid-continent granite to simulate: (1) geomechanical processes involved in the creation of a DRZ caused by drilling; then, (2) subsequent fluid flow process by importing DRZ parameters (radius, heterogeneity) from the geomechanical model. The dual-model approach provides predictions of stress concentration and yield zone around the borehole from the geomechanical model and predictions of pressure diffusion in DRZ from the fluid-flow model. We also evaluated effects of increasing radial pressure, applied by packers placed inside the borehole, on vertical fluid migration in the DRZ. The importance of input parameters (rock mechanical, geological, and in-situ stress parameters) on DRZ extension and hydro-mechanical test design parameters was investigated using sensitivity analyses which showed that rock cohesion and differential horizontal stress are the most important parameters affecting DRZ radius extension (i.e., size).

  9. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    SciTech Connect

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  10. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays

    SciTech Connect

    Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

    2004-06-20

    The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper.

  11. The maintenance of hybrid zones across a disturbance gradient.

    PubMed

    Dorken, M E; Pannell, J R

    2007-07-01

    The parapatric distribution of genetically divergent lineages in hybrid zones can be maintained by ecological differences (dispersal-independent 'ecotonal' hybrid zones), by frequency- and density-dependent interference when they intermingle and mate (dispersal-dependent 'tension' hybrid zones), or by both processes acting together. One potentially important ecological factor that has received little theoretical attention is gradients in habitat disturbance. Such gradients may be particularly important in contact zones in which the interacting lineages differ in their sexual system (e.g., self-fertile versus obligately outcrossing) because self-fertility promotes the colonization of open patches. Here we use a spatially explicit metapopulation model to examine the dynamics of a dispersal-dependent ecotonal hybrid zone across a gradient in the rate of habitat disturbance, where competing lineages differ in their sexual system. We found that self-fertility promoted the maintenance of one lineage over its outcrossing counterpart at high extinction rates, predominantly because self-fertility confers reproductive assurance. Additionally, greater seed and pollen production promoted a lineage's persistence by reducing the seed fertility of its counterpart through hybridization. Our results draw attention to the joint effects of ecological and endogenous selection in regulating the location of hybrid zones. Our study also casts new light on the maintenance of the parapatric distribution of incompatible lineages of Spanish populations of the plant Mercurialis annua. In particular, we expect the rate of movement of a contact zone in eastern Spain to increase as it moves further south, contrary to earlier predictions.

  12. Excavation Damaged Zones In Rock Salt Formations

    SciTech Connect

    Jockwer, N.; Wieczorek, K.

    2008-07-01

    Salt formations have long been proposed as potential host rocks for nuclear waste disposal. After the operational phase of a repository the openings, e.g., boreholes, galleries, and chambers, have to be sealed in order to avoid the release of radionuclides into the biosphere. For optimising the sealing techniques knowledge about the excavation damaged zones (EDZ) around these openings is essential. In the frame of a project performed between 2004 and 2007, investigations of the EDZ evolution were performed in the Stassfurt halite of the Asse salt mine in northern Germany. Three test locations were prepared in the floor of an almost 20 year old gallery on the 800-m level of the Asse mine: (1) the drift floor as existing, (2) the new drift floor shortly after removing of a layer of about 1 m thickness of the floor with a continuous miner, (3) the new drift floor 2 years after cutting off the 1-m layer. Subject of investigation were the diffusive and advective gas transport and the advective brine transport very close to the opening. Spreading of the brine was tracked by geo-electric monitoring in order to gain information about permeability anisotropy. Results obtained showed that EDZ cut-off is a useful method to improve sealing effectiveness when constructing technical barriers. (authors)

  13. Disturbed zones; indicators of deep-seated subsurface faults in the Valley and Ridge and Appalachian structural front of Pennsylvania

    USGS Publications Warehouse

    Pohn, Howard A.; Purdy, Terri L.

    1982-01-01

    Field studies of geologic structures in the Valley and Ridge and adjacent parts of the Appalachian Plateau provinces in Pennsylvania have shown a new type of structure, formerly poorly understood and frequently unmapped, is a significant indicator of deep-seated subsurface faulting. These structures, herein called disturbed zones, are formed by movement between closely spaced pairs of thrust faults. Disturbed zones are characterized at the surface by long, narrow, intensely folded and faulted zones of rocks in a relatively undisturbed stratigraphic sequence. These zones are frequently kilometers to tens of kilometers long and tens to hundreds of meters wide. Although disturbed zones generally occur in sequences of alternating siltstone and shale beds, they can also occur in other lithologies including massively-bedded sandstones and carbonates. Disturbed zones are not only easily recognized in outcrop but their presence can also be inferred on geologic maps by disharmonic fold patterns, which necessitates a detachment between adjacent units that show the disharmony. A number of geologic problems can be clarified by understanding the principles of the sequence of formation and the method of location of disturbed zones, including the interpretation of some published geologic cross sections and maps. The intense folding and faulting which accompanies the formation of a typical disturbed zone produces a region of fracture porosity which, if sealed off from the surface, might well serve as a commercially-exploitable hydrocarbon trap. We believe that the careful mapping of concentrations of disturbed zones can serve as an important exploration method which is much less expensive than speculation seismic lines.

  14. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    characterized by increased fracture densities and higher percentages of fractures with large apertures. In the Upper Rhine Graben (2) damage zones in Muschelkalk limestones (Middle Triassic) are well developed even in fault zones with dm-scale displacements. Their fault cores, however, are narrow compared with that of fault zones with larger displacements and comprise brecciated material, clay smear, host rock lenses or zones of mineralization. Fracture apertures are larger parallel or subparallel to fault zone strike. A large fault zone footwall in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a distal fault core with disturbed layering and high fracture density and a damage zone with increased fracture density compared with the host rock. In the study areas of palaeogeothermal fields in the Bristol Channel (3), all the mineral veins are clearly related to the faults and occur almost exclusively in the damage zones, indicating that geothermal water was transported along the then-active faults into the host rocks. Field measurements indicate that in all the localities, a large majority of the fractures in the fault damage zones are extension fractures, fewer are shear fractures. In the Jurassic Blue Lias there is evidence that the veins were injected as hydrofractures from fault planes into the limestone layers. In the Triassic Mercia Mudstone most veins were arrested during their propagation by layers with contrasting mechanical properties (stress barriers). Some veins, however, propagated through the barriers along faults to shallower levels. Our studies contribute to understanding and modelling of hydromechanical behaviour of fault zones and fluid transport in geothermal reservoirs. For successful exploration and exploitation, fault zones must be studied in detail regarding their likely internal structure, fracture parameters and orientation in relation to the current stress field. We show

  15. Inelastic deformations of fault and shear zones in granitic rock

    SciTech Connect

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads.

  16. Radon emanation from fresh, altered and disturbed granitic rock characterized by (14)C-PMMA impregnation and autoradiography.

    PubMed

    Hellmuth, Karl-Heinz; Siitari-Kauppi, Marja; Arvela, Hannu; Lindberg, Antero; Fonteneau, Lionel; Sardini, Paul

    2017-09-01

    Radon emanation from intact samples of fresh ("BG"), altered ("Fract") and disturbed ("EDZ") Finnish granitic rock from Kuru (Finland) and its dependence on humidity and rock structural factors was studied. The pore network of the rock was characterized by microscopy and impregnation with (14)C-PMMA (polymethylmethacrylate) resin and autoradiography. The radon emanation factor was increasing linearly with the relative humidity. (14)C-PMMA autoradiography of the altered zones and the EDZ indicated significant, mineral-specific increase of porosity and porosity gradients towards the fracture surfaces (Fract) and microcracks within the EDZ. For small samples in the cm-scale emanation was not diffusion, but source term controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Coombes, Martin A.; Naylor, Larissa A.; Viles, Heather A.; Thompson, Richard C.

    2013-11-01

    As well as their destructive roles, plants, animals and microorganisms contribute to geomorphology and ecology via direct and indirect bioprotection, which can reduce weathering and erosion. For example, indirect bioprotection can operate via biotic influences on microclimate whereby physical decay processes associated with fluctuations in temperature and moisture (salt crystallization, thermal fatigue and wetting-drying), are limited. In the intertidal zone, the spatial and temporal distribution of macroalgae (seaweeds) is patchy, related to physical and ecological conditions for colonization and growth, and the nature and frequency of natural and anthropogenic disturbance. We examined the influence of seaweed canopies (Fucus spp.) on near-surface microclimate and, by implication, on conditions for mechanical rock decay and under-canopy ecology. Monitoring on hard artificial coastal structures in South West England, UK, built from limestone and concrete showed that both the range and maxima of daily summertime temperatures were significantly lower, by an average of 56% and 25%, respectively, in areas colonized by seaweed compared to experimentally cleared areas. Short-term microclimatic variability (minutes-hours) was also significantly reduced, by an average of 78% for temperature and 71% for humidity, under algal canopies during low-tide events. Using seaweed as an example, we develop a conceptual model of the relationship between biological cover and microclimate in the intertidal zone. Disturbance events that remove or drastically reduce seaweed cover mediate shifts between relatively stable and unstable states with respect to mechanical decay and ecological stress associated with heat and desiccation. In urban coastal environments where disturbance may be frequent, facilitating the establishment and recovery of canopy-forming species on rocks and engineered structures could enhance the durability of construction materials as well as support conservation

  18. DISTURBED ZONE AND PISTON SHOCK AHEAD OF CORONAL MASS EJECTION

    SciTech Connect

    Eselevich, V.; Eselevich, M.

    2012-12-10

    The 2010 June 13 coronal mass ejection (CME) propagating toward the position angle P.A. Almost-Equal-To 245 Degree-Sign (measured counterclockwise from the Sun's north pole) was studied from the SDO/AIA and SOHO/LASCO C2, C3 data. We show that ahead of the CME frontal structure, as a result of its interaction with the undisturbed solar wind, a disturbed region (with an increased and disturbed plasma density), whose size increases as the CME travels away from the Sun, emerges gradually. Discontinuity formation at the disturbed zone front is observed in the narrow P.A. Almost-Equal-To 245 Degree-Sign -250 Degree-Sign range. Its characteristics satisfy the properties of a piston collision shock. In the other directions relative to the CME motion axis (P.A. > 250 Degree-Sign and P.A. < 245 Degree-Sign ), there exists only the disturbed zone, whose density gradually decreases with distance. The discontinuity that was always observed at all distances where measurements were made is absent. The analysis of this CME and several other limb CMEs with different velocities from the MK4, LASCO C2, C3, and STEREO/COR2 data confirmed the previously established laws of piston shock formation ahead of a CME, which are as follows: (1) Shock formation ahead of a CME in a vicinity along its propagation axis may occur at various distances R = R{sub u} from the Sun's center. Its formation is determined by fulfilling a local inequality u(R) > V{sub A} (R), where u(R) is a CME velocity relative to the surrounding solar wind and V{sub A} (R) is a local Alfven velocity that is approximately equal to the velocity of fast magnetic sound in the solar corona. (2) At R < 6 R{sub Sun }, the shock front width {delta}{sub F} is on the order of the proton mean free path {lambda}{sub p}, and the mechanism for energy dissipation at the front is, apparently, collisional. (3) At R {approx}> 10-15 R{sub Sun }, one observes the formation of a new discontinuity {delta}{sup *}{sub F} << {lambda}{sub p} wide

  19. 76 FR 29647 - Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound, Morehead City, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound... establishing a temporary Safety Zone for the ``Big Rock Blue Marlin Air Show,'' an aerial demonstration to be... published a notice of proposed rulemaking (NPRM) entitled Safety Zone; Big Rock Blue Marlin Air Show; Bogue...

  20. Weathering of Fractured Rock in the Deep Critical Zone

    NASA Astrophysics Data System (ADS)

    Buss, H. L.; Bazilevskaya, E.; Brantley, S. L.; Scatena, F. N.; Schulz, M. S.; White, A. F.

    2012-12-01

    The interfaces where intact bedrock physically and chemically weathers to form regolith, are often hidden deep within the critical zone and are thus difficult to access. However, weathering of primary minerals along bedrock fractures located in the groundwater or deep vadose zones may supply significant weathering products to streams and oceans and influence topography and soil fertility. We investigated the deep critical zone in the Bisley watershed at the Luquillo Critical Zone Observatory from two 9.6 cm diameter boreholes drilled with a hydraulic rotary drill to 37.2 and 27.0 m depth. Continuous core samples through coherent rock were taken using an HQ-wireline barrel. Bulk solid-state chemical analysis and quantitative XRD were performed on rock and saprock samples. Thin sections were examined by optical microscopy, SEM, EDS, and EPMA. A history of low- to moderate-grade metamorphism is reflected by the presence of epidote, prehnite, pyrite, and tourmaline in the fresh rock (visibly un-weathered). Fresh rock also contains abundant plagioclase and Mg-rich chlorite, with lesser quartz, K-spar, and pyroxene. The quartz is microcrystalline and present in variable quantities in the fresh rock, consistent with infiltration of Si-rich hydrothermal fluids. Evidence of reaction-induced porosity development is observed in the visibly un-weathered rock, but the majority of weathering occurs within weathering rinds (<15 mm thick). These rinds are developed on fracture surfaces (and the outer surfaces of exposed corestones) and contain abundant secondary Fe(III)-oxides, which fill pore space, decreasing porosity relative to the core-rind interface. In the case of exposed corestones, the rinds spall off, refresing the surface for continued weathering. In the case of subsurface corestones, rinds grow thicker and sometimes consume rock fragments entirely. Borehole cores revealed repeated zones of highly fractured rock, interpreted as subsurface corestones, embedded within

  1. Geotechnical shear zone properties of rockslides in crystalline rock

    NASA Astrophysics Data System (ADS)

    Engl, D. A.; Fellin, W.; Zangerl, C.

    2009-04-01

    Crystalline rocks such as gneisses, schists and phyllites are widespread in orogens. Slopes built up of these metamorphic rocks are prone for large-scale deep-seated mass movements. Many of these mass movements are rockslides characterised by slope displacement along one or several distinct sliding zone(s). These sliding zone(s) are typically composed of disintegrated loose rock material produced by shearing and fragmentation processes. For rockslides the stability is strongly controlled by the strength of these soil-like shear products, also referred to as kakirites and fault gouges. Therefore, information about the mechanical behaviour and the strength properties is crucial when slope stability analyses and reliable landslide forecasts have to be performed. Being aware of this demand, numerous investigations dealt with this issue in the past and produced plenty of data by the geotechnical laboratory testing of these materials. Nevertheless, the data is widely dispersed among various literature sources, making it nearly impossible for the reader to gain a clear overview. The primary objective of this work was firstly to compile and re-analyse published laboratory data about frictional strength properties of shear zone materials sampled from brittle tectonical fault zones and sliding zones of rockslides and secondly to integrate them into a uniform database. Given that most of the geotechnical stability analyses are based on the Mohr-Coloumb law, the evaluation focuses on the parameters friction coefficient (friction angle) and cohesion. As a result, indicatory values for the shear strength parameters of kakirites and fault gouges for the most abundant crystalline rocks were obtained. The variable testing methods (i.e. triaxial tests and direct shear tests), different stress conditions during the tests and the inherent heterogeneity of the materials lead to a wide scatter of values. Therefore, a regression analysis was performed for each lithology and a statistical

  2. Marias Pass, Contact Zone of Two Martian Rock Units

    NASA Image and Video Library

    2015-12-17

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows the "Marias Pass" area where a lower and older geological unit of mudstone -- the pale zone in the center of the image -- lies in contact with an overlying geological unit of sandstone. Just before Curiosity reached Marias Pass, the rover's laser-firing Chemistry and Camera (ChemCam) instrument examined a rock found to be rich in silica, a mineral-forming chemical. This scene combines several images taken on May 22, 2015, during the 992nd Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/?IDNumber=pia20174

  3. Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lazouskaya, Volha; Fischer, Timothy B; Bishop, Michael E; Dong, Hailiang

    2013-05-07

    Laboratory experiments were performed using minimally disturbed sedimentary rocks to measure the coupled diffusion and abiotic reaction of trichloroethene (TCE) through rock core samples. Results showed that, for all rock types studied, TCE dechlorination occurred, as evidenced by generation of acetylene, ethene, and/or ethane daughter products. First-order bulk reaction rate constants for TCE degradation ranged from 8.3 × 10(-10) to 4.2 × 10(-8) s(-1). Observed reaction rate constants showed a general correlation to the available ferrous iron content of the rock, which was determined by evaluating the spatial distribution of ferrous iron relative to that of the rock porosity. For some rock types, exposure to TCE resulted in a decrease in the effective diffusivity. Scanning electron microscopy (SEM) indicated that the decrease in the effective diffusivity was due to a decrease in the porosity that occurred after exposure to TCE. Overall, these coupled diffusion and reaction results suggest that diffusion of TCE into rock matrices as well as the rate and extent of back-diffusion may be substantially mitigated in rocks that contain ferrous iron or other naturally occurring reactive metals, thereby lessening the impacts of matrix diffusion on sustaining dissolved contaminant plumes in bedrock aquifers.

  4. Prediction of Fragmentation Zone Induced by Blasting in Rock

    NASA Astrophysics Data System (ADS)

    Sim, Youngjong; Cho, Gye-Chun; Song, Ki-Il

    2017-08-01

    This paper presents a simple method to evaluate the two-dimensional fragmentation zone induced by gas pressure during blasting in rock. The fragmentation zone is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using two conditions only, the crack propagation criterion and the mass conservation of the gas. As a result, the stress intensity factor of the crack decreases as crack propagates from the blasthole so that the crack length is determined. In addition, gas pressure inside blasthole also continues to decrease during crack propagation. To validate suggested analytical solution, discrete element method is used by comparing length of propagated crack due to blasting.

  5. Subduction-zone cycling of nitrogen in serpentinized mantle rocks

    NASA Astrophysics Data System (ADS)

    Halama, R.; Bebout, G. E.; John, T.; Scambelluri, M.

    2010-12-01

    Nitrogen (N) has shown great potential as a geochemical tracer of volatiles recycling, in part because of large differences in the N isotope composition of the various Earth reservoirs. The subduction flux of N in serpentinized oceanic mantle could be as important as N input flux in oceanic crust and even sediment because, although its N concentrations are lower, its volume is potentially far greater than that of the crust/sediment. However, recycling of oceanic mantle rocks is still poorly constrained for the N cycle, and N isotope data for subduction-related ultramafic rocks are scarce [1]. The primary goal of this study is to characterize the subduction flux of N in subducting altered oceanic mantle by documenting concentrations and isotopic compositions of N in mantle rocks that reflect different stages of the metamorphic subduction zone cycle. The results are crucial to assess the composition of N recycled into the mantle, to determine the extent to which N can be retained in subducted mantle rocks to depths approaching those beneath arcs, and to balance N subduction-zone inputs with outputs in arc volcanic gases. Moreover, information has been gained regarding the redistribution and isotope fractionation of N via ultramafic dehydration and metamorphic fluid-rock interaction. The samples analyzed in this study are ultramafic rocks from shallow oceanic environments to increasing P-T conditions up to depths of ~70 km. Three distinct metamorphic grades, reflecting seafloor fluid uptake, water release due to brucite breakdown and the final antigorite breakdown, were investigated: 1. Pre-subduction serpentinized mantle peridotite from non-subducted ophiolite sequences from the Northern Apennines, Italy (Monte Nero). 2. Eclogite-facies antigorite serpentinites from the Ligurian Alps, Italy (Erro Tobbio). 3. Eclogite-facies chlorite harzburgites derived from dehydration of serpentinites from the Betic Cordillera, Spain (Cerro de Almirez). The pre

  6. 77 FR 54811 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego... Competitor Group is sponsoring the TriRock Triathlon, consisting of 2000 swimmers swimming a predetermined...: Sec. 165.T11-516 Safety Zone; TriRock Triathlon; San Diego Bay, San Diego, CA. (a) Location. The...

  7. 76 FR 18672 - Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound, Morehead City, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound... proposes to establish a temporary Safety Zone for the ``Big Rock Blue Marlin Air Show'', an aerial... Register. Basis and Purpose On June 11, 2011 from 7 p.m. to 8 p.m., the Big Rock Blue Marlin Tournament...

  8. 78 FR 53243 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego... Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA. (a) Location. The limits of the safety zone...

  9. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis.

  10. Numerical modeling of mullions in the Taili high deformation zone, North China: Implications for the rheology of granitic rocks

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Zeng, Zuoxun; Mohammed, Adil S.

    2017-05-01

    This paper presents a combined field measurement and finite element modeling analysis of the mullions occurring on the contact of two granitic rocks with different grain size in the Taili High-Strain Deformation Zone (THDZ), West Liaoning of North China. All of the field data are located in the plot zone of the modeling results. Numerical modeling results indicate that: (1) The inter-angle between the tangent lines cross the cusp point and the ratio R of amplitude and width of mullions are the most effective parameters to describe the geometric shape and evolution of mullions, as well as useful indicators of the rheology of rocks. (2) The competence contrast controls the growth rate of mullions under shortening. It determines the possible ratio R of final mullions. Moreover, decreasing of the cusp angle in high competence contrast materials is faster than that in low competence contrast model. (3) The initial disturbance is an essential factor for the generation of mullions. Those contacts with higher initial disturbance will develop into mullions more easily and have a high growth rate during the same shortening deformation regime. (4) The rheology and deformation behavior of the granitic rocks in the study area are primarily controlled by the grain sizes of quartz and feldspar. The effective viscosity ratio of biotite adamellite and granitic gneisses is about 0.01-0.5. The deformation mechanisms of these granitic rocks should be dominated by a grain-size-sensitive diffusion creep.

  11. Evolving subduction zones in the Western United States, as interpreted from igneous rocks.

    PubMed

    Lipman, P W; Prostka, H J; Christiansen, R L

    1971-11-19

    Variations in the ratio of K(2)O to SiO(2) in andesitic rocks suggest early and middle Cenozoic subduction beneath the western United States along two subparallel imbricate zones dipping about 20 degrees eastward. The western zone emerged at the continental margin, but the eastern zone was entirely beneath the continental plate. Mesozoic subduction apparently occurred along a single steeper zone.

  12. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone

    NASA Astrophysics Data System (ADS)

    Choudhury, Manideepa Roy; Das, Subhrajyoti; Chatterjee, Sadhana M.; Sengupta, Sudipta

    2016-07-01

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ∘ to 24 ∘. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( W n) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the

  13. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  14. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  15. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  16. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  17. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    NASA Astrophysics Data System (ADS)

    Clow, Gary D.

    2015-12-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be `corrected' for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid-liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal drilling

  18. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    USGS Publications Warehouse

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal

  19. Multiple-code benchmark simulation study of coupled THMC processesin the excavation disturbed zone associated with geological nuclear wasterepositories

    SciTech Connect

    Rutqvist, J.; Feng, X-T.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Pan, P-Z.; Lee, H-S.; Rinne, M.; Sonnenthal, E.; Yamamoto, Y.

    2006-05-10

    An international, multiple-code benchmark test (BMT) studyis being conducted within the international DECOVALEX project to analysecoupled thermal, hydrological, mechanical and chemical (THMC) processesin the excavation disturbed zone (EDZ) around emplacement drifts of anuclear waste repository. This BMT focuses on mechanical responses andlong-term chemo-mechanical effects that may lead to changes in mechanicaland hydrological properties in the EDZ. This includes time-de-pendentprocesses such as creep, and subcritical crack, or healing of fracturesthat might cause "weakening" or "hardening" of the rock over the longterm. Five research teams are studying this BMT using a wide range ofmodel approaches, including boundary element, finite element, and finitedifference, particle mechanics, and elasto-plastic cellular automatamethods. This paper describes the definition of the problem andpreliminary simulation results for the initial model inception part, inwhich time dependent effects are not yet included.

  20. Seismically invisible fault zones: Laboratory insights into imaging faults in anisotropic rocks

    NASA Astrophysics Data System (ADS)

    Kelly, C. M.; Faulkner, D. R.; Rietbrock, A.

    2017-08-01

    Phyllosilicate-rich rocks which commonly occur within fault zones cause seismic velocity anisotropy. However, anisotropy is not always taken into account in seismic imaging and the extent of the anisotropy is often unknown. Laboratory measurements of the velocity anisotropy of fault zone rocks and gouge from the Carboneras fault zone in SE Spain indicate 10-15% velocity anisotropy in the gouge and 35-50% anisotropy in the mica-schist protolith. Greater differences in velocity are observed between the fast and slow directions in the mica-schist rock than between the gouge and the slow direction of the rock. This implies that the orientation of the anisotropy with respect to the fault is key in imaging the fault seismically. For example, for fault-parallel anisotropy, a significantly greater velocity contrast between fault gouge and rock will occur along the fault than across it, highlighting the importance of considering the foliation orientation in design of seismic experiments.

  1. Where microorganisms meet rocks in the Earth's Critical Zone

    NASA Astrophysics Data System (ADS)

    Akob, D. M.; Küsel, K.

    2011-12-01

    The Critical Zone (CZ) is the Earth's outer shell where all the fundamental physical, chemical, and biological processes critical for sustaining life occur and interact. As microbes in the CZ drive many of these biogeochemical cycles, understanding their impact on life-sustaining processes starts with an understanding of their biodiversity. In this review, we summarize the factors controlling where terrestrial CZ microbes (prokaryotes and micro-eukaryotes) live and what is known about their diversity and function. Microbes are found throughout the CZ, down to 5 km below the surface, but their functional roles change with depth due to habitat complexity, e.g. variability in pore spaces, water, oxygen, and nutrients. Abundances of prokaryotes and micro-eukaryotes decrease from 1010 or 107 cells g soil-1 or rock-1, or ml water-1 by up to eight orders of magnitude with depth. Although symbiotic mycorrhizal fungi and free-living decomposers have been studied extensively in soil habitats, where they occur up to 103 cells g soil-1, little is known regarding their identity or impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that they are limited in space, nutrients, are unable to cope with oxygen limitations, or some combination thereof. Since deep regions of the CZ have limited access to recent photosynthesis-derived carbon, microbes there depend on deposited organic material or a chemolithoautotrophic metabolism that allows for a complete food chain, independent from the surface, although limited energy flux means cell growth may take tens to thousands of years. Microbes are found in all regions of the CZ and can mediate important biogeochemical processes, but more work is needed to understand how microbial populations influence the links between different regions of the CZ and weathering processes. With the recent development of "omics" technologies, microbial ecologists have new methods that

  2. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented

  3. Influences of microhabitat constraints and rock-climbing disturbance on cliff-face vegetation communities.

    PubMed

    Kuntz, Kathryn Lynne; Larson, Douglas W

    2006-06-01

    Many researchers report that rock climbing has significant negative effects on cliff biota. Most work on climbing disturbance, however has not controlled for variation in microsite characteristics when comparing areas with and without climbing presence. Additionally, some researchers do not identify the style or difficulty level of climbing routes sampled or select climbing routes that do not represent current trends in the sport. We solved these problems by sampling climbing areas used by advanced "sport" climbers and quantifying differences in microtopography between climbed and control cliffs. We determined whether differences in vegetation existed between pristine and sport-climbed cliff faces when microsite factors were not controlled. We then determined the relative influence of the presence of climbing, cliff-face microtopography, local physical factors, and regional geography on the richness, abundance, and community composition of cliff-face vascular plants, bryophytes, and lichens. When we did not control for microsite differences among cliffs, our results were consistent with the majority of prior work on impacts of climbing (i.e., sport-climbed cliff faces supported a lower mean richness of vascular plants and bryophytes and significantly different frequencies of individual species when compared with pristine cliff faces). When we investigated the relative influences of microtopography and climbing disturbance, however the differences in vegetation were not related to climbing disturbance but rather to the selection by sport climbers of cliff faces with microsite characteristics that support less vegetation. Climbed sites had not diverged toward a separate vegetation community; instead, they supported a subset of the species found on pristine cliff faces. Prior management recommendations to restrict development of new climbing routes should be reevaluated based on our results.

  4. Disturbance, A Mechanism for Increased Microbial Diversity in a Yellowstone National Park Hot Spring Mixing Zone

    NASA Astrophysics Data System (ADS)

    Howells, A. E.; Oiler, J.; Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    The parameters influencing species diversity in natural ecosystems are difficult to assess due to the long and experimentally prohibitive timescales needed to develop causative relationships among measurements. Ecological diversity-disturbance models suggest that disturbance is a mechanism for increased species diversity, allowing for coexistence of species at an intermediate level of disturbance. Observing this mechanism often requires long timescales, such as the succession of a forest after a fire. In this study we evaluated the effect of mixing of two end member hydrothermal fluids on the diversity and structure of a microbial community where disturbance occurs on small temporal and spatial scales. Outflow channels from two hot springs of differing geochemical composition in Yellowstone National Park, one pH 3.3 and 36 °C and the other pH 7.6 and 61 °C flow together to create a mixing zone on the order of a few meters. Geochemical measurements were made at both in-coming streams and at a site of complete mixing downstream of the mixing zone, at pH 6.5 and 46 °C. Compositions were estimated across the mixing zone at 1 cm intervals using microsensor temperature and conductivity measurements and a mixing model. Qualitatively, there are four distinct ecotones existing over ranges in temperature and pH across the mixing zone. Community analysis of the 16S rRNA genes of these ecotones show a peak in diversity at maximal mixing. Principle component analysis of community 16S rRNA genes reflects coexistence of species with communities at maximal mixing plotting intermediate to communities at distal ends of the mixing zone. These spatial biological and geochemical observations suggest that the mixing zone is a dynamic ecosystem where geochemistry and biological diversity are governed by changes in the flow rate and geochemical composition of the two hot spring sources. In ecology, understanding how environmental disruption increases species diversity is a foundation

  5. Multiscale model for predicting shear zone structure and permeability in deforming rock

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Pereira, Gerald G.; Lemiale, Vincent; Piane, Claudio Delle; Clennell, M. Ben

    2016-04-01

    A novel multiscale model is proposed for the evolution of faults in rocks, which predicts their internal properties and permeability as strain increases. The macroscale model, based on smoothed particle hydrodynamics (SPH), predicts system scale deformation by a pressure-dependent elastoplastic representation of the rock and shear zone. Being a continuum method, SPH contains no intrinsic information on the grain scale structure or behaviour of the shear zone, so a series of discrete element method microscale shear cell models are embedded into the macroscale model at specific locations. In the example used here, the overall geometry and kinematics of a direct shear test on a block of intact rock is simulated. Deformation is imposed by a macroscale model where stresses and displacement rates are applied at the shear cell walls in contact with the rock. Since the microscale models within the macroscale block of deforming rock now include representations of the grains, the structure of the shear zone, the evolution of the size and shape distribution of these grains, and the dilatancy of the shear zone can all be predicted. The microscale dilatancy can be used to vary the macroscale model dilatancy both spatially and temporally to give a full two-way coupling between the spatial scales. The ability of this model to predict shear zone structure then allows the prediction of the shear zone permeability using the Lattice-Boltzmann method.

  6. 75 FR 27982 - Foreign-Trade Zone 14-Little Rock, Arkansas Application for Reorganization/Expansion Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... Foreign-Trade Zones Board Foreign-Trade Zone 14--Little Rock, Arkansas Application for Reorganization... (759.48 acres)--located at the Little Rock Port Industrial Park; Site 2 (969.394 acres)--industrial area located adjacent to Site 1 at the southeast corner of the Little Rock Port Industrial Park, on the...

  7. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock

    NASA Astrophysics Data System (ADS)

    Falls, Stephen D.; Young, R. Paul

    1998-04-01

    Acoustic emission (AE) and ultrasonic-velocity monitoring studies have been undertaken at both the Atomic Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Laboratory (HRL). At both locations the excavations were tunnels in granitic material at approximately 420 m depth. However, the stress regime was more severe at the URL Mine-by tunnel site than the HRL ZEDEX tunnel. Different parts of the ZEDEX tunnel were created using different excavation techniques. Using AE and ultrasonic techniques to study these tunnels we have been able to examine the nature of the excavation-disturbed zone around the tunnel, as well as examining the effects of different stress regimes and excavation techniques. Studies were undertaken both during and after the Mine-by tunnel excavation and during excavation in the ZEDEX tunnel. AE monitoring in the wall of the Mine-by tunnel during excavation showed that some activity occurred in the sidewall regions, but the spatial density of AE hypocentres increased toward the regions in the floor and roof of the tunnel where breakout notches formed. This sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE monitoring in the floor of the tunnel showed that small numbers of AE continued to occur in the notch region in the floor of the tunnel over 2 years after excavation was completed. This activity became more acute as the rock was heated, imposing thermally induced stresses on the volume. Ultrasonic-velocity studies both in the floor and the wall of the tunnel showed that the velocity is strongly anisotropic with the direction of slowest velocity orthogonal to the tunnel surface. The velocity increased with distance into the rock from the tunnel surface. In the floor, this effect was seen up to 2 m from the tunnel surface. Most of the change occurred within the first 0.5 m from the tunnel perimeter. At the lower-stress HRL, most of

  8. Deformation and fluid flow during fault zone development in granitic rocks

    SciTech Connect

    Pollard, D.D.; Buergmann, R.; Christiansen, P.P. . Geology Dept.); Martel, S.J. )

    1992-01-01

    Fault zone development in crystalline rock of the Lake Edison granodiorite, Sierra Nevada, California, is characterized by five stages with distinct physical mechanisms, each identified by outcrop mapping, and understood through mechanical analysis. Because fluid flow through the developing fault system can influence the rock properties and loading, and because rock fracturing can influence the fluid pathways, the phenomena of deformation and fluid flow are closely coupled. Both the faulting mechanisms and the evolution of permeability in crystalline rocks are demonstrably different from fault zones in porous sedimentary rocks. The paper describes the five stages of fault development. Deformation of the adjacent granodiorite at each stage of growth for a particular fault zone depended on the distribution of slip. This distribution is a function of the remote stress state, the constitutive rock properties, the geometry of the fault surfaces, and their frictional properties. Simple forward models, using elasticity theory, illustrate how the displacement distributions can vary with remote loading, friction, and geometry. Inverse methods provide the analytical tools to deduce these variables from outcrop data, but their implementation awaits a credible model that couples the fluid flow and rock deformation.

  9. The October 30, 1994, seismic disturbance in South Africa: Earthquake or large rock burst?

    NASA Astrophysics Data System (ADS)

    Bowers, David

    1997-05-01

    The relative amplitude method is applied to body waves recorded at teleseismic distances from the October 30, 1994, mb 5.6 seismic disturbance, in South Africa, to determine the source depth and moment tensor. The results indicate that the source is shallow and that moment tensors with a positive volume change component are inconsistent with the observations. Observations of Rg in the frequency range 0.5-2.0 Hz at two regional distance stations also indicate that the source is shallow (less than about 3 km deep). Three-component broadband and long-period seismograms recorded at regional distances show strong Love wave excitation and a lobed Rayleigh radiation pattern, observations that are inconsistent with collapse mechanisms recently proposed for some large rock bursts (mine tremors). Modeling of teleseismic broadband P and regional distance surface waves shows that the source depth is shallow (2-3 km) and that the observed source radiation is consistent with that expected from a 45° normal dip-slip fault. The results of the modeling are confirmed by reports from the mining region that the disturbance was a mine tremor caused by slip on the Stuirmanspan Fault in the President Brand mine at a depth of between 2 and 3 km. The close match between observed and synthetic P and Rayleigh wave amplitudes suggests that the explosion-like mb: Ms of the mine tremor (mb 5.6, Ms 4.7) is attributable to the effect of the mechanism and the shallow depth of the source. The above results are at odds with those of Fan and Wallace [1995], who interpreted this disturbance as an earthquake at a depth of 12 km, based on a broadband inversion of three-component waveforms from two regional distance stations. This study confirms the need to interpret both broadband waveforms (to match amplitude and polarity) and short-period waveforms (to confirm (relative) onset times in the model structure) if inversion of regional broadband waveforms is to provide a reliable estimate of the moment

  10. Fluid-rock Interaction and Episodic Fluid Flow within the Hurricane Fault-zone

    NASA Astrophysics Data System (ADS)

    Koger, J.; Newell, D. L.

    2015-12-01

    The Hurricane Fault is an active 250-km long, west dipping, Basin and Range bounding normal fault in SW Utah and NW Arizona. Fault rock alteration and mineralization is common in the damage zone along strike, indicating that this structure has influenced past groundwater flow. Multiple Quaternary basaltic centers are located proximal to the fault. This study tests the hypothesis that fault-zone diagenesis is being driven by deeply circulated meteoric groundwater infiltration and associated rock-water interaction that is punctuated by periods of hydrothermal alteration associated with local magmatism. Fault-parallel/oblique fractures and small-offset antithetic and synthetic normal faults have been found within fault-zone rocks. The intensity of fracturing and associated evidence of fluid-rock interaction progressively decreases away from the main fault trace into the footwall. Host rock alteration, hematite mineralized fault surfaces, and calcite and hematite cemented deformation bands and veins are observed. These features are focused in 1 - 2 m wide zones of fracturing with densities of 6 - 18 m-1 located within the footwall damage zone. Host rock alteration in the form of both "bleaching" and oxidation along fractures provides evidence for past redox reactions. Mineralization in deformation bands suggests that some fluid flow and diagenesis was penecontemporaneous with deformation. Laminations and cross-cutting relationships in veins indicate periodic mineralization that could be controlled by episodic fluid flow, or fracturing and degassing leading to calcite precipitation. Stable isotopic results from calcite veins show δ13CPDB values of -7 to 3 ‰ and δ18OPDB values of -19 to -9 ‰. Carbon stable isotope ratios suggest multiple carbon sources such as marine carbonates, organic sedimentary rocks, and mantle derived CO2. Temperature differences in paleofluids and associated fluid-rock interaction may explain the observed range in δ18O values. Fluid

  11. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  12. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  13. Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, P.; Weinert, S.; Bignall, G.; Sass, I.

    2016-09-01

    Greywacke of the Waipapa and Torlesse (Composite) Terrane form the basement of the Taupo Volcanic Zone (TVZ), New Zealand. Together with inferred buried lavas, domes and igneous complexes they are likely to be the dominant rock type prevailing at depths > 4 km beneath the TVZ. A fundamental understanding of the rock properties of the deep formations is of utmost importance for the exploration of deep unconventional geothermal resources. An outcrop analogue study was conducted to improve the understanding of the thermo-physical rock properties of likely deep buried rock formations beneath the TVZ. A total of 145 core samples were taken at 10 locations inside and outside the TVZ and their grain and bulk density, porosity, matrix permeability, bulk thermal conductivity and specific heat capacity, and the compressional and shear wave velocities measured on oven-dry samples. Additional tests of the unconfined compressive strength were conducted for selected greywacke samples to quantify their mechanical rock strength. The obtained data indicates that the thermo-physical rock properties are mainly controlled by porosity, and minor by mineralogy, texture and grain size. Samples from Waipapa-type and Torlesse-type greywacke exhibit minor rheological differences, with Waipapa-type greywacke having lowest porosity (about 1% vs. 3%) and highest bulk thermal conductivity (2.5 W m- 1 K- 1 vs. 1.7 W m- 1 K- 1) and specific heat capacity (0.8 kJ kg- 1 K- 1 vs. 0.7 kJ kg- 1 K- 1). Matrix permeability is < 1E-16 m2 for all greywacke samples. Tested lavas exhibit heterogeneous rock properties due to their wide range of porosity (< 1% up to 32%). The thermo-physical rock properties were tested at laboratory conditions (ambient temperature and pressure), which do not reflect the in situ conditions at greater depth. With depth, thermal conductivity and acoustic wave velocity are likely to decrease caused by micro fractures resulting from thermal cracking of the rock, while specific

  14. Energy stability of thermocapillary convection in a model of the float-zone crystal-growth process. II - Nonaxisymmetric disturbances

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Law, C. C.; Jankowski, D. F.; Mittelmann, H. D.

    1991-01-01

    Energy-stability theory has been applied to investigate the stability properties of thermocapillary convection in a half-zone model of the float-zone crystal-growth process. An earlier axisymmetric model has been extended to permit nonaxisymmetric disturbances, thus determining sufficient conditions for stability to disturbances of arbitrary amplitude. The results for nonaxisymmetric disturbances are compared with earlier axisymmetric results, with linear-stability results for a geometry with an infinitely long aspect ratio and with stability boundaries from recent laboratory experiments.

  15. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  16. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  17. Earthquake faulting in subduction zones: insights from fault rocks in accretionary prisms

    NASA Astrophysics Data System (ADS)

    Ujiie, Kohtaro; Kimura, Gaku

    2014-12-01

    Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) and fault rock studies in accretionary prisms exhumed from source depths of subduction earthquakes have greatly improved our understanding of earthquake faulting in subduction zones. Here, we review key advances that have been made over the last decade in the studies of fault rocks and in laboratory experiments using fault zone materials, with a particular focus on the Nankai Trough subduction zone and its on-land analog, the Shimanto accretionary complex in Japan. New insights into earthquake faulting in subduction zones are summarized in terms of the following: (1) the occurrence of seismic slip along velocity-strengthening materials both at shallow and deep depths; (2) dynamic weakening of faults by melt lubrication and fluidization, and possible factors controlling coseismic deformation mechanisms; (3) fluid-rock interactions and mineralogical and geochemical changes during earthquakes; and (4) geological and experimental aspects of slow earthquakes.

  18. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark G.; Goldberg, Steven A.; Hanley, Thomas B.; Kunk, Michael J.

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 ±15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomogenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian 40Ar/39Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghanian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  19. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect

    Steltenpohl, M.G. ); Goldberg, S.A. ); Hanley, T.B. ); Kunk, M.J. )

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  20. Significance of fracture rim zone heterogeneity for tracer transport in crystalline rock

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.

    2010-03-01

    Conducting fractures of crystalline rock are typically altered over long periods of time. The fracture rim zone, a result of these alterations, will as a rule have different physical and chemical properties from the unaltered ("fresh") rock, depending on various microscopic and macroscopic factors of the alterations. In this paper, we study the impact of rim zone heterogeneity, exemplified by a decreasing porosity trend as inferred from the Äspö Hard Rock Laboratory site (Sweden), on short- and long-term tracer transport. Our main finding is that this particular rim zone structure will have a dominant effect on transport of moderately to strongly sorbing tracers on experimental time scales and a notable effect on application time scales. The findings of this work lend further support to the interpretation of the relatively strong retention reported by Cvetkovic et al. The fracture rim zone porosity structure may provide an additional safety margin for sorbing radionuclides in crystalline rock at sites where fracture alteration is prevalent.

  1. 75 FR 51185 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Rock Sole in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Economic Zone Off Alaska; Reallocation of Rock Sole in the Bering Sea and Aleutian Islands Management Area... of the 2010 rock sole total allowable catch (TAC) specified for the Bering Sea and Aleutian Islands... management area (BSAI). This action is necessary to allow the 2010 total allowable catch of rock sole to be...

  2. Mapping of hydrothermal alternation zones and regional rock types using computer enhanced ERTS MSS images. [Nevada

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Wetlaufer, P. H.; Billingsley, F. C.; Goetz, A. F. H.

    1974-01-01

    A combination of digital computer processing and color compositing of ERTS MSS images has been used to map hydrothermal alternation zones and regional rock types in south-central Nevada. The technique is based on enhancement of subtle visible and near infrared reflectivity differences between mineralogically dissimilar rocks, especially unaltered and altered rocks. MSS spectral bands are ratioed, pixel by pixel, in the computer and subsequently stretched. These ratio values are used to produce a new black and white image which shows the subtle spectral reflectivity differences. Additional enhancement is achieved by preparing color composites of two or more stretched ratio images. The choice of MSS bands for rationing depends on the spectral reflectance properties of the rocks to be discriminated. Although this technique is in the initial stage of development and is untested in other areas, it already appears to have considerable potential for targeting mineral prospects and for regional geologic mapping.

  3. Characterizing fractures and shear zones in crystalline rock using anisotropic seismic inversion and GPR imaging

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Krietsch, Hannes; Lajaunie, Myriam; Jordi, Claudio; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansrudi

    2017-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. In the framework of an in-situ stimulation experiment at the Grimsel Test Site, a detailed rock mass characterization was carried out, combining geological and geophysical methods. While geological observations from tunnel mapping, core- and geophysical borehole-logging are reliable, the obtained data could just be interpolated between tunnels and boreholes. The geophysical surveys, including ground-penetration radar (GPR) imaging and tunnel-tunnel seismic tomography were able to image shear and fracture zones throughout the experimental volume. Clear GPR reflections up to a distance of 30 m from the tunnels allow to define the geometry of tunnel-mapped shear zones in the center of the experimental volume. Anisotropic traveltime inversion of tunnel-tunnel seismic data reveals fracture zones as low velocity zones and ductile shear zones as areas of increased seismic anisotropy. It is thus possible to characterize both type and geometry of shear and fracture zones, which is important for the planned rock stimulation. Combining the GPR and seismic results with the geological information, the geological model could be significantly improved, demonstrating the potential to characterize even subtle geological features in 3D.

  4. Where microorganisms meet rocks in the Earth's Critical Zone

    NASA Astrophysics Data System (ADS)

    Akob, D. M.; Küsel, K.

    2011-03-01

    The Earth's Critical Zone (CZ) is the critical, outer shell of the Earth that provides an arena for the interplay of diverse physical, chemical, and biological processes that are fundamental for sustaining life. As microbes are the principle drivers of biogeochemical cycles, it is necessary to understand the biodiversity of the CZ unseen majority and their impact on life-sustaining processes. This review aims to summarize the factors controlling where microbes (prokaryotes and micro-eukaryotes) live within the CZ and what is known to date about their diversity and function. Microbes live in all regions of the CZ down to 5 km depth, but due to changing habitat complexity, e.g., variability in pore spaces, water, oxygen, and nutrients, their functional role changes with depth. The abundance of prokaryotes and micro-eukaryotes decreases from a maximum of 1010 or 107 cells g soil-1 up to eight orders of magnitude with depth. Symbiotic mycorrhizal fungi and free-living decomposers are best understood in soil habitats, where they are up to 103 cells g soil-1. However, little is known about their identity and impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that these organisms are either limited in space or nutrients or unable to cope with oxygen limitations. Since deep regions of the CZ are limited in the recent input of photosynthesis-derived carbon, microbes are dependent on deposited organic material or on chemolithoautotrophic metabolism that allows for the establishment of a complete food chain independent from the surface. However, the energy flux available might only allow cell growth over tens to thousands of years. The recent development of "omics" technologies has provided microbial ecologists with methods to link the composition and function of in situ microbial communities. We should expect new metabolic discoveries as we have a closer look utilizing a polyphasic approach into the

  5. Characterising and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal

    SciTech Connect

    Hudson, J.A.; Backstrom, A.; Rutqvist, J.; Jing, L.; Backers, T.; Chijimatsu, M.; Christiansson, R.; Feng, X.-T.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Neretnieks, I.; Pan, P.Z.; Rinne, M.; Shen, B.-T.

    2008-10-01

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the Excavation Damaged Zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish Aespoe Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ.

  6. Ultrasonic probing of the fracture process zone in rock using surface waves

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.; Spetzler, H.

    1984-01-01

    A microcrack process zone is frequently suggested to accompany macrofractures in rock and play an important role in the resistance to fracture propagation. Attenuation of surface waves propagating through mode I fractures in wedge-loaded double-cantilever beam specimens of Westerly granite has been recorded in an attempt to characterize the structure of the fracture process zone. The ultrasonic measurements do not support the generally accepted model of a macroscopic fracture that incrementally propagates with the accompaniment of a cloud of microcracks. Instead, fractures in Westerly granite appear to form as gradually separating surfaces within a zone having a width of a few millimeters and a length of several tens of millimeters. A fracture process zone of this size would necessitate the use of meter-sized specimens in order for linear elastic fracture mechanics to be applicable.

  7. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively

  8. Of Rock Damage and the Regolith Conveyor Belt: A Geomorphologist's View of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, S. P.; Tucker, G. E.

    2011-12-01

    Models of hillslope evolution require rules for the rate of detachment of rock into the mobile regolith layer, for the rate of mobile regolith transport, and for channel incision or aggradation rates that serve as boundary conditions. The evolution of material as it passes through the weathered zone is typically ignored, making it difficult to cast proper rules for production of mobile regolith. The current rules are therefore insufficient to address critical zone evolution, in which the chemical, mechanical, and hydrologic properties of the rock and the regolith matter. These properties evolve as rock is weathered during exhumation, and they continue to evolve as particles ride the conveyor belt of mobile regolith downslope. Models that honor specific processes involved in the evolution of rock as it passes through the CZ will both advance models of landscape evolution, and provide context for ecological and hydrological investigations. Physical processes responsible for progressive damage of rock during exhumation in the current CZOs include frost cracking and tree root cracking. If we define damage as the density of flaws within the rock, we require rules governing the rate of generation of new flaws, which will vary with climate, depth, and the present state of damage. We envision a "damage-limited system" in which the likelihood of release of rock fragments into mobile regolith depends on the accumulated damage in the subjacent rock. In most temperate and alpine settings relevant to the present CZOs, the ratio of a rock's residence time in the damage zone to the duration of a climate oscillation is such that a rock parcel will experience the full spectrum of Quaternary climates. This requires that we address both climate history and the damage and transport rates associated with all Quaternary climates. We present numerical models for rock damage, mobile regolith production, and hillslope profile evolution. These models are motivated by the Boulder Creek CZO

  9. In Brief: Anoxic ``dead zones'' in oceans; Some Mars rocks likely formed in water

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Jacobs, Judith

    2004-04-01

    The number of oxygen-starved ``dead zones'' in the world's oceans and seas is rising, according to a report of the United Nations Environment Programme published 29 March-the result of excessive nutrients, mainly nitrogen, from the use of synthetic fertilizers in agriculture, as well as vehicle and factory air emissions. NASA's Opportunity Rover has found that some rocks on Mars probably formed as deposits in a shallow salt flat, or playa, rover science team members announced on 23 March. When scientists announced on 2 March that they had found strong evidence that a rock outcrop in Mars' Meridiana Planum region once was a wet and habitable environment, they had still been uncertain about whether the rocks had been laid down in liquid water. (See Eos, 16 March 2004.)

  10. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    SciTech Connect

    Moretti, I.; Montemurro, G.; Aguilera, E.; Perez, M.; Martinez, E.Diaz

    1996-08-01

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mg HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.

  11. Geological and structural characterisation of deformation zones of deep seated rockslides in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Strauhal, T.; Zangerl, C.; Fellin, W.; Brandner, R.

    2012-04-01

    Generally, deep-seated slowly moving rockslides, characterised by average slope velocities in the range of some mm to dm per year, are frequently observed in foliated metamorphic rock masses such as gneisses, schists and phyllites. Many case studies show that this activity behaviour results from deformation, i.e. sliding/creeping along one or several discrete deformation zones which originate from initial rockslide formation processes. From a geological and structural point of view such deformation zones are extremely heterogeneous and are composed of uncemented fault breccias and gouges. The material that is newly formed through cataclasis and fragmentation of the rock during shearing processes possesses soil-like mechanical as well as hydraulical properties. Consequently, slope stability and temporal deformation behaviour of rockslides is dominated by hydro-mechanical deformation zone characteristics rather than by the properties of the overall mass movement. In this study preliminary investigation results about the geological structure and mechanical behaviour of deformation zones of deep-seated rock slides are presented. The case studies herein are located in paragneissic rock masses of the polymetamorphic Austroalpine Ötztal-Stubai complex (Tyrol, Austria). In order to focus on the characterisation of the structure of deformation zones the degree of fragmentation, the spatial distribution of clay-gouges and breccias, moisture content and porosity, the distribution of shear planes, the mineralogical composition and grain shapes as well as grain alignment are investigated. Furthermore the shear strength properties (residual friction angles) are determined by ring shear tests. The results obtained are analysed in combination with geological, structural and geometrical observations of the rockslides from detailed field mapping, borehole and investigation adit data as well as slope deformation measurements. Preliminary results show a complex geological and

  12. Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.

    2003-01-01

    Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.

  13. Rock Magnetic Study in the Methanogenesis Zone, Site U1437, IODP Exp 350, Izu Rear Arc

    NASA Astrophysics Data System (ADS)

    Kars, M. A. C.; Musgrave, R. J.; Kodama, K.; Jonas, A. S.

    2015-12-01

    In 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu Bonin rear arc. The Site presents an unusual deep methanogenesis zone because of a release of sulfate below the sulfate reduction zone (27-83 mbsf) which may buffer methanogenesis by anaerobic methanogens. Methane abundance gradually increases with depth, with significant abundance at ~750-1459 mbsf with a maximum value at 920 mbsf. The rock magnetic study carried out in Hole U1437D from ~775 to ~1000 mbsf shows a drastic change of the magnetic properties at ~850 mbsf coincidently with a stronger release of methane from < 60 ppm at 841 mbsf to ~300 ppm at 854 mbsf. That also corresponds to a depth interval where no core was recovered (~846-854 mbsf). For the sake of clarity, we call hereafter zone A the depth interval above this non-recovered interval (775-846 mbsf) and zone B the interval below (854-1000 mbsf). Both belong to the same lithostratigraphic unit composed of tuffaceous mudstones intercalated with volcanoclastics. In the zone A, NRM, magnetic susceptibility, ARM, SIRM, HIRM display high values. In the zone B, these parameters show much lower values of one order of magnitude less, except for the interval 936-950 mbsf that corresponds to a local maximum (but still lower values than the zone A). Besides, the rock magnetic parameters for grain size and coercivity, such as ARM/χ, S-ratio and Bcr do not show any variations throughout the entire studied interval, although S-ratio displays slightly lower values from ~850 to ~930 mbsf. Grains are low coercivity pseudo-single domain sized. According to the present data, two preliminary hypotheses can be proposed to explain the observations. 1) The non-recovered interval between the zones A and B can be caused by the presence of a sedimentary hiatus and/or a fault, which may be consistent with the observed change in sedimentation rate. 2) No hiatus in the sedimentation. The changes in the magnetic properties can be explained by a

  14. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  15. Analysis of potential cave-in from fault zones in hard rock subsea tunnels

    NASA Astrophysics Data System (ADS)

    Nilsen, B.

    1994-04-01

    As a part of a research program on the rock engineering aspects of hard rock subsea tunnelling, analyses of potential cave-in from fault zones have been carried out at the Norwegian Institute of Technology. This is a topic of great importance for the planning of future subsea tunnels, and particularly for the selection of the minimum rock cover of such projects. The paper is divided into three main parts: a) review of cases of instability in Norwegian subsea tunnels, b) evaluation of theoretical maximum sliding, and c) discussion of cases of cave-in in tunnels under land. In theory, a cave-in during subsea tunnelling may propagate far higher than the normal minimum rock cover. Taking into consideration the comprehensive geo-investigations that are always carried out for subsea tunnel projects today, it would, however, be unrealistic to base the dimensioning of rock cover for future projects on worst-case scenarios. Consequently, the main result of this study is to emphasize the importance of comprehensive geo-investigations, detailed tunnel mapping, a high degree of readiness during tunnelling and a thorough quality control.

  16. Geochemical evolution of a fractured zone in the cap rock of an underground carbon storage site

    NASA Astrophysics Data System (ADS)

    Vialle, S.; Druhan, J. L.; Maher, K.

    2013-12-01

    Assessment and management of environmental risks associated with underground storage of CO2 in geological systems is essential for the commercial deployment of this technology. A major risk is leakage of the CO2 from its storage reservoir, through wellbores, and along faults and fractures in the cap rock. The geochemical reactions likely to take place as CO2 leaks through a damage zone and their impact on cap rock integrity still need to be better understood and quantified. Should CO2 leakage occur, geochemical reactions would govern the environmental impact on shallow groundwater aquifers and could provide an indication of the leak prior to surface-based monitoring techniques. We used the reactive transport code TOUGH2/TOUGHREACT to model a leakage scenario through a fractured cap rock. Since geochemical reactions will strongly depend upon the local hydrodynamics of the CO2 leak, the first step of the study is to provide an appropriate physical representation of fluid flow through the system. Typically, for a low porosity rock formation, a fault/damaged zone system is composed of a core of low permeability and a damage zone with second-order fractures whose density decreases with distance from the fault core. Permeability is thus increased along the fault plane and laterally decreases down to the permeability value of the undamaged cap rock. Appropriate scaling relationships (e.g., and analytical expression of for permeability as a function of fracture aperture and fracture density), effective physical parameters as well as constitutive relationships are carefully chosen to model the fractured system, treated as an equivalent porous medium. The cap rock is initially saturated with brine (salinity of 0.15 in mass fraction) and due to overpressure in the lower storage reservoir, CO2 migrates through the damage zone. Geochemical reactions involve both salt precipitation due to the partitioning of H2O and CO2 between liquid and gas phases as well as well reactions

  17. Multiple-Code BenchMaek Simulation Stidy of Coupled THMC Processes IN the EXCAVATION DISTURBED ZONE Associated with Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; X. Feng; J. Hudson; L. Jing; A. Kobayashi; T. Koyama; P.Pan; H. Lee; M. Rinne; E. Sonnenthal; Y. Yamamoto

    2006-05-08

    An international, multiple-code benchmark test (BMT) study is being conducted within the international DECOVALEX project to analyze coupled thermal, hydrological, mechanical and chemical (THMC) processes in the excavation disturbed zone (EDZ) around emplacement drifts of a nuclear waste repository. This BMT focuses on mechanical responses and long-term chemo-mechanical effects that may lead to changes in mechanical and hydrological properties in the EDZ. This includes time-dependent processes such as creep, and subcritical crack, or healing of fractures that might cause ''weakening'' or ''hardening'' of the rock over the long term. Five research teams are studying this BMT using a wide range of model approaches, including boundary element, finite element, and finite difference, particle mechanics, and elasto-plastic cellular automata methods. This paper describes the definition of the problem and preliminary simulation results for the initial model inception part, in which time dependent effects are not yet included.

  18. Ultramafic rocks of the western Idaho suture zone: Asbestos Peak and Misery Ridge

    SciTech Connect

    Godchaux, M.M. . Dept. of Geology); Bonnichsen, B. )

    1993-04-01

    The Western Idaho Ultramafic Belt extends northward from the town of Weiser to the northern end of Dworshak Reservoir; in its northern portion most of the ultramafic bodies are localized along the suture zone where the Mesozoic oceanic accreted terranes meet the continental craton. Of the twenty bodies investigated, all are small, all are in fault contact with their metavolcanic and metasedimentary host rocks, all have been metamorphosed, and all display deformational fabrics in at least some portion of the outcrop area, suggesting that deformation continued after peak metamorphism. The degree of metamorphism ranges from incipient serpentinization to attainment of equilibrium in the upper amphibolite facies. Some bodies have been intruded by granitic dikes or pegmatite veins after emplacement, and have locally undergone contact metasomatism. Two particularly complex bodies, Asbestos Peak and Misery Ridge, were chosen for detailed petrographic and chemical study. Asbestos Peak is composed mostly of decussate anthophyllite-talc rock containing isolated patches of harzburgite protolith, and has blackwall border zones. Misery Ridge is composed mostly of coarse-grained sheared tremolite-talc schist without remnant protolith, and lacks true blackwall zones. Both bodies exhibit an unusual and enigmatic hornblende-poikiloblastic garnet-green spinel-skeletal ilmenite assemblage, present in some places as well-defined border zones and in other places as cross-cutting bodies.

  19. Synthesis of Concepts in Disturbance Hydrology and the Importance for Hydrologic Response to Extreme Hydroclimatic Events in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Mirus, B. B.

    2014-12-01

    The watersheds we rely on for water resources, ecosystem services, and protection from hydrologically driven natural hazards are increasingly impacted by landscape disturbance. Abrupt alterations of hydrologic processes resulting from wildfires, urban development, resource extraction, deforestation, hurricanes, tsunamis, and landslides change the storage or buffering capacity as well as the hydrologic functional connectivity in watersheds. We highlight some of the critical issues and major challenges to predicting disturbance impacts on water resources and natural hazards and outline some of the opportunities for improved mechanistic understanding of how disturbances propagate through landscape hydrological processes. In particular, we emphasize synthesis of conceptual commonalities and opportunities from other disciplines, primarily ecologic sciences, which are well versed in the study of disturbed landscapes. Cross scale interactions and complex adaptive systems theory are examples of useful concepts for synthesis across different disturbance effects. We also highlight the importance of improved understanding of disturbance hydrology for predicting the effects of extreme hydroclimatic events on the hydrologic response of the Critical Zone. An example from the Front Range of the Rocky Mountains, USA of a watershed with multiple disturbances subjected to a low frequency extreme rainfall event is presented to show the diversity of runoff generation mechanisms and the implications for watershed scale impacts.

  20. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  1. Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones

    SciTech Connect

    Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

    1998-12-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

  2. Investigations of Magnetic Field Disturbances at Little Rock Air Force Base Compass Calibration Hardstand

    DTIC Science & Technology

    1990-09-01

    magnetic field disturbance. Examination of a piece of the hardstand concrete reveals that the aggregate is igneous (nepheline syenite )-with magnetite as an...nepheline syenite ) with magnetite as an accessory mineral. The permanent magnetization of the aggregate is sufficient to visibly deflect the needle...aggregate is a dark, igneous material (Figure 10). The aggregate is from a well known local quarry, and is identified as nepheline syenite , which has

  3. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  4. Geoelectric characteristics of portions of the Raha fault zone and surrounding rocks, Jabal As Silsilah Quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Zablocki, Charles J.; Hajnour, M.O.

    1987-01-01

    Telluric-electric and auto-magnetotelluric measurements obtained in and around the Raha fault zone in the Buqaya area indicate that it dips steeply to the southwest. Large contrasts in the electrical properties of Qarnayn and Maraghan metasedimentary rocks located on either side of the fault are characteristic of the rocks within the fault zone. However, no large electrical contrasts were detected along several segments of a southern branch of the main fault in the Shiaila area, indicating that the rocks on either side of the fault are of similar composition. Extremely low resistivity readings in the Buqaya and Shiaila areas are associated with fracturing and clay-bearing gouge that accompany known shear zones. The locations of several shallow plutons have been inferred from these studies, one of which is probably a source of gold-bearing quartz veins in the metasedimentary rocks of the Shiaila area.

  5. Ultramafic rocks of a fracture-zone ophiolite, North Cascades, Washington

    NASA Astrophysics Data System (ADS)

    Miller, Robert B.; Mogk, David W.

    1987-11-01

    The Ingalls Complex was deformed in a Late Jurassic oceanic fracture zone. An unusually diverse group of ultramafic tectonites comprise three units in this ophiolite. Unit 1 consists mostly of poorly to moderately foliated harzburgite and dunite characterized by porphyroclastic textures. Irregular-shaped and tabular dunite bodies probably represent intrusive bodies or residues of partial melting. Voluminous Unit 2 consists mostly of poorly to strongly foliated Iherzolite and clinopyroxene-bearing harzburgite, plagioclase peridotite is present locally. Olivine and enstatite generally define equigranular mosaics or weakly porphyroclastic textures. Clinopyroxene, however, in some samples displays only weak deformation, compositional zoning, simple (growth?) twins and interstitial, commonly poikilitic texture. Clinopyroxene and plagioclase in these samples probably formed from a melt after recrystallization of olivine and enstatite, indicating that these Iherzolites are impregnated peridotites. Other Iherzolites and clinopyroxene-bearing harzburgites may represent weakly depleted mantle. Pods of metagabbroic gneiss within Unit 2 probably are small intrusions that were deformed as they cooled. Unit 3 represents a major high-temperature ( 700 °≥ 900 ° C) shear zone that separates Units 1 and 2, and consists of strongly foliated, commonly mylonitic Iherzolites and hornblende peridotites. The latter are the most strongly foliated ultramafites, and olivine in them records stresses as high as 275 MPa. The abundance of hornblende implies a genetic relationship between mylonitization and the hydration and metasomatism necessary to form such rocks from Iherzolites. Mineral chemistry and geothermometry are typical of mantle tectonites in many ophiolites and oceanic fracture zones. There is a particularly strong similarity between the spinels in the Ingalls Complex and the spinels from the Owen and Vema fracture zones. Hornblende in Unit 3 ranges from edenite to edenitic

  6. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  7. Petrological and geochemical studies of ultramafic-mafic rocks from the North Puruliya Shear Zone (eastern India)

    NASA Astrophysics Data System (ADS)

    Mandal, Aditi; Ray, Arijit

    2015-12-01

    Ultramafic and mafic rocks occur within a linear belt, trending nearly E-W along North Puruliya Shear Zone of the Chhotanagpur Gneissic Complex (CGC). These rocks are classified as gabbro, norite, gabbro-norite, dolerite, diorite, olivine-websterite and lherzolite. Mafic rocks (Group 1) often occur in association with ultramafic variants (Group 2) and sometimes in isolation. A genetic link has been established between these mafic and ultramafic rocks using disposition of ultramafic and mafic rocks in the outcrop, systematic variation in modal mineralogy, co-linearity of plots in biaxial chemical variation diagram. Chemical composition of biotite and clinopyroxene reveal calc-alkaline nature and arc signature in these mafic-ultramafic rocks and whole rock geochemical characters indicate similarity with arc magma in subduction zone setting. The high values of Mg no. (47-81) and Al 2 O 3 (5.5-17.9) of mafic rocks indicate primitive, aluminous nature of the parental melt and presence of amphibole and biotite indicate its hydrous nature. The parent mafic melt evolved through fractionation of olivine, spinel, clinopyroxene and plagioclase. The crystal cumulates gave rise to the ultramafic rocks and the associated mafic rocks formed from residual melt. Crustal contamination played an important role in magmatic evolution as evident from variation in abundance of Rb in different lithomembers. Mafic-ultramafic rocks of the present study have been compared with intra-cratonic layered complexes, mafic-ultramafic rocks of high grade terrain, Alaskan type ultramafic-mafic complex and ophiolites. It is observed that the ultramafic-mafic rocks of present study have similarity with Alaskan type complex.

  8. P-waves imaging of the FRI and BK zones at the Grimsel Rock Laboratory

    SciTech Connect

    Majer, E.L.; Peterson, J.E. Jr. ); Blueming, P.; Sattel, G. )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geological repository for nuclear waste. Tomographic imaging studies using a high frequency (10 Khz.) piezoelectric source and a three component receiver were carried out in two different regions of the underground Nagra Grimsel test facility in Switzerland. Both sites were in fractured granite, one being in a strongly foliated granite (FRI site), and the other being in a relatively homogeneous granite (BK zone). The object of the work was to determine if the seismic techniques could be useful in imaging the fracture zones and provide information on the hydrologic conditions. Both amplitude and velocity tomograms were obtained from the Data. The results indicate that the fracture zones strongly influenced the seismic wave propagation, thus imaging the fracture zones that were hydrologically important. 11 refs., 24 figs.

  9. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  10. Evaluation of Coseismic Fluid-Rock Interaction in Fault Zones on the Basis of Geochemistry of Fault Rocks in Accretionary Prisms

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Hirono, T.; Honda, G.

    2011-12-01

    Recent studies revealed that concentration and isotopic composition of fluid-mobile trace elements such as Li, Rb, Cs and Sr in slip-zone rocks can change significantly during coseismic fluid-rock interaction at high temperatures (e.g., Ishikawa et al., 2008). In this study, we summarize the results obtained for fault-zone rocks recovered from various depths of the subduction zones. Analysis of a slip-zone sample recovered from shallow portion (0.27 km bsf) of the magasplay fault at Site C0004, IODP Exp. 316, Nankai Trough showed no clear fluid-induced geochemical signals, although a peak temperature over 300 deg. C is estimated on the basis of vitrinite reflectance data (Sakaguchi et al., 2011). In contrast, a major reverse fault in a fossil accretionary prism, the Emi Group (burial depth, 1-2 km) exhibited marked decreases of Li, Rb and Cs relative to adjacent host rocks, suggesting coseismic fluid-rock interactions at >350 deg. C. Geochemical signals observed in the Emi slip zone have a strong resemblance to those observed in the Taiwan chelungpu fault at comparable depths (1.1-1.2 km). Slip-zone samples collected from a fossil out-of-sequence thrust at greater depth (2.5-5.5 km) adjacent to the Kure Melange in the Shimanto accretionary prism showed unique geochemical characteristics, in which effects from disequilibrium flash melting to generate pseudotachylyte coexist with those from fluid-rock interactions at >350 deg. C. In the cases of Emi and Chelungpu, it is possible that the fluid-induced geochemical signatures, together with fluidization structures observed in these samples, resulted from thermal pressurization. On the other hand, the Kure data suggest a slip process in which high-temperature pore fluids were generated by frictional slip, but the thermally-enhanced pressure might not have reached a sufficient level to cause thermal pressurization, and the temperature continued to increase to attain melting. Kinetic estimation suggests that fluid

  11. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    PubMed

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  12. Comparative mineral chemistry and textures of SAFOD fault gouge and damage-zone rocks

    USGS Publications Warehouse

    Moore, Diane E.

    2014-01-01

    Creep in the San Andreas Fault Observatory at Depth (SAFOD) drillhole is localized to two foliated gouges, the central deforming zone (CDZ) and southwest deforming zone (SDZ). The gouges consist of porphyroclasts of serpentinite and sedimentary rock dispersed in a foliated matrix of Mg-smectite clays that formed as a result of shearing-enhanced reactions between the serpentinite and quartzofeldspathic rocks. The CDZ takes up most of the creep and exhibits differences in mineralogy and texture from the SDZ that are attributable to its higher shearing rate. In addition, a ∼0.2-m-wide sector of the CDZ at its northeastern margin (NE-CDZ) is identical to the SDZ and may represent a gradient in creep rate across the CDZ. The SDZ and NE-CDZ have lower clay contents and larger porphyroclasts than most of the CDZ, and they contain veinlets and strain fringes of calcite in the gouge matrix not seen elsewhere in the CDZ. Matrix clays in the SDZ and NE-CDZ are saponite and corrensite, whereas the rest of the CDZ lacks corrensite. Saponite is younger than corrensite, reflecting clay crystallization under declining temperatures, and clays in the more actively deforming portions of the CDZ have better equilibrated to the lower-temperature conditions.

  13. Gouge-zone or solid-rock: An experimental view on fault frictional behavior

    NASA Astrophysics Data System (ADS)

    Reches, Z.

    2015-12-01

    Natural faults always include zone(s) of breccia, gouge or cataclasite that localize the slip. In contrast, many rock mechanics experiments are conducted on experimental faults made of rough, solid blocks without fault-rock zones. We experimentally compare the frictional strength of solid experimental faults with fault-zones made of granular material in high-velocity/long-distance runs. The frictional evolution of solid and granular dolomite fault was tested in a rotary apparatus at slip velocity up to 1 m/s and normal stress up to 7 MPa. The granular samples were composed of the 125-250 microns fraction of the crushed dolomite. They were sheared in a confined, rotary cell with continuous monitoring of CO2 and H2O and mechanical data. The tests showed that the granular samples required longer slip-distances and higher velocities to evolve to a frictional strength similar to the solid samples. Yet, both sample types display similar evolution trends, including slip-weakening at velocities above ~0.05 m/s, and drastic velocity-weakening as slip velocity approached 1 m/s. At velocity above 0.3 m/s, a shining principal-slip-zone developed spontaneously with identical microstructure in both solid and granular sample: thickness < 1 micron and sintered, 20-40 nm nano-grains. This development was associated with intense emission of CO2 (Fig. 1). In a similar testing approach and conditions, we tested the friction evolution of granular granite from the San-Andreas fault-zone at Tejon-Pass, CA. These samples remained strong, μ =0.8-0.9, at velocities up to 0.8 m/s and slip-distances up to 3 m, in contrast to known frictional evolution of solid faults made of granite and tonalite. We envision that at the present slip-velocity/normal-stress, the dolomite samples reached a stage of thermally activated phase-transition and associated weakening, whereas the granitic samples were below such transition. Fig. 1. Evolotion of slip-velocity, friction, temperature and CO2 emission in

  14. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  15. Disturbance and coastal forests: a strategic approach to forest management in hurricane impact zones

    Treesearch

    John A. Stanturf; Scott L. Goodrick; Kenneth W. Outcalt

    2007-01-01

    The Indian Ocean Tsunami focused world attention on societal responses to environmental hazards and the potential of natural systems to moderate disturbance effects. Coastal areas are critical to the welfare of up to 50% of the world's population. Coastal systems in the southern United States are adapted to specific disturbance regimes of tropical cyclones (...

  16. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  17. Decoupling of Hf-Nd isotope ratios in early Archean rocks from southern West Greenland - primary or secondary disturbance?

    NASA Astrophysics Data System (ADS)

    Hoffmann, J.; Munker, C.; Polat, A.; Rosing, M.

    2010-12-01

    In contrast to the strongly coupled behaviour of the Lu-Hf and Sm-Nd systems in Phanerozoic and Proterozoic rocks, early Archean rocks, e.g. those from SW-Greenland, exhibit an apparent decoupling of both systems [e.g., 1]. This apparent decoupling may either indicate metamorphic disturbance or, alternatively, mirror early differentiation processes such as magma ocean crystallisation involving cumulate segregation [1]. To evaluate the issue, we performed combined measurements of Hf-Nd isotope compositions together with major and trace element measurements for well preserved >3.72 to >3.80 Ga old tholeiitic metabasalts and gabbros from the inner western part and the southwestern unit of the Isua Supracrustal Belt, SW-Greenland. A careful evaluation of alteration based on major and trace elements reveals pristine magmatic trends, and therefore near chondritic to moderately depleted initial ɛHf values of -0.2-+2.7 and initial ɛNd values of 0.0-+3.0 indeed most likely characterize the early Archean mantle sources. These values confirm a decoupling of the Hf-Nd systematics, but are in marked contrast to more depleted signatures in nearby boninite-like metabasalts of the Garbenschiefer unit [2]. In Sm-Nd and Lu-Hf isochron space, the Isua metabasalts yield early Archean ages, in agreement with emplacement ages inferred from crosscutting relationships with tonalites. Trace element compositions of the metabasalts indicate a source overprint by subduction components. It is likely, that the source overprint may have caused partial decoupling of ɛHf-ɛNd values, due to selective addition of Nd as in modern subduction settings. In this case, the most radiogenic initial ɛNd and ɛHf isotope values characterize the most depleted mantle sources, and less radiogenic values might reflect addition of more enriched subduction components. A comparison of our data with Hf-Nd isotope data from the literature for early Archean rocks from Greenland reveals an overlap in initial Hf

  18. Rb depletion in biotites and whole rocks across an amphibolite to granulite facies transition zone, Tamil Nadu, South India

    NASA Astrophysics Data System (ADS)

    Hansen, Edward; Ahmed, Khurram; Harlov, Daniel E.

    2002-09-01

    Relatively low concentrations of Rb and high K/Rb ratios are characteristic of many granulite facies terranes. This depletion in Rb has been attributed to both the removal of a partial melt and exchange with a metamorphic fluid phase. These models have been tested using Rb concentrations in biotites and whole rocks from intermediate and felsic gneisses collected along a traverse from just north of Krishnagiri to just north of Salem in Tamil Nadu State, South India. Along this traverse, the northern amphibolite-facies zone gives way to a clinopyroxene zone in which clinopyroxene appears in intermediate and felsic gneisses. Further south is the lowland charnockite zone characterised by the presence of orthopyroxene and the scarcity of clinopyroxene in intermediate to felsic gneisses. The abundance of orthopyroxene increases southwards and it is the dominant ferromagnesium silicate in the highland charnockite zone. There is a good correlation between Rb in biotite and whole-rock Rb in samples collected throughout the traverse. Intermediate and felsic gneisses in the northern portion of this traverse have relatively high modal abundances of biotite, low Ti concentrations in the biotites, high whole-rock Rb concentrations, low K/Rb ratios and high Rb concentrations within the biotites. Ti concentrations in the biotites increase southward into the clinopyroxene zone and then remain relatively constant. High K/Rb ratios first appear at the southern boundary of the clinopyroxene zone. In the lowland and highland charnockite zones, the majority of the rocks have relatively low Rb concentrations and high K/Rb ratios. Low Rb concentrations in biotites (at or near the detection limit of 65 ppm) first appear in the lowland charnockite zone and persist into the highland charnockite zone. A smaller group of rocks in the highland charnockite zone contain biotites with moderate Rb concentrations. Most of these rocks also contain anomalously high biotite concentrations and low K

  19. Prediction of fault-related damage zones in porous granular rock using strain energy density criteria

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.; Schultz, R. A.

    2004-12-01

    bands. Further, deformation band intensity for both nucleation and propagation tendencies is predicted and observed to increase toward the fault. These model predictions are consistent with independent observations of fault-related deformation band damage zone architecture from other paradigmatic outcrops in southern Utah and Nevada. By implication, specific locations within a damage zone that have the greatest reductions in fluid conductivity due to deformation band growth can be identified. We show that the tendency for fault growth and interaction within porous granular rock can be systematically predicted based on an understanding of in-situ stress state, fault and/or fold geometry, and rock strength and deformability at the time of deformation. This method is not limited to the prediction of deformation bands, but can also be used to predict the distribution of other types of fractures in other rock types, given that the appropriate critical strain energy density values are determined through laboratory testing for each fracture and rock type.

  20. The use of trace element zoning patterns in garnet to infer reaction paths of metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Witte, Clemens; Dohmen, Ralf; O'Brien, Patrick; Erpel, Lars; Halama, Ralf; Schmidt, Alexander; Ditterova, Hana

    2015-04-01

    Garnet is one of the most versatile minerals in metamorphic petrology. It is stable over a large pressure and temperature range and thus occurs in many metamorphic environments. Garnet has a wide range of chemical compositions and its major and trace element composition well reflects the pressure (P), temperature (T) and chemical conditions (X) as well as the element transport kinetic properties of the host rock during growth. Hence, compositional growth zonations in garnet contain information about most geochemical, mineralogical and petrological properties of metamorphic rocks. However, detailed interpretation of complex zoning patterns in metamorphic garnet was hindered mainly by the lack of knowledge about the various contributions of kinetic and equilibrium effects to the trace element incorporation into garnet. In this contribution we combine thermodynamic equilibrium calculations together with mass balanced trace element distribution among coexisting phases with diffusion models that simulate kinetically controlled element transport in a reacting host rock. Comparison of the model results with natural garnets enables detailed interpretation of commonly observed major and trace element patterns in high-pressure (HP) and ultra-high pressure (UHP) garnets in terms of reaction paths and physico-chemical properties of the host rock. The comparison of our numerical models with a series of well-investigated (U)HP samples shows that the kinetic influence on rare earth element incorporation into garnet is limited in most rocks at the early stages of garnet growth and increases with increasing grade of rock transformation. We show that REE zoning patterns can be used to distinguish between cold (lawsonite-stable) and warm (epidote-stable) prograde reaction paths. REE liberation along a warm P-T trajectory occurs in three breakdown reactions involving chlorite, epidote and amphibole. All three reactions result in characteristic heavy (HREE) and medium (MREE) REE growth

  1. Major and Trace Element Geochemistry of the Mafic Magmatic Rocks from the Betul Mobile Belt, Central Indian Tectonic Zone

    NASA Astrophysics Data System (ADS)

    Choudhury, A.; Ghatak, A.

    2015-12-01

    Peninsular shield of India is composed of several Archaean cratons bordered by Proterozoic mobile belts which amalgamated the Archaean cratons and helped in the growth of the Indian subcontinent. The ENE-WSW trending Central Indian Tectonic Zone (CITZ) is one such important mobile belt which sutures the Bundelkhand and the Aravalli craton in the north and Bastar, Singhbhum and Dharwar cratons in the south. The CITZ is a collection of lithotectonic terranes ranging in age from Archaean to recent and comprises supracrustal belts, granulite belts, shear zones and felsic-mafic magmatic rocks. The Betul belt is characterized by a litho-package of plutonic magmatic rocks, volcano-sedimentary rocks, bimodal volcanics and associated base metal sulphide mineralization. The petrological, geochemical and geochronological evolution of the mafic magmatic rocks has significance in our understanding of Proterozoic crustal evolution in central India. Here we report major and trace element concentrations of 14 mafic samples (basaslts, gabbors, pyroxenites and dolerites) in an attempt to classify, characterise and suggest a spatial and temporal evolution of the mafic magmatic rocks of the Betul mobile belt vis-à-vis CITZ. Traditionally these rocks have been classified as being calc-alkaline rocks, related to arc volcanism and rift tectonics. We have divided these rocks into those have a positive Europium anomaly and those having a negative Europium anomaly to better understand the source and the contaminant for these rocks. We find characterisitic difference specifically in the trace element ratios and concentrations of the rocks with +Eu anomaly [La=10.69ppm; LaN/YbN=3.65] and those with -Eu anomaly [La=27.59; LaN/YbN=8.86]. Based on these data we propose that the Betul mafic rocks may have been derived from an enriched mantle source that experienced contamination from the lower continental crust or sub-continental lithosphere prior to eruption.

  2. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J. T.; Caporuscio, F. A.; Meijer, A.

    2008-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high- level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces is one of the important processes affecting the transport in the saturated zone of Yucca Mountain (SZ). For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area, binding constants, and

  3. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J.; Caporuscio, F.; Meijer, A.

    2007-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces in the saturated zone of Yucca Mountain (SZ) is one of the most important processes retarding their release to the accessible environment. For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area

  4. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, Sarah C.; Kohn, Matthew J.; Manning, Craig E.

    2015-10-01

    The maximum-pressure Psbnd T conditions (Pmax- T) and prograde Psbnd T paths of exhumed subduction-related metamorphic rocks are compared to predictions of Psbnd T conditions from computational thermal models of subduction systems. While the range of proposed models encompasses most estimated Pmax- T conditions, models predict temperatures that are on average colder than those recorded by exhumed rocks. In general, discrepancies are greatest for Pmax < 2 GPa, where only a few of the highest-T model paths overlap petrologic observations and model averages are 100-300 °C colder than average conditions recorded by rocks. Prograde Psbnd T paths similarly indicate warmer subduction than typical models. Both petrologic estimates and models have inherent biases. Petrologic analysis may overestimate temperatures at Pmax where overprinting occurs during exhumation, although Psbnd T paths suggest that relatively warm conditions are experienced by rocks on the prograde subduction path. Models may underestimate temperatures at depth by neglecting shear heating, hydration reactions and fluid and rock advection. Our compilation and comparison suggest that exhumed high-P rocks provide a more accurate constraint on Psbnd T conditions within subduction zones, and that those conditions may closely represent the subduction geotherm. While exhumation processes in subduction zones require closer petrologic scrutiny, the next generation of models should more comprehensively incorporate all sources of heat. Subduction-zone thermal structures from currently available models appear to be inaccurate, and this mismatch has wide-reaching implications for our understanding of global geochemical cycles, the petrologic structure of subduction zones, and fluid-rock interactions and seismicity within subduction zones.

  5. The Global Range of Subduction Zone Thermal Structures From Exhumed Blueschists and Eclogites: Rocks are Hotter than Models

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, S.; Kohn, M. J.; Manning, C. E.

    2015-12-01

    The maximum-pressure P-T conditions (Pmax-T) and prograde P-Tpaths of exhumed subduction-related metamorphic rocks are compared to predictions of P-Tconditions from computational thermal models of subduction systems. While the range of proposed models encompasses most estimated Pmax-Tconditions, models predict temperatures that are on average colder than those recorded by exhumed rocks. In general, discrepancies are greatest for Pmax< 2 GPa where only a few of the highest-Tmodeled paths overlap typical petrologic observations and model averages are 100-300 °C colder than average conditions recorded by rocks. Prograde P-Tpaths similarly indicate warmer subduction than typical models. Both petrologic estimates and models have inherent biases. Petrologic analysis may overestimate temperatures at Pmaxwhere overprinting occurs during exhumation, although P-Tpaths suggest that relatively warm conditions are experienced by rocks on the prograde subduction path. Models may underestimate temperatures at depth by neglecting shear heating, hydration reactions and fluid and rock advection. Our compilation and comparison suggest that exhumed high-P rocks provide a more accurate constraint on P-Tconditions within subduction zones, and that those conditions may closely represent the subduction geotherm. While exhumation processes in subduction zones require closer petrologic scrutiny, the next generation of models should more comprehensively incorporate all sources of heat. Subduction-zone thermal structures from currently available models appear to be inaccurate, and this mismatch has wide-reaching implications for our understanding of global geochemical cycles, the petrologic structure of subduction zones, and fluid-rock interactions and seismicity within subduction zones.

  6. Application of unsaturated zone hydrology at waste rock facilities: Design of soil covers and prediction of seepage

    SciTech Connect

    Swanson, D.A.; O'Kane, M.

    1999-07-01

    The design of soil covers and the prediction of seepage for waste rock facilities are important components of permitting and closure at mines situated in arid climates. This design and prediction require an understanding and application of unsaturated zone hydrology, which, in many respects in counter-intuitive compared to the saturated conditions that are predominant in groundwater hydrology. For example, water under saturated conditions prefers to flow through course textured materials, whereas, under unsaturated conditions, water may prefer to flow through finer textured materials. To ensure accurate and defensible soil cover design and seepage prediction for waste rock facilities, methods must be employed using conceptual models based on unsaturated zone hydrology.

  7. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  8. Harnessing the agricultural critical zone for climate change mitigation through enhanced rock weathering with croplands

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Kelland, M.; Leake, J.; Lomas, M.; Mueller, C.; Hodson, M.; Ridgwell, A.; Quegan, S.

    2016-12-01

    In an agricultural context, enhanced rock weathering resulting from the application of crushed silicates to soils is driven by climate and photosynthate energy exported by crops below ground to roots and their associated mycorrhizal partners. Detailed mechanisms involved are increasingly well resolved for natural soils but not for agriculturally managed soils supplemented with crushed silicates. Assessment of the potential of the approach is made first with controlled environment studies using the mycorrhizal C4 crop sorghum grown in agricultural soil with and without the addition of crushed basalt. We then extend these findings with simulations capturing regional-to-global rates of enhanced basalt weathering by root system-microbial processes for the major crop functional types. Resulting global carbon cycle simulations indicate significant capacity for sequestering anthropogenic CO2 emissions through manipulating the agricultural critical zone in this way with multiple co-benefits, including remediating acidic soils, fertilization of crop production and crop protection from herbivores and biotrophs.

  9. Areal extent, hydrogeologic characteristics, and possible origins of the carbonate rock Newburg Zone (Middle-Upper Silurian) in Ohio

    USGS Publications Warehouse

    Strobel, M.L.; Bugliosi, E.F.

    1991-01-01

    The zone occurs in carbonate rocks of Middle to Late Silurian age across much of Ohio. Known also to well drillers as the "Second Water' in the "Big Lime' carbonate sequence, the Newburg zone is a source of hydrocarbons in northeast Ohio, brines in southeast Ohio, and a widespread source of water over much of west-central Ohio. Close to recharge areas, the quality of the water is comparable to that of the overlying carbonate rocks; thus, the Newburg zone warrants further investigation as a source of water for domestic use. Theories for the porosity and permeabilty of the Newburg zone include: 1) deposition of carbonate or quartz sand along an erosional surface and later lithified to porous and permeable sandstone; 2) dissolution of fossils within Silurian reef complexes; 3) fracture-induced porosity along thrust faults developed during the Alleghenian orogeny; and 4) a combination of these processes. -from Authors

  10. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  11. Carbonation by fluid-rock interactions at High-Pressure conditions: implications for Carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-04-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon regulating its fluxes between shallow and deep reservoirs. In subduction zones, most works have focused on subtractive processes responsible for carbon release from subducting slabs. As an example, several recent works have stressed on the importance of carbonate dissolution as a mean to mobilize large amounts of carbon in subduction zones. By contrast, little is known on additive processes such as rock carbonation at high-pressure (HP) conditions. At shallow depths (e.g. ocean floor and shallow subduction zones, i.e. <40 km), carbonation of mafic and ultramafic rocks deeply contributes to the regulation of carbon fluxes between the geo-biosphere and the atmosphere. We report the occurrence of eclogite-facies marbles associated with metasomatic systems in HP metamorphic unit in Alpine Corsica (France). We performed a field-based study on metasomatic marbles. We will present the petrology and geochemistry that characterize carbonate metasomatism together with fluid inclusions study and pseudosection modeling. Altogether, we bring strong evidences for the precipitation of these carbonate-rich assemblages from carbonic fluids during HP metamorphism. We propose that rock carbonation can occur at HP conditions by either vein-injection or chemical replacement mechanisms. Rock carbonation indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but may have a preferential and complex pathway within the slab and along slab/mantle interface. Rock carbonation by fluid-rock interactions has a potentially great impact on the residence time of carbon and oxygen and on carbonates isotopic signature in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  12. Anisotropy of electrical conductivity of the excavation damaged zone in the Mont Terri Underground Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Nicollin, Florence; Gibert, Dominique; Lesparre, Nolwenn; Nussbaum, Christophe

    2010-04-01

    Electrical resistivity measurements were performed to characterize the anisotropy of electrical resistivity of the excavation damaged zone (EDZ) at the end-face of a gallery in the Opalinus clay of the Mont Terri Underground Rock Laboratory (URL). The data were acquired with a combination of square arrays in 18 zones on the gallery's face and in two series of four boreholes perpendicular to the face. Each data set is independently inverted using simulated annealing to recover the resistivity tensor. Both the stability and the non-uniqueness of the inverse problem are discussed with synthetic examples. The inversion of the data shows that the face is split in two domains separated by a tectonic fracture, with different resistivity values but with a common orientation. The direction of the maximum resistivity is found perpendicular to the bedding plane, and the direction of minimum resistivity is contained in the face's plane. These results show that the geo-electrical structure of the EDZ is controlled by a combination of effects due to tectonics, stratigraphy, and recent fracturing produced by the excavation of the gallery.

  13. 75 FR 31321 - Fisheries of the Exclusive Economic Zone Off Alaska; Rock Sole, Flathead Sole, and “Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Economic Zone Off Alaska; Rock Sole, Flathead Sole, and ``Other Flatfish'' by Vessels Participating in the... ``other flatfish'' by vessels participating in the Amendment 80 limited access fishery in the Bering Sea...

  14. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Captain of the Port (COTP) Zone for the drilling, blasting, and dredging operation on the navigable waters... of life on the navigable waters during the drilling, blasting and dredging operations in support of... involved in the rock removal project and any public vessels in the vicinity of the drilling, dredging...

  15. The Finest Particles in the Sedimentary Environments and Fault Zone Rocks, and its implication

    NASA Astrophysics Data System (ADS)

    Chen, P.; Song, S.; Tsao, T.

    2010-12-01

    Analyzing the particle size, shape and orientation on the faulting material has become a routine but important work. These data provide characters of fragmentation and comminuting process and go further have information of fracture energy. In order to calculate the fracture energy, we need to know the particle size distribution of fault gouge which determine total fracture surface area. However the finest particle of gouge or threshold of lower cut-off particle size is the most important parameter to dominate the amount of surface energy. To give an example, the calculating the fracture energy, Punchbowl fault and Chelungpu fault give the threshold of lower cut-off particle size respectively 1.6 nm and 50 nm. Criteria for determining the threshold of lower cut-off size is the main purpose in this study. Faulted rocks are usually composed of gouge and mineral grains in the repeated deformable process. For comparing the mineral assemblages and the finest particles, we collected the sample from different environments and fault zones and used the wet sieving, sedimentation, ultracentrifugation and automated ultrafiltration device to separate the sizes of particle. Collecting the particles in different size ranges (<2000nm, 450-2000nm, 100-450nm, 50-100nm, < 50nm) and analyze the particle with SEM, TEM and XRD. The result of fault wall rock from TCDP and Punchbowl fault consist predominantly of Quartz, Smectite, Illite, and the minimum particle size collected with the range less than 100 nm. Now we want to adopt the new method, AUD( Automated Ultrafiltertion Device) to collect the particle size less than 50nm and realize the mineralogy.

  16. Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas

    NASA Astrophysics Data System (ADS)

    Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.

    2017-07-01

    In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for

  17. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  18. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Crim, Jackie F.; Williard, Karl W. J.; Groninger, John W.; Zaczek, James J.; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees ( Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year-1 translating to a sediment loss rate of 46.1 metric ton year-1 from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year-1) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  19. Ductile shear zone rheology: the viewpoint of experimentally crept lower crustal rocks and analogues

    NASA Astrophysics Data System (ADS)

    Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel; Bourcier, Mathieu; Gaye, Ababacar; Ludwig, Wolfgang

    2015-04-01

    With respect to lithosphere rheology, we are especially interested in the mechanical behavior and evolution of ductile shear zones at depth, which present polyphase and heterogeneous character and multi-scale strain localization patterns. According to structural geology, most strain concentrates in ultramylonitic layers, which exhibit along with metamorphism overprinted or concomitant microstructural signatures from several deformation mechanisms. The latter are either active in volume (crystal slip plasticity and dislocation recovery processes), or in the vicinity and along interfaces (grain sliding, phase transformations and solution mass transfer). Because all of these contribute to the drastic evolution of microstructures with respect to the wall rock and the protomylonite, and because the chronology of their activation and their interactions are unclear, inference of the overall rheology from these microstructural records seems illusory. Therefore, since more than a decade we investigate experimentally and numerically the rheology of synthetic rocks representative of lower crustal mineralogy (namely plagioclases and clinopyroxenes). Samples are elaborated with different microstructures and with variable phases, fluid and melt contents for the purpose of being representative of diverse geodynamical contexts. Experiments were performed either at constant stress or strain rate, in co-axial compression or in torsion. For macroscopic non-Newtonian flow we clearly identified dislocation glide and creep mechanisms. That is to say that power law rheology relates to dominant crystal slip plasticity accommodated by recovery processes, including dislocation climb and pile-up, sub-grain rotation and marginal recrystallization. We further refer to this regime as RCSP (recovery crystal slip plasticity). Conversely, Newtonian (linear viscous) behavior mostly involves grain boundary sliding (GBS) accommodated by diffusional mass transfer and grain boundary dislocation

  20. Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Zhonghong; Zha, Ming; Liu, Keyu; Zhang, Yueqian; Yang, Disheng; Tang, Yong; Wu, Kongyou; Chen, Yong

    2016-09-01

    The Kebai Fault zone of the West Junggar Basin in northwestern China is a unique region to gain insights on the formation of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks are widespread in the Kebai Fault zone and consist of basalt, basaltic andesite, andesite, tuff, volcanic breccia, sandy conglomerate and metamorphic rocks. The volcanic oil reservoirs are characterized by multiple sources and multi-stage charge and filling history, characteristic of a complex petroleum system. Geochemical analysis of the reservoir oil, hydrocarbon inclusions and source rocks associated with these volcanic rocks was conducted to better constrain the oil source, the petroleum filling history, and the dominant mechanisms controlling the petroleum accumulation. Reservoir oil geochemistry indicates that the oil contained in the Carboniferous volcanic rocks of the Kebai Fault zone is a mixture. The oil is primarily derived from the source rock of the Permian Fengcheng Formation (P1f), and secondarily from the Permian Lower Wuerhe Formation (P2w). Compared with the P2w source rock, P1f exhibits lower values of C19 TT/C23 TT, C19+20TT/ΣTT, Ts/(Ts + Tm) and ααα-20R sterane C27/C28 ratios but higher values of TT C23/C21, HHI, gammacerane/αβ C30 hopane, hopane (20S) C34/C33, C29ββ/(ββ + αα), and C29 20S/(20S + 20R) ratios. Three major stages of oil charge occurred in the Carboniferous, in the Middle Triassic, Late Triassic to Early Jurassic, and in the Middle Jurassic to Late Jurassic periods, respectively. Most of the oil charged during the first stage was lost, while moderately and highly mature oils were generated and accumulated during the second and third stages. Oil migration and accumulation in the large-scale stratigraphic reservoir was primarily controlled by the top Carboniferous unconformity with better porosity and high oil enrichment developed near the unconformity. Secondary dissolution

  1. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  2. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    NASA Astrophysics Data System (ADS)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  3. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  4. Delineating a shallow fault zone and dipping bed rock strata using multichannal analysis of surface waves with a land streamer

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Lacombe, P.; Johnson, C.D.; Lane, J.W.

    2006-01-01

    The multichannel analysis of surface waves (MASW) seismic method was used to delineate a fault zone and gently dipping sedimentary bedrock at a site overlain by several meters of regolith. Seismic data were collected rapidly and inexpensively using a towed 30-channel land streamer and a rubberband-accelerated weight-drop seismic source. Data processed using the MASW method imaged the subsurface to a depth of about 20 m and allowed detection of the overburden, gross bedding features, and fault zone. The fault zone was characterized by a lower shear-wave velocity (Vs) than the competent bedrock, consistent with a large-scale fault, secondary fractures, and in-situ weathering. The MASW 2D Vs section was further interpreted to identify dipping beds consistent with local geologic mapping. Mapping of shallow-fault zones and dipping sedimentary rock substantially extends the applications of the MASW method. ?? 2006 Society of Exploration Geophysicists.

  5. Structural Relationships Between the Nordfjord-Sogn Detachment Zone and Ultrahigh- Pressure Rocks in the Nordfjord Region, Western Norway

    NASA Astrophysics Data System (ADS)

    Young, D. J.; Hacker, B. R.; Andersen, T.

    2008-12-01

    The Nordfjord area of Western Norway hosts an archetypal prograde metamorphic transition within the root of the Scandian collisional orogen, from amphibolite facies to ultrahigh-pressure (UHP) eclogite facies. Although previous studies have correlated amphibolite-facies mylonites across the Nordfjord area with the regional, normal-sense Nordfjord-Sogn Detachment Zone (NSDZ), the large-scale structural relationships of the eclogite-bearing rocks, basement-allochthon tectonostratigraphy, and major zones of deformation remain poorly defined. We carried out a detailed structural, metamorphic and thermochronological analysis of the greater Nordfjord area, examining the structural character of the transition from lower pressure rocks westward to the UHP province. A >5 km thickness of shallowly W-dipping, normal-sense shear fabrics pervades structurally higher allochthonous units and fades downward into the Baltica basement; these mylonites are capped by greenschist-facies detachments. Eclogite and coesite-eclogite isograds cut across the tectonostratigraphy and were attenuated by mylonitic shearing and layer-parallel thinning; no evidence of a discrete high-strain contact with significant pressure difference was found within the UHP boundary zone. Top-W amphibolite-facies mylonitization occurred across a broad section of crust in the Nordfjord area, but was localized along two shear surfaces: 1) a major shear zone within the structurally- higher allochthons that defines the upper boundary of eclogitized crust, which we correlate with the NSDZ; and 2) a localized high-strain zone-informally named the Sandane Shear Zone-that follows an earlier thrust contact between the allochthonous units and the underlying basement. No structural features illuminate the mechanisms responsible for exhumation of the Nordfjord UHP rocks through the mantle; exhumation through lower- to mid-crustal depths was accomplished by normal-sense shear on the NSDZ. Muscovite 40Ar/39Ar cooling ages

  6. Replacement of zircon with baddeleyite as a likely mechanism of the formation of zoned zircon crystals in ultrabasic rocks

    NASA Astrophysics Data System (ADS)

    Anfilogov, V. N.; Krasnobaev, A. A.; Ryzhkov, V. M.; Valizer, P. M.

    2017-08-01

    The problem of the U-Pb age of zircon crystals from ultrabasic rocks is discussed in this paper. It is shown that the assumption on the xenogenic nature of zircon crystals in dunite is not consistent with the petrographic and experimental data. The results of experimental study of the zircon-baddeleyite transition and thermodynamics of the reaction of zircon replacement with baddeleyite show that these transformations are the likely way of the formation of zoned zircon crystals in dunite. Each zone of these crystals may have its own age.

  7. High temperature pseudotachylytes and ductile shear zones in dry rocks from the continental lower crust (Lofoten, Norway)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot

    2014-05-01

    Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and

  8. Application of the TitaniQ Geothermobarometer to metamorphic rocks of the Santa Rosa Mylonite Zone in southern California

    NASA Astrophysics Data System (ADS)

    Canada, T.; Behr, W. M.; Stockli, L.; Stockli, D. F.

    2014-12-01

    In order to study the behavior of the crust in different regions and over time, it remains important to be able to quantify the pressure (P) and temperature (T) conditions of metamorphism in exhumed rocks. The recently developed technique, known as "Titanium-in-quartz" (TitaniQ) shows particular promise as both a geothermometer and geobarometer, because it focuses on one of the most abundant minerals on Earth—quartz—and it can thus be applied to a very wide range of rock types. Despite the potential of TitaniQ, two aspects of the technique remain poorly understood. Firstly, the two most recently developed calibrations predict Ti concentrations that differ by close to a factor of three at the same temperature. Secondly, the effect of deformation on Ti re-equilibration at temperatures where static diffusion is sluggish is debated. We address these aspects of the TitaniQ thermobarometer by applying the technique to a suite of rocks in the Santa Rosa mylonite zone of eastern California that were deformed and metamorphosed at known P-T conditions. The Santa Rosa mylonite zone is a 100-km-long Cretaceous ductile thrust system that juxtaposes deformed metasedimentary rocks (P = 3-5 kbar, T = 600-800 C) known as the Palm Canyon Series in the hanging wall against mylonitized granodiorites (P 4-5 kbar, T = 400-550) of the Peninsular Ranges Batholith in the footwall. The Palm Canyon series includes quartzites, amphibolites and garnet-mica schists, most of which contain titanite as the primary Ti-bearing phase. We measure Ti concentrations in several samples from this unit to see whether they are consistent among different rock types and whether calibrations of the TitaniQ thermobarometer match the P-T conditions constrained by mineral assemblages. The granodiorites show a distinct strain gradient developed over approximately one kilometer as they are incorporated into the Santa Rosa mylonite zone; they range from weakly deformed at the shear zone margin to ultramylonitic

  9. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  10. Seismic tremor under the subduction zones: the rock-physics interpretation.

    NASA Astrophysics Data System (ADS)

    Burlini, L.; di Toro, G.; Meredith, P.; Mainprice, D.; Burg, J.

    2006-12-01

    Elevated pore fluid pressures in rocks leads to weakening and embrittlement through the principle of effective stress. Any material can fail by hydraulic fracture if pore pressure exceeds the confining pressure. We have measured the output of seismicity, as acoustic emission (AE) energy, during heating of serpentinite samples to beyond their equilibrium dehydration temperatures. Experiments were performed on 30mm long cores with a diameter of approximately 15mm, under a hydrostatic stress of 200 and 300 MPa in a Paterson high- pressure/high-temperature internally-heated gas apparatus. AEs were recorded via two piezoelectric transducers embedded in the sample end caps, away from the hot zone at the ends of two hollow zirconia buffer rods. Drained and undrained conditions were achieved by placing either permeable or impermeable discs between the samples and the buffer rods. At 200 MPa, serpentinites dehydrates to talc + olivine and water around 800 K. Microseismicity in the form of high-energy AE events was confined to a narrow temperature interval just above the equilibrium dehydration temperature. This overstep is due to the heating rate being faster than for equilibrium studies in our experiments. The high-energy AE events were characterised by very long duration, which is typical of a cascade of multiple overlapping events that cannot be individually resolved. Under drained conditions, the serpentinite samples showed a clear volume reduction due to the dehydration reaction and subsequent compaction. By contrast, under undrained conditions, the samples maintained the same dimensions, but lost weight, implying that no compaction occurred during dehydration. Our results conclusively show that seismicity can be generated by dehydration reactions even in the absence of a deviatoric stress. This has potentially important implications for earthquake nucleation in subducting lithospheric plates. Moreover, the cascade of events that followed the onset of dehydration may

  11. Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, Japan

    USGS Publications Warehouse

    Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.

    2008-01-01

    The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.

  12. Evaluation of Methods for Delineating Zones of Transport for Production Wells in Karst and Fractured-Rock Aquifers of Minnesota

    USGS Publications Warehouse

    Jones, Perry M.

    2010-01-01

    Assessment of groundwater-flow conditions in the vicinity of production wells in karst and fractured-rock settings commonly is difficult due in part to the lack of detailed hydrogeologic information and the resources needed to collect it. To address this concern and to better understand the hydrogeology and aquifer properties of karst and fractured-rock aquifers in Minnesota, the U.S. Geological Survey, in cooperation with the Minnesota Department of Health, conducted a study to evaluate methods for delineating zones of transport for 24 production wells in karst and fractured-rock aquifers in Minnesota. Two empirical methods for delineating zones of transport around wells were applied to the 24 production wells that extract groundwater from karst and fractured-rock aquifers in nine Minnesota communities. These methods were the truncated-parabola and modified-ellipse methods, and both methods assume porous-media flow conditions. The 24 wells extracted water from a karst aquifer (Prairie du Chien-Jordan aquifer), porous aquifers interspersed with solution-enhanced fractures (Jordan and Hinckley aquifers), or fractured-bedrock aquifers (Biwabik Iron-Formation and Sioux Quartzite aquifers). Zones of transport delineated using these two empirical methods were compared with zones of transport previously delineated by Minnesota Department of Health hydrologists for the wells using the calculated-fixed-radius method and groundwater-flow models. Large differences were seen in the size and shapes of most zones of transport delineated using the truncated-parabola and modified-ellipse methods compared with the zones of transport delineated by the Minnesota Department of Health. In general, the zones of transport delineated using the truncated-parabola and modified-ellipse methods were smaller in area than those delineated by the Minnesota Department of Health and included only small parts of the Minnesota Department of Health zones of transport. About two-thirds(67 percent) of

  13. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J. ); Bluemling, P.; Vomvoris, S. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs.

  14. Gravity wave parameters derived from traveling ionospheric disturbances observations in the auroral zone

    SciTech Connect

    Natorf, L.; Schlegel, K.; Wernik, A.W. Space Research Centre, Warsaw )

    1992-12-01

    Large-scale wavelike fluctuations of ion velocity, as measured by the European incoherent scatter radar along the geomagnetic field line, have been attributed to gravity wave effects. The height-dependent parameters of the causative gravity waves are calculated, taking into account the neutral horizontal wind and the electric field. The results are compared with the solutions of a dissipative dispersion relation. Much better agreement is achieved for the imaginary part of the vertical wave vector than for its real part. The calculated wave damping is greater than that given by theory. The possible reasons for this are discussed. It is suggested that E x B drift of the ions and vertical neutral winds, which are characteristic features of the auroral zone ionosphere, may contribute to the observed discrepancies. 40 refs.

  15. Structure, Mineralogy and Geomechanical Properties of Shear Zones of Deep-Seated Rockslides in Metamorphic Rocks (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Strauhal, Thomas; Zangerl, Christian; Fellin, Wolfgang; Holzmann, Michael; Engl, Daniela Anna; Brandner, Rainer; Tropper, Peter; Tessadri, Richard

    2017-02-01

    Deep-seated rockslides, which are characterised by slow to extremely slow rates of movement, frequently occur in foliated metamorphic rock masses (schists, phyllites, paragneiss series). Many case studies indicate that slope displacement is predominantly localised at basal and internal shear zones. Thus, the deformation and stability behaviour of rockslides is influenced primarily by the properties of these soil-like shear zones. In this study, new findings concerning the structure, mineralogical composition and geomechanical characteristics (residual friction angle, grain size distribution) of the shear zones of deep-seated rockslides are presented. The characteristics of these shear zones are shown by case studies in paragneissic rock masses of the polymetamorphic Austroalpine Ötztal-Stubai crystalline complex in Tyrol, Austria. Differences between the laboratory scale and the in situ scale are discussed, as well as the evolution of the shear zones. Within the framework of this study, structural investigations of the shear zones were performed from surface and subsurface surveys and core logs, as well as mineralogical laboratory analyses, grain size analyses and ring shear tests. The shear zones are characterised by a complex fabric of lensoid-shaped layers of clayey-silty fault gouges embedded in sandy-gravelly fault breccias and block-in-matrix structures. The mineralogical analyses indicated high amounts of phyllosilicates, such as mica and chlorite. Swelling clay minerals were observed in small amounts in very few instances. The ring shear tests of the rockslide fault gouge samples, performed under various normal stress conditions, resulted in residual friction angles in a wide range between 19° and 28°, reached after rather short displacements.

  16. Evaluation of disturbances detected on a VLF/LF receiver inside the preparation zone of a sequence of earthquakes.

    NASA Astrophysics Data System (ADS)

    Skeberis, Christos; Zaharis, Zaharias; Xenos, Thomas; Spatalas, Spyridon; Stratakis, Dimitrios; Maggipinto, Tommaso; Colella, Roberto; Biagi, Pier Francesco

    2017-04-01

    This work investigates the occurrence of disturbances received prior and during a sequence of 6 earthquakes that took place during November 2016 (08-11-2017, mb=4.1, 10-11-2017, mb=4.8, 11-11-2017, ML=3.7, 16-11-2017, ML=4.2, 18-11-2017, mb=4.9, 30-11-2017, ML=4) with depths less than 8Km and epicenters around 5km from each other in Thessaloniki, Greece, and more importantly 30Km from a VLF/LF receiver, well inside the preparation zone, according to Dobrovolsky's equation. For the purpose of this paper, data acquired in Thessaloniki, Greece (40.59N, 22,78E) from ten VLF and LF transmitters around Europe are processed. Data from other receivers in the network are also assessed to establish comparative analysis and study the differences between the received disturbances of the same phenomenon from a receiver in close proximity to the events and another receiver away from the events. The uniqueness of this event that took place during November 2016 lies in the fact that there is a sequence of relatively strong earthquakes in close proximity to the receiver which has not occurred again during the operation of the receiver located in Thessaloniki, and the availability of data received from other receivers in the network to compare, thus bearing the significance to further study and analyze The receivers have been developed by Elettronika Srl and are part of the International Network for Frontier Research on Earthquake Precursors (INFREP). The signals undergo transformation using a noise assisted version of the Hilbert Huang Transform (HHT) using the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and also using Zhao-Atlas-Marks (ZAM) Transform and the relevant spectra are produced. Based upon the results which are characterized by a spread of disturbances along most received signals on the spectra of the proximal receiver, the significance of the above disturbances is discussed and the merits of a dense receiver network for the detection of

  17. Mount St. Augustine volcano fumarole wall rock alteration: mineralogy, zoning, composition and numerical models of its formation process

    NASA Astrophysics Data System (ADS)

    Getahun, Aberra; Reed, Mark H.; Symonds, Robert

    1996-05-01

    Intensely altered wall rock was collected from high-temperature (640 °C) and low-temperature (375 °C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl 3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375 °C; (b) cooling of the 1987 gas from 870 to 100 °C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100 °C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640 °C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375 °C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides

  18. Wall Rock Assimilation and Magma Migration in the Sierra Nevada Batholith: A Study of the Courtright Intrusive Zone, Central California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Putirka, K. D.

    2010-12-01

    The Sierra Nevada Batholith is composed of various plutons that interact with each other, and with pre- and syn-batholith metamorphic rocks. In the central part of the Sierra Nevada Batholith, at Courtright Reservoir in California, the younger Mt. Givens Pluton (87-93 Ma; McNulty et al., 2000) intrudes the Dinkey pluton (103 Ma; Bateman et al., 1964), and metasediments (a metamorphic screen) that, in places, separate the two plutons. This Courtright Reservoir Intrusive zone, as termed by Bateman et al. (1964), provides an ideal setting to examine the dynamics of intrusion and assimilation. Whole rock major and trace element compositions of the plutons, their mafic enclaves, and the metasediments, show that all such samples, from both plutons, fall on a single mixing trend. We thus infer that magmas parental to both plutons were roughly similar in composition, and assimilated significant amounts of the same, or very similar metasedimentary wall rocks. We also examined changes in whole rock compositions within the Mt. Givens pluton, as a function of distance from the two rock units with which it is now in contact (the metasediments, and the Dinkey Creek). In the vicinity of the contact between are an abundance of enclaves that are rounded, and appear to have been transported in vertical pipes. Whole rock analysis of the host granitoid material that surrounds these enclaves is clearly more mafic than the granitoid magmas from interior parts of the pluton. These whole rock compositions indicate that the pluton becomes more homogenous moving away from the contact, with a compositional decay occurring over a span of about 50-100 m. There are at least two possible interpretations. The compositional decay may represent a diffusive exchange of mass between an early crystallizing marginal phase of the pluton and the pluton interior. Another (not mutually incompatible) possibility is that the mafic margins represent pipes or tubes (Paterson, 2010), related to some convective

  19. Modeling Spatial Structure of Rock Fracture Surfaces Before and After Shear Test: A Method for Estimating Morphology of Damaged Zones

    NASA Astrophysics Data System (ADS)

    Babanouri, Nima; Karimi Nasab, Saeed

    2015-05-01

    This paper deals with the structural analysis of rock fracture roughness, and accordingly, a method is developed for estimating/predicting the post-shearing 3D geometry of the fracture surface. For this purpose, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variogram analysis of the surfaces indicated a strong non-linear trend in the topography data. Hence, the spatial variability of the rock fracture surfaces was decomposed to: one deterministic component, characterized by a high-order polynomial representing the large-scale undulations, and one stochastic component, described by the variogram of residuals representing the small-scale roughness. Using an image-processing technique, a total of 343 damage zones with different sizes, shapes, initial roughness characteristics, local stress fields, and/or asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of the `pseudo-zonal variogram' was introduced. The results showed that the spatial continuity at the damage zones increases due to the asperity degradation. The increase in the variogram range is anisotropic and tends to be higher along the shearing. Consequently, the direction of maximum continuity rotates towards the shear direction. After modeling the evolution of the spatial structure with shearing and detecting boundaries of the degraded areas, a methodology was presented to provide a regression-kriging estimate of the morphology of sheared surfaces. The proposed method can be considered as a cost-free and reasonably accurate alternative to expensive techniques of scanning the rock fracture surface after the shear test.

  20. New ages on intrusive rocks and altered zones in the Alaska Peninsula: A section in The United States Geological Survey in Alaska: Accomplishments during 1977

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; Silberman, Miles L.

    1978-01-01

    Preliminary potassium-argon dating of intrusive rocks and altered zones in the Chignik and Sutwik Island quadrangles of the Alaska Peninsula seems to indicate at least three and possibly four Tertiary ages of alteration and mineralization.

  1. Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills, South Dakota

    USGS Publications Warehouse

    Norton, J.J.; Redden, J.A.

    1990-01-01

    The pegmatite field and the Harney Peak Granite of the southern Black Hills, South Dakota, form an igneous system that progresses from slightly biotitic muscovite granite through layered pegmatitic granite, with alternating sodic and potassic rocks, to simple plagioclase-quartz-perthite pegmatites, and on to zoned pegmatites. Most of the country rocks are Lower Proterozoic mica schists. At 1700 Ga, intrusion of the Harney Peak Granite created a large dome in these rocks, a thermal aureole with a staurolite, a first sillimanite isograd, and a small area of metamorphism above the second sillimanite isograd. The zoned pegmatites have a strong tendency to occur in clusters, and the types of pegmatites are different in different clusters. A less obvious tendency is a regional zonation in which rare-mineral pegmatites become more abundant and muscovite pegmatites less abundant toward the outskirts of the region. The composition of the granite indicates that its magma originated by partial melting of metasedimentary mica schists similar to those at the present surface. The pegmatitic nature of most of the granite probably reflects exsolution of an aqueous phase. -from Authors

  2. Abnormal Activation of RhoA/ROCK-I Signaling in Junctional Zone Smooth Muscle Cells of Patients With Adenomyosis.

    PubMed

    Wang, S; Duan, H; Zhang, Y; Sun, F Q

    2016-03-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. The RhoA/Rho-kinase (ROCK) signaling pathway is involved in various cellular functions, including migration, proliferation, and smooth muscle contraction. Here we examined the potential role of this pathway in junctional zone (JZ) contraction in women with and without ADS. We demonstrated that in the normal JZ, RhoA and ROCK-I messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. Expression of RhoA and ROCK-I in the JZ from women with ADS was significantly higher than in the control women and showed no significant differences across the menstrual cycle. Treatment of JZ smooth muscle cells (JZSMCs) with estrogen at 0, 1, 10, or 100 nmol/L for 24 hours resulted in increased expression of RhoA, ROCK-I, and myosin light-chain (MLC) phosphorylation (p-MLC) in a dose-dependent manner. In parallel to its effects on p-MLC, estrogen-mediated, dose-dependent contraction responses in JZSMCs. Estrogen-mediated contraction in the ADS group was significantly higher than in the controls and also showed no significant differences across the menstrual cycle. These effects were suppressed in the presence of ICI 182780 or Y27632, supporting an estrogen receptor-dependent and RhoA activation-dependent mechanism. Our results indicate that the level of RhoA and ROCK-I increases in patients with ADS and the cyclic change is lost. Estrogen may affect uterine JZ contraction of ADS by enhancing RhoA/ ROCK-I signaling. © The Author(s) 2015.

  3. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2016-12-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  4. Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Jeong, Ju-Hwan; Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong

    2013-09-01

    In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.

  5. Stable isotope and chemical systematics of pseudotachylyte and wall rock, Homestake shear zone, Colorado, USA: Meteoric fluid or rock-buffered conditions during coseismic fusion?

    NASA Astrophysics Data System (ADS)

    Moecher, David P.; Sharp, Zachary D.

    2004-12-01

    A hydrous fluid phase is critical in controlling effective stress and fault mechanics, and influencing the mineralogy and strength of materials within fault zones. Oxygen and hydrogen isotope and chemical analysis of wall rock gneiss, pseudotachylyte, and selected minerals in gneiss and pseudotachylyte from the Homestake shear zone was used to assess whether melting occurred in the presence of meteoric water or involved only minor amounts of H2O derived from micas in wall rock gneiss. Bulk pseudotachylyte has slightly lower δ18OSMOW than the whole rock protolith. δD for one bulk pseudotachylyte is essentially identical to biotite in gneiss; δD for two samples is lower by ˜20‰. Bulk pseudotachylyte has lower SiO2 and K2O, and higher Al2O3, FeO, MgO, CaO, and H2O, than gneiss. The lower SiO2 of pseudotachylyte compared to gneiss is explained by physical segregation of 25 to 72 volume % of quartz clasts from the mobile melt phase. Samples of gneiss and pseudotachylyte define a SiO2-δ18O mixing line between quartz and the most SiO2- and 18O-depleted pseudotachylyte. Physical segregation of quartz (highest oxygen isotope composition in the pseudotachylyte-gneiss system) accounts for the slightly lower oxygen isotope composition of bulk pseudotachylyte relative to gneiss. The similar δD of pseudotachylyte and biotite from gneiss in one sample is consistent with dehydration melting of biotite during frictional heating and dissolution of biotite-derived H2O in the melt. Late devitrification of glass and formation of greater amounts of fine-grained muscovite, accompanied by 10-30% loss of hydrogen as H2O, results in lower δD values in other samples. In general, melt generation occurred in a fault zone closed to infiltration of meteoric water. There was no free, H2O-rich pore fluid present at the time of slip to potentially influence the behavior of the fault.

  6. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    USGS Publications Warehouse

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  7. Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa Mylonite Zone, California

    SciTech Connect

    Kern, H. ); Wenk, H.R. )

    1990-07-10

    The directional dependence of P and S wave velocities have been measured at pressures (up to 600 MPa) and temperatures (up to 700C) in rocks from the Santa Rosa Mylonite Zone (southern California). During tectonism, these were progressively deformed from granodiorite protolith to mylonite and ultimately phyllonite. The mineralogical and chemical composition of protolith and mylonite is nearly identical. Thus these rocks provide excellent material for documenting the effect of microstructural and textural changes on rock anisotropy. Velocity anisotropy increases significantly with the degree of deformation, whereas average velocities and densities do not change. At low pressure (50 MPa) the velocity anisotropy ranges from 1.7% in granodiorite up to 19% in phyllonite and is due to both oriented microfractures and crystallographic preferred orientation. At high pressure (600 MPa), the residual anisotropy up to 12% is mainly due to preferred mineral orientation, in particular of biotite. Significant shear wave splitting is measured parallel to the foliation plane and shows a good correlation with the biotite texture. These observations confirm that oriented microcracks and preferred orientation of minerals should be taken into account in the interpretation of seismic reflection and refraction data in terranes with deformed rocks.

  8. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  9. Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process

    USGS Publications Warehouse

    Getahun, A.; Reed, M.H.; Symonds, R.

    1996-01-01

    Intensely altered wall rock was collected from high-temperature (640??C) and low-temperature (375??C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375??C; (b) cooling of the 1987 gas from 870 to 100??C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100??C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640??C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375??C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides (magnetite

  10. Hydrogen sulfide gas emissions in the human-occupied zone during disturbance and removal of stored spent mushroom compost.

    PubMed

    Velusami, B; Curran, T P; Grogan, H M

    2013-10-01

    Hydrogen sulfide (H2S) gas levels were monitored in the human-occupied zone at four spent mushroom compost (SMC) storage sites during removal of SMC for application on agricultural land. During SMC removal operations, H2S gas monitors were mounted on the outside of the tractor positioned at the SMC periphery, and worn by individual tractor drivers. The highest H2S concentrations (10 s average) detected outside the tractor, at the SMC periphery, and for the tractor driver were, respectively, 454, 249, and 100 ppm for the outdoor sites and 214, 75, and 51 ppm for the indoor sites. The highest short-term exposure values (STEV over a 15 min period) outside the tractor at the SMC periphery, and for the tractor driver were 147, 55, and 86 ppm for the outdoor sites and 19, 9, and 10 ppm for the indoor sites. The values exceeded the current maximum permissible concentration limit of 10 ppm for all the sites except for the SMC periphery and tractor driver at the indoor sites. Results suggest that H2S levels detected at indoor storage sites during SMC removal are lower compared to outdoor storage sites. Results indicate that there is a substantial health and safety risk associated with working in the vicinity of stored SMC when it is being disturbed and removed for land application, and that the risk is great for the tractor driver. This article discusses possible control measures and lists recommendations to reduce the risks.

  11. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  12. Seismogenic Coupling at Convergent Margins - Geophysical Observations from the South American Subduction Zone and the Alpine Rock Record

    NASA Astrophysics Data System (ADS)

    Oncken, O.

    2008-12-01

    Convergent continental margins are the Earth's principal locus of important earthquake hazards with nearly all interplate megathrust earthquakes (M>8) in the seismogenic coupling zone between the converging plates. Despite the key importance of this zone, the processes that shape it are poorly understood. This is underscored by a number of novel observations attributed to processes in the interface zone that are attracting increasing attention: silent slip events, non-volcanic tremors, afterslip, locked patches embedded in a creeping environment, etc. We here compare the rock record from a field study with recent results from two major geophysical experiments (ANCORP and TIPTEQ) that have imaged the South Chilean subduction zone at the site of the largest historically recorded earthquake (Valdivia, 1969; Mw = 9.5) and the plate boundary in Northern Chile, where a major seismic event is expected in the near future (Iquique segment). The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system. The rock record from the exhumed Early Tertiary seismogenic coupling zone of the European Alps provides indications for the mechanisms and processes responsible for the geophysical images. Fabric formation and metamorphism in a largely preserved subduction channel chiefly record the deformation conditions of the pre-collisional setting along the plate interface. We identify an unstable slip domain from pseudotachylytes occurring in the temperature range between 200-300°C. This zone coincides with a domain of intense veining in the subduction mélange with mineral growth into open cavities, indicating fast, possibly seismic, rupture. Evidence for transient near-lithostatic fluid pressure as well as brittle fractures competing with mylonitic shear

  13. Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Hüpers, Andre; Kasemann, Simone A.; Kopf, Achim J.; Meixner, Anette; Toki, Tomohiro; Shinjo, Ryuichi; Wheat, C. Geoffrey; You, Chen-Feng

    2016-11-01

    Compositional changes, dehydration reactions and fluid flow in subducted sediments influence seismogenesis and arc magmatism in subduction zones. To identify fluid flow and water-rock interaction processes in the western Nankai Trough subduction zone (SW Japan) we analyzed boron concentration and boron isotope composition (δ11B) of pore fluids sampled across the subduction zone forearc from depths of up to ∼922 m below seafloor during four Integrated Ocean Drilling Program (IODP) Expeditions. The major structural regimes that were sampled by coring include: (1) sedimentary inputs, (2) the frontal thrust zone, (3) the megasplay fault zone, and (4) the forearc basin. From mass balance consideration we find that consumption of boron (B) by ash alteration and desorption of B from the solid phase, mediated by organic matter degradation, produces a net decrease in B concentrations with depth down to ∼120 μM and variable δ11B values in the range of ∼+20‰ and +49‰. Interstitial water in sediments on the incoming oceanic plate are influenced by more efficient mobilization of exchangeable B from the solid phase due to higher temperatures and alteration of the oceanic crust that acts as a sink for 10B. At the tip of the megasplay fault zone, elevated B concentration and B isotopic composition suggest that underthrust coarse-grained slope sediments provide a pathway for fluids out of the upper (<2 km) accretionary prism. Silt and sand layers in the underthrust section of the downgoing plate favor fluid escape in seaward direction from depths equivalent to the temperature range of 60-150 °C. At both locations the δ11B signature evolves during updip migration through re-adsorption. Mass balance considerations suggest a shallower fluid source depth compared to pore fluids sampled previously near the décollement zone along the central portion of the Nankai margin.

  14. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: new insight from the western Italian Alps.

    PubMed

    Imperio, Simona; Bionda, Radames; Viterbi, Ramona; Provenzale, Antonello

    2013-01-01

    Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence.

  15. Climate Change and Human Disturbance Can Lead to Local Extinction of Alpine Rock Ptarmigan: New Insight from the Western Italian Alps

    PubMed Central

    Imperio, Simona; Bionda, Radames; Viterbi, Ramona; Provenzale, Antonello

    2013-01-01

    Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence. PMID:24260581

  16. Rift-zone magmatism: Petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.; Vetter, S. K.

    1984-12-01

    Compositions of basaltic samples from the southeastern Brazil passive margin (18° 24° S) depict the change from continental to oceanic lithosphere during the opening of the South Atlantic Ocean. Samples studied range from 138 to 105 m.y. old and are from 12 Petrobrás drill cores recovered from the coastline to about 150 km offshore in the Espirito Santo, Campos, and Santos basins. Compositions vary, ranging, for example, from 49 54 wt.% SiO2, 0.5 3.0 wt.% TiO2, 0.6 5.0 FeO*/MgO, and <1->6 La/ Yb(n), but can be grouped: (i) basalts enriched in incompatible elements, such as K (some K2O>2.0 wt.%), Rb (>18 ppm), Zr (>120 ppm), and LREE (some FeO* 16 wt.%; most with SiO2 51 54 wt.%), and resembling Serra Geral continental flood basalts (SG-CFB) of southern Brazil; (ii) basalts less enriched, or transitional, in incompatible elements, having K2O <0.40 wt.% and flat REE patterns, and resemble N. Atlantic diabases and FAMOUS basalts; and (iii) one depleted sample, Ce/Yb(n)=0.7, where Ce(n)=4. Expressed in oceanic-basalt terminology and Zr-Nb-Y abundances, ‘enriched’ samples are P- and T-type MORB (e.g., Zr/Nb ˜4 25), ‘transitional’ samples are T-type (Zr/ Nb ˜8 27), and the ‘depleted’ sample is N-type MORB (Zr/Nb>30). Trace-element ratios (e.g., Zr/Nb, Zr/Y) link the Brazil margin basalts to a heterogeneous mantle (attributed to metasomatic veining) of variably proportioned mixtures of depleted-mantle (N-MORB) and plume (P-MORB, e.g., Tristan hotspot) materials. The various compositions therefore reflect, in part, different zones of melting during the separation of Gondwanaland, where gradual decompression during rifting enabled concurrent melting of upper, more depleted (non- or sparsely-veined) mantle and enriched (densely-veined) mantle. Within the time represented, melting produced enriched, transitional, and depleted magmas that were emplaced subaerially, hypabyssally, and subaqueously; they mark the transition from CFB before rifting and separation

  17. Pyrometamorphism of Fault Zone Rocks Induced by Frictional Heating in High-velocity Friction Tests: Reliable Records of Seismic Slip?

    NASA Astrophysics Data System (ADS)

    Ree, J.; Ando, J.; Kim, J.; Han, R.; Shimamoto, T.

    2008-12-01

    Recognition of seismic slip zone is important for a better understanding of earthquake generation processes in fault zones and paleoseismology. However, there has been no reliable record of ancient seismic slip except pseudotachylyte. Recently, it has been suggested that decomposition (dehydration or decarbonation) products due to frictional heating can be used as a seismic slip record. The decomposition products, however, can be easily rehydrated or recarbonated with pervasive fluid migration in the fault zone after seismic slip, raising some question about their stability as a seismic slip record. Here, we review microstructural and mineralogical changes of the simulated fault zones induced by frictional heating (pyrometamorphism) from high-velocity friction tests (HVFT) on siltstone, sandstone and carbonates at seismic slip rates, and discuss on their stability after seismic slip. HVFT on siltstone generates pseuodotachylyte in the principal slip zone (0.30-0.75 mm thick) with 'damage' layer (0.1-0.2 mm thick) along its margins. Chlorite in the damage layer suffers an incipient dehydration with many voids (0.2-1.0 μm in diameter) in transmission electron microscopy (TEM), appearing as dark tiny spots both in plane-polarized light and back-scattered electron (BSE) photomicrographs. HVFT on brown sandstone induces a color change of wall rocks adjacent to the principal slip zone (brown to red) due to the dehydration of iron hydroxides with frictional heating. These dehydration products in siltstone and sandstone due to frictional heating may be unstable since they would be easily rehydrated with fluid infiltration after a seismic slip. HVFT on carbonates including Carrara marble and siderite-bearing gouges produces decarbonation products of nano-scale lime (CaO) and magnetite (Fe3O4), respectively. Lime is a very unstable phase whereas magnetite is a stable and thus may be used as an indicator of seismic slip. The simulated fault zones of Carrara marble contain

  18. Changes in composition and pore space of sand rocks in the oil water contact zone (section YU1 3-4, Klyuchevskaya area, Tomsk region)

    NASA Astrophysics Data System (ADS)

    Nedolivko, N.; Perevertailo, T.; Pavlovec, T.

    2016-09-01

    The article provides an analysis of specific features in changes of rocks in the oil water contact zone. The object of study is the formation YU1 3-4 (J3o1) of Klyuchevskaya oil deposit (West Siberian oil-gas province, Tomsk region). The research data allow the authors to determine vertical zoning of the surface structure and identify the following zones: oil saturation (weak alteration), bitumen-content dissolution, non-bitumen-content dissolution, cementation, including rocks not affected by hydrocarbon deposit. The rocks under investigation are characterized by different changes in composition, pore space, as well as reservoir filtration and volumetric parameters. Detection of irregularity in distribution of void- pore space in oil-water contact zones is of great practical importance. It helps to avoid the errors in differential pressure drawdown and explain the origin of low-resistivity collectors.

  19. Linking Weathering, Rock Moisture Dynamics, Geochemistry, Runoff, Vegetation and Atmospheric Processes through the Critical Zone: Graduate Student led Research at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2014-12-01

    In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines

  20. Intrusive rocks of the Holden and Lucerne quadrangles, Washington; the relation of depth zones, composition, textures, and emplacement of plutons

    USGS Publications Warehouse

    Cater, Fred W.

    1982-01-01

    serpentine. These occur either as included irregular masses in later intrusives or as tectonically emplaced lenses in metamorphic rocks. Also of uncertain age but probably much younger, perhaps as young as Eocene, are larger masses of hornblendite and hornblende periodotite that grade into hornblende gabbro. These are exposed on the surface and in the underground workings of the Holden mine. Oldest of the granitoid intrusives are the narrow, nearly concordant Dumbell Mountain plutons, having a radiometric age of about 220 m.y. They consist of gneissic hornblende-quartz diorite and quartz diorite gneiss. Most contacts consist of lit-par-lit zones, but some are gradational or more rarely sharp. The plutons are typically catazonal. Closely resembling the Dumbell Mountain plutons in outcrop appearance, but differing considerably in composition, are the Bearcat Ridge plutons. These consist of gneissic quartz diorite and granodiorite. The Bearcat Ridge plutons are not in contact with older dated plutons, but because their textural and structural characteristics so closely resemble those of the Dumbell Mountain plutons, they are considered to be the same age. Their composition, however, is suggestive of a much younger age. Cutting the Dumbell Mountain plutons is the Leroy Creek pluton, consisting of gneissic biotite-quartz diorite and trondjhemite. The gneissic foliation in the Leroy Creek is characterized by a strong and pervasive swirling. Cutting both the Dumbell Mountain and Leroy Creek plutons are the almost dikelike Seven-fingered Jack plutons. These range in composition from gabbro to quartz diorite; associated with them are contact complexes of highly varied rocks characterized by gabbro and coarse-grained hornblendite. Most of the rocks are gneissic, but some are massive and structureless. Radiometric ages by various methods range from 100 to 193 m.y. Dikes, sills, small stocks, and irregular clots of leucocratic quartz diorite and granodiorite are abundant in t

  1. Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone

    NASA Astrophysics Data System (ADS)

    Pastor-Galán, Daniel; Gutiérrez-Alonso, Gabriel; Fernández-Suárez, Javier; Murphy, J. Brendan; Nieto, Fernando

    2013-12-01

    The Cantabrian Zone of NW Iberia preserves a voluminous, almost continuous, sedimentary sequence that ranges in age from Ediacaran to Early Permian. Its tectonic setting is controversial and recent hypotheses include (i) passive margin deposition along the northern margin of Gondwana, (ii) an active continental margin, or (iii) the margin of a drifting ribbon continent and (iv) a combination of the three aforementioned possibilities. In this paper we present geochemical data from 21 samples taken in detrital rocks in the Cantabrian Zone from Ediacaran to Early Permian age. The results, together with previously published detrital zircon ages from these strata, allow a comprehensive analysis of changing tectonic scenarios and provenance through time. Collectively, these data indicate that this portion of Iberia was an active margin during the Ediacaran that evolved to become part of the passive margin of Gondwana at least from Ordovician to Late Devonian times. Changes in geochemistry, zircon age distribution and Sm/Nd isotopes during the Carboniferous are attributed to the far-field effects of the onset of the collision between Gondwana and Laurussia, and related processes such as recycling of older sedimentary sequences, as well as the involvement of the rocks formed during the Variscan orogeny and oroclinal buckling. Latest Carboniferous and Permian show a more juvenile Sm/Nd and higher values of illite cristallinity that may support the hypothesis of lithospheric foundering after oroclinal buckling.

  2. Origin and serpentinization of ultramafic rocks of Manipur Ophiolite Complex in the Indo-Myanmar subduction zone, Northeast India

    NASA Astrophysics Data System (ADS)

    Ningthoujam, P. S.; Dubey, C. S.; Guillot, S.; Fagion, A.-S.; Shukla, D. P.

    2012-05-01

    The Manipur Ophiolite Complex (MOC) is part of the Manipur-Nagaland ophiolite belt (MNOB). The belt is exposed in the eastern margin of the Indo-Myanmar Ranges (IMRs), which formed by the collision between the India and Myanmar continental plates. Several contrasting views were put forward concerning the origin of the MNOB. The complex represents a dismembered ophiolite sequence with serpentinite as the largest litho-unit formed. Petrography and Raman spectroscopy of the serpentinite suggest that they are serpentinized ultramafic cumulate and peridotite. The serpentinization may have occurred at a condition of low pressure and low temperature metamorphism. Geochemical signatures of the rocks and spinel grains revealed that the protolith be an abyssal peridotite, derived from a less depleted fertile mantle melt at a MORB setting after low degree (10-15%) partial melting. The study concluded that the serpentinite may have been created at a slow-spreading ridge, rather than a supra-subduction-zone setting. These rocks were later obducted and incorporated into the IMR of Indo-Myanmar suture zone.

  3. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    NASA Astrophysics Data System (ADS)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  4. Oxygen and hydrogen isotope compositions of eclogites and associated rocks from the Eastern Sesia zone (Western Alps, Italy)

    USGS Publications Warehouse

    Desmons, J.; O'Neil, J.R.

    1978-01-01

    Oxygen and hydrogen isotope analyses have been made of mineral separates from eclogites, glaucophanites and glaucophane schists from the eastern Sesia zone (Italian Western Alps). Regularities in (1) hydrogen isotope compositions, (2) order of 18O enrichment among coexisting minerals, and (3) ?? 18O (quartz-rutile) and ?? 18O (quartz-phengite) imply attainment of a high degree of isotopic equilibrium. However, some scattering of ??18O values of individual minerals indicates that the eclogitic assemblage did not form in the presence of a thoroughly pervasive fluid. Minerals from an eclogitic lens enclosed in marble have ??18O values distinctly different from those measured in the other rocks. The ??18O values are high in comparison with other type C eclogites of the world, and it is proposed that the fluid present during the high pressure metamorphism has to a large extent been inherited from the precursor rocks of amphibolite facies. An average formation temperature of 540 ?? C is inferred from the oxygen isotope fractionations between quartz and rutile and between quartz and white mica. This temperature is in accordance with petrologic considerations and implies subduction of the precursor rocks into the upper mantle to achieve the high pressures required. ?? 1978 Springer-Verlag.

  5. Stratigraphic and structural relations of Lower Triassic rocks within the frontal fold-and-thrust zone of southwestern Montana

    SciTech Connect

    Paull, R.K.; Paull, R.A. )

    1991-06-01

    New sections of Lower Triassic rocks were measured within the frontal fold-and-thrust zone of southwestern Montana at Garfield Canyon, Horse Prairie Creek, Kennison Spring, and Birch Creek to clarify stratigraphic and structural relations. Triassic rocks disconformably overlie Upper Permian units and unconformably underlie younger rocks. From oldest to youngest, they include the Dinwoody, Woodside, and Thaynes formations. The Dinwoody consists of shale, siltstone, and limestone; thickness varies from 152 to 273 m. Red beds of the Woodside thin northward to zero in the northern Tendoy Mountains. The Thaynes is comprised of limestone, siltstone, and sandstone; thickness varies from 244 m in the south, zero in the central area, to 51 m in the north. North of the Woodside termination, recognition of the Thaynes depends upon recovery of Smithian conodonts. Conodonts provide correlation and biofacies information for this study. From Birch Creek northward, conodonts are basinal, consistent with lithofacies data. This area is within the McCartney Mountain salient, a depositional basin which may have existed on the craton margin prior to thrusting. However, there is no evidence to support basinal conditions in the Blacktail Mountain salient to the south. Although thermal alteration values for most conodonts are within the range of oil and condensate production, those from Birch Creek north exceed the stability regime for hydrocarbons.

  6. Isotopic and Geochemical Evidence for Differing Magmatic and Tectonic Origins of Mafic Subduction Zone Rocks, Vermont Appalachians

    NASA Astrophysics Data System (ADS)

    Honsberger, I. W.; Zhang, S.; Coish, R.; Laird, J.

    2016-12-01

    Whole-rock major and minor element data suggest that polymetamorphosed mafic bodies within the subduction zone terrane of VT are tholeiitic rift basalts. Whole-rock REE and isotopic data reveal that different mafic bodies within the terrane have different magmatic and tectonic origins. Bodies associated with ultramafics display flat REE patterns or slight depletion in LREE relative to HREE, suggesting origination from depleted melts and/or high degrees of partial melting. These rocks retain age-corrected ɛNd (t) values ranging from 4.39 to 7.11, with higher values consistent with melting of MORB-type mantle (ɛNd 6 to 13) and lower values consistent with melting of enriched mantle compared to MORB-type. Samples with ɛNd (t) < 6 were derived from deeper, more primitive mantle melts than MORB-type, or originally depleted melts were contaminated by enriched lithospheric mantle. The latter is preferred because LREE enrichment is not correlated with low ɛNd (t) values. Mafic bodies surrounded only by metamorphosed sediments are moderately enriched in LREE relative to HREE, moderately depleted in LREE relative to HREE, or display flat patterns. The range in ɛNd (t) values is 3.46 to 7.82 for these rocks. Samples with ɛNd (t) values > 6 display flat REE patterns or are moderately depleted in LREE, consistent with melting of MORB-type mantle. Samples that retain ɛNd (t) values < 4 exhibit moderate enrichment in LREE relative to HREE abundances that are 30 times greater than chondrite abundances, similar to arc rift basalt signatures. These samples were derived from deep, moderately enriched, primitive mantle melts that resulted from moderate to low degrees of partial melting. One sample preserves ɛNd (t) = 4.48 and is moderately enriched in LREE relative to HREE abundances that are 15 times greater than chondrite abundances, comparable to ocean island signatures. This sample was derived from a relatively deep, moderately enriched, primitive mantle melt that resulted

  7. Petrogenesis of the Late Eocene Tarom-e-`Olya shoshonitic plutonic rocks from the Alborz-Azarbayjan zone, NW Iran

    NASA Astrophysics Data System (ADS)

    Nazarinia, Asma; Rashidnejad Omran, Nematollah; Arvin, Mohsen; Ahmadi, Parham

    2017-04-01

    The Late Eocene Tarom-e-`Olya pluton is one of the plutonic bodies cropped out in the Alborz-Azarbayjan zone in the NW of Iran. The pluton, with NW-SE trend, is intruded into the Eocene Sedimentry- volcanic rocks and comprises mainly of monzonite and quartz monzonite rocks with subordinate monzogranite, monzodiorite and quartz monzodiorite. They are I-type metaluminous in nature and shoshonitic in composition, characterized by rather high total alkalies (K2O> Na2O, ranging from 0.9 to 2wt %). On primitive mantle normalized trace element spider diagrams the pluton shows strong enrichment of large-ion lithophile elements (LILE) and depletion in high-field strength elements (HFSE) such as Nb, Ta and Ti. The Chondrite- normalized REE patterns are characterized by slightly enrichments of LREE over MREE and flat heavy REE Patterns [(Gd/Yb) N = 0.80-1.87], high (La/Yb) N = 6.38-9.89 and negative Eu anomaly [(Eu/Eu*) N= 0.46 -1.38]. These are typical geochemical features of subduction related magmatic rocks. The negative Eu anomaly suggests an important role for plagioclase and K-feldespar during fractional crystallization. The geochemical features indicate that a small degree of partial melting (1-5%) of lithospheric mantle source, previously undergone metasomatism due to infiltration of fluids and melts released from the subducted Neotethyan slab, generated the parental magma in a post-Collisional tectonic setting. The melting resulted from slab roll back of the down going Neotethyan oceanic crust in the final stages of subdction beneath the Central Iran that facilitated upwelling of hot asthenospheric mantle which in turn caused lithospheric extension and promote decompression melting of the metasomatized mantle wedge. Later, extensive fractional crystallization accompanied by minor crustal assimilation led to evolution of the intermediate acidic composition of the Tarom-e-`Olya pluton. Key words: Tarom-e-`Olya, Shoshonitic, Alborz-Azarbayjan zone, Neotethys

  8. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    USGS Publications Warehouse

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  9. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    NASA Astrophysics Data System (ADS)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and

  10. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    NASA Astrophysics Data System (ADS)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  11. Lateral variations in mylonite zone thickness as influenced by fluid-rock interactions, Linville falls fault, North Carolina

    NASA Astrophysics Data System (ADS)

    Newman, J.; Mitra, G.

    1993-07-01

    Over a distance of approximately 20 km, along strike, the Linville Falls mylonite varies in thickness from 1 m at Linville Falls to >60 m at Banner Elk. Along strike, pressure, temperature and displacement variations are minimized, allowing this study to focus on the influences of fluid behavior and protolith mineralogy on fault zone development. The protolith at Linville Falls contains mainly K-feldspar, perthite and quartz, while at Banner Elk the protolith contains plagioclase and quartz. At Linville Falls, quartz deformed by dynamic recrystallization, feldspar by intragranular fracturing and alteration to quartz and mica, and mica by sliding along cleavage planes. Modal mineralogies change from the protolith to the mylonite with quartz decreasing from 39 to 19% and feldspar from 59 to 1.5%; muscovite increases from <1 to 80%. Mean grain size of the quartz and feldspar also decreased, from 30 to 20 μm and from 110 to 50 μm, respectively. At Banner Elk, deformation occurred predominantly by dynamic recrystallization within the quartz and by sliding along cleavage planes in mica; no feldspar remains within the mylonite zone. Modal mineralogies change from the protolith to the mylonite with quartz and muscovite increasing from 21 to 50% and from < 1 to 44%, respectively. Mean grain size of quartz decreases from 60 to 24 μm. Mass-balance calculations, based on major- and trace-element geochemistry, indicate approximately 75% volume loss at Linville Falls and 20% at Banner Elk. Fluid-rock ratios estimated from the calculated depletions of Si are an order of magnitude higher at Linville Falls than at Banner Elk. Fluids infiltrated the fault zone over a thicker zone at Banner Elk than at Linville Falls because the plagioclase altered more readily than K-feldspar, creating new pathways for fluids. Fluids migrated preferentially through channels along the fault zone, creating a three-dimensional network of higher fluid flow.

  12. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  13. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    PubMed

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  14. P-T paths of ophiolite-related metamorphic rocks from the Dinaride ophiolite zone in Bosnia

    NASA Astrophysics Data System (ADS)

    Balen, Dražen; Massonne, Hans-Joachim; Koller, Friedrich; Theye, Thomas; Opitz, Joachim; Hrvatović, Hazim; Premužak, Lucija

    2017-04-01

    The Dinarides, an Alpine mountain chain in south-eastern Europe, is characterized by complex fold, thrust, and imbricate structures. Partially dismembered ophiolites, a regular part of the Inner Dinarides, are considered as separate ultramafic massifs. The large Krivaja-Konjuh ultramafic massif (KKUM) within the Dinaride Ophiolite Zone (DOZ), composed of tectonic spinel lherzolite, occurs as NE-dipping thrust sheet underlain by gradually decreasing, up to 1200 m thick, high- to medium-grade metamorphic rocks. The metamorphic rocks geochemically resemble MORB-like rocks with tholeiitic signature. Such metamorphic rocks, which originated from cumulate gabbro and/or troctolite, are mainly represented by granulite and amphibolite varieties (subordinate eclogite and epidote-amphibolite facies metamafic rocks are also present) with various proportions of amphibole, plagioclase, pyroxenes (diopside and hypersthene), garnet, corundum, sapphirine, spinel and quartz. These rocks vary in textures (granoblastic, porphyroblastic and nematoblastic) and grain size (coarse- to fine-grain varieties). Conventional thermobarometry of garnet- and clinopyroxene-bearing amphibolites directly beneath the contact to the overlying peridotite resulted in peak pressure (P) - temperature (T) conditions of 10-12 kbar (depth of ca. 35-40 km) and 745-830°C. Those amphibolites without clinopyroxene but with garnet experienced peak conditions of 7 kbar and 630°C. Amphibole + plagioclase amphibolite gave temperatures of 670-730 °C and lowermost-grade amphibolites yielded peak temperatures of 550°C. These estimates are thought to reflect the metamorphic conditions during the Late Jurassic obduction of the hot upper mantle part of the KKUM onto the ophiolite mélange. The hot obducted ultramafic fragments acted as a heat source for metamorphism that transformed cumulate gabbroic protolith into high- to medium-grade amphibolites and granulites. P-T pseudosections constructed for various

  15. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    NASA Astrophysics Data System (ADS)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    pressure measurements between an obturated borehole and the tunnel is conducted to monitor the possible modifications of the transport properties of the EDZ due to hydraulical and/or mechanical sollicitations of the nearby Roselend reservoir lake. As radon level is controlled by emanation and transport path through the medium. The observed bursts of radon should be due to changes of the radon transport properties (Trique et al. 1999) of the EDZ. A correlation between the differential pressure variations and radon bursts is clearly observed. Radon bursts seem to be related to overpressure events that take place in the instrumented borehole. Which external sollicitations, hydraulical or mechanical, or both, induce such a behaviour? References Bossart, P., Meier, P. M., Moeri, A., Trick, T., and J.-C. Mayor (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory, Engineering Geology, 66, 19-38. Dezayes, C., and T. Villemin (2002). Etat de la fracturation dans la galerie CEA de Roselend et analyse de la déformation cassante dans le massif du Méraillet, technical report, Lab. de Geodyn. de Chaisnes Alp., Univ. de Savoie, Savoie, France. Jakubick, A. T., and T. Franz (1993). Vacuum testing of the permeability of the excavation damaged zone, Rock Mech. Rock Engng., 26(2), 165-182. Patriarche, D., Pili, E., Adler, P. M., and J.-F. Thovert (2007). Stereological analysis of fractures in the Roselend tunnel and permeability determination, Water Resour. Res., 43, W09421. Richon, P., Perrier, F., Sabroux, J.-C., Trique, M., Ferry, C., Voisin, V., and E. Pili (2004). Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel, J. Environ. Radioact., 78, 179-198. Richon, P., Perrier, F., Pili, E., and J.-C. Sabroux (2009). Detectability and significance of the 12hr barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide

  16. Fundamental Experiments Of Fluid-Rock Reaction Due To A Mechanochemical Process: Implication For Seismic Fault Zones

    NASA Astrophysics Data System (ADS)

    Saruwatari, K.; Kameda, J.; Tanaka, H.

    2003-12-01

    Fracture zones within active fault zones are known to be passages of fluids. The fluid penetration in the fracture zone leads into fluid-rock interaction that changes the physical and chemical properties of the fault zone materials, possibly affecting the dynamic behavior of the fault itself. The evidences of the interactions between fluids and destructed rocks are obtained as anomalous concentrations of gases and chemical elements along active faults (e.g., Wakita et al., 1980; Tanaka et al., 2001). One of the characteristic products is hydrogen gas that has been detected relative to fault activities since Wakita et al. (1980) found hydrogen anomalies along an active fault. The generation of hydrogen gas is due to the radical reaction between water molecule and active Si radicals on the new surface of crushed quartz grains (Kita et al., 1982; Kameda et al., in press). Another characteristic product in the fault zone is submicron size of low strength materials such as amorphous and clays which seem to be formed by fluid-mineral reactions like dissolution-precipitation and alteration reactions (e.g., Tanaka et al., 2001). In order to understand the fluid-rock reactions during the pulverization of rocks, we performed batch-style crushing experiments of single crystals of quartz, alkali feldspar and biotite and granites with pure water (pH7) under argon-filled conditions using a glove box at the ambient temperature and pressure. We measured pH of the solutions and hydrogen gas concentrations using a glass electrode and gas chromatograph, respectively. BET (Brunauer, Emmett and Teller) method was adopted for precise measurements of net surface areas of the samples, in order to estimate the destructed atomic bonds. Furthermore, cations and anions in the water are also measured by PerkinElmer atomic absorption spectrometry and Toso ion chromatograph. pH values decrease for the experiments of quartz single crystal with increasing crushing times, while the other single

  17. The effect of CO2 on the stability of fault zones in cap rocks - an experimental approach

    NASA Astrophysics Data System (ADS)

    Blume, J.; Stosch, H. G.; Neumann, T.; Mutschler, T.; Triantafyllidis, T.; Balthasar, K. G.; Eckhardt, J. D.

    2011-12-01

    Understanding alteration processes in cap rock formations above CO2-storage sites as a function of temperature, pressure, fluid and cap rock mineralogical composition is essential to ensure a long and safe storage of carbon dioxide. The alteration of fault zones may lead to increases as well as decreases in permeability as a consequence of dissolution or precipitation. Widening of flow paths, accompanied by leakage, might also change the local stress field and the rock mechanical properties of the fault area. To investigate these relationships, an experimental setup was designed within the BMBF-funded GEOTECHNOLOGIEN joint project CO2SEALS in order to study experiment-related shear planes in natural rock samples, changes in the mineralogical and rock mechanical properties and their interactions. Annular shear planes (ring structures) were produced in samples of pelictic reference rocks in a strain-controlled punching process. The punched samples were installed into reaction vessels, in which they were continuously percolated by a CO2-saturated NaCl-brine at constant pressure (5 bars) and different constant temperatures (45 to 100 °C). Experiments on Opalinus clay with a duration up to 1 year show that interactions between CO2-saturated brine and cap rock are temperature dependent. At temperatures below 75 °C carbonate dissolution is the dominant process as shown by a Ca-concentration in the effluent increasing 15-fold (from 30 mg/l to 455 mg/l) and a CaO concentration decreasing by one third (from 7.2 wt% in the outer sample area to 4.7 wt% in the reacted fault zone; sample reacted at 45°C and 1 year reaction time). In contrast, at higher temperatures carbonate precipitation becomes dominant with the Ca-concentration in the effluent decreasing significantly with time by a factor of two (from 406 mg/l to 213 mg/l). Beside these processes, which were already observed in experiments of short duration, alteration of silicates must have been occurred also. This is

  18. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    USGS Publications Warehouse

    Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.

    2017-01-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  19. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2016-11-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  20. 76 FR 55796 - Safety Zone; TriRock Triathlon, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... of a bay swim in San Diego Harbor. This safety zone is necessary to provide for the safety of the... logistical details of the San Diego Bay swim were not finalized or presented to the Coast Guard in enough... swimming a predetermined course. The sponsor will provide three safety vessels for this event. This...

  1. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...) Zone for the drilling, blasting, and dredging operation on the navigable waters of Boston Inner Harbor... navigable waters during the drilling, blasting and dredging operations in support of the U.S. Army Corps of... vicinity of the drilling, dredging and blasting operations being conducted. For the safety concerns...

  2. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2017-03-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  3. From rock to magma and back again: The evolution of temperature and deformation mechanism in conduit margin zones

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Violay, Marie; Wadsworth, Fabian B.; Vasseur, Jérémie

    2017-04-01

    Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explosivity-is the boundary through which heat is exchanged from the hot magma to the colder country rock. Using a simple heat transfer model, we first show that the isotherm for the glass transition temperature (whereat the glass within the groundmass transitions from a glass to an undercooled liquid) moves into the country rock when the magma within the conduit can stay hot, or into the conduit when the magma is quasi-stagnant and cools (on the centimetric scale over days to months). We then explore the influence of a migrating viscous boundary on compactive deformation micromechanisms in the conduit margin zone using high-pressure (effective pressure of 40 MPa), high-temperature (up to 800 °C) triaxial deformation experiments on porous andesite. Our experiments show that the micromechanism facilitating compaction in andesite is localised cataclastic pore collapse at all temperatures below the glass transition of the amorphous groundmass glass Tg (i.e., rock). In this regime, porosity is only reduced within the bands of crushed pores; the porosity outside the bands remains unchanged. Further, the strength of andesite is a positive function of temperature below the threshold Tg due to thermal expansion driven microcrack closure. The micromechanism driving compaction above Tg (i.e., magma) is the distributed viscous flow of the melt phase. In this regime, porosity loss is distributed and is accommodated by the widespread flattening and closure of pores. We find that viscous flow is much more efficient at reducing porosity than cataclastic pore collapse, and that it requires stresses much lower than those required to form bands of crushed pores. Our study therefore highlights that temperature excursions can result in a

  4. Assessing the disturbed rock zone (DRZ) around a 655 meter vertical shaft in salt using ultrasonic waves: An update

    SciTech Connect

    HARDY,ROBERT D.; HOLCOMB,DAVID J.

    2000-03-14

    An array of ultrasonic transducers was constructed consisting of three identical arrays at various depths in an air intake shaft at the Waste Isolation Pilot Plant (WIPP). Each array consists of transducers permanently installed in three holes arranged in an L shape. An active array, created by appropriate arrangement of the transducers and selection of transmitter-receiver pairs, allows the measurement of transmitted signal velocities and amplitudes (for attenuation studies) along 216 paths parallel, perpendicular and tangential to the shaft walls. Transducer positions were carefully surveyed, allowing absolute velocity measurements. Installation occurred over a period of about two years beginning in early 1989, with nearly continuous operation since that time, resulting in a rare, if not unique, record of the spatial and temporal variability of damage development around an underground opening. This paper reports results from the last two years of operation, updating the results reported by Holcomb, 1999. Results will be related to the damage, due to microcracking, required to produce the observed changes. It is expected that the results will be useful to other studies of the long-term deformation characteristics of salt.

  5. Time constraints for low-angle shear zones in the Central Rhodopes (Bulgaria) and their significance for the exhumation of high-pressure rocks

    NASA Astrophysics Data System (ADS)

    Jahn-Awe, Silke; Pleuger, Jan; Frei, Dirk; Georgiev, Neven; Froitzheim, Nikolaus; Nagel, Thorsten J.

    2012-10-01

    In the Central Rhodopes of southern Bulgaria, an eclogite-bearing rock sheet belonging to the Middle Allochthon (Starcevo Unit) is over- and underlain by eclogite-free, amphibolite-facies rock units along low-angle shear zones, the Borovica Shear Zone at the top and the Starcevo-Ardino Shear Zone at the base. The age of these shear zones is determined by U-Pb zircon dating of pre-, syn- and posttectonic magmatic rocks, mostly pegmatite veins, using LA-SF-ICP-MS. Zircons from pre- to syntectonic pegmatites within the Borovica Shear Zone yielded ages of ca. 45-43 Ma, indicating that the shear zone was active at that time, and zircons from a pretectonic pegmatite and a posttectonic granitoid body within the Starcevo-Ardino Shear Zone yielded ages of ca. 45 and ca. 36 Ma, respectively, giving a time frame for the activity of that shear zone which probably rather postdated the activity of the Borovica Shear Zone. By combining the ages with the kinematics of the shear zones and the metamorphic history of the rock units, the following scenario is sketched: Soon after the Starcevo Unit reached peak pressure (eclogite facies), it was exhumed to a mid-crustal level by top-to-the-north-west, extensional unroofing along the Borovica Shear Zone, in a kinematic framework of orogen-parallel extension. Beginning at ca. 40 Ma, the partly exhumed Starcevo Unit was underthrust from the south-west by continental crust of the foreland (Apulia), forming the Lower Allochthon of the Rhodopes, along the Starcevo-Ardino Shear Zone. These results underline the significance of orogen-parallel extension for the exhumation of high-pressure rocks. With respect to regional geology of the Hellenides and the Aegean, it is found that the tectonic architecture of the Rhodopes is essentially of Tertiary age. Cretaceous syn-metamorphic shear zones do exist but are largely restricted to higher levels of the nappe stack (Upper Allochthon). The Rhodopes do not represent an older essentially Mesozoic core

  6. The effect of stagnant water zones on retarding radionuclide stransport in fractured rocks: An extension to the Channel Network Model

    NASA Astrophysics Data System (ADS)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-09-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this paper is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. In the first part of the paper, the overall impact of STWZs in retarding radionuclide transport is investigated through a deterministic calculation of far-field releases at Forsmark, Sweden. Over the time-scale of the repository safety assessments, radionuclide breakthrough curves are calculated for increasing STWZ width. It is shown that the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The rest of the paper is devoted to the probabilistic calculation of radionuclide transport in fractured rocks. The model that is developed for transport through a single channel is embedded into the Channel Network Model and new computer codes are provided for the CHAN3D. The program is used to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The required data for the model are obtained from detailed hydraulic tests in boreholes intersecting the rock mass where the tracer tests were made. The simulation results fairly well predict the release of the sorbing tracer 137Cs. It is found that

  7. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate

  8. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs.

  9. Measurement of the optical properties of lunar rocks in the transition zone, resulting from observations made by Lunokhod 2

    NASA Technical Reports Server (NTRS)

    Lipskiy, Y. N.; Shevchenko, V. V.

    1977-01-01

    Photometric measurements were carried out directly on the lunar surface with the aid of a calibration device, a plate with fields of different brightness, placed in the field of view of the panoramic telephotometers. The brightness of the fields of the calibration plate were measured in preliminary studies, relative to the brightness of a magnesia screen. This permitted determination of the reflectance features of the surficial lunar material relative to the standard most widely used in brightness studies of natural substances. The total brightness of sections a few centimeters across was recorded in direct proximity to the apparatus. The total area investigated in one panorama was about one square meter. Several areas in the mare and highland regions were studied. The albedos of various surface objects were obtained. A comparison of the brightness measurements with data from the RIFMA-M instrument discloses a correlation of the albedo change with change in chemical composition of the surface rock. Direct photometric studies of the lunar surface in the "mare-highland" transition zone assist in tracing the transition from one type of rock to another, and in obtaining information on the processes of material exchange between these two types of lunar landscape.

  10. Fluid-rock interactions during the initiation and widening of a shear zone: an example from the Roffna metarhyolite (Eastern Central Alps)

    NASA Astrophysics Data System (ADS)

    Poilvet, Jean-Charles; Goncalves, Philippe; Oliot, Emilien; Marquer, Didier

    2013-04-01

    The formation of shear zones in a homogeneous granitic host-rock may be subdivided into two distinct stages: (1) nucleation on a new or pre-existing brittle structure and (2) lateral widening during ductile deformation (e.g. Mancktelow & Pennacchioni, 2005). During these two stages, the presence of pressure, temperature and chemical potential gradients across the shear zone will induce mass transfer either by fluid infiltration and/or diffusion in a static pore fluid. With material transport, metasomatic reactions produce new assemblages, textures and microstructures that affect the rheology of the shear zone and therefore its behavior. A shear zone developed in a magmatic host-rock is probably the case where the mineralogical changes are the most dramatic, and therefore the easiest to characterize, because deformation and fluid infiltration affect magmatic assemblages that are metastable at the P-T conditions of deformation. The ability of predicting the mineralogical and geochemical evolution during syn-deformation fluid-rock interactions is critical to either estimate PT conditions of deformation or better understand the processes of shear zone formation. The goal of this contribution is to determine the effects of the fluid-rock interactions, and more generally the role chemical processes, on the formation of the shear zone. A major difficulty is that with increasing deformation, the mineralogical and textural evidences of fluid-rock interactions are continuously overprinted, which prevent discussions on the precursor stages. The only way to overcome this difficulty is to study a suite of shear zones at different stages of formation, from the precursor to the most mature ductile shear zone, that were developed in the same host-rock and P-T conditions. The Roffna metarhyolite from the Suretta nappe (eastern central Alps) provides the unique opportunity to study shear zones at different stages of development. The Roffna ryolite is an early Permian massif that

  11. Shallow-generated damage within non-planar strike-slip fault zones: role of sedimentary rocks in slip accommodation, SW Holy Cross Mountains, Poland

    NASA Astrophysics Data System (ADS)

    Rybak-Ostrowska, Barbara; Konon, Andrzej; Domonik, Andrzej; Poszytek, Anna; Uroda, Joanna

    2017-09-01

    We investigated exhumed damage zones of dextral strike-slip faults dissecting the south-western part of the Mesozoic cover of the Late Palaeozoic Holy Cross Mountains Fold Belt. Structural observations allow to examine the top 1-2 km of the fault zones that deformed asymmetrically with the most intense damage controlled by the non-planar geometry of the faults. The deformational style of fault zones and the roughness of slip surfaces on subsidiary faults within deflections of fault traces in the restraining and releasing bends were facilitated by rock fabric and porosity. High porous sandstones enhanced genesis of cataclastic shear bands within the damage zone and the smooth slip surfaces. Low porous limestones enhanced the formation of dilatant structures infilled with calcite within damage zones and rough slip surfaces. The complex structural pattern of damage zones records multiple episodes of slip and shows evidence of continuous seismic-aseismic modes of fault slip behaviour.

  12. Experimental Measurements of Permeability Evolution During Brittle Deformation of Crystalline Rocks and Implications for Fluid Flow in Fault Zones

    NASA Astrophysics Data System (ADS)

    Mitchell, T.; Faulkner, D.

    2004-12-01

    Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger scale models that predict bulk fluid flow within the crust. The strength, permeability and pore fluid volume evolution of initially intact crystalline rock (Westerly granite and Cerro Cristales granodiorite) under increasing differential load leading to macroscopic failure has been measured in a triaxial deformation apparatus. Experiments were run under pore water pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to and over two orders of magnitude prior to macroscopic failure, from 3.5 x 10-21 to 9 x 10-19 m2 with the greatest increase seen at lowest effective pressures. Post-failure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities, as high as 4 x 10-18 m2, and approaches lower the limit of measurements of in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced. The largest permeability increases are seen between 90-99% of the failure stress. Under hydrothermal conditions without further loading, it is suggested that much of this permeability can be recovered, and pre-macroscopic failure fracture damage may heal relatively faster than post-failure macroscopic fractures. Pre-failure permeabilities are nearly seven to nine orders of magnitude lower than that predicted by some high pressure diffusive models suggesting that microfracture matrix flow cannot dominate, and agrees with inferences that bulk fluid flow and dilatancy must be dominated by larger scale structures, such as macrofractures. It is suggested that the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks could increase by more than 2 orders of magnitude

  13. Experimental Measurements of Permeability Evolution During Brittle Deformation of Crystalline Rocks and Implications for Fluid Flow in Fault Zones

    NASA Astrophysics Data System (ADS)

    Mitchell, T.; Faulkner, D.

    2007-12-01

    Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger scale models that predict bulk fluid flow within the crust. The strength, permeability and pore fluid volume evolution of initially intact crystalline rock (Westerly granite and Cerro Cristales granodiorite) under increasing differential load leading to macroscopic failure has been measured in a triaxial deformation apparatus. Experiments were run under pore water pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to and over two orders of magnitude prior to macroscopic failure, from 3.5 x 10-21 to 9 x 10-19 m2 with the greatest increase seen at lowest effective pressures. Post-failure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities, as high as 4 x 10-18 m2, and approaches lower the limit of measurements of in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced. The largest permeability increases are seen between 90-99% of the failure stress. Under hydrothermal conditions without further loading, it is suggested that much of this permeability can be recovered, and pre-macroscopic failure fracture damage may heal relatively faster than post-failure macroscopic fractures. Pre-failure permeabilities are nearly seven to nine orders of magnitude lower than that predicted by some high pressure diffusive models suggesting that microfracture matrix flow cannot dominate, and agrees with inferences that bulk fluid flow and dilatancy must be dominated by larger scale structures, such as macrofractures. It is suggested that the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks could increase by more than 2 orders of magnitude

  14. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic `geothermometer'

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Dekkers, Mark J.; Zhang, Bo

    2016-04-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum temperature a slip zone has experienced. The case study comprises sheared clay cored from the Japan Trench subduction plate-boundary fault zone (décollement), which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST). Heating signatures with estimated maximum temperatures ranging from ˜300 to over 500 °C are determined close to the multiple slip surfaces within the décollement. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This as yet preliminary rock magnetic `geothermometer' would be a useful tool to detect seismic heating along faults that experienced medium temperature rise, a range which is difficult to assess with other approaches.

  15. Determination of geochemical affinities of granitic rocks from the Aue-Schwarzenberg zone (Erzgebirge, Germany) by multivariate statistics

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.

    2000-01-01

    Variscan granites of the Erzgebirge region can be effectively classified into five genetically distinct major groups by canonical analysis of geochemical variables. The same classification procedure, when applied to small plutons in the Aue-Schwarzenberg granite zone (ASGZ), shows that all ASGZ granites have compositional affinities to low-F biotite or low-F two-mica granite groups. This suggests that the ASGZ granites were emplaced during the first, late-collisional stage of silicic magmatism in the region, which occurred between about 325 and 318 Ma. The numerous biotite granite bodies in the zone are geochemically distinct from both the neighboring Kirchberg granite pluton and the spatially displaced Niederbobritzsch biotite granite massif. Instead, these bodies seem to constitute a third sub-group within the low-F biotite granite class. The ASGZ biotite granites represent three or more genetically distinct bodies, thus highlighting the enormous compositional variability within this group of granites. Least evolved samples of two-mica granites from the ASGZ apparently reflect the assimilation of low-grade metamorphic country rocks during emplacement, altering the original composition of the melts by enhancing primary Al content. The same genesis is implied for the rare "cordierite granite" facies of the Bergen massif, the type pluton for the low-F two-mica granite group in the Erzgebirge.

  16. Preferential and diffuse high-volume flow through an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Perkins, K. S.; Nimmo, J. R.; Creasey, K. M.; Mirus, B. B.

    2015-12-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. The importance of slow diffuse flow in certain geologic layers and rapid preferential flow in others complicates the prediction of vertical and lateral fluxes. Here we present a simple model designed to use limited geological site information to predict these critical subsurface flow processes in response to a sustained recharge source. The model is developed and tested using site-specific information from the Idaho National Laboratory (INL) in the Eastern Snake River Plain (ESRP), where confined anthropogenic sources of infiltration from spills, leaks, waste-water disposal, or retention ponds are often associated with facilities where contamination is present. In the thick unsaturated zone overlying the ESRP Aquifer, multiple sedimentary interbeds, which vary in thickness and hydraulic properties, are interspersed between massive fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are often less conductive, causing perched water to collect above them, which is consistent with a hypothesis of rapid flow through the basalt being impeded from vertical percolation by the interbeds. The model successfully predicts volume and extent of perching, and approximates vertical travel times, during events that generate high fluxes from the land surface. The model is useful at sites like the INL where little hydrologic information is available about the combination of preferential and diffuse fluxes, but simple approximations of these combined flow processes can help inform operational decisions.

  17. Crystallographic preferred orientation and elastic anisotropy of high-pressure rocks from the Eclogite Zone of the Tauern Window, Austria

    NASA Astrophysics Data System (ADS)

    Keppler, R.; Ullemeyer, K.; Behrmann, J. H.; Stipp, M.

    2013-12-01

    So far, it has not been possible to image the fine scale internal structure of subduction channels with geophysical methods. In part, this is due to a lack of knowledge regarding elastic wave velocities, anisotropy, and textures (crystallographic preferred orientation, or CPO) of the rocks. Subduction channel fills are likely metabasalts of oceanic origin, and metamorphosed deep-sea sediments. These rock types contain polyphase mineral assemblages, for which CPO is difficult to obtain. In this study, the mineral assemblage of high pressure rocks was assessed by microprobe analysis and subsequently, the CPO was determined from time-of-flight neutron spectra applying full pattern fit method ('Rietveld texture analysis'). With this method, it is possible to investigate polyphase samples, since the CPOs of all mineral phases can be determined simultaneously despite overlapping Bragg reflections in the spectra. From the CPO, 3D models for P-wave velocity anisotropies were calculated. Since subduction channels are not directly accessible, samples were collected in the Eclogite Zone of the Tauern Window, Austria. This is a paleo-subduction channel of the Alpine orogen, which originally formed in the Tertiary during subduction of the Penninic ocean beneath the Adriatic continent. It comprises eclogites, blueschists and greenschists, as well as gneisses, micaschists, marbles and quartzites. The rocks have been exposed to P-T-conditions of 20-25 kbar and 600 +/- 30°C, and were exhumed in a very short time span of 1-2 Ma. Microprobe analysis reveals a complex metamorphic and tectonic history. Some of the eclogites still exhibit their high pressure mineral assemblage, while others were strongly overprinted during exhumation. CPO analysis shows that in some of the eclogites, omphacite, the main constituent (37-49%), exhibits a well pronounced CPO, while in others it is relatively weak. The same applies for retrograde hornblende, if present. In the eclogites, with original high

  18. Provenance and tectonic setting of the Neoproterozoic clastic rocks hosting the Banana Zone Cu-Ag mineralisation, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Kelepile, Tebogo; Bineli Betsi, Thierry; Franchi, Fulvio; Shemang, Elisha; Suh, Cheo Emmanuel

    2017-05-01

    Petrographic and geochemical data were combined in order to decipher the petrogenesis of the Neoproterozoic sedimentary succession associated with the Banana Zone Cu-Ag mineralisation (northwest Botswana), in the Kalahari Copperbelt. The investigated Neoproterozoic sedimentary succession is composed of two formations including the Ngwako Pan and the D'kar Formations. The Ngwako Pan Formation is made up of continental siliciclastic sediments, mainly sandstones interbedded with siltstones and mudstones, whereas the D'kar Formation is comprised of shallow marine laminated siltstones, sandstones and mudstones, with subordinate limestone. Copper-Ag mineralisation is essentially confined at the base of the D'kar Formation, which bears reduced organic components, likely to have controlled Cu-Ag precipitation. Sandstones of both the Ngwako Pan and the D'kar Formations are arkoses and subarkoses, composed of quartz (Q), feldspars (F) and lithic fragments (L). Moreover, geochemically the sandstones are considered as potassic and classified as arkoses. On the other hand, mudrocks of the D'kar Formation are finely laminated and are dominated by muscovite, sericite, chlorite and quartz. The modified chemical index of weathering (CIW‧) values indicated an intense chemical weathering of the source rock. The dominance of detrital quartz and feldspar grains coupled with Al2O3/TiO2 ratios (average 29.67 and 24.52 for Ngwako Pan and D'kar Formations, respectively) and Ni and Cr depletion in the sandstones, suggest a dominant felsic source. However, high concentrations of Ni and Cr and a low Al2O3/TiO2 ratio (<20) in the mudrocks of the D'kar Formation indicate a mixed source. Provenance of the investigated sandstones and mudrocks samples is further supported by the REE patterns, the size of Eu anomaly as well as La/Co, Th/Co, Th/Cr and Cr/Th ratios, which show a felsic source for the sandstones of both the Ngwako Pan and D'kar Formations and an intermediate source for the mudrocks

  19. A long-term rock uplift rate for eastern Crete and geodynamic implications for the Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Strobl, M.; Hetzel, R.; Fassoulas, C.; Kubik, P.

    2014-12-01

    The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with a local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island (e.g. Lambeck, 1995). These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have recently affected Crete (Stiros, 2001). Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ˜600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ˜100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ca. 68 and ca. 76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level high-stands (Siddall et al., 2003) indicates sustained rock uplift at a rate of ˜0.5 m/ka since at least ˜600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete. Lambeck, 1995, Geophys. J. Int. 122, 1022

  20. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500

  1. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  2. Mechanical properties and processes of deformation in shallow sedimentary rocks from subduction zones: An experimental study

    NASA Astrophysics Data System (ADS)

    Gadenne, Leslie; Raimbourg, Hugues; Champallier, Rémi; Yamamoto, Yuzuru

    2014-12-01

    better constrain the mechanical behavior of sediments accreted to accretionary prism, we conducted triaxial mechanical tests on natural samples from the Miura-Boso paleo-accretionary prism (Japan) in drained conditions with confining pressures up to 200 MPa as well as postexperiments P-wave velocity (Vp) measurements. During experiments, deformation is principally noncoaxial and accommodated by two successive modes of deformation, both associated with strain-hardening and velocity-strengthening behavior: (1) compaction-assisted shearing, distributed in a several mm-wide shear zone and (2) faulting, localized within a few tens of μm-wide, dilatant fault zone. Deformation is also associated with (1) a decrease in Young's modulus all over the tests, (2) anomalously low Vp in the deformed samples compared to their porosity and (3) an increase in sensitivity of Vp to effective pressure. We interpret this evolution of the poroelastic properties of the material as reflecting the progressive breakage of intergrain cement and the formation of microcracks along with macroscopic deformation. When applied to natural conditions, these results suggest that the deformation style (localized versus distributed) of shallow (z < a few km) sediments is mainly controlled by the variations in stress/strain rate during the seismic cycle and is therefore independent of the porosity of sediments. Finally, we show that the effect of strain, through cement breakage and microcracks formation, may lower Vp for effective pressure up to 40 MPa. As a consequence, the low Vp anomalies observed in Nankai accretionary prisms by seismic imaging between 2 and 4 km depth could reflect sediment deformation rather than porosity anomalies.

  3. The Characterization of the Crush Zones in the Dike of Ultramafic Rock and Associated Gabbro with a Help of Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Kudo, S.; Iwamori, A.; Tanaka, Y.; Makino, M.; Okuma, S.; Miyakawa, A.; Nakatsuka, T.; Sasaki, T.; Yanagida, M.; Sugimori, T.; Kitao, H.; Asahi, N.; Shiomi, T.; Higashida, Y.

    2016-12-01

    The composite dike of the ultramafic rock and associated gabbro intruded in the shale and diabase in the upper of the Yakuno Ophiolite of the Paleozoic in the site of the Ohi nuclear power station of the KEPCO (the Kansai Electric Power Co., Inc.). The KEPCO has conducted several surveys such as tectonic landform interpretation, trench and drilling surveys, and crush zones in the dike were found by the trench survey. Detail observations with the X-ray CT images, thin sections and polished sections were conducted to study whether the crush zones were caused by fault activity or landslide along serpentinite metamorphosed from the ultramafic rock. The continuity of the crush zones was studied by an interpretation of the detail DEM and dense drillings which were conducted around the trench (25 drillings in about 25,000 square meters).As results of the study, we clarified that: The crush zones are classified into an inactive fault estimated to be sheared at the time of the intrusion of the dike and a slip surface of a shallow landslide. The fault is limited in the dike and does not extend into the shale or diabase. The shallow landslide resides along the distribution of the ultramafic rock remarkably metamorphosed to the serpentinite, which becomes unclear in deep underground. The distribution of the fault and landslide is enclosed in ultramafic rock of the dike which shows a high magnetic susceptibility. Therefore, a magnetic survey was conducted to clarify the distribution of the ultramafic rock within dozens of meters in depth. As the results of the survey, the areas of strong positive and negative magnetic anomalies corresponded to the distribution of the ultramafic rock confirmed by the trench and drilling surveys. The magnetic survey also revealed the shallow subsurface structures in such areas as shallow sea where the drilling was a few. The details about the magnetic survey and results of analyses are shown in Okuma et al. (2016, this meeting).

  4. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    USGS Publications Warehouse

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  5. A study of inherited zircons in granitoid rocks from the South Portuguese and Ossa-Morena Zones, Iberian Massif: support for the exotic origin of the South Portuguese Zone

    NASA Astrophysics Data System (ADS)

    de la Rosa, Jesús D.; Jenner, George A.; Castro, Antonio

    2002-07-01

    Trace element and U-Pb isotopic analyses of inherited zircon cores from a sample of Gil Márquez granodiorite (South Portuguese Zone, SPZ) and Almonaster nebulite (Ossa-Morena Zone, OMZ, in the Aracena Metamorphic Belt) have been obtained using laser ablation-inductively coupled plasma-mass spectrometry. These data reveal differences in the age of deep continental crust in these two zones. Inherited zircon cores from the Ossa-Morena Zone range at 600±100 Ma, 1.7-2 Ga and 2.65-2.95 Ga, while those from the South Portuguese Zone range at 400-500 and 700-800 Ma. These data support the "exotic" origin of the South Portuguese Zone basement relative to the rest of Iberian Massif. The young ages of inherited zircon cores and Nd model ages of magmatic rocks of the South Portuguese Zone are comparable to results from granulite facies xenoliths and granitic rocks from the Meguma Terrane and Avalonia and support a correlation between the basement of the southernmost part of the Iberian Massif and the northern Appalachians.

  6. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  7. Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone

    NASA Astrophysics Data System (ADS)

    Tamura, Akihiro; Morishita, Tomoaki; Ishimaru, Satoko; Hara, Kaori; Sanfilippo, Alessio; Arai, Shoji

    2016-05-01

    The crust-mantle boundary zone of the oceanic lithosphere is composed mainly of olivine-rich rocks represented by dunite and troctolite. However, we still do not fully understand the global variations in the boundary zone, and an effective classification of the boundary rocks, in terms of their petrographical features and origin, is an essential step in achieving such an understanding. In this paper, to highlight variations in olivine-rich rocks from the crust-mantle boundary, we describe the compositional variations in spinel-hosted hydrous silicate mineral inclusions in rock samples from the ocean floor near a mid-ocean ridge and trench. Pargasite is the dominant mineral among the inclusions, and all of them are exceptionally rich in incompatible elements. The host spinel grains are considered to be products of melt-peridotite reactions, because their origin cannot be ascribed to simple fractional crystallization of a melt. Trace-element compositions of pargasite inclusions are characteristically different between olivine-rich rock samples, in terms of the degree of Eu and Zr anomalies in the trace-element pattern. When considering the nature of the reaction that produced the inclusion-hosting spinel, the compositional differences between samples were found to reflect a diversity in the origin of the olivine-rich rocks, as for example in whether or not a reaction was accompanied by the fractional crystallization of plagioclase. The differences also reflect the fact that the melt flow system (porous or focused flow) controlled the melt/rock ratios during reaction. The pargasite inclusions provide useful data for constraining the history and origin of the olivine-rich rocks and therefore assist in our understanding of the crust-mantle boundary of the oceanic lithosphere.

  8. The Effect of Stagnant Water Zones on Retarding Radionuclide Transport in Fractured Rocks: An Extension to the Channel Network Model

    NASA Astrophysics Data System (ADS)

    Shahkarami, P. Mr; Neretnieks, I. E.

    2016-12-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this contribution is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. A series of deterministic and probabilistic calculations are performed in this study. The deterministic calculations aimed to investigate the overall impact of STWZs in retarding radionuclide transport and their far-field releases at Forsmark, Sweden. While, the probabilistic calculations aimed to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The deterministic calculation results suggest that over the time-scale of the repository safety assessments, the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The probabilistic calculation results suggest that over the short time-scale of the tracer experiment, the effect of diffusion into STWZs is not as pronounced as that of matrix diffusion directly from the flow channel, and the latter remains the main retarding mechanism. Predictions for longer time-scale, tens of years and more, show that the effect of STWZs becomes strong and tends to increase with transport time. It is shown that over the long times of interest for

  9. Quantifying elemental compositions of primary minerals from granitic rocks and saprolite within the Santa Catalina Mountain Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lybrand, R. A.; Rasmussen, C.

    2011-12-01

    Granitic terrain comprises a significant area of the earth's land surface (>15%). Quantifying weathering processes involved in the transformation of granitic rock to saprolite and soil is central to understanding landscape evolution in these systems. The quantification of primary mineral composition is important for assessing subsequent mineral transformations and soil production. This study focuses on coupling detailed analysis of primary mineral composition to soil development across an array of field sites sampled from the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient. The gradient spans substantial climate-driven shifts in vegetation, ranging from desert scrub to mixed conifer forests. The parent material is a combination of Precambrian and Tertiary aged granites and quartz diorite. Primary mineral type and composition are known to vary among the various aged granitic materials and this variability is hypothesized to manifest as significant variation in regolith forming processes across the SCM-CZO. To address this variability, the mineral composition and mineral formulae of rock and saprolite samples were determined by electron microprobe chemical analyses. The rocks were pre-dominantly quartz, biotite, muscovite, orthoclase and calcium/sodium-rich plagioclase feldspars. Trace minerals observed in the samples included sphene, rutile, zircon, garnet, ilmenite, and apatite. Mineral formulae from electron microprobe analyses were combined with quantitative x-ray diffraction (QXRD) and x-ray fluorescence (XRF) data to quantify both primary and secondary mineralogical components in soil profiles from each of the field sites. Further, electron microprobe analyses of <2mm mixed conifer saprolite revealed weathered plagioclase grains coated with clay-sized particles enriched in silica and aluminum (~25% and 15%, respectively), suggesting kaolin as the secondary phase. The coatings were interspersed within each plagioclase grain, a

  10. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  11. Arc magmatism at the incipient stage of formation of subduction zone: geochemistry of Eocene volcanic rocks from the Bonin Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, K.; Umino, S.; Ishizuka, O.

    2009-12-01

    Bonin Islands are known for the occurrence of boninite series and high-Mg arc tholeiite and calk-alkaline rock series generated at the incipient stage of formation of subduction zone. We present new analysis of major and trace elements and petrogenetic processes of volcanic rocks of the Bonin Islands. Boninite series rocks in Chichijima and Mukojima Island Group represent the primitive arc magmatism in middle Eocene time, which gave way to arc tholeiite and calk-alkaline rocks are in Hahajima Island Groups. Boninite series of the Maruberiwan and Asahiyama Formations indicates a differentiation trend that sharply increases in FeO*/MgO (0.47-32) with increasing SiO2 contents (53.8-78.2 wt %). FeO*/MgO ratios (0.74-4.19) of arc tholeiite and calk-alkaline rocks of the Hahajima Island Group are slightly lower than those of the Izu-Bonin Quaternary volcanic front lavas. Boninite series samples of the Mikazukiyama Formation show a similar trend to the Maruberiwan-Asahiyama boninite series samples. However, the former has lower SiO2 contents (55.7-58.2 wt %), and higher FeO*/MgO ratios (1.05-1.98) than the latter. Most of the Maruberiwan and Mikazukiyama boninites belong to low-Ca type, while only a small number of Maruberiwan boninite samples belong to high-Ca type. Maruberiwan boninites (MgO>8 wt%) are the most depleted in REEs (Yb=0.36-1.01 ppm), which is only about 1/10 of N-MORBs, and the most enriched in LILEs (Rb=6-23, Ba=6-58 ppm) in the Bonin Islands. Low-Ca boninites indicate a distinct positive anomaly of Zr and negative anomalies of Sm and Ti ((Sm/Zr)n=0.45-0.78, (Ti/Zr)n=0.25-0.64), while high-Ca boninites indicate moderate anomalies of these elements ((Sm/Zr)n=0.79-1.29, (Ti/Zr)n=0.57-1.02). Basalts of the Hahajima Island Group are the most enriched in REEs (Yb=1.2-2.4 ppm) and HFSEs (Nb=0.47-1.75 ppm) in the Bonin Islands. Compared to the Hahajima basalts, the present Izu-Bonin front lavas are more depleted in LREEs and HFSE, and enriched in LILEs

  12. The Age and Geodynamic Evolution of the Metamorphic sole rocks from Izmir-Ankara-Erzıncan suture zone (Northern-Turkey)

    NASA Astrophysics Data System (ADS)

    Melih Çörtük, Rahmi; Faruk Çelik, Ömer; Özkan, Mutlu; Sherlock, Sarah C.; Marzoli, Andrea; Altıntaş, İsmail Emir; Topuz, Gültekin

    2016-04-01

    The İzmir-Ankara-Erzincan suture zone in northern Turkey is one of the major tectonic zones separating the Pontides to the North from the Anatolide-Tauride block and Kı rşehir Massif to the South. The accretionary complex of the İzmir-Ankara-Erzincan suture zone, near Artova, is composed mainly of peridotites with varying degree serpentinization, metamorphic rocks, basalt, sandstones, pelagic and neritic limestones. The metamorphic rocks are represented by amphibolite, garnet micaschit, calc-schist and marble. The metamorphic rocks were interpreted as the metamorphic sole rocks. Because; (i) They are tectonically located beneath the serpentinized peridotites. (ii) Foliation planes of both the amphibolites and mantle tectonites are parallel to each other. (iii) The metamorphic rocks are crosscut by non-metamorphic dolerite dikes which exhibite Nb and Ta depletion relative to Th enrichment on the N-MORB normalized multi-element spider diagram. The dolerite dikes display flat REE patterns (LaN/YbN=0.85-1.24). These geochemical signatures of the dolerite dikes are indicative of subduction component during their occurrences. Geochemical observations of the amphibolites suggest E-MORB- and OIB-like signatures (LaN/SmN= 1.39-3.14) and their protoliths are represented by basalt and alkali basaltic rocks. Amphiboles from the amphibolites are represented by calcic amphiboles (magnesio-hornblende, tchermakite and tremolite) and they yielded 40Ar-39Ar ages between 157.8 ± 3.6 Ma and 139 ± 11 Ma. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the İzmir-Ankara-Erzincan oceanic domain. This study was funded by TÜBİTAK (Project no: 112Y123).

  13. Seismic tomography of the Excavation Damaged Zone of the Gallery 04 in the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Nicollin, F.; Gibert, D.; Bossart, P.; Nussbaum, Ch.; Guervilly, C.

    2008-01-01

    An endoscopic antenna is used to perform a seismic cross-hole tomography in the Excavation Damaged Zone (EDZ) of the new G04 gallery of the Mont Terri Underground Rock Laboratory (Switzerland) excavated in Opalinus clay. More than 800 seismic traces were recorded between two vertical boreholes by combining 22 source and 48 receiver locations. A vertical area of 1.2 × 3.4 m under the floor of the gallery is investigated with a high-resolution tomography. Data with a very good quality allow to determine the traveltimes and the amplitudes of a 40kHz source wavelet propagating between the two boreholes. The analysis of the traveltimes shows that the wave velocity is homogeneous but anisotropic with a minimum value of 2490 +/- 45ms-1 in the direction normal to the bedding and a maximum of 3330 +/- 90ms-1 parallel to the bedding. The amplitude of the first arrivals strongly varies depending on the source-receiver locations, and suggesting an heterogeneous distribution of the attenuation coefficient of the seismic waves. A Bayesian inversion provides likely models of attenuation that are compared with geological observations. The areas where fractures or cracks exist in the Opalinus clay appear as highly absorbing the seismic waves.

  14. New petrological data on the hp-rocks of the zone of pfunds (lower engadine window, Switzerland/Austria).

    NASA Astrophysics Data System (ADS)

    Bertle, R. J.; Koller, F.; Frank, W.

    2003-04-01

    Within the Engadine Window of the western Eastern Alps, which exposes HP-LT-rocks, penninic units are exposed. 3 main units can be differentiated (from bottom to top): Zone of Pfunds (Valais), Tasna unit (Brianconnais), Fimber unit (Piemontais). In this paper we discuss new occurrences of HP-minerals in the Zone of Pfunds at Piz Mundin which are typical for subduction related metamorphism. The Piz Mundin represents an ophiolitic sequence that is overprinted by HP-LT-metamorphism during the Tertiary. The geochemistry of the basalts identifies them as tholeiitic basalts. The sediments covering the basalts are of Cretaceous age. BOUSQUET 1998 reports carpholite, high-Si-phengite and glaucophane from that region. Crossite - following him can be found in late veins within the basalts. His petrological calculations define pressures up to 15 kbar at 380^o C based on carpholite and glaucophane. He distinguished a region with carpholite and UCHP-metamorphism from a region without carpholite and "normal" HP-metamorphism. During detailed geological mapping of the first author it was possible to demonstrate that the occurrence of carpholite is limited by the bulk chemistry of the metasedimentary host rock. Metasediments with clastic input show no carpholite - there might be too much detrital feldspar in the sediment, preventing the development of carpholite. Moreover in the basic rocks (metapillows and metabasalts) it was possible to find also metamorphic clinopyroxen and aragonite. Clinopyroxene is rimmed by glaucophane and/or stilpnomelane. Glaucophane itselfs shows high zonation: blue core with pigments, rimmed by an inclusion-free blue amphibole which itself is rimmed by a slightly green to colourless amphibole (actinolite? or tremolite). The metamorphic pyroxene shows about 25 % jadeite- and 40 % acmite-component. HP-conditions might be higher than those given by BOUSQUET et al. 2002 as pyroxene is a precursor of glaucophane. The new findings of metamorphic aragonite are

  15. Integrating gamma log and conventional electrical logs to improve identification of fracture zones in hard rocks for hydrofracturing: a case study from Ghana

    NASA Astrophysics Data System (ADS)

    Amartey, E. O.; Akiti, T. T.; Armah, T.; Osae, S.; Agyekum, W. A.

    2016-07-01

    Hydrofracturing of low-yielding boreholes in hard rocks is a widely used technique in Africa for improvement of yield, thus making them qualified for installation of a hand-pump for domestic water supply. However, the success rate of the hydrofracturing campaigns seems not to be that high as generally claimed by contractors. One reason amongst others might be that the selection of zones for hydrofracturing in the individual borehole is based on pre-hydrofracturing investigation using conventional electrical logs only. Thereby, the zones selected are the occurring resistivity minima interpreted as weak zones with some fracturing. However, resistivity minima can also be caused solely by lithological reasons, which then in most cases could have been seen on a gamma log as corresponding increased gamma radiation. The advantages of using gamma logging in combination with conventional electrical logging technique for prediction of fractured zones in basement rocks is illustrated by investigations of three low-yielding boreholes located in different geological environments in crystalline basement rocks in Ghana.

  16. Physicochemical changes of aluminium in mixing zones: Mortality and physiological disturbances in brown trout (Salmo trutta L.)

    SciTech Connect

    Witters, H.E.; Van Puymbroeck, S.; Stouthart, A.J.H.X.; Bonga, S.E.W.

    1996-06-01

    A standardized laboratory setup, simulating field mixing zones that originate at the confluence of limed rivers with acidic, aluminium-rich, tributaries, has been developed. Detailed analyses of the chemical speciation of aluminium (Al) in relation to the biological response of brown trout were performed to identify the mechanism of unexpected high fish mortality in the above-mentioned mixing zones with pH levels above 6.0. Brown trout experienced an acute cumulative mortality (98% in 48 h) immediately after neutral and acidic, Al-rich, water had mixed. Mortality was only 60% within 48 h of exposure to the acid water with Al (pH 4.6 + 6.8 {micro}mol Al/L), although the Al concentration in the mixing zone was less (2.8 {micro}mol Al/L) at a nonharmful pH level (pH 6.4). Chemical speciation and ultrafiltration studies demonstrated that the transformation of low-molecular weight Al (<10 kD) into high-molecular weight Al (>10 kD), defined as Al polymerization, could better be related to the toxic response of fish, than the total Al concentration. The aging of polymerized Al forms (for 480 s) resulted in reduced fish mortality and less pronounced physiological stress. Brown trout in the initial mixing zone showed significantly increased plasma glucose and cortisol levels. Light and electron microscopy studies demonstrated serious damage to the skin: increased mucous secretion, a high ratio of acid to neutral glycoprotein-containing mucous cells, increased apoptosis, and infiltration of leucocytes and macrophages between the epithelial cells. Ionoregulatory parameters, which showed minor changes in fish in the initial mixing zone, did not allow explanation of acute fish mortality. Data on the ventilation frequency and the blood hematocrit, which both increased, gave support for the hypothesis that acute fish mortality in mixing zones could be caused by respiratory dysfunction.

  17. Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors and runout zones

    NASA Astrophysics Data System (ADS)

    Noetzli, J.; Hoelzle, M.; Haeberli, W.:

    2003-04-01

    Glacier retreat and permafrost changes, as related to climate change, are supposed to affect stability conditions of steep rock walls in cold mountain ranges. Several rock-fall events that have occurred in the European Alps during the 20th century (for example, the Brenva Glacier rock avalanches of 1920 and 1997 in the Aosta Valley or the recently developed instability in the Monte-Rosa east wall in the Anzasca Valley, both in the Italian Alps) are possibly related to warm permafrost. The presence of unfrozen water in partially ice-filled bedrock fissures is likely to lead to reduced shearing resistance. However, available knowledge about thermal, topographic and geological conditions under which such instabilities develop remains limited and needs quantitative investigation. Corresponding data can be used as a basis for GIS-based spatial modeling of critical factors or of combinations of factors. Such spatial models of critical rock-fall factors then serve as a basis for assessing hazard potentials that may evolve from periglacial rock falls in case of continued or even accelerated atmospheric temperature rise. In order to proceed into this direction, parameters are determined in a systematic study of known rock-fall events in the Alps. Surface temperatures of historically documented starting zones are estimated either by applying the ärules of thumb“ earlier developed for the Swiss Alps, by applying GIS-based spatial models such as PERMAMAP or by using the data of a 2001/2002 rock-temperature measurement campaign. Topographic factors such as slope, altitude or aspect are derived from DTMs. Altitude difference, length, overall slope and surface characteristics (glacier, moraines, turns etc.) of runout paths are also inventoried. Despite the relatively small number of events documented (around 20), first results can be given and first model runs of spatial patterns and potential runout zones can be presented from a selected test area in the Valais Alps

  18. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet

    NASA Astrophysics Data System (ADS)

    He, Juan; Li, Yalin; Wang, Chengshan; Dilek, Yildirim; Wei, Yushuai; Chen, Xi; Hou, Yunling; Zhou, Aorigele

    2016-05-01

    The >2000 km-long Yarlung Zangbo Suture Zone (YZSZ) in southern Tibet includes the remnants of the Mesozoic Neotethyan oceanic lithosphere, and is divided by the Zhada-Zhongba microcontinent into northern and southern branches in its western segment. Zircon U-Pb dating of a doleritic rock from the northern branch has revealed a concordant age of 160.5 ± 1.3 Ma. All of the doleritic samples from the northern branch and the pillow basalt and gabbro samples from the southern branch display consistent REE and trace element patterns similar to those of modern OIB-type rocks. The geochemical and Sr-Nd-Pb isotopic signatures of these OIB-type rocks from the western segment are identical with those of OIB-type and alkaline rocks from other ophiolite massifs along the central and eastern segments of the YZSZ, suggesting a common mantle plume source for their melt evolution. The enriched Sr-Nd-Pb isotopic character of the gabbroic dike rocks from the southern branch points to a mantle plume source, contaminated by subducted oceanic crust or pelagic sediments. We infer that the mafic rock associations exposed along the YZSZ represent the remnants of a Neotethyan oceanic lithosphere, which was developed as part of a plume-proximal seafloor-spreading system, reminiscent of the seamount chains along-across the modern mid-ocean ridges in the Pacific Ocean.

  19. Metasomatic rocks with greisenization associated with the ore-bearing zones in the Iron Mountains (Železné hory Mountains, eastern Bohemia, Czechoslovakia)

    NASA Astrophysics Data System (ADS)

    Němec, Dušan

    1990-10-01

    In the central Iron Mountains the ore-mineralized deformation zones represent deep reaching faults which possibly reach the upper mantle. During geological history they were used by ascending magmas, fluids, and barren and ore hydrothermal solutions. It can be shown that the metasomatism provoked by acid fluids bears the character of greisenization. The type of the original greisenized rocks here can be determined on the basis of elements that were immobile during greisenization, especially Si, Ti, Sc and REE. After or even during greisenization, the metasomatic rocks were affected by shearing metamorphism corresponding in its PT conditions to the middle zone of the almandine-amphibolite facies. It was possibly in this period that the enigmatic skarn body of Samařov originated. Owing to its similarity to the dyke skarn of Kraskov, its similar origin could be assumed: the deposition of skarn minerals from circulating fluids, which were perhaps released during greisenization.

  20. Petrology and ⁴⁰Ar/3⁹Ar-chronology of metavolcanic rocks from the Northern Phyllite Zone (Southern Hunsrück and Taunus Mountains, Germany): insights into a late Variscan ductile shear zone.

    NASA Astrophysics Data System (ADS)

    Fladt, Matthias; Soder, Christian; Schwarz, Winfried; Trieloff, Mario

    2017-04-01

    The Northern Phyllite Zone (NPZ) is a low-grade mylonitic shear zone between the high-grade rocks of the Mid-German Crystalline Zone and the very low-grade rocks of the Rhenohercynian Zone of the Variscan orogen. The NPZ comprises low-grade metasedimentary and metavolcanic rocks. Basaltic, intermediate and rhyolitic metavolcanics from the Soonwald and the Southern Taunus Mountains show the following paragenesis: actinolite + chlorite + epidote + albite + phengite + titanite + quartz ± calcite ± stilpnomelane ± pumpellyite ± aegirine-augite; blue amphibole (winchite) + chlorite + phengite + stilpnomelane + albite + titanite + quartz + magnetite ± epidote ± hematite; quartz + albite + K-feldspar + phengite + chlorite + titanite ± stilpnomelane ± ilmenite ± magnetite ± hematite. Occasionally, relict magmatic phases are present. The foliation strikes SW-NE and dips 60-70° to the NW. Stretching lineations are subhorizontal. P-T-estimations were done on the basis of equilibrium assemblage modelling yielding peak metamorphic conditions of 300-350 °C and 6-6.5 kbar. Thus, burial depths of 20-22 km and a low geothermal gradient of 15-16 °C/km are inferred. ⁴⁰Ar/3⁹Ar-dating of stepwise heated phengite separates (100-200 µm) results in plateau ages of ˜320 Ma. Two of the examined separates show argon diffusive loss ⁴⁰Ar/3⁹Ar-age spectra, which yield a period of argon loss between 145 and 130 Ma. Diffusive argon loss is possibly related to widespread Jurassic-Cretaceous hydrothermal activity in SW Germany. We interpret the Northern Phyllite Zone as a sinistral shear zone documenting prolonged oblique convergence following the peak of the Variscan orogeny between 340-330 Ma until 320 Ma.

  1. Spatial and temporal variability of rock fall in a (peri)glacial environment: a LiDAR-based, multi-year investigation of rock fall release zones and volumes, Kitzsteinhorn, Austria

    NASA Astrophysics Data System (ADS)

    Delleske, Robert; Hartmeyer, Ingo; Keuschnig, Markus; Götz, Joachim

    2014-05-01

    October). All scans (n = 41) were conducted using a RIEGL LMS-Z620. The resulting spatial resolution varies between 0.1 and 0.5 m and object distance (i.e. distance between scanner and rock face) ranges from 250 to 500 m. Post-processing of TLS data enabled to precisely identify rock fall release zones, rock fall volumes and surface changes of the Schmiedingerkees glacier (lowering rate of approximately 1.5 m per year). Since 2011 a total number of nine rock fall events with a volume exceeding 100 m³ have been recorded - with the largest reaching a volume of approx. 500 m³. All were triggered from areas that have been exposed by the retreating Schmiedingerkees glacier over the last 1-2 decades. Thus, glacial debuttressing and subsequent exposure to atmospheric influences might be considered as the dominant destabilizing factors. Temporal clustering of rock fall events over the first three seasons (2011 to 2013) tentatively indicates a bimodal occurrence pattern with a first maximum during snowmelt (May/June) and a second distinct peak during the warmest period of the year (August).

  2. Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-bearing volcanic structures: A case of the Strel'tsovka caldera, Transbaikal region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.

    2014-03-01

    The development of vertical zoning of wall-rock metasomatic alteration is considered with the Mesozoic Strel'tsovka caldera as an example. This caldera hosts Russia's largest uranium ore field. Metasomatic rocks with the participation of various phyllosilicates, carbonates, albite, and zeolites are widespread in the ore field. In the eastern block of the caldera, where the main uranium reserves are accommodated, hydromica metasomatic alteration gives way to beresitization with depth. Argillic alteration, which is typical of the western block, is replaced with hydromica and beresite alteration only at a significant depth. Postore argillic alteration is superposed on beresitized rocks in the lower part of the section. Two styles of vertical metasomatic zoning are caused by different modes of deformation in the western and eastern parts of the caldera. Variations of the most important petrophysical properties of host rocks—density, apparent porosity, velocities of P- and S-waves, dynamic Young's modulus, and Poisson coefficient—have been determined by sonic testing of samples taken from different depths. It is suggested that downward migration of the brittle-ductile transition zone could have been a factor controlling facies diversity of metasomatic rocks. Such a migration was caused by a new phase of tectonothermal impact accompanied by an increase in the strain rate or by emplacement of a new portion of heated fluid. Transient subsidence of the brittle-ductile boundary increases the depth of the hydrodynamically open zone related to the Earth's surface and accelerates percolation of cold meteoric water to a greater depth. As a result, the temperature of the hydrothermal solution falls down, increasing the vertical extent of argillic alteration. High-grade uranium mineralization is also localized more deeply than elsewhere.

  3. Quantifying sediment disturbance by bottom currents and its effect on benthic communities in a deep-sea western boundary zone

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.

    1989-06-01

    Erosion, transport and redeposition of sediment by near-bottom currents are major sources of disturbance for soft-sediment habitats and associated benthic communities. This phenomenon takes place in western boundary slope regions of the deep sea such as the HEBBLE area on the Nova Scotian Rise, western North Atlantic. Bottom disturbance in this western boundary region can be characterized and quantified, first in terms of the driving force—the current and directly related bed shear stress; and second, by the expression of the current effect as observed in sedimentary fabric, %CaCO 3, and granulometry. These physical characteristics can be correlated with biologic features, including abundances and activities of sediment microorganisms, and apparently, in abundances and distributions of meio- and macrofauna. Currents measured at heights of 1-59 m above the seabed at the HEBBLE site (4815-4830 m) from February 1982 to 15 September 1986 show evidence of "benthic storms" with current speeds of 15-23 cm s -1 for ⩾2 days. These "storms" occur with a frequency of about 21 days and have mean durations of 7 ± 5.8 days. Storms with mean velocities over 23 cm s -1 occur every 10 months and last 12 ± 11 days. X-radiographs of vertical slabs of sediment taken from box cores at the HEBBLE site show stratification features related to current speeds and bed shear stress, immediately preceeding the time of core collection. These relationships are corroborated by radiochemical distributions of 234Th. Both erosional and depositional processes affect physical and chemical properties of the sediment and have positive and negative effects on the benthic community. Erosional periods result in sediment transport and sweeping of surficial organic matter, micro-organisms, larvae and juveniles from the area. During transitional periods of intermediate current velocities there is deposition of fresh organic matter, removal of metabolites, and mechanical stimulation of sediment micro

  4. Pressure solution in rocks: focused ion beam/transmission electron microscopy study on orthogneiss from South Armorican Shear Zone, France

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Wirth, Richard; Morales, Luiz F. G.

    2015-09-01

    In order to characterize the µm-to-nm structures related to operation of pressure solution on phase boundaries in naturally deformed rocks, we have performed a detailed focused ion beam/transmission electron microscopy study in ultramylonite samples from South Armorican Shear Zone (France) that focused on grain boundary scale. We have studied phase boundaries between quartz, K-feldspar and white mica in both 2D and 3D and compare our evidences with theoretical dissolution precipitation models in the current literature. The dissolution (re)precipitation processes lead to the development of different features at different phase boundaries. In both quartz-white mica and quartz-K-feldspar phase boundaries, voids were ubiquitously observed. These voids have different shapes, and the development of some of them is crystallographically controlled. In addition, part of these voids might be filled with vermiculite. Amorphous leached layers with kaolinite composition were observed at the boundaries of K-feldspar-quartz and K-feldspar-white mica. The development of different features along the phase boundaries is mainly controlled by the crystallography of the phases sharing a common interface, together with the presence of fluids that either leaches or directly dissolve the mineral phases. In addition, the local dislocation density in quartz may play an important role during pressure solution. We suggest that the nanoscale observations of the quartz-white mica phase boundaries show direct evidence for operation of island-and-channel model as described in Wassmann and Stockhert (Tectonophysics 608:1-29, 2013), while K-feldspar-quartz phase boundaries represents amorphous layers formed via interface-coupled dissolution reprecipitation as described by Hellmann et al. (Chem Geol 294-295:203-216, 2012).

  5. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  6. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  7. Climate change induced effects on the predisposition of forests of the water protection zone Wildalpen to disturbances by bark beetles

    NASA Astrophysics Data System (ADS)

    Baier, P.; Pennerstorfer, J.; Schopf, A.

    2012-04-01

    The provision of drinking water of high quality is a precious service of forests. Large-scale disturbances like forest fires, wind throws, pest outbreaks and subsequent clear cutting may lead to changes in hydrology (runoff as well as percolation). Furthermore, water quality can be negatively influenced by increased erosion, increased decomposition of litter and humus and leaching of nitrate. Large-scale epidemics of forest pests may induce forest decline at landscape scale with subsequent long-lasting negative effects on water quality. The European spruce bark beetle, Ips typographus (L.), is one of the most significant sources of mortality in mature spruce forest ecosystems in Eurasia. The objective of this study was to apply a complex predisposition assessment system for hazard rating and for the evaluation of climate change impacts for the water protection forests of the City of Vienna in Wildalpen. The following steps have been done to adapt/apply the bark beetle phenology model and the hazard rating system: -application, adaptation and validation of the bark beetle phenology model PHENIPS concerning start of dispersion, brood initiation, duration of development, beginning of sister broods, voltinism and hibernation - spatial/temporal modelling of the phenology and voltinism of I. typographus using past, present as well as projected climate data - application and validation of the stand- and site related long-term predisposition assessment system using forest stand/site data, annual damage reports and outputs of phenology modelling as data input - mapping of endangered areas and assessment of future susceptibility to infestations by I. typographus and other disturbing agents based on climate scenarios using GIS. The assessment of site- and stand-related predisposition revealed that the forest stands in Wildalpen are highly susceptible to bark beetle infestation. More than 65% of the stands were assigned to the predisposition classes high/very high. Only 10% of

  8. Fault-rock magnetism from the earth surface trench closed to the Wenchuan Earthquake Surface Rupture Zone imply the different slip dynamics

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H.; Lee, T. Q.; Sun, Z.

    2014-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake had induced two major earthquake surface rupture zones, including the Yingxiu-Beichuan earthquake fault (Y-B F.) and Guanxian-Anxian earthquake fault (G-A F.) earthquake surface rupture zones. This giant earthquake had caused great human and financial loss. After main shock, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) was co-organized by the Ministry of Science and Technology, Ministry of Land and Resources and China Bureau of Seismology, and this project focused on earthquake fault mechanics, earthquake slip process, fault physical and chemical characteristics, mechanical behavior, fluid behavior, fracture energy, and so on. In this study, the fault-rocks in the two trenches close to the two Wenchuan Earthquake surface rupture zone were used to discuss the earthquake slip dynamics, including the Bajiaomiao and Jiulong trenches along the Y-B F. and G-A F. earthquake surface rupture zones, respectively. This study also combined with the recent fault-rock magnetism from the earth surface and WFSD-1. The rock magnetism, from the Bajiaomiao trench and other previous researches, shows that the high susceptibility of the fault gouge along the Yingxiu-Beichuan earthquake fault zone was caused by the new-formed ferrimagnetic minerals, such as magnetite and hematite, so the Y-B F. had experienced high temperature and rapid speed thermal pressurization earthquake slip mechanism. The rock magnetism from the Jiulong trench implied that the slightly low average susceptibility of fault gouge was caused by high content of Fe-sulfides than that of fault breccia and Jurassic sandstones, which was possibly induced by earthquake process or earth surface process after the fault rocks exposed to the surface. If the high content of Fe-sulfides was induced by earthquake process, the G-A F. had experienced the low temperature and slow speed machanical lubrication earthquake slip mechanism. The different earthquake slip mechanism was

  9. Origin of caves and other solution openings in the unsaturated ( vadose) zone of carbonate rocks: a model for CO2 generation.

    USGS Publications Warehouse

    Wood, W.W.

    1985-01-01

    The enigma that caves and other solution openings form in carbonate rocks at great depths below land surface rather than forming from the surface downward can be explained by the generation of CO2 within the aquifer system. In the proposed model, CO2 is generated by the oxidation of particulate and/or dissolved organic carbon that is transported from the land surface deep into the unsaturated zone by recharging ground water. The organic material is oxidized to CO2 by aerobic bacteria utilizing oxygen that diffuses in from the atmosphere. Because gas transport in the unsaturated zone is controlled largely by diffusion, steady-state generation of even minute amounts of CO2 deep in the unsaturated zone results in the creation of large concentrations of CO2 at depth as it establishes a concentration gradient to the surface or other sink. -from Author

  10. Late Triassic island-arc--back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Shi, R.; Zou, H.

    2015-12-01

    A major debate related to the evolution of the Tibetan Plateau is centered on whether or not an island arc-back-arc basin system occurred along the Bangong-Nujiang suture zone, central Tibet. Here we present new zircon U-Pb geochronology, rare earth elements (REE) and bulk-rock geochemistry of these magmatic rocks in the Amdo area, the middle Bangong-Nujiang suture zone, central Tibet, to identify significant and new records of Mesozoic tectonomagmatic processes. Zircon U-Pb dating using LA-ICP-MS techniques yields a concordant age with a weighted mean 206Pb/238U age of 228.6 ± 1.6 Ma (n = 7, MSWD = 1.19) for the Quehala basalts, and a mean ages of 220.0 ± 2.1 (n = 8, MSWD = 1.5) for the Amdo pillow lavas. On the normalized REE patterns of zircon, significant Ce enrichment indicates the magma sources of these magmatic rocks have been subjected to modification of slab-derived fluid. Geochemical features suggest that the Quehala basalts (ca. 228 Ma), displaying an island arc tholeiites (IAT) affinity, resulted from partial melting of an enriched mantle wedge in the subduction zone, whereas the Amdo pillow lavas (ca. 220 Ma) characterized by both arc-like and N-MORB-like geochemical characteristics occurred as associated back-arc basin basalts (BABB) at the spreading center of back-arc basin after the formation of island arc tholeiites. In conclusion, the volcanic rocks in the Amdo area have documented the magmatic processes from early-stage subduction to development of associated back-arc basin, confirming the occurrence of intra-oceanic subduction within the Bangong-Nujiang Tethys during the late Triassic. Furthermore, the spatial relationships among the Quehala formation, Tumengela formation and Amdo pillow lavas indicate northward subduction of the Bangong-Nujiang Tethyan Ocean during the Late Triassic to middle Jurassic.

  11. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Sheng; Shi, Ren-Deng; Zou, Hai-Bo; Huang, Qi-Shuai; Liu, De-Liang; Gong, Xiao-Han; Yi, Guo-Ding; Wu, Kang

    2015-08-01

    A major debate related to the evolution of the Tibetan Plateau is centered on whether or not an island arc-back-arc basin system occurred along the Bangong-Nujiang suture zone, central Tibet. Here we present new zircon U-Pb geochronology, rare earth elements (REEs) and bulk-rock geochemistry of these magmatic rocks in the Amdo area, the middle Bangong-Nujiang suture zone, central Tibet, to identify significant and new records of Mesozoic tectonomagmatic processes. Zircon U-Pb dating using LA-ICP-MS techniques yields a concordant age with a weighted mean 206Pb/238U age of 228.6 ± 1.6 Ma (n = 7, MSWD = 1.19) for the Quehala basalts, and a mean age of 220.0 ± 2.1 (n = 8, MSWD = 1.5) for the Amdo pillow lavas. On the normalized REE patterns of zircon, significant Ce enrichment indicates that the magma sources of these magmatic rocks have been subjected to modification of slab-derived fluid. Geochemical features suggest that the Quehala basalts (ca. 228 Ma), displaying an island arc tholeiites (IATs) affinity, resulted from partial melting of an relatively enriched mantle wedge in the subduction zone, whereas the Amdo pillow lavas (ca. 220 Ma) characterized by both arc-like and N-MORB-like geochemical characteristics occurred as associated back-arc basin basalts (BABBs) at the spreading center of back-arc basin after the formation of island arc tholeiites. In conclusion, the volcanic rocks in the Amdo area have documented the magmatic processes from early-stage subduction to development of associated back-arc basin, confirming the occurrence of intra-oceanic subduction within the Bangong-Nujiang Tethys during the late Triassic. Furthermore, the spatial relationships among the Quehala formation, Tumengela formation and Amdo pillow lavas indicate likely northward subduction of the Bangong-Nujiang Tethyan Ocean during the Late Triassic to middle Jurassic.

  12. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    NASA Astrophysics Data System (ADS)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  13. Extensional Detachment faulting in melange rocks. Plurikilometres migration by W the External Zone (Cordillera Bética, Spain)

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Rodríguez, Jose; Mateos, Rosa Maria

    2014-05-01

    The synthesis and correlation of units carried out in the continuous geological map (Roldán et al., 2012), has revealed a fragmentation of the carbonate outcrops belong to the Subbetic Domain (García-Hernández et al., 1980). Subbetic NW verging thrust and fold axial traces have not lateral continuity and Jurassic carbonate outscrops appear as klippes on the olistotromic unit. These ductile structures that can be observed in the internal structure of these jurassic blocks are unrelated to the brittle-ductile deformation bands observed at the basal pelitic levels. Basal detachments are rooted in: a) the Olistostromic unit, a Upper Langhian-Lower Serravallian breccia constituted by gypsum-bearing clay and marls; b) Cretaceous-Tertiary marly sedimentary rocks (Rodríguez-Fernández, et al., 2013) . In both kind of rocks, cataclastic structures allows to infer a top-to-the WSW displacement. Paleostress measurements, made on these detachments levels, are compatible with a extensional regime (Roldán et al., 2012). At the same time, the analysis and interpretation of subsurface data (seismic surveys and borehole testing) shows that the Subbetic Domain (External Subbetic, Molina 1987) are affected by westward low-angle normal faults. A balanced cross-section, based on morphological and cartographic data in the area between Sierra de Cabra and Sierra de Alta Coloma (Valdepeñas de Jaén), shows plurikilometric displacements which has been produced during Late Serravallian-Early Tortonian times. References: García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A. (1980): Mesozoic paleogeographic evolution of the zones of the Betic Cordillera. Geol. Mijnb. 59 (2). 155-168. Molina, J.M. (1987). Análisis de facies del Mesozoico en el Subbético. Tesis Doctoral, Univ. Granada. 518 p. Rodríguez-Fernández, J., Roldán, F. J., Azañón, J.M. y García-Cortés, A. (2013). El colapso gravitacional del frente orogénico a lpino en el Dominio Subb

  14. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2008-11-01

    Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger-scale models that predict bulk fluid flow within the crust. Permeability is particularly enhanced in the damage zone of faults, where microfracture damage accumulates under stress less than that required for macroscopic failure. Experiments performed in the prefailure region can provide data directly applicable to these zones of microfracture damage surrounding faults. The strength, permeability, and pore fluid volume evolution of initially intact crystalline rocks (Cerro Cristales granodiorite and Westerly granite) under increasing differential load leading to macroscopic failure has been determined at water pore pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to, and over, 2 orders of magnitude prior to macroscopic failure, with the greatest increase seen at lowest effective pressures. Postfailure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities and approaches the lower limit of predicted in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced and the greatest permeability increases are seen between 90 and 99% of the failure stress. Prefailure permeabilities are nearly 7 to 9 orders of magnitude lower than that predicted by some high-pressure diffusive models suggesting that if these models are correct, microfracture matrix flow cannot dominate, and that bulk fluid flow must be dominated by larger-scale structures such as macrofractures. We present a model, based on our data, in which the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks increases by more than 2 orders of magnitude. Stress reduction related to

  15. Magnetostratigraphy and Rotation of Pleistocene Sedimentary Rocks in the San Jacinto Fault zone, Western Salton Trough, CA.

    NASA Astrophysics Data System (ADS)

    Housen, B. A.; Dorsey, R. J.; Janecke, S. U.; Kirby, S. M.; Lutz, A. T.

    2004-12-01

    Pleistocene sedimentary rocks in the San Felipe Hills (SFH) and Borrego Badlands (BB), Salton Trough, are deformed by the diffuse seismogenic San Jacinto fault zone. The Plio-Pleistocene lacustrine Borrego Fm is sharply overlain by the alluvial Ocotillo Fm in the southwest (BB and Ocotillo Badlands) and its finer-grained equivalent (Brawley Fm) in the northeast (SFH). This contact records rapid progradation of alluvium and termination of paleo Borrego Lake in response to initiation or reorganization of the San Jacinto fault. We sampled these units in measured sections at Oil Well Wash (in the SFH) and Beckman Wash (in the BB), and collected a thick composite section that includes all of the Borrego Fm in the southern BB. Sites were located at 10-50 m intervals in each section. Paleomagnetic results from 31 sites in the Oil Well Wash and Beckman Wash sections have well-defined components of magnetization in most samples. A persistent magnetic overprint, and some mineralogical alteration during thermal demagnetization, hampers analysis of magnetization vectors in some sites. Our results indicate that the age of the Ocotillo and Brawley Fms ranges from 0.5-0.6 Ma to 1.0-1.1 Ma, based on the presence of the Brunhes / Matuyama boundary and Jaramillo sub-chron in both sections, and Bishop ash in the BB. The Borrego-Ocotillo contact coincides with the base of the Jaramillo in both sections and in the nearby Ocotillo Badlands section (Brown et al., 1991). This result is consistent with evidence for a depositional hiatus at the contact in the BB section and an erosional disconformity at Oil Well Wash. Sites with well-defined directions and k>16 can be used to determine vertical-axis rotations. In Beckman Wash the tilt-corrected mean is D=360, I=38.2, k=48, \\alpha95=8.1° , N=8, indicating little or no rotation. In Oil Well Wash the tilt-corrected mean is D=8.5, I=61.1, k=51.0, \\alpha95=9.5° , N=6, indicating a cw rotation of 8.5° \\pm$5.7° . Combined, these data lead

  16. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of

  17. Snow-cover dynamics monitored by automatic digital photography at the rooting zone of an active rock glacier in the Hinteres Lantal Cirque, Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Rieckh, Matthias; Avian, Michael

    2010-05-01

    Knowledge regarding snow-cover dynamics and climatic conditions in the rooting zone of active rock glaciers is still limited. The number of meteorological stations on the surface of or close to active rock glaciers is increasing. However, areal information on snow-cover distribution and its spatial dynamics caused by different processes on rock glaciers surfaces with a high temporal resolution from such remote alpine areas are mostly difficult to obtain. To face this problem an automatic remote digital camera (RDC) system was proprietary developed. The core parts of the RDC system are a standard hand-held digital camera, a remote control, a water proof casing with a transparent opening, a 12V/25Ah battery and solar panels with a charge controller. Three such devices were constructed and installed at different sites in the Central Alps of Austria. One RDC system is used to monitor the rooting zone of the highly active rock glacier in the Hinteres Langtal Cirque (46°59'N, 12°47'E), Central Schober Mountains, Austria. The 0.15 km² large NW-facing rock glaciers is tongue-shaped with a fast moving lower part (>1m/a) and a substantially slower upper part, ranging in elevation between 2455-2700 m a.s.l. The RDC system was set up in September 2006 and is located since than at 2770 m a.s.l. on a pronounced ridge crest that confines the Hinteres Langtal Cirque to the SW. The water proof casing was attached to a 1.5 m high metal pole which itself was fixed to the bedrock by screws and concrete glue. The viewing direction of the camera is NE. Hence, the image section of the RDC focuses on the rooting zone of the rock glacier and its headwalls up to c. 3000 m a.s.l. Photographs were taken daily at 3 pm providing the optimal lighting conditions in the relevant part of the cirque. 720 photographs were taken continuously in the period 12.09.2006 to 31.08.2008. These optical data were analysed by applying GIS and remote sensing techniques regarding snow-cover distribution

  18. Accessory and rock forming minerals monitoring the evolution of zoned mafic ultramafic complexes in the Central Ural Mountains

    NASA Astrophysics Data System (ADS)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2007-04-01

    This study describes major and trace element compositions of accessory and rock forming minerals from three Uralian-Alaskan-type complexes in the Ural Mountains (Kytlym, Svetley Bor, Nizhnii Tagil) for the purpose of constraining the origin, evolution and composition of their parental melts. The mafic-ultramafic complexes in the Urals are aligned along a narrow, 900 km long belt. They consist of a central dunite body grading outward into clinopyroxenite and gabbro lithologies. Several of these dunite bodies have chromitites with platinum group element mineralization. High Fo contents in olivine (Fo 92-93) and high Cr/(Cr + Al) in spinel (0.67-0.84) suggest a MgO-rich (> 15 wt.%) and Al 2O 3-poor ultramafic parental magma. During its early stages the magma crystallized dominantly olivine, spinel and clinopyroxene forming cumulates of dunite, wehrlite and clinopyroxenite. This stage is monitored by a common decrease in the MgO content in olivine (Fo 93-86) and the Cr/(Cr + Al) value of coexisting accessory chromite (0.81-0.70). Subsequently, at subsolidus conditions, the chromite equilibrated with the surrounding silicates producing Fe-rich spinel while Al-rich spinel exsolved chromian picotite and chromian titanomagnetite. This generated the wide compositional ranges typical for spinel from Uralian-Alaskan-type complexes world wide. Laser ablation analyses (LA-ICPMS) reveal that clinopyroxene from dunites and clinopyroxenite from all three complexes have similar REE patterns with an enrichment of LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). This large concentration range implies the extensive crystallization of olivine and clinopyroxene together with spinel from a continuously replenished, tapped and crystallizing magma chamber. Final crystallization of the melt in the pore spaces of the cooling cumulate pile explains the large variation in REE concentrations on the scale of a thin

  19. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Straub, Susanne M.; Layne, Graham D.

    2003-11-01

    We studied the systematics of Cl, F and H 2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ˜400-4000 ppm and F ˜70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (˜6600-8600 ppm) and F (˜780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H 2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ˜2 to ˜10 wt% H 2O. The Izu magmas should be undersaturated in H 2O and the halogens at their preferred levels of crystallization in the middle to lower crust (˜3 to ˜11 kbar, ˜820° to ˜1200°C). A substantial portion of the original H 2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H 2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H 2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94 ± 0.25 wt%, F = 990 ± 270 ppm and H 2O = 25 ± 7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (˜77-129%). Conversely, H 2O (˜13-22% recycled at arc) and F (˜4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H 2O, the calculated percentage of

  20. Processes controlling the migration and biodegradation of Non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone FY97 annual report

    SciTech Connect

    Geller, J.T.; Holman, Hoi-Ying; Conrad, M.

    1998-02-01

    Subsurface contamination from volatile organic compounds (VOCs) has been found at many Department of Energy (DOE), Department of Defense (DoD) and industrial sites due to the widespread use of organic solvents and hydrocarbon fuels. At ambient pressures and temperatures in the shallow subsurface, these substances are liquids that are immiscible with water; hence they are commonly designated as non-aqueous phase liquids (NAPLs). At some DOE sites, NAPLs are the presumed source of groundwater contamination in fractured rocks, such as basalts (at Hanford and Idaho National Engineering and Environmental Laboratory (INEEL)), shales (Oak Ridge Y-12 Plant), and welded tuffs (Los Alamos National Laboratory (LANL)). The flow, transport and biodegradation processes controlling NAPL behavior in the vadose zone must be understood in order to establish the possible extent of contamination, the risk to groundwater supplies, and appropriate remediation action. This is particularly important in and sites with deep water tables (such as at Hanford, INEEL and LANL). In fractured rock aquifers, NAPL migration is likely to be dominated by the highly permeable pathways provided by rock fractures and joints. Two- and three-phase fluid phases may be present in vadose zone fractures, including NAPL-gas, NAPL-water (in regions of perched water) and NAPL-water-gas.

  1. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone

    NASA Astrophysics Data System (ADS)

    Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.

    2016-08-01

    Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.

  2. Critical zone co-evolution: evidence that weathering and consequent seasonal rock moisture storage leads to a mixed forest canopy of conifer and evergreen broadleaf trees

    NASA Astrophysics Data System (ADS)

    Oshun, J.; Dietrich, W. E.; Dawson, T. E.; Rempe, D. M.; Fung, I. Y.

    2014-12-01

    Despite recent studies demonstrating the importance of rock moisture as a source of water to vegetation, much remains unknown regarding species-specific and seasonal patterns of water uptake in a Mediterranean climate. Here, we use stable isotopes of water (d18O, dD) to define the isotope composition of water throughout the subsurface critical zone of Rivendell, within the Eel River Critical Zone Observatory. We find that a structured heterogeneity of water isotope composition exists in which bulk saprolite is chronically more negative than bulk soil, and tightly held moisture is more negative than the mobile water that recharges the saturated zone and generates runoff. These moisture reservoirs provide a blueprint from which to measure the seasonal uptake patterns of different species collocated on the site. Douglas-firs use unsaturated saprolite and weathered bedrock moisture (i. e. rock moisture) throughout the year. Contrastingly, hardwood species (madrone, live oak, tanoak) modify their source water depending on which moisture is energetically favorable. Hardwoods use freely mobile water in the wet season, and rely on unsaturated zone soil moisture in the dry season. When soil water tension decreases on the drier south-facing slope, hardwood species use saprolite moisture. Although adjacent hardwoods and Douglas-firs partition water based on matric pull on the north side, there is competition for saprolite moisture in late summer on the south side. These results reveal the eco-hydrological importance of moisture derived from weathered bedrock, and show that the hardwoods have a competitive advantage under the drier conditions predicted in many climate models. Finally, the data emphasize that isotope measurements of all subsurface reservoirs and potential water sources are necessary for a complete and accurate characterization of the eco-hydrological processes within the critical zone.

  3. A Preliminary Rock Magnetic Geothermometer to Evaluate Seismic Heating Signatures: Example from the Japan Trench Subduction Plate-boundary Fault Zone Drilled by IODP Expedition 343 (JFAST)

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Yang, T.; Zhang, B.

    2016-12-01

    The frictional heating released during rupture of an earthquake reveals important information on earthquake mechanisms and the amount of energy dissipated. The energy released and the related maximum heating temperature of the seismic slip zone varies widely and is, as yet, poorly constrained. Here we report on sheared clay cored from the Japan Trench subduction plate-boundary fault zone or décollement, which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST) in the Japan trench, one of the seismically most active regions around Japan. We use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum cumulative temperature a slip zone has experienced. The estimated maximum temperatures range from ˜300 to over 500 °C close to the multiple slip surfaces within the décollement zone, i.e. at cm-scale distance to slip surface. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This presently preliminary rock magnetic `geothermometer' is a useful tool to detect seismic frictional heating along faults that experienced medium temperature rise, i.e. between 250-300 and 700°C. This range is generally difficult to assess with other approaches like vitrinite reflectance or fission track analysis, which strongly depend on the lithology and/or certain thermal indicators within fault zones. Therefore, as a promising complementary approach, the rock magnetic `geothermometer' would help yielding a most robust picture of seismic frictional heating.

  4. Effect of length-scale on localization of shear zones along precursor fractures and layers during deformation of middle to lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Pennacchioni, Giorgio; Hawemann, Friedrich; Wex, Sebastian; Camacho, Alfredo

    2016-04-01

    Deformation of high grade rocks at middle to lower crustal levels involves both distributed and more highly localized ductile strain, with localized shear zones developing on elongate near-planar rheological precursors. These planar heterogeneities may be compositional layers (e.g. dykes) or pre-existing or newly developed fractures, with or without pseudotachylyte. Usual rheological models for viscous rock deformation are scale independent. The geometry of developing localized shear zones should therefore be scalable and depend only on the pre-existing geometry and imposed boundary conditions, as shown in numerical and analogue models. However, this is not what is observed in natural examples. Shear zones preferentially or exclusively develop on long fractures and dykes, typically on the scales of many (tens of) metres to (tens of) kilometres, whereas smaller-scale healed fractures, basic enclaves and short layers or inclusions are less prone to reactivation and locally may be largely ignored. Preferential localization of strain on these longer structures means that the intervening rock volumes remain low-strain domains, so that the smaller-scale planar heterogeneities are effectively shielded during progressive deformation. Any localized deformation of these intervening low-strain domains requires the formation of new elongate fractures acting as a necessary precursor for subsequent localization. These field observations suggest that ductile shear zone localization is more effective with increasing length of the approximately planar precursor. Localized shear zones do not develop by propagation away from an initial small heterogeneity. Instead, their length is largely predetermined by the length of the controlling precursor structure and in-plane propagation of the tips appears to be very limited. Preferential shear reactivation of longer precursors introduces a length-scale dependence from the very initiation of localized "viscous" or "ductile" shear zones

  5. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit

  6. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; Murphy, J. B.; Fernández-Suárez, J.; Hamilton, M. A.

    2008-12-01

    Exposures of volcanic rocks (El Castillo) in the Central Iberian Zone near Salamanca, Spain, are representative of Paleozoic volcanic activity along the northern Gondwanan passive margin. Alkaline basalts and mafic volcaniclastic rocks of this sequence are structurally preserved in the core of the Variscan-Tamames Syncline. On the basis of the occurrence of graptolite fossils in immediately underlying strata, the El Castillo volcanics traditionally have been regarded as Lower Silurian in age. In contrast, most Paleozoic volcanic units in western Iberia are rift-related mafic to felsic rocks emplaced during the Late Cambrian-Early Ordovician, and are attributed to the opening of the Rheic Ocean. We present new zircon U-Pb TIMS data from a mafic volcaniclastic rock within the El Castillo unit. These data yield a near-concordant, upper intercept age of 394.7 ± 1.4 Ma that is interpreted to reflect a Middle Devonian (Emsian-Eifelian) age for the magmatism, demonstrating that the El Castillo volcanic rocks are separated from underlying lower Silurian strata by an unconformity. The U-Pb age is coeval with a widespread extensional event in Iberia preserved in the form of a generalized paraconformity surface described in most of the Iberian Variscan realm. However, in the inner part of the Gondwanan platform, the Cantabrian Zone underwent a major, coeval increase in subsidence and the generation of sedimentary troughs. From this perspective, the eruption age reported here probably represents a discrete phase of incipient rifting along the southern flank of the Rheic Ocean. Paleogeographic reconstructions indicate that this rifting event was coeval with widespread orogeny and ridge subduction along the conjugate northern flank of the Rheic Ocean, the so called Acadian "orogeny". We speculate that ridge subduction resulted in geodynamic coupling of the northern and southern flanks of the Rheic Ocean, and that the extension along the southern flank of the Rheic Ocean is a

  7. Petrology and fluid inclusions of garnet-clinopyroxene rocks from the Gondwana suture zone in southern India: Implications for prograde high-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Tsunogae, T.

    2012-04-01

    The Palghat-Cauvery Suture Zone (PCSZ) in the southern granulite terrane, India, which separates Pan-African granulite blocks (e.g., Madurai and Trivandrum Blocks) to the south and Archean terrane (e.g., Salem Block and Dharwar Craton) to the north is regarded as a major suture zone in the Gondwana collisional orogeny. It probably continues westwards to the Betsimisaraka suture in Madagascar, and eastwards into Sri Lanka and possibly into Antarctica. The available geochronological data including U-Pb zircon and EPMA monazite ages indicate that the rocks along the PCSZ underwent an episode of high-grade metamorphism at ca. 530 Ma that broadly coincides with the time of final assembly of the Gondwana supercontinent. Recent investigations on high-grade metamorphic rocks in this region have identified several new occurrences of garnet-clinopyroxene rocks and associated meta-gabbros from Perundurai, Paramati, Aniyapuram, Vadugappatti, and Mahadevi areas in Namakkal region within the central domain of the PCSZ. They occur as elongated boudins of 1 m to 1 km in length within hornblende-biotite orthogneiss. The garnet-clinopyroxene mafic granulites contain coarse-grained (up to several cm) garnet (Alm30-50 Pyr30-40 Grs10-20) and clinopyroxene (XMg = 0.70-0.85) with minor pargasite, plagioclase (An30-40), orthopyroxene (hypersthene), and rutile. Garnet and clinopyroxene are both subidioblastic and contain few inclusions of clinopyroxene (in garnet) and plagioclase. Orthopyroxene occur only as Opx + Pl symplectite between garnet and clinopyroxene in almost all the localities, suggesting the progress of decompressional reaction: Grt + Cpx + Qtz => Opx + Pl, which is a dominant texture in the PCSZ. The prograde mineral assemblage of the rocks is therefore inferred to be Grt + Cpx + Qtz, although quartz was probably totally consumed by the progress of the reaction. The metamorphic P-T calculations using Grt-Cpx-Pl-Qtz geothermobarometers yield T = 850-900°C and P >13 kbar

  8. Effects of fluid-rock interactions on faulting within active fault zones - evidence from fault rock samples retrieved from international drilling projects

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.

    2015-12-01

    Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).

  9. Determination of the Low Permeability of the Rocks from Fracture Zones in Beishan by Incorporating ERT into Infiltration Test

    NASA Astrophysics Data System (ADS)

    Song, Y.; Song, Z.

    2015-12-01

    The hydraulic study of low permeability rocks has a great significance for the low permeable oilfield and nature gas field development, as well as the nuclear waste disposal. The traditional test method for hydraulic parameters usually determines an average value of certain region, and this is always insufficient in the study of fractured porous media. This research developed a method with high performance and accuracy to show the heterogeneity and anisotropy of sample rocks. While permeability measurement was conducted, electrical resistivity tomography (ERT) method was incorporated simultaneously to obtain the rock saturation information, which could be used to determine the permeability. Besides, the infiltration process of water infiltrating through the fractured porous media was simulated by TOUGH2 to corroborate the results calculated from the experimental data. The preliminary results showed that the permeability of rock samples was as low as 10-16 m2 and showed high sample variance. By incorporating electrical resistivity tomography into the experiment, the test could specify more details of the infiltration process as well as identify the heterogeneity and anisotropy of sample rocks.

  10. Middle Miocene nepheline-bearing mafic and evolved alkaline igneous rocks at House Mountain, Arizona Transition Zone, north-central Arizona

    SciTech Connect

    Wittke, J.; Holm, R.F.; Ranney, W.D.R. . Dept. of Geology)

    1993-04-01

    The Middle Miocene House Mountain shield volcano is located on the northern margin of the Arizona Transition Zone, about 7 km SW of Sedona, AZ. Deep erosion has exposed internal structural and stratigraphic relationships of the volcano. Mapping documents two igneous suites: (1) alkali basalt to trachyte and alkali-feldspar syenite, and (2) olivine melanephelinite, nepheline monzodiorite, nepheline monzosyenite and nepheline syenite. The rocks of the first suite occur as dikes and flows, which, with a thick pyroclastic section, are the principal units of the volcano. The melanephelinite is nonvesicular and intruded as a large irregular dike and several smaller dikes. The nepheline-bearing syenitic rocks, which are phaneritic with nepheline and clinopyroxene crystals up to 1 cm in diameter, occur as pods and sheets within the melanephelinite. Also within the melanephelinite are wispy leucocratic segregations, syenitic fracture-fillings, and ocelli. The largest phaneritic sheet is [approx]18 m thick; it displays crude subhorizontal compositional banding and vuggy surfaces. The latter indicate that the magmas were fluid-rich. Compositions intermediate between the melanephelinite and syenitic rocks have not been found. Although the syenitic rocks are coarse-grained, mapping indicates the they are near the summit of the volcano and were probably emplaced at a depth of less than 1 km, possibly of only a few hundred meters. The field relationships of the phaneritic rocks can be explained by ascent and coalescence of immiscible syenitic liquids within the melanephelinite dike. Calculated density contrasts between melanephelinite and syenitic liquids exceed 0.2 g/cm[sup 3].

  11. Revised correlation chart of coal beds, coal zones, and key stratigraphic units in the Pennsylvanian rocks of eastern Kentucky

    USGS Publications Warehouse

    Rice, Charles L.; Hiett, John K.

    1994-01-01

    This report revises Miscellaneous Field Studies Map MF-1188 (Rice and Smith, 1980). Major revisions to the original correlation chart include formal naming of key marine units in Kentucky and replacement of informally named marine units incorrectly projected into Kentucky from adjacent states. Also included in the report is the proper correlation of some regionally recognized coal bed names that have been incorrectly projected into Kentucky, particularly from Ohio and West Virginia. Besides these additions and corrections, minor changes have been made to the correlation chart, all of which are discussed below in detail. The Pennsylvania rocks of the eastern Kentucky coal field underlie an area of about 27,000 square kilometers (see index map). Largely because of the size and stratigra[hic complexity of the area, Huddle and others (1963, p. 31) divided the coal field into six coal-reserve districts. District boundaries utilize state and county line as well as geologic features, drainage areas, and coal producing areas. Their division is followed herein because, in general, each of the districts has a characteristic stratigraphic nomenclature, particularly with regard to coal bed names. The six districts are the Princess, Licking River, Big Sandy, Hazard, Southwestern, and Upper Cumberland River district is divided into the Middlesboro and Harlan subdistricts. The correlation chart lists most of the stratigraphic units of Pennsylvanian age used in eastern Kentucky, and is concerned principally with coal bed names used in publications since about 1950, especially all of the names of coal beds for which resources and reserves have been calculated. Coal constitutes only a small percentage of the total Pennsylvanian-rock sequence, but is present in as many as 26 major coal zones that have been prospected and mined extensively in all parts of the coal field since the early 1900's. Coal names listed in this chart represent coal beds that have been mined commercially or

  12. Key role of Upper Mantle rocks in Alpine type orogens: some speculations derived from extensional settings for subduction zone processes and mountain roots

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar

    2016-04-01

    Orogenic architecture and mountain roots are intrinsically related. Understanding mountain roots largely depends on geophysical methods and exhumed high pressure and high temperature rocks that might record snapshots of the temporal evolution at elevated pressure, temperatures and/or fluid pulses. If such high pressure rocks represent ophiolitic material they are commonly interpreted as exhumed remnants of some sort of 'mid-ocean ridge' processes. Mantle peridotites and their serpentinized counterparts thus play a key role in understanding orogenic architecture as they are often considered to track suture zones or ancient plate boundaries. The recognition that some mantle peridotites and their serpentinized counterparts are derived from ocean-continent transition zones (OCT's) or non-steady state (ultra-)slow plate separation systems question a series of 'common beliefs' that have been applied to understand Alpine-type collisional orogens in the framework of the ophiolite concept. Among these are: (i) the commonly held assumption of a simple genetic link between mantle melting and mafic (MORB-type) magmatism, (ii) the commonly held assumption that mélange zones represent deep subduction zone processes at the plate interface, (iii) that pre-collisional continental crust and oceanic crust can easily be reconstructed to their original thickness and used for reconstructions of the size of small subducted oceanic basins as geophysical data from rifted margins increasingly indicate that continental crust is thinned to much less than the average 30-35 kilometers over a large area that might be called the 'zone of hyperextension', and (iv) the lack of a continuous sheet of mafic oceanic crust and the extremely short time interval of formation results in a lack of 'eclogitization potential' during convergence and hence a lack of potential for subsequent slab pull and, perhaps, a lack of potential for 'slab-breakoff'. Here we provide a synopsis of mantle rocks from the

  13. UNDERSTANDING HARD ROCK HYDROGEOLOGY THROUGH AN EXPERIMENTAL HYDROGEOLOGICAL PARK IN SOUTH INDIA: Site development and investigations on the major role of the fractured zone in crystalline aquifers

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Guiheneuf, N.; Boisson, A.; Marechal, J.; Chandra, S.; Dewandel, B.; Perrin, J.

    2012-12-01

    In water stressed south India most of the groundwater used for irrigation is pumped from crystalline rocks aquifers. In those structures groundwater flow dominantly occur in a shallow higher-permeability zone that overlies a deeper lower-permeability zone hosting little flow. The fractured zone of the weathering profile plays an important role for groundwater. In order to understand clearly this impact on water availability and quality changes the Experimental Hydrogeological Park at Choutuppal, Andhra Pradesh, India is developed in the framework of the SORE H+ network. Several hydraulic tests (injection, flowmeter profiles, single-packer tests…) and geophysical measurements (ERT, Borehole logging…) are carried out on the site in order to characterize the depth-dependence of hydrodynamic parameters in the Indian Archean granite. Specific investigation on a borewell through packer tests demonstrate that the most conductive part of the aquifer corresponds to the upper part of the fractured layer, located just below the saprolite bottom, between 15 meters and 20 meters depth. There is no highly conductive fracture beyond 20 meters depth and no indication for any conductive fracture beyond 25 meters depth. Packer tests show that the upper part of the fractured layer (15-20 m depth) is characterized by a good vertical connectivity. On the contrary, the tests carried out below 20 m depth show no vertical connectivity at all. The geometry of the fracture network and associated hydrodynamic parameters are in agreement with the conceptual model of hard-rock aquifers that derive its properties from weathering processes. The general existence of such a highly conductive structure at the top of the fractured zone has a great impact on water prospection and exploitation in such crystalline aquifers.

  14. Exploitation of high-yields in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones.

    PubMed

    Lachassagne, P; Wyns, R; Bérard, P; Bruel, T; Chéry, L; Coutand, T; Desprats, J F; Le Strat, P

    2001-01-01

    Based on research work in the Truyère River catchment of the Massif Central (Lozère Department, France), a methodology has been developed for delineating favorable prospecting zones of a few square kilometers within basement areas of several hundred, if not thousand, square kilometers for the purpose of sitting high-yield water wells. The methodology adopts a functional approach to hard-rock aquifers using a conceptual model of the aquifer structure and of the functioning of the main aquifer compartments: the alterites (weathered and decayed rock), the underlying weathered-fissured zone, and the fractured bedrock. It involves an economically feasible method of mapping the thickness and spatial distribution of the alterites and the weathered-fissured zone, on which the long-term exploitation of the water resource chiefly depends. This method is used for the first time in hydrogeology. The potential ground water resources were mapped by GIS multicriteria analysis using parameters characterizing the structure and functioning of the aquifer, i.e., lithology and hydrogeological properties of the substratum, nature and thickness of the alterites and weathered-fissured zone, depth of the water table, slope, fracture networks and present-day tectonic stresses, and forecasted ground water quality. The methodology involves a coherent process of downscaling that, through applying methods that are increasingly precise but also increasingly costly, enables the selection of sites with diminishing surface areas as the work advances. The resulting documents are used for ground water exploration, although they can also be applied to the broader domain of land-use management.

  15. [Distribution and ecology of the Savannah human African trypanosomiasis vectors in disturbed forest zone in south Cameroon: about case in the Doumé forest].

    PubMed

    Mbida Mbida, J A; Mimpfoundi, R; Njiokou, F; Manga, L; Laveissiere, C

    2009-05-01

    Vector control through trapping in the foci of humid forest areas is rather difficult because of the wide spreading of tsetse flies and transmission sites of human African trypanosomiasis. In fact, traps should be a priori set up everywhere to stop the transmission. The identification of the disease transmission sites enables efficient trapping through localisation of dangerous tsetse flies habitats needing vector control measures. The study of adult tsetse flies and teneral tsetse flies spatial distribution and human vector contacts was conducted in Doumb to determine the transmission of human African trypanosomiasis for efficient vector control. Glossina fuscipes fuscipes was the only tsetse fly captured with a very low apparent density of 0.13 tsetse flies per trap and per day. Furthermore, the disease transmission in the focus was not found uniform. In fact, human vector contacts are high in two villages (Paki and Mendin) located in the highly disturbed forest zones. These contacts occur in humid shallows where teneral tsetse flies were only captured around streams and forest galleries. The Doumé focus presents therefore characteristics of savannah focus where river banks and nearby biotopes are the main target sites for vector control campaigns.

  16. Expression of Lithospheric Shear Zones in Rock Elasticity Tensors and in Anisotropic Receiver Functions and Inferences on the Roots of Faults and Lower Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.

    2016-12-01

    We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes

  17. Anhydrite-bearing rocks from the Rožná district (Moldanubian zone, Czech Republic): high-grade metamorphosed exhalites?

    NASA Astrophysics Data System (ADS)

    Kříbek, Bohdan; Hladíková, Jana; Holeczy, Daniel

    2002-06-01

    Several types of anhydrite-bearing rocks have been found in the amphibolite-facies metamorphosed rocks at the north-eastern margin of the Moldanubian Zone. Anhydrite either forms monomineralic bands up to 40 cm thick, or occurs in the form of disseminated grains in surrounding calc-silicate gneiss together with feldspar, scapolite, amphibole, pyroxene, epidote and pyrite. The isotopic composition of sulphur (δ34S=30.6 to 32.3‰) and strontium (87Sr/86Sr=0.70797 to 0.70781) in anhydrite may indicate a marine source of sulphate. The isotopic ratio of strontium is in the same range as that of metamorphosed strata-bound barite-sulphide ores, which have been previously described in the same area. The δ34S values of coexisting pyrite range from 21.4 to 22.5‰, the Δ34Sanhydrite-pyrite corresponding to the metamorphic temperature of 600 to 660 °C. In contrast to many submarine-exhalative deposits, the oxygen isotopic compositions of anhydrite (δ18O=9.3 to 10.2‰) are lighter than that of barite (δ18O=10.4 to 13.8‰). This indicates that the both minerals are not in isotopic equilibrium. Therefore, it is probable that anhydrite and barite from the Rožná district were deposited from fluids that contained different proportions of seawater and hydrothermal fluids or from hydrothermal fluids that underwent variable extent of oxygen isotope exchange with seafloor rocks. The δ13C values in calcite (δ13C=-17.2 to -18.7‰) from anhydrite-bearing rock are lower than those in distant marbles. As graphite is absent in anhydrite- and calcite-bearing rocks, impoverishment in the 13C isotope cannot be attributed to the graphite-carbonate isotopic exchange during metamorphism. It is proposed that low δ13C values in carbonates are caused by pre-metamorphic oxidation of organic matter in course of hydrothermal processes. Anhydrite and anhydrite-bearing calc-silicate gneiss from the north-eastern part of the Moldanubian Zone are interpreted to be the high-grade metamorphosed

  18. Rock Physics Modeling to Constrain Petrophysical Properties in the Productive Zone of the Marcellus Shale, WV from Wireline Log Data

    NASA Astrophysics Data System (ADS)

    Morshed, S. M.; Tatham, R. H.

    2013-12-01

    A rock physics characterization based on wireline log data is proposed for constraining the petrophysical properties of the productive interval in the Marcellus Shale. The method involves two parts, 1) petrophysical interpretation of organic shale from wireline log data, and 2) rock physics modeling utilizing the interpreted log data. A petrophysical interpretation of the more radioactive interval of log data suggests that higher TOC is associated with lower clay content. This interpretation also showed that upper the part of the Marcellus Shale is clay dominated whereas the lower part is quartz dominated. Following the petrophysically interpreted data, the rock physics modeling was performed using differential effective medium (DEM) scheme in an inclusion based model to estimate the effective elastic moduli of the composites. The elastic moduli of the matrix phase in the DEM were provided with the Voigt-Reuss-Hill average for a composition of quartz and clay. Imbedded inclusions were assumed. Three types of inclusion phases were considered; a dry pore (i.e. equant pores or ellipsoidal pores), a water-wet clay pore and kerogen. Dry pores were saturated with pore fluids simulating reservoir situations with the low frequency Gassmann equations. Rock physics modeling suggests that the elastic properties of the Marcellus Shale were controlled by the interplay of clay content, kerogen content and low aspect ratio pores. Low aspect ratio pores (~1/40) also comprise the dominant pore types in the Marcellus Shale and these pores are more common in the lower part of the formation. An illustration of the DEM scheme for understanding the effect of inclusion moduli and inclusion shape to host material. Here, the host is a solid rock of 40% Quartz with clay mixture, and kerogen is the inclusion. It shows that aspect ratio of kerogen inclusion plays a significant role in this scheme; lower aspect ratio produces much lower elastic moduli than higher aspect ratios.

  19. K-Ar constraints on fluid-rock interaction and dissolution-precipitation events within the actively creeping shear zones from SAFOD cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Hemming, S. R.; Torgersen, T.; Fleisher, M. Q.; Cox, S. E.; Stute, M.

    2009-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes responsible for faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD drill cores show multiple zones of alteration and deformation due to fluid-rock interaction in the fault rocks(Schleicher et al. 2008). In context of fluid studies in the SAFZ, noble gas and potassium measurements were performed on solid samples of sedimentary rocks obtained from drill cores across the fault (3050-4000m-MD). We used a combination of 40Ar/39Ar and K-Ar methods on crushed samples of mudrock with variable amounts of visible slickensides to constrain the degree of resetting of the K-Ar system across the San Andreas Fault zone. 40Ar/39Ar was analyzed from small fragments (sand sized grains) while K-Ar was measured in crushed bulk rock samples (100-250 mg for Ar, and 5-10 mg for K analyses). The apparent 40Ar/39Ar ages based on single step laser fusion of small fragments corresponding to the detrital component in the coarse fraction, show varying ages ranging from the provenance age to <13Ma. Although more data are needed to make detailed comparisons, the apparent K-Ar ages of bulk samples in the fault zone are biased toward authigenic materials contained in the fine fraction, similar to the 40Ar/39Ar ages reported for mineralogical separates from very fine size fractions of samples obtained from 3065.98m-MD and 3294.89m-MD (Schleicher et al., submitted to Geology). The small samples measured for 40Ar/39Ar show scatter in the apparent ages, generally bracketing the bulk ages. However they are picked from sieved portions of the samples, and it is likely that there may be a loss of the younger (finer) material. Detrital provenance ages appear to be 50-60Ma in the Pacific Plate, and 100Ma in the North American Plate. 40Ar/39Ar ages within the SAFZ, as defined by geophysical logs (3200-3400m MD), are dominated by apparent detrital ages of ˜100Ma

  20. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone

    NASA Astrophysics Data System (ADS)

    Yang, Wu-Bin; Niu, He-Cai; Shan, Qiang; Chen, Hua-Yong; Hollings, Pete; Li, Ning-Bo; Yan, Shuang; Zartman, Robert E.

    2014-10-01

    Arc magmatism plays an important role in the recycling of subducted carbon and returning it to the surface. However, the transfer mechanisms of carbon are poorly understood. In this study, the contribution of subducted carbonate-rich sediments to the genesis of the carbonate-bearing K-rich igneous rocks from western Tianshan was investigated. Four key triggers are involved, including sediments subduction, slab decarbonation, partial melting and magma segregation. The globular carbonate ocelli show C-O isotope signatures intermediate between oceanic sediments and mantle, suggesting that the carbon of the primary carbonate ocelli was derived from recycled subducted sediments in the mantle. Decarbonation of the subducted slab is regarded as the primary agent to carbonize the mantle wedge. Geochemical features indicate that the carbonate ocelli are primary, and that the parental K- and carbon-rich mafic alkaline magma was derived from partial melting of carbonated mantle wedge veined with phlogopite. Major and trace element compositions indicate that globular carbonate ocelli hosted in the Bugula K-rich igneous rocks are calcio-carbonate and formed primarily by segregation of the differentiated CO2-rich alkaline magma after crystallization fractionation. The K-rich alkaline magma, which formed from partial melting of metasomatized (i.e., phlogopite bearing) mantle wedge in the sub-arc region, is a favorable agent to transport subducted carbon back to the Earth's surface during carbon recycling in subduction zones, because of the high CO2 solubility in alkaline mafic magma. We therefore propose a model for the petrogenesis of the carbonate-bearing K-rich igneous rocks in western Tianshan, which are significant for revealing the mechanism of carbon recycling in subduction zones.

  1. Intense CH 4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Charlou, Jean Luc; Fouquet, Yves; Bougault, Henri; Donval, Jean P.; Etoubleau, Joel; Jean-Baptiste, Philippe; Dapoigny, Arnaud; Appriou, Pierre; Rona, Peter A.

    1998-07-01

    As part of the FARA French-US Program designed to study the Mid- Atlantic Ridge (MAR) between 15°N and the Azores, twenty-three dives with the submersible Nautile were conducted during the French-US Faranaut 15N cruise on the eastern and western parts of the 15°20'N Fracture Zone/Ridge axis intersection. South of the eastern ridge-transform fault intersection, nine Nautile dives were made within the rift valley and along the western rift valley wall. CH 4 concentrations in the bottom waters reach 53.2 nmol/kg along faulted zones on top and on the east flank of the ultramafic inner corner high (15°05'N, 44°59'W) where serpentinized rocks outcrop. No 3He anomaly is associated with methane, ruling out any primary mantle component. Fourteen dives were also made in the rift valley to the north, close to the western intersection of the 15°20'N Transform. High CH 4 anomalies (up to 22 nmol/kg) are also present in the bottom waters of the rift valley northern segment on both the western and eastern valley walls and on the inner high adjacent to the eastern wall where ultramafic rocks outcrop. Seven vertical hydrocasts carried out in the axial valley (4500 m deep) show an intense CH 4 anomaly, with a maximum (35.8 nmol/kg) at 3200 m depth. This CH 4 concentration is among the highest found along the Mid-Atlantic Ridge (Charlou and Donval, 1993; Charlou et al., 1997). CH 4 concentrations of 9.9-14.9 nmol/kg are also present on the western wall along the 3200 m isobath. The high CH 4 concentrations correspond to only weak 3He anomalies. This CH 4-rich plume is also associated with active fault zones that expose peridotite rocks. CH 4 output from ultramafic outcrops on the western and eastern intersections of the 15°20'N Fracture Zone with the MAR is believed to reflect ongoing serpentinization. These results associated with many other CH 4 anomalies measured in the water column above ultramafic outcrops found between 12°N and the Azores most likely reflect

  2. Geochronological and geochemical constraints on the petrogenesis of late Cretaceous volcanic rock series from the eastern Sakarya zone, NE Anatolia-Turkey

    NASA Astrophysics Data System (ADS)

    Aydin, Faruk; Oǧuz, Simge; Şen, Cüneyt; Uysal, İbrahim; Başer, Rasim

    2016-04-01

    New SHRIMP zircon U-Pb ages and whole-rock geochemical data as well as Sr-Nd-Pb and δ18O isotopes of late Cretaceous volcanic rock series from the Giresun and Artvin areas (NE Anatolia, Turkey) in the northern part of the eastern Sakarya zone (ESZ) provide important evidence for northward subduction of the Neo-Tethyan oceanic lithosphere along the southern border of the ESZ. In particular, tectonic setting and petrogenesis of these subduction-related volcanites play a critical role in determining the nature of the lower continental crust and mantle dynamics during late Mesozoic orogenic processes in this region. The late Cretaceous time in the ESZ is represented by intensive volcanic activities that occurred in two different periods, which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic to rhyolitic) within each period. Although there is no geochronological data for the lower mafic-intermediate rock series of the first volcanic period, U-Pb zircon dating from the first cycle of felsic rocks yielded ages ranging from 88.6±1.8 to 85.0±1.3 Ma (i.e. Coniacian-Early Santonian). The first volcanic period in the region is generally overlain by reddish biomicrite-rich sedimentary rocks of Santonian-Early Campanian. U-Pb zircon dating for the second cycle of mafic-intermediate and felsic rocks yielded ages varying from 84.9±1.7 to 80.8±1.5Ma (i.e. Early to Middle Campanian). The studied volcanic rocks have mostly transitional geochemical character changing from tholeiitic to calc-alkaline with typical arc signatures. N-MORB-normalised multi-element and chondrite-normalised rare earth element (REE) patterns show that all rocks are enriched in LILEs (e.g. Rb, Ba, Th) and LREEs (e.g. La, Ce) but depleted in Nb and Ti. In particular, the felsic samples are characterised by distinct negative Eu anomalies. The samples are characterized by a wide range of Sr-Nd-Pb isotopic compositions (initial ɛNd values from -7

  3. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Tang, Yuan; Liu, Junlai; Tran, My-Dung; Song, Zhijie; Wu, Wenbin; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen

    2013-04-01

    As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U-Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17-1.01 and 0.07-0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U-Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian-Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.

  4. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.

    1997-01-01

    Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of

  5. The effects of rock type and landscape position on solution chemistry of soils in the Biosphere 2 Desert Site of the Santa Catalina Mountains Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Penprase, S. B.; Abramson, N.; LaSharr, K.; Chorover, J.

    2014-12-01

    The interaction of near surface soil water with surrounding rock and soil matter plays a crucial role in determining the chemical composition of biogeological systems. This interaction drives subsurface processes such as erosion, mineralization, and depletion. However, how and why soil pore water chemistry fluctuates based on localized conditions such as rock type and landscape position is not fully understood. This study examines the role these two factors play in altering soil water chemistry by analyzing samples collected from schist and granite field sites within the Biosphere 2 Desert Site of the Santa Catalina Mountains Critical Zone Observatory. We hypothesized that soil water from the schist site would have higher solute concentrations than the granite site because schist is a more weatherable rock and, thus, is more susceptible to chemical erosion. We also hypothesized that soil water from convergent positions would have higher solute concentrations than those from divergent positions due to a longer upgradient flow path. Each field site was situated within a Zero Order Basin (ZOB) with seven Zero Tension Lysimeters (ZTL). At the schist site, there were 3 convergent (SC 1-3) and 4 divergent (SD 1-4) ZTL positions. For the granite site, there were 4 convergent (GC 1-2, 4-5) and 3 divergent (GD 1-3) ZTLs. Samples were collected following rainstorms from July 2011-July 2013. Each solution sample was analyzed for major and trace cations, anions, pH, EC, and organic and inorganic carbon. Comparisons between SC and GC and all schist and all granite are consistent with the hypotheses for multiple elements. Results also indicate higher solute levels for SC relative to SD. Thus, our analyses suggest that rock type and landscape position influence the chemical composition of soil water at these two sites.

  6. Reaction zone between pre-UHP titanite and host rock: insights into fluid-rock interaction and deformation mechanisms during exhumation of deeply subducted continental crust (Dabie Shan UHP unit, China)

    NASA Astrophysics Data System (ADS)

    Wawrzenitz, N.; Romer, R. L.; Grasemann, B.; Morales, L. F. G.

    2012-04-01

    Exhumed crustal UHP rocks may occur as relict blocks in strongly metasomatized matrix rocks. Due to variations in competence between the mm to km sized blocks and their ductile matrix, the largely undeformed blocks may preserve the pre-subduction and the prograde history, whereas the matrix rocks have been ductilely deformed to high magnitudes and record successive stages of deformation. The reaction zones between blocks and matrix, however, provide insights into the fluid-rock interaction, deformation and the deformation mechanisms active during the exhumation of deeply subducted continental crust in the subduction channel. We investigate a titanite megacryst (3 cm in diameter) in a calc-silicate marble from the UHP unit in the Dabie Shan, China. The core of the titanite megacryst grew prograde during subduction. Its U-Pb system remained closed and yields a maximum age for UHP metamorphism. Sr and Nd isotope compositions in the core demonstrate that the titanite megacryst precipitated from a homogeneous fluid source. During metamorphism in the subduction zone, infiltration of external fluids resulted first in Sr-loss from the marbles and then introduction of Sr with unusually low 87Sr/86S values (Romer et al., 2003), leading to the contrasting 87Sr/86Sr values in the titanite megacryst and the hosting UHP marbles (Wawrzenitz et al., 2006). Related to deformation in the calc-silicate marble matrix, the rim of the titanite megacryst has been replaced during the following dissolution-precipitation reactions: (i) Pseudomorphic replacement of the old titanite megacryst by coupled dissolution-reprecipitation. Fluid migrated into the old grain producing a sharp boundary of the replacement front. (ii) New small titanite grains grew with their long axes parallel to the foliation of the marble matrix, reflecting the activation of dissolution precipitation creep. In the matrix, the foliation is defined by the orientation of the basal planes of phengitic white mica. The new

  7. Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones

    PubMed Central

    Mráz, Patrik; Španiel, Stanislav; Keller, Andreas; Bowmann, Gillianne; Farkas, Alexandre; Šingliarová, Barbora; Rohr, Rudolf P.; Broennimann, Olivier; Müller-Schärer, Heinz

    2012-01-01

    Background and Aims In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). Methods An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. Key Results Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. Conclusions The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight

  8. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  9. Behavior of major and trace elements upon weathering of peridotites in New Caledonia : A possible site on ultramafic rocks for the Critical Zone Exploration Network (CZEN) ?

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Fandeur, D.; Fritsch, E.; Morin, G.; Ambrosi, J. P.; Olivi, L.; Cognigni, A.; Hazemann, J. L.; Proux, O.; Webb, S.; Brown, G. E., Jr.

    2010-05-01

    ). However, these high concentration of potentially toxic elements can represent a serious hazard for the environmental quality of the Caledonian ecosystem which is a '' biodiversity hotspot' (Myers, 2000), which emphasize the strong need for characterizing the natural cycling of these elements upon weathering of ultramafic rocks. To reach this goal, we have studied the mineralogical distribution, crystal-chemistry and mass balance modelling of major (Si, Mg, Al, Fe, Mn) and trace elements (Ni, Cr and Co) in the freely-drained weathering profile developed in the serpentinized harzburgites of Mt Koniambo (West Coast of New Caledonia). Results show that both hydrothermal and meteoric processes contributed to the vertical differentiation of this freely drained weathering profiles in serpentinized ultramafic rocks. Finally, they also emphasize the importance of both redox reactions and interactions with Mn- and Fe-oxyhydroxydes (Fandeur et al., 2009a; 2009b) to explain the opposite behavior observed between very mobile Ni and almost immobile Cr (Fandeur et al., 2010). These results bring new insights on the geochemical behavior of trace elements upon weathering of ultramafic rocks under tropical conditions leading to the formation of supergene ore deposits. They also emphasize the interest of such a weathering site on ultramafic rocks under tropical climate to complemente the reference sites of the Critical Zone Exploration Network (CZEN). References Cluzel D., Aitchinson J.C. and Picard C. (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New-Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics, 340, 23-59. Coleman, R.G. (1977) Ophiolites: Ancient oceanic lithosphere?: Berlin, Germany, Springer-Verlag, 229p. Fandeur D., Juillot F., Morin G., Olivi L., Cognigni A., Fialin M., Coufignal F., Ambrosi J.P., Guyot F. and Fritsch E. (2009a). Synchrotron-based speciation of chromium in an Oxisol from New

  10. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  11. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  12. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (<10 cm) tephra (17-20 species). Gravel rain (preexisting rock ejected by eruption initiation), gravel rain + pumice and flooded forests (fluvially reworked volcanic material entrained by heavy rains) were species-rich (25-42 species). In 2014, the blast and deep tephra had regained 2-3 times the number of lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to

  13. Quartz preferred orientation in naturally deformed mylonitic rocks (Montalto shear zone-Italy): a comparison of results by different techniques, their advantages and limitations

    NASA Astrophysics Data System (ADS)

    Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Pezzino, Antonino; Wenk, Hans-Rudolf; Goswami, Shalini; Mamtani, Manish A.

    2016-12-01

    In the geologic record, the quartz c-axis patterns are widely adopted in the investigation of crystallographic preferred orientations (CPO) of naturally deformed rocks. To this aim, in the present work, four different methods for measuring quartz c-axis orientations in naturally sheared rocks were applied and compared: the classical universal stage technique, the computer-integrated polarization microscopy method (CIP), the time-of-flight (TOF) neutron diffraction analysis , and the electron backscatter diffraction (EBSD). Microstructural analysis and CPO patterns of quartz, together with the ones obtained for feldspars and micas in mylonitic granitoid rocks, have been then considered to solve structural and geological questions related to the Montalto crustal scale shear zone (Calabria, southern Italy). Results obtained by applying the different techniques are discussed, and the advantages as well as limitations of each method are highlighted. Importantly, our findings suggest that patterns obtained by means of different techniques are quite similar. In particular, for such mylonites, a subsimple shear (40% simple shear vs 60% pure shear) by shape analysis of porphyroclasts was inferred. A general tendency of an asymmetric c-maximum near to the Z direction (normal to foliation) suggesting dominant basal slip, consistent with fabric patterns related to dynamically recrystallization under greenschist facies, is recognized. Rhombohedral slip was likely active as documented by pole figures of positive and negative rhombs (TOF), which reveal also potential mechanical Dauphiné twinning. Results showed that the most complete CPO characterization on deformed rocks is given by the TOF (from which also other quartz crystallographic axes can be obtained as well as various mineral phases may be investigated). However, this use is restricted by the fact that (a) there are very few TOF facilities around the world and (b) there is loss of any domainal reference, since TOF is a

  14. Magmatism at the lithosphere-asthenosphere boundary in developing transtensional zone: Spatial-temporal change of sources for Quaternary potassic volcanic rocks from Wudalianchi, China

    NASA Astrophysics Data System (ADS)

    Rasskazov, Sergei; Chuvashova, Irina; Sun, Yi-min; Yang, Chen; Xie, Zhenhua

    2016-04-01

    Study of the Pliocene-Quaternary potassic rock series from the northern circuit of the Songliao basin that was subsided from the Middle Jurassic to Paleogene showed overall change of K2O content along the Wudalianchi zone and revealed its specific variations in the Wudalianchi volcanic field - the limited range of background K2O concentrations between 4.8 and 6.0 wt.% and locally reduced values at the beginning and at the end of the Quaternary volcanic evolution. Initial lava flows with K2O as low as 4.0 wt.% erupted along the Laoshantou - Old Gelaqiushan north-south locus from 2.5 to 2.0 Ma. Then, between 1.3 and 0.8 Ma, background irregular activity occurred in the South Gelaqiushan volcano and along the west-east locus of the Lianhuashan, Wohushan, Yaoquanshan, West Jaodebushan, West Longmenshan volcanoes. In the last 0.6 Ma three groups of volcanoes erupted: Western (North Gelaqiushan, Lianhuashan, Dzhianshan-Dzhiamshanzi), Central (Wohushan, Bijiashan, Laoheishan, Huoshaoshan), and Eastern (Weishan, East Jaodebushan, Xiaogoshan, West and East Longmenshan, Molabushan). Background eruptions continued in the Western and Eastern groups, whereas the Central group displayed stepwisely shifted activity from the southwest to the northeast with decreasing K2O concentrations in eruption products up to 3.2 wt.%. From a comparative analysis of K2O, other major oxides, and trace elements in rocks of early and late eruption phases in the Central group of volcanoes, we infer that in the first volcano (Wohushan), the rocks were almost compositionally similar to the background ones, in the second and third volcanoes (Bijiashan, Laoheishan) were partially close to the background rocks and partly differed from them, and in the fourth volcano (Huoshaoshan) were significantly different from the background rocks. We suggest that magma generation under the Wudalianchi volcanic field was controlled by a layer at the base of the lithosphere that divided and shielded sources of

  15. Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece).

    PubMed

    Papadopoulos, A; Koroneos, A; Christofides, G; Papadopoulou, L; Tzifas, I; Stoulos, S

    2016-10-01

    This study aims to evaluate the activity concentrations of (238)U, (226)Ra, (232)Th, (228)Th and (40)K along beaches close to the plutonic rocks of the Atticocycladic zone that ranged from 15 to 628, 12-2292, 16-10,143, 14-9953 and 191-1192 Bq/kg respectively. A sample from island of Mykonos contained the highest (232)Th content measured in sediments of Greece. The heavy magnetic fraction and the heavy non-magnetic fraction as well as the total heavy fraction, were correlated with the concentrations of the measured radionuclides in the bulk samples. The heavy fractions seem to control the activity concentrations of (238)U and (232)Th of all the samples, showing some local differences in the main (238)U and (232)Th mineral carrier. Similar correlations have been found between (238)U, (232)Th content and rare earth elements concentrations. The measured radionuclides in the beach sands were normalized to the respective values measured in the granitic rocks, which at least in most cases are their most probable parental rocks, so as to provide data upon their enrichment or depletion. Since the Greek beaches are among the most popular worldwide the annual effective dose equivalent received due to sand exposure has been estimated and found to vary between 0.002 and 0.379 mSv y(-1) for tourists and from 0.018 to 3.164 mSv y(-1) for local people working on the beach. The values corresponding to ordinary sand samples are orders of magnitude lower than the limit of 1 mSv y(-1), only in the case of heavy minerals-rich sands the dose could reach or exceed the recommended maximum limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Disturbance versus preservation of U-Th-Pb ages in monazite during fluid-rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France)

    NASA Astrophysics Data System (ADS)

    Didier, A.; Bosse, V.; Boulvais, P.; Bouloton, J.; Paquette, J.-L.; Montel, J.-M.; Devidal, J.-L.

    2013-06-01

    Monazite is extensively used to date crustal processes and is usually considered to be resistant to diffusive Pb loss. Nevertheless, fluid-assisted recrystallisation is known to be capable of resetting the monazite chronometer. This study focuses on chemical and isotopic disturbances in monazite grains from two microgranite intrusions in the French Central Massif (Charron and Montasset). Petrologic data and oxygen isotopes suggest that both intrusions have interacted with alkali-bearing hydrothermal-magmatic fluids. In the Charron intrusion, regardless of their textural location, monazite grains are sub-euhedral and cover a large domain of compositions. U-Pb chronometers yield a lower intercept age of 297 ± 4 Ma. An inherited component at 320 Ma is responsible for the scattering of the U-Th-Pb ages. The Montasset intrusion was later affected by an additional F-rich crustal fluid with crystallisation of Ca-REE-fluorocarbonates, fluorite, calcite and chloritisation. Pristine monazite is chemically homogeneous and displays 208Pb/232Th and 206Pb/238U concordant ages at 307 ± 2 Ma. By contrast, groundmass monazite shows dissolution-recrystallisation features associated with apatite and thorite precipitation (Th-silicate) and strong chemical reequilibration. 208Pb/232Th ages are disturbed and range between 270 and 690 Ma showing that the Th/Pb ratio is highly fractionated during the interaction with fluids. Apparent U-Pb ages are older due to common Pb incorporation yielding a lower intercept age at 312 ± 10 Ma, the age of the pristine monazite. These results show that F-rich fluids are responsible for Th mobility and incorporation of excess Pb, which thus strongly disturbed the U-Th-Pb chronometers in the monazite.

  17. Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes

    SciTech Connect

    Mathez, E A; Roberts, J J; Duba, A G; Kronenberg, A K; Karner, S L

    2008-05-16

    To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to {approx}290 MPa. Pore fluids consisted of pure CO, CO{sub 2}, CH{sub 4} and a 1:1 mixture of CO{sub 2} and CH{sub 4}, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M{Omega}-m for CO tests and 15.2 to 16.5 M{Omega}-m for CO{sub 2}:CH{sub 4} tests, compared with >23 M{Omega}-m for dry, undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. Based on mapping using electron microprobe techniques, carbon occurs preferentially as quasi-continuous films on newly-formed fracture surfaces, but these films are absent from pre-existing surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena.

  18. Deciphering P-T paths in metamorphic rocks involving zoned minerals using quantified maps (XMapTools software) and thermodynamics methods: Examples from the Alps and the Himalaya.

    NASA Astrophysics Data System (ADS)

    Lanari, P.; Vidal, O.; Schwartz, S.; Riel, N.; Guillot, S.; Lewin, E.

    2012-04-01

    Metamorphic rocks are made by mosaic of local thermodynamic equilibria involving minerals that grew at different temporal, pressure (P) and temperature (T) conditions. These local (in space but also in time) equilibria can be identified using micro-structural and textural criteria, but also tested using multi-equilibrium techniques. However, linking deformation with metamorphic conditions requires spatially continuous estimates of P and T conditions in least two dimensions (P-T maps), which can be superimposed to the observed structures of deformation. To this end, we have developed a new Matlab-based GUI software for microprobe X-ray map processing (XMapTools, http://www.xmaptools.com) based on the quantification method of De Andrade et al. (2006). XMapTools software includes functions for quantification processing, two chemical modules (Chem2D, Triplot3D), the structural formula functions for common minerals, and more than 50 empirical and semi-empirical geothermobarometers obtained from the literature. XMapTools software can be easily coupled with multi-equilibrium thermobarometric calculations. We will present examples of application for two natural cases involving zoned minerals. The first example is a low-grade metapelite from the paleo-subduction wedge in the Western Alps (Schistes Lustrés unit) that contains only both zoned chlorite and phengite, and also quartz. The second sample is a Himalayan eclogite from the high-pressure unit of Stak (Pakistan) with an eclogitic garnet-omphacite assemblage retrogressed into clinopyroxene-plagioclase-amphibole symplectite, and later into amphibole-biotite during the collisional event under crustal conditions. In both samples, P-T paths were recovered using multi-equilibrium, or semi-empirical geothermobarometers included in the XMapTools package. The results will be compared and discussed with pseudosections calculated with the sample bulk composition and with different local bulk rock compositions estimated with XMap

  19. Unusual 8.5 Ma andesites from the Barguzin basin of the Baikal Rift Zone, Southern Siberia: melting of peraluminous source rocks for subsequent xenocrystic sapphires in basalts

    NASA Astrophysics Data System (ADS)

    Rasskazov, Sergei; Chuvashova, Irina; Yasnygina, Tatyana; Fefelov, Nikolai; Saranina, Elena; Ilyasova, Agul; Fedin, Alexander

    2014-05-01

    Pliocene-Quaternary mantle-derived basanites and related alkaline volcanic rocks from Southern Siberia include sapphires of jeweler quality, origin of which is disputable. In the Barguzin basin, we have found unusual Late Miocene crust-derived pyroclastic andesitic material that might exhibit magmatic liquids from a peraluminous source region of the jeweler sapphires. Peraluminous character of the andesites is demonstrated by mutually consistent increasing ACNK from 1.79 to 3.19, ANK from 2.59 to 4.15, Al2O3 content from 20.4 to 26.5 wt.%, and CIPW-normative corundum from 9.7 to 18.6 %. Crustal origin of the andesites is inferred from low Nb/U, Ce/Pb, high Rb/Sr, and strongly enriched signatures of initial 87Sr/86Sr (0.710162-0.712082) and epsilon Nd (-13.4-14.7). In Rb-Sr isochron diagram, the upper limit of andesitic data points correspond to the reference line of ca. 440 Ma with initial 87Sr/86Sr at 0.705 that assumes the early Silurian isotopic closure of the source region. As a rule, deep-seated mineral inclusions do not occur in early lavas of a volcanic area and appear in those of later eruptive stages. This indicates their origin through interaction between the earlier magmatic liquids and wall-rocks. In the Al2O3 versus total Fe2O3 diagram, the unusual andesites are comparable to silica-rich corundum-bearing rocks from metamorphic terranes. We suggest that the andesite eruption in the Barguzin basin was provided by selective melting of the Al-Si-rich source during structural reorganization that occurred in the Baikal Rift Zone between 9 and 5 Ma, when rifting began propagating from the Southern Baikal basin to the Northern Baikal one. The high-temperature processes in a weakened layer favored to growing corundum crystals. Afterwards, the jeweler sapphires were extracted from the reactivated crust of the Baikal Rift Zone by ascending Pliocene-Quaternary mantle-derived liquids. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328).

  20. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    USGS Publications Warehouse

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  1. Sleep Disturbances

    MedlinePlus

    ... PD / Coping with Symptoms & Side Effects / Sleep Disturbances Sleep Disturbances Many people with Parkinson’s disease (PD) have ... stay awake during the day. Tips for Better Sleep People with PD — and their care partners too — ...

  2. Analysis of Human Disturbance and Ecological Security Evolution in Oasis in Arid Area Based on LUCC: A Case Study of Oasis in the Northern Tianshan Mountain Slope Economic Zone

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, M. H.; Zhang, Q.; Liu, S. S.; Yang, J. N.

    2017-07-01

    Oases in arid areas are environmentally and economically vulnerable regions. Study on ecological security of oases in arid areas is of great significance to the stability and the economic development of oases. Based on Land Use/Land Cover data in 1965, 1980, 1995, 2005 and 2015, the study analyze the temporal and spatial changes in human disturbance and ecological security of oases in the Northern Tianshan Mountain Slope Economic Zone (NTMSEZ) in recent 50 years by establishing the ecological security index (ESI) through human disturbance index and landscape vulnerability index. The results showed that: in recent 50 years, the human disturbance of the NTMSEZ has been increased to current moderate human impacts. Urban construction, oasis expansion and farmland reclamation are the main factors of the increment. The human disturbance in Urumchi, Shihezi, Kuitun, Miquan and Changji is higher than that in other oases and that in core areas of oasis is higher than other areas. The ESI of the NTMSEZ increases firstly and then decreases. In most areas, the ESI is “relatively unsafe” and “critical”. However, there are increasingly more vulnerable areas, moving northwestwards and expanding southwards. The ESI gradually presents a “NW-SE” trend of zonal distribution pattern.

  3. A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz.

    PubMed

    Leeman, William P; MacRae, Colin M; Wilson, Nick C; Torpy, Aaron; Lee, Cin-Ty A; Student, James J; Thomas, Jay B; Vicenzi, Edward P

    2012-12-01

    This article concerns application of cathodoluminescence (CL) spectroscopy to volcanic quartz and its utility in assessing variation in trace quantities of Ti within individual crystals. CL spectroscopy provides useful details of intragrain compositional variability and structure but generally limited quantitative information on element abundances. Microbeam analysis can provide such information but is time-consuming and costly, particularly if large numbers of analyses are required. To maximize advantages of both approaches, natural and synthetic quartz crystals were studied using high-resolution hyperspectral CL imaging (1.2-5.0 eV range) combined with analysis via laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Spectral intensities can be deconvolved into three principal contributions (1.93, 2.19, and 2.72 eV), for which intensity of the latter peak was found to correlate directly with Ti concentration. Quantitative maps of Ti variation can be produced by calibration of the CL spectral data against relatively few analytical points. Such maps provide useful information concerning intragrain zoning or heterogeneity of Ti contents with the sensitivity of LA-ICPMS analysis and spatial resolution of electron microprobe analysis.

  4. Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy)

    NASA Astrophysics Data System (ADS)

    Marra, F.; Azzara, R.; Bellucci, F.; Caserta, A.; Cultrera, G.; Mele, G.; Palombo, B.; Rovelli, A.; Boschi, E.

    During the two mainshocks of September 26, 1997 inthe Umbria-Marche border a strong-motion accelerographrecorded peak ground accelerations as large as 0.6 g,approximately, in the town of Nocera Umbra, atdistances of 10 to 15 km from the epicentres. Thisvalue is significantly larger than expected on thebasis of the usual regressions with magnitude anddistance. A broad-band amplification up to a factor of10 was consistently estimated in previous papers,using both weak and strong motion data recorded at theaccelerograph site during local moderate earthquakes.To study the cause of this amplification we deployedsix seismologic stations across the tectonic contactbetween the Ceno-Mesozoic limestone and the Mesozoicmarly sandstone where the accelerograph is installed.Seismograms of 21 shallow aftershocks in the magnituderange from 2.2 to 4.0 and a subcrustal Mw = 5.3event are analysed. Regardless of epicentre location,waveforms show a large complexity in an approximately200 m wide band adjacent to the tectonic contact. Thisis interpreted as the effect of trapped waves in thehighly fractured, lower velocity materials within thefault zone.

  5. Quantification of competency contrast from refraction of shear-induced micro-fractures in meta-sedimentary rock, Gangori Shear Zone, Bhagirathi river section, NW Indian Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    Bose, N.; Dutta, D.; Mukherjee, S.

    2016-12-01

    We study the meta-greywacke of Rautgara Formation, Garhwal Lesser Himalaya, India. The focus is on the micro-fractures which cut the flaky-mineral rich cleavage (c-) and porphyroclast rich microlithon (m-) domains of a disjunctive foliation. Although the rock does not show shear in meso-scale, shadow zones and tails of the quartz porphyroclasts under an optical microscope exhibit a top-to-SW ductile shear. Kinematic vorticity number (Wm) of 0.8 was calculated by porphyroclast aspect ratio method, on 80 semi-elliptical quartz porphyroclasts, assuming a Newtonian viscous rheology. Our observations match the results of previous analogue- and analytical models for various prototype rocks. For example: 1. higher competency contrast between c- and m-domains favors extension fractures over shear fractures (extension fractures tend to develop more in m-domains whereas the shear fractures in c-domains); 2. angle (ϴ) between fracture and `layer normal' is higher in less-competent layers; 3. dominant simple shear gives rise to P-brittle planes at an acute angle to the shear direction (Y-plane); and 4. stress drop during fracturing may inhibit slip along shear-induced fractures. Our calculations indicate that the rheological contrast (derived from the variation of ϴ) refracts the shear-induced fracture at the domain boundaries. In one such case, ϴ measured for 15 successive c- and m-domains show that the most viscous m-domain is 24 times more viscous than the lowest viscous c-domain. Additionally, out of eight c-layers, the most viscous c-domain has a viscosity 3.4 times more than the least viscous c-domain. Similarly, out of seven m-layers, the most viscous m-domain has a viscosity 4 times more than the least viscous m-domain. Hence, it appears that ductile shear and low grade metamorphism have caused prominent inhomogeneity in the rheological configuration of the greywacke.

  6. Neotectonic deformation in the Eurasia-Arabia collision zone, the East Anatolian Plateau, E Turkey: evidence from palaeomagnetic study of Neogene-Quaternary volcanic rocks

    NASA Astrophysics Data System (ADS)

    Hisarlı, Z. Mümtaz; Çinku, Mualla Cengiz; Ustaömer, Timur; Keskin, Mehmet; Orbay, Naci

    2016-01-01

    Palaeomagnetic studies of the Neogene-Quaternary rocks of Anatolia have been mostly interpreted in the light of its westward escape as a result of the collision between the Arabian and Eurasian plates along the Bitlis-Zağros suture during the Neotectonic period. However, within the collision zone, in East Anatolia, palaeomagnetic data are not available. In order to help understand the deformational history of Eastern Anatolia during the Neotectonic period, we have carried out a palaeomagnetic study of Miocene-Quaternary volcanic rocks from 100 sites, selected on the basis of their geographical position and known age. The results indicate that the study area can be divided into five principal tectonic blocks, based on earthquake activity and the rotation that the blocks underwent. These blocks are the Van Block (VB), the Kars Block (KB), the Anatolian Block (AB), the Pontide Block (PB), and the Arabian Block (ARB). The largest counterclockwise (CCW) tectonic rotations were encountered in the AB and PB, whereas the largest clockwise (CW) rotations were recorded in the VB. The sinistral East Anatolian Fault and the Erzurum Fault Zone form the present boundary of these two contrasting, CW and CCW-rotating domains. Both the AB and the PB exhibit similar amount of rotation until the Quaternary, during which the AB rotated 13° CCW while the PB remained stable. The Quaternary rotation of the AB is attributed to the activity of the North Anatolian Fault. The KB shows the smallest amount of CW rotation during all of the time intervals studied. All of the blocks studied indicate an acceleration in the amount of rotations during the Quaternary, which was preceded by a period of relative tectonic stability during the Late Pliocene. Following the collision of the Arabian Plate with the Eurasian Plate during the Mid-Miocene, the crust was initially thickened by thrusting and folding. This was followed by lateral extrusion and differential rotation of the crustal blocks during

  7. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Pamukcu, Ayla S.; Kennedy, Ben M.; Gravley, Darren M.; Deering, Chad D.; Chambefort, Isabelle

    2014-11-01

    Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi:10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O-CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and

  8. Mantle-crust interactions in a paleosubduction zone: Evidence from highly siderophile element systematics of eclogite and related rocks

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, Sarah C.; Walker, Richard J.; Pitcher, Lynnette; Sorensen, Sorena S.

    2012-02-01

    Substantial differences in 187Os/188Os and absolute and relative abundances of highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re) in mantle peridotites compared to oceanic crust indicate that this suite of elements may prove useful in assessing mechanisms and pathways of mantle and slab mass transfer within the subduction channel. Currently, however, information regarding the mobility of the HSE in subduction zone environments is limited. To better understand the systematics of highly siderophile elements in subduction settings, we measured Os isotopic compositions and HSE abundances of cores and rinds of meter-scale blocks of eclogite, blueschist and garnet amphibolite from subduction-related mélanges within 1) the Franciscan Complex, CA, and a related terrane in Oregon; 2) the Catalina Schist, CA; and 3) the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Rinds composed of amphibole, chlorite, ± phengite, talc, titanite and rutile partly enclose blocks at each location. Mineralogic, petrologic and geochemical data suggest that these rinds are metasomatic features that formed by fluid-mediated interaction between mafic blocks and an ultramafic matrix. The cores of high-grade blocks are characterized by high (Pt + Pd)/(Os + Ir + Ru), and variably radiogenic Os; initial 187Os/188Os ranges from 0.197 to 4.30. These characteristics are consistent with the HSE compositions of subducted basalts. In contrast, (Pt + Pd)/(Os + Ir + Ru) of rinds are generally much lower than cores, approaching values typical of mantle peridotites. The initial 187Os/188Os of most rinds are also typical of upper mantle peridotites; values for most rinds fall between 0.125 and 0.14. The similarities of the 187Os/188Os and HSE abundances between rinds and mantle peridotites indicate that the HSE contained within rinds reflect a contribution by mantle peridotite, whether by fluid-mediated transfer or through mechanical processes. If the HSE signatures of the rinds were

  9. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite

  10. Provenance of the Sumian basal schists and age of the Lopian metavolcanic rocks at the Archean-Proterozoic boundary in the Kukasozero structure, North-Karelian zone of the Karelides, Baltic Shield

    NASA Astrophysics Data System (ADS)

    Balagansky, V. V.; Alexejev, N. L.; Huhma, H.; Azimov, P. Ya.; Levsky, L. K.; Pin'kova, L. O.

    2011-08-01

    This paper presents the results of a study of the Paleoproterozoic basal garnet-kyanite-staurolite-two-mica paraschists from the Kukasozero structure of the Karelides of Northern Karelia, Baltic Shield, underlying Neoarchean acid metavolcanic rocks, and schists with quartz, phengite, kyanite, staurolite, garnet, and tschermakite located in the Paleoproterozoic rocks and considered to be metasomatic in origin. It was established that the sedimentary protolith of the Paleoproterozoic paraschists contains detritus of Neoarchean igneous rocks as follows from detrital 2737 ± 11 Ma zircons with oscillatory magmatic zoning. Metavolcanic 2757 ± 13 Ma rocks, close in age and composition, are known directly in the framework of the Kukasozero structure and are considered to be the most likely source of the sedimentary schist protolith. The coincidence of the Nd-model ages of paraschists ( t DM is 2.73-2.76 Ga) with the age of detrital zircons indicates no contribution of older rocks to the protolith composition. The age of magmatic crystallization of metavolcanic rocks directly underlying the Paleoproterozoic paraschists is 2681 ± 18 Ma and coincides with the age of porphyry granites in the western framework of the structure (2680.3 ± 3.6 Ma). No detrital zircons of similar age were found in basal paraschists, but the restricted amount of dated zircons does not allow us to draw a final conclusion about the absence of detritus of the underlying metavolcanic rocks in the paraschist protolith. It was confirmed that phengite-bearing schists are the products of acid metasomatism of the Paleoproterozoic amphibolites and amphibole schists (metavolcanic rocks). The metasomatic features were revealed in garnet-kyanite-staurolite-two-mica paraschists, so the strict identification of their sedimentary protolith is impossible. The paraschists do not represent metamorphosed weathering crust, because acid metasomatism gives a false impression of the greater maturity of the primary

  11. Hydrogeologic setting and simulation of pesticide fate and transport in the unsaturated zone of a regolith-mantled, carbonate-rock terrain near Newville, Pennsylvania

    USGS Publications Warehouse

    Hippe, D.J.; Hall, D.W.

    1996-01-01

    Physical and chemical data were collected from May 1991 through April 1993 at a 4.5 hectare field site in Cumberland County, Pa., about 5 kilometers southeast of Newville. These data were used to define the hydrogeologic setting of a field site representative of the intensively farmed carbonate valleys of southeastern and south-central Pennsylvania. The environmental processing of commonly used pesticides (herbicides, fungicides, and insecticides) in the unsaturated zone was simulated with a process- oriented digital model to evaluate the environmental fate and transport of pesticides to ground water. Site data and modelling results provide a basis for a discussion of water-quality implications of agricultural best-management practices. The carbonate valleys of Pennsylvania comprise regolith-mantled carbonate-rock terrains that consist of broad undulating upland areas dissected by mostly dry valleys and widely spaced spring-fed creeks. The upland areas are farmed and exhibit possess a doline karst topography with many closed depressions, sinkholes, and bedrock outcrops. Unsaturated materials at the field site consist of an almost continuous soil cover composed of fine-grained residuum underlain by an intermediate vadose zone composed of karstified limestone. Soils are absent on scattered bedrock outcrops and are more than 12 meters thick in other areas of the site. The soil profile stores appreciable quantities of water with a volumetric average of about 36 percent water at field capacity. Organic carbon content of soil materials is about 1.7 percent in the Ap-horizon and from 0.1 to 0.3 percent throughout the full thickness of the B- and C-horizons. Atrazine, metolachlor, simazine, and the atrazine soil metabolites deethylatrazine and deisopropylatrazine were detected at concentrations above 0.05 mg/L in just the upper 0.6 meters of soil materials. However, detectable concentrations of atrazine, simazine, and atrazine soil metabolites were measured in water

  12. Post-Caledonian brittle fault zones along the SW Barents Sea Margin: Onshore-offshore margin architecture and fault rock-forming conditions

    NASA Astrophysics Data System (ADS)

    Indrevær, Kjetil; Bergh, Steffen; Stunitz, Holger; Schermer, Elizabeth; Koehl, Jean-Baptiste; Ingebrigtsen, Arild; Hansen, John-Are

    2014-05-01

    The architecture of the SW Barents Sea margin off Northern Norway is, both onshore and offshore, controlled mainly by alternating NNE-SSW and ENE-WSW trending, steeply to moderately dipping, brittle normal fault zones. These fault zones constitute at least two major fault complexes that run partly onshore in Troms, linking major horsts and ridges in the South with offshore basins and fault complexes in the North. At least two major transfer fault systems accommodate changes in fault polarity and lateral segmentation along the margin. The onshore fault activity in Troms is interpreted to have occurred in the Late Permian through Early Triassic, with no major fault movement in the Mesozoic and Cenozoic. However, later Mesozoic fault activity has taken place offshore along the Troms-Finnmark Fault Complex, and both further north and south along the margin. The fault activity in Troms is therefore believed to have migrated progressively west in time, to the Troms-Finnmark Fault Complex. This resulted in a short-tapered margin in the region after final continental break-up at ~55Ma and preserved fault rocks from the Late Permian/Early Triassic stages of rifting onshore. The onshore Late Permian/Early Triassic faulting activity took place during multiple phases, with initial fault movement at minimum P-T conditions of ~300°C and ~240MPa (~10km depth), followed by later fault movement introducing pumpellyite indicating minimum P-T conditions of ~275°C and ~220MPa (~8.5km depth). The studied faults are thought to have acted as fluid conduits, where microstructural evidence suggests that pore pressures locally reached lithostatic levels (240MPa) during faulting. A maximum differential stress of c. 35 MPa prior to-, and during faulting is estimated based on the evidence for lithostatic pore pressure and assuming a typical Mohr-Coloumb failure criterion. Fluid flow is shown to be controlled by healing and precipitation processes through time, with fluid flow localized to

  13. Emotional Disturbance

    MedlinePlus

    ... terms such as emotional disturbance, behavioral disorders, or mental illness. Beneath these umbrella terms, there is actually a ... may also be affected. The National Alliance on Mental Illness (NAMI) puts this very well: Mental illnesses are ...

  14. Embryonic exposure to ethanol disturbs regulation of mitotic spindle orientation via GABA(A) receptors in neural progenitors in ventricular zone of developing neocortex.

    PubMed

    Tochitani, Shiro; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2010-03-19

    Neural progenitors in the ventricular zone of the developing neocortex divide oriented either parallel or perpendicular to the ventricular surface based on their mitotic spindle orientation. It has been shown that the cleavage plane orientation is developmentally regulated and plays a crucial role in cell fate determination of neural progenitors or the maintenance of the proliferative ventricular zone during neocortical development. We tested if fetal exposure to ethanol, the most widely used psychoactive agent and a potent teratogen that may cause malformation in the central nervous system, alters mitotic cleavage orientation of the neural progenitors at the apical surface of the ventricular zone in the developing neocortex. Fetal exposure to ethanol on E10.5 and 11.5 increased the occurrence frequency of a horizontal cleavage plane that is parallel to the ventricular surface on E 12.5. Administration of picrotoxin, a GABA(A) receptor antagonist, prior to ethanol administration canceled the effect of ethanol with the frequency of horizontal division similar to the control level, although picrotoxin itself did not show any effect on cleavage plane orientation. Phenobarbital, a GABA(A) receptor agonist, induced horizontal cleavage to an extent similar to that induced by ethanol administration. (+)MK801, an antagonist of NMDA receptor that is another major target of ethanol in neural cells, did not affect the cleavage plane of dividing progenitors. These results suggest that fetal ethanol exposure induced alterations in the cleavage plane orientation of neural progenitors in the ventricular zone of the neocortex via the enhancement of the function of GABA(A) receptors.

  15. Measurement of the stress field of a tunnel through its rock EMR

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Wang, Enyuan; Song, Dazhao; Liu, Zhentang; Shen, Rongxi; Lv, Ganggang; Xu, Zhaoyong

    2017-08-01

    In order to quantitatively study the relationship between the disturbance stress of coal mine roadways and the electromagnetic radiation (EMR) of rocks, and further evaluate their internal stress distributions, we first examined the characteristics of EMR signals emitted from rock mass under uniaxial compression, analyzed the relationship between the stress inside the rock mass and its emitted EMR intensity, and put forward a new disturbance stress testing method by monitoring the EMR from the rock mass to retrieve its surrounding stress field. Then, we applied the method to monitor EMR intensity from the no.11803 rock roadway of the Nuodong coal mine, China, and inversely retrieved its stress field. Lastly, we analyzed the causes of local stress anomalies in the Nuodong area by testing the EMR intensity of its nearby areas, and we examined the geology of the whole region. The results showed that: (1) in the rock roadway and the surrounding area of the Nuodong coal mine, the disturbance stress was in the range of 4.8 ∼ 9.1 MPa, the angle between the direction of the stress field and the horizontal plane of the roadway was 35 ± 2.5°, the lateral pressure coefficient was 1.30 ∼ 1.57 (2) the Laoguishan and Yulong anticlines in the vicinity of the Nuodong coal mine caused great horizontal tectonic stress in the region, and the existence of the auxiliary roadway and F12 normal fault resulted in the formation of two high stress zones in the no.11803 rock roadway. Overall, monitoring the EMR from rock mass could ascertain the state, direction, size and distribution of disturbance stress in a roadway and further obtain the distribution of the stress field of an underground structure.

  16. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway.

    PubMed

    Sun, Fu-Qing; Duan, Hua; Wang, Sha; Li, Jin-Jiao

    2015-11-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. Recent models favor abnormal thickening of the junctional zone (JZ) may be the causative factor in the development of ADS. RhoA, a small guanosine triphosphatase which controls multiple cellular processes, is involved in the control of cell proliferation. Here we demonstrate that treatment of human uterine smooth muscle cells (SMCs) of the JZ with 17β-estradiol (E2) increased expression of RhoA and its downstream effectors (-associated coiled coil containing protein kinase [ROCK] 1 and ROCK2). Compared with non-ADS cells, RhoA, ROCK1, and ROCK2 were overexpressed and hyperactivated in ADS cells. These effects were suppressed in the presence of ICI 182,780, supporting an estrogen receptor (ER)-dependent mechanism. Hyperactivation of ER-enhanced RhoA/ROCK signaling was associated with overproliferation in ADS human uterine SMCs of the JZ. Moreover, E2-induced overproliferation was accompanied by downregulation of cyclin-dependent kinases inhibitors (CKIs; p21(Waf1/Cip1) and p27(Kip1)) and upregulation of cyclin-dependent kinases (CDKs) and cyclins (cyclin D1, cyclin E1, CDK2, CDK4, and CDK6). © The Author(s) 2015.

  17. Unraveling eclogite-facies fluid-rock interaction using thermodynamic modelling and whole-rock experiments: the in-situ eclogitization of metapelites from Val Savenca (Sesia Zone, Western Alps)

    NASA Astrophysics Data System (ADS)

    Jentsch, Marie; Tropper, Peter

    2015-04-01

    A common feature of HP and UHP terranes is the subduction of crustal rocks to great depths. Previous investigations have shown that this process is triggered by fluids present during an eclogite-facies metamorphic overprint. An examples is exposed in the metapelites at Val Savenca in the Sesia-Lanzo Zone, Italy where Alpine eclogite-facies metamorphism and fluid flow led to partial transformation of Variscan amphibolite-eclogite facies metapelites (garnet + biotite + sillimanite + K-feldspar + plagioclase + quartz) to zoisite ± jadeite + kyanite + phengite + quartz. This transformation took place under P-T conditions of 1.7 - 2.1 GPa at 600°C and low a(H2O) of 0.3-0.6. The replacement of plagioclase by jadeite + zoisite + kyanite + quartz takes place also along former fractures. Biotite is replaced by the assemblage phengite + omphacite ± kyanite adjacent to former plagioclase, otherwise by phengite + rutile/titanite. Garnet and clinopyroxene show variable compositions depending in which micro-domain (plagioclase or biotite) they grew. The extreme development of microdomains can best be studied by thermodynamic pseudosection modelling of individual microdomains using stoichiometric mixtures of protolith minerals from this domain and the program DOMINO (De Capitani & Petrakakis, 2010). The aim of these calculations was: 1.) to reproduce the observed mineral assemblage and 2.) to provide constraints on the amount of fluid present in the transformation. The results so far indicate that the amount of fluid was very low, otherwise paragonite would have formed instead of jadeite and reproduction of the observed mineral assemblage has only been partly successful so far since biotite is still stable in the calculations. In addition to understand the role of fluids in the mineralogical and textural transformation piston-cylinder experiments with a fresh, natural orthogneiss granulite from the Moldanubic Unit in upper Austria with the assemblage garnet + biotite + K

  18. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  19. Basaltic rocks from the Andean Southern Volcanic Zone: Insights from the comparison of along-strike and small-scale geochemical variations and their sources

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, Rosemary; Holbik, Sven; Tormey, Daniel; Frey, Frederick A.; Moreno Roa, Hugo

    2016-08-01

    The origin of spatial variations in the geochemical characteristics of volcanic rocks erupted in the Andean Southern Volcanic Zone (SVZ) has been studied by numerous researchers over the past 40 years. Diverse interpretations for along-strike, across-strike, and small-scale variations have been proposed. In this paper, we review geochemical data showing along-strike geochemical variations and address the processes causing such trends. We compare large- and small-scale changes of the same geochemical parameters in basaltic rocks in order to use spatial scale as a tool for isolating processes that may have the same result. Along-strike geochemical variations in the SVZ are expected, due to 1) greater thickness or age of the sub-arc continental crust and mantle lithosphere in the Northern SVZ (NSVZ; 33°S-34°30‧S) and Transitional SVZ (TSVZ; 34°30‧S-37°S) compared with the Central SVZ (CSVZ; 37°S-41.5°S) and Southern SVZ (SSVZ: 41.5°S-46°S); and 2) along-strike changes of the subducting Nazca plate and overlying asthenosphere. Basalts and basaltic andesites erupted at volcanic front stratovolcanoes define several along-strike geochemical trends: 1) higher 87Sr/86Sr and lower 143Nd/144Nd at volcanoes in the NSVZ compared with the TSVZ, CSVZ, and SSVZ; 2) higher and more variable La/Yb at volcanoes in the NSVZ and TSVZ compared with the CSVZ and SSVZ; 3) lower 87Sr/86Sr for a given 143Nd/144Nd at volcanoes in the TSVZ compared with the CSVZ and SSVZ; and 4) large values for time-sensitive subduction tracers such as 10Be/9Be and (238U/230Th) at some volcanoes in the CSVZ, but not in the NSVZ and TSVZ. Geochemical parameters that distinguish the TSVZ from the CSVZ and SSVZ are also found within the CSVZ at small basaltic eruptive centers (SEC) aligned with the Liquiñe-Ofqui Fault System (LOFS), which extends from 38°S to the southernmost SVZ. Our interpretation is that CSVZ magmas with strong time-sensitive subduction tracers represent the ambient subduction

  20. Elemental composition, distribution and control of biogenic silica in the anthropogenically disturbed and pristine zone inter-tidal sediments of Indian Sundarbans mangrove-estuarine complex.

    PubMed

    Dhame, Shreya; Kumar, Alok; Ramanathan, Al; Chaudhari, Punarbasu

    2016-10-15

    Spatial distribution and interrelationship among organic nutrients - silica and carbon - and various lithogenic elements were investigated in the surficial sediments of Matla estuary and Core Zone of Indian Sundarbans Reserve Forest using spatial analysis and multivariate statistics. Biogenic silica (BSi), an important parameter for coastal biogeochemisry, was measured using Si-time alkaline leaching method. BSi concentration ranged from 0.01% to 0.85% with higher concentrations in upstream region of Matla estuary and attenuated values towards the bay, seemingly due to changes in hydrodynamics and land use conditions. Spatial distribution of BSi did not exhibit significant correlation with sediment parameters of organic carbon (OC), elemental composition and clay content. However, it showed significant contrasting trends with total phosphorus (TP) and total silica of human influenced Matla estuary sediments as well as the dissolved silica (DSi) of its surface waters. Anthropogenic influence on sediment geochemistry is discernable with the presence of higher concentrations of organic and inorganic elements in Matla estuary than in Core Zone sediments. Spatial variation trends are often challenging to interpret due to multiple sources of input, varying energy and salinity conditions and constant physical, chemical and biological alterations occurring in the environment. Nonetheless, it is certain that anthropogenic activities have a substantial influence on biogeochemical processes of Sundarbans mangrove-estuarine complex and potentially the coastal ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Calculating in situ density and heat capacity of rocks with GMIN: new type of input data for thermomechanical modeling of subduction zones

    NASA Astrophysics Data System (ADS)

    Burchard, M.; Gerya, T.

    2003-04-01

    The technique of minimizing the Gibbs free energy of specified rock compositions by varying the amounts and compositions of coexisting phases has provided new insights and possibilities for petrological investigations. For thermomechanical modeling of subduction zone processes density, isobaric heat capacity, thermal expansion and compressibility can then be extracted as a function of the amounts and compositions of coexisting phases [1]. At present two programs offer the possibility of calculating phase diagrams with this technique, Holland and Powell's Thermocalc [2] and De Capitani's Theriac/Domino [3] package. The first one is a command line program producing a text output which can be converted to graphics with a user-written MathematicaTM program. It uses the Holland and Powell data base [2]. De Capitani's program is distributed as a Fortran 77 source code and uses the Berman database. Neither of these programs offers interfaces for use with geodynamic modeling programs. We have therefore enhanced our new Gibbs minimization program GMin [4] with an interface able to transfer density, entahalpy and volume values into databases or other programs. The minimization algorithm of our program is based on the de Capitani method [3], modified and adapted for the Holland and Powell database [2]. To achieve rapid convergence and stability of minimization we have optimized the computing strategy for models of solid solutions used in [2]. The standard program is divided in two parts, a front end and a calculation program controlled by the front end program. This construction opens the possibility of starting up several calculations in parallel on different computers and different operating systems. In this way large numbers of calculations can be performed on normal PC-networks (servers and clients) controlled by only one front end program. The front end is able to create pressure and temperature ordered databases containing density, enthalpy, volume and composition which

  2. Disturbance regime

    Treesearch

    F.N. Scatena; J.F. Blanco; K.H. Beard; R.B. Waide; A.E. Lugo; N. Brokaw; W.L. Silver; B.L. Haines; J.K. Zimmerman

    2012-01-01

    The Luquillo Mountains are affected by a wide array of environmental processes and distnrbances. Events that concurrently alter the environmental space of several different areas of the Luquillo Mountains occur every 2 to 5 years. Events such as hurricanes that cause widespread environmental modification occur once every 20 to 60 years. The most common disturbance-...

  3. Isotopic compositions of volcanic arc rocks in the Southern Volcanic Zone (33°-43°S), Chile: along- and across-arc variations

    NASA Astrophysics Data System (ADS)

    Jacques, Guillaume; Hoernle, Kaj; Gill, Jim; Wehrmann, Heidi

    2014-05-01

    We investigate young, olivine-bearing volcanic arc (VA) rocks from the Southern Volcanic Zone (33-43°S; SVZ) in Chile, and from the backarc (BA) in Argentina for their major and trace element, and Sr-Nd-Hf-Pb-O isotope geochemistry. The compositional data are processed to identify the source components contributing to the arc magmas and to estimate their proportions, with the aim to better understand the effects of the large-scale along-arc tectonic variations onto melt generation and erupted compositions. The Transitional (T) SVZ (34.5-38°S; Jacques et al., 2013) samples overlap the BA samples in Sr and Nd isotopes, whereas the Central (C) SVZ (38-43°S; Jacques et al., submitted, Chemical Geology) samples are shifted to slightly higher Sr and/or Nd isotope ratios. All samples form a tight correlation on the Pb isotope diagrams. The VA samples plot at the radiogenic end of the positive BA array and overlap trench sediment, indicating mixing between a South Atlantic MORB-type source and a slab component derived from subducted trench sediments and altered oceanic crust. On the Nd versus Hf isotope diagram, the VA and BA form two sub parallel linear trends, neither pointing to subducting sediment. The VA may display an asthenospheric mantle array, whereas enriched Proterozoic lithospheric mantle may be involved in the BA. The CSVZ samples have higher fluid-mobile to fluid-immobile element ratios and lower more- to less-incompatible fluid-immobile element ratios than the TSVZ samples, consistent with higher hydrous melt flux and higher degrees of melting resulting in higher magma production and eruption rates in the CSVZ. Low δ18O(melt) of CSVZ lavas suggests that the source of the enhanced water flux is likely to be hydrated lower crust and serpentinized upper mantle of the incoming plate, resulting from the multiple large fracture zones in this part of the SVZ. The δ18O(melt) values of the NSVZ, TSVZ and BA, on the other hand, largely overlap the MORB mantle

  4. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  5. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  6. Kink zone localization, structurally-controlled instability, and large-scale rock slope failure at the Mt. Gorsa porphyry quarry (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.; Meloni, F.; Valle, C.; Rivolta, C.; Leva, D.

    2012-04-01

    Rock slope failure is controlled by rock mass strength and anisotropy, and by slope-scale persistent fractures with different spacing, eventually resulting in complex mechanisms as large-scale flexural toppling, block toppling, and kink band slumping. Despite these mechanisms have been studied, their interplay in large rock slope failure is often difficult to ascertain in complex geological settings. We studied the 250 m high porphyry quarry slopes of Mt. Gorsa (Trentino, Italy). Two slopes facing to N and E are carved in Permian rhyolithic ignimbrites, providing spectacular exposures of the inherited geological structure. Despite the strong intact rock, rock mass has a complex structure due to the occurrence of thermal cooling joints, persistent tectonic fractures, and joint sets. Evidence of ongoing displacement of the northern quarry face in 2003 motivated geotechnical and geophysical site investigation, and the initiation of displacement monitoring activities. GB-InSAR measurements using a LiSALab system captured large-scale slope dilation involving 400.000 m3. Further GB-InSAR measurements have been carried out since 2010. In order to understand the mechanisms governing large-scale deformation and failure of the northern slope, we carried out a comprehensive field and modelling study exploiting terrestrial photo mapping, field structural analysis and discontinuity surveys at different locations. On the northern face, 190 Geological Strength Index (GSI) surveys along benches, DEM structural analysis (COLTOP3D), and analysis of GB-InSAR data were carried out, and relationships among rock mass quality, 2003 landslide extent, and measured displacements established. Data show that slope instability is locally constrained by close and persistent cooling joints steeply dipping to the south (K1), persistent fault surfaces moderately dipping to the NNW (K2), and joint sets steeply dipping to NE and WNW (K3 and K4). NNW-dipping, top-to-N kink bands up to 2m wide also

  7. Correcting for inclination shallowing of early Carboniferous sedimentary rocks from Kyrgyzstan—indication of stable subtropical position of the North Tianshan Zone in the mid-late Palaeozoic

    NASA Astrophysics Data System (ADS)

    Kirscher, U.; Bilardello, D.; Mikolaichuk, A.; Bachtadse, V.

    2014-08-01

    High-quality palaeomagnetic data for the early Carboniferous of Central Asia are scarce and the palaeogeographic evolution of this area prior to final amalgamation of the region east of the Ural mountains is still rather obscure. Here, we present palaeomagnetic data for early Carboniferous deposits from two areas in the Kyrgyz North Tianshan (NTS). Detailed rock-magnetic analysis indicates the presence of magnetite and haematite as magnetic carriers in these red sediments. In the Kazakh basin section (KEL), we identify a high-temperature component (HTC) of magnetization during stepwise thermal demagnetization at temperatures of up to ˜680 °C yielding a site mean direction of D = 176.2°, I = -36.4°, k = 57.4 and α95 = 8.9° after tilt correction. Two HTCs of magnetization were identified in samples from the Sonkul Basin (DUN) with maximum blocking temperatures of ˜600 °C (magnetite) and ˜680 °C (haematite). The magnetite component was also identified with alternating field demagnetization. The resulting site mean directions for these two components identified in 16 and 14 sites, respectively, are D = 149.3°, I = -50.3°, k = 73.6 and α95 = 4.3° for the magnetite and D = 139.6°, I = -35.1°, k = 71.6 and α95 = 4.7° for the haematite component. All three mean directions show a significant increase of the precision parameter k after tilt correction indicating acquisition of the high-temperature magnetization prior to the main folding event in the Jurassic. We explain the difference of the two components of DUN by a process of inclination bias due to compaction to which the platy haematite particles are more susceptible. Applying the elongation-inclination (E/I) method to directional data from over 100 individual samples from location DUN results in a negligible correction for the magnetite component (<5°), whereas the inclination of the haematite component corrects from -35.0° to -50.3° (f = 0.6, error interval -41.4° to -57.9°), which is then equal

  8. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    SciTech Connect

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C.; Su, G.

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996.

  9. Exploratory Analysis of Sediment Related Disturbance on Post-Spate Periphyton Retention on the Ste. Marguerite River, Saguenay, Quebec.

    NASA Astrophysics Data System (ADS)

    Luce, J. J.; Lapointe, M.

    2004-05-01

    Both natural and human induced disturbance can cause significant shifts in the viability and spatial distribution of river organisms. The dominant primary producers in unshaded streams are benthic algae. Algae grow within a biofilm called periphyton and provide the main energy source driving production in higher trophic levels. Literature suggests that periphyton are adapted to a range of both resources (e.g. sunlight and nutrients) and disturbance (e.g. floods and grazing). Site scale studies of flood disturbance effects on periphyton have demonstrated that spatially discrete refuge zones (e.g. gravel clusters, boulders, inside of point bars) exist where periphyton removal after floods is minimal. The purpose of this study is to examine the hypothesis that stable refugia can be found within the drainage basin at larger spatial and temporal scales than previously demonstrated. The intent is to identify refuge zones through the study of geomorphic disturbance processes, resource availability and periphyton resistance. Four sedimentary links, characterized by 30 cross-sections, have been selected on the Ste Marguerite River, each providing a gradient of channel disturbance but limited nutrient variation. A sequence of spates during the 2003 field season were monitored for discharge, temperature, water quality and sediment mobility using fine sediment traps and tracer rocks. The overall approach employs a combination of field work, numerical modeling and statistical analyses. Exploratory data analysis will be presented examining the role of resources and disturbance responsible for sources of variability in post spate algal biomass.

  10. Spatial patterns of rockfall in recently deglaciated high-alpine rock faces: Analysing rockfall release zones and volumes based on a multiannual LiDAR time series, Kitzsteinhorn, Austria.

    NASA Astrophysics Data System (ADS)

    Hartmeyer, Ingo; Keuschnig, Markus; Delleske, Robert; Wichmann, Volker; Hoffmann, Thomas; Schrott, Lothar

    2015-04-01

    Rock instabilities in high-alpine areas represent a considerable risk factor for man and infrastructure. In the Alps numerous, mainly visual, observations suggest an increasing occurrence of rockfall events potentially associated to climate warming. However, unbiased high-precision information on the location of rockfall release zones and the size of event volumes is scarce. Thus, frequency/magnitude patterns of high-alpine rockfall often remain elusive. The presented study addresses the need for systematically acquired, objective field data by presenting an extensive, multiannual LiDAR time series from a high-alpine (peri)glacial environment. The study area is located in the summit region of the Kitzsteinhorn (3.203 m), Hohe Tauern Range, Austria. The beginning of the terrestrial laserscanning (TLS) monitoring campaign dates back to July 2011. Since then six rock faces have been scanned repeatedly at an interval of 1-2 months during the snow-free summer season (June to October). The investigated rock faces predominantly consist of calcareous mica-schist and differ in terms of height, slope, aspect, and discontinuity orientation. The rock faces are partially underlain by permafrost, their combined surface area is approx. 1.3 km². They are located directly adjacent to the Schmiedingerkees cirque glacier, which has retreated and thinned significantly in recent decades (downwasting rate ~1.5 m/a). TLS data acquisition was performed using a Riegl LMS-Z620i. During data acquisition no permanently fixed installations and no artificial reflective markers were used. This is in line with the requirement to develop a quick, flexible methodology that can be applied not only at the Kitzsteinhorn, but also in other, similar environments. For data post-processing a new analysis procedure has been developed which allows (i) point cloud alignment by surface geometry matching, (ii) objective, automated discrimination between measurement errors und real surface changes, and (iii

  11. Experimental rock-water interactions at temperatures to 300/sup 0/C: implications for fluid flow, solute transport, and silicate mineral zoning in crustal geothermal systems

    SciTech Connect

    Potter, J.M.

    1982-01-01

    Geothermal reservoirs commonly occur in permeable volcanic rock (rhyolite, andesite, basalt) or sedimentary (sandstone) strata at temperatures below 300/sup 0/C. Knowledge of how these reservoirs develop chemically and physically has been based almost entirely on field studies. Four types of experiments were conducted to supplement available data on the chemistry, mineralogy, and fluid flow aspects of hydrothermal processes occurring in crustal geothermal systems: (1) agitated rock-water experiments; (2) high temperature flow through experiments; (3) low temperature permeability experiments; and (4) corrosion monitoring experiments. Initial experiments reacted rhyolite glass and holocrystalline basalt with water-NaCl solutions at 300/sup 0/C in agitated hydrothermal equipment. Concentrations of components in solution depend on initial salinity, rock type, and particle size. The secondary phases consist of zeolites, clay, and feldspar minerals and the alteration assemblage is dependent on both initial salinity, rock type, and duration of the experiment. A second set of experiments were conducted at 300/sup 0/C using the rhyolite glass in a flow through type of apparatus. Compositions of outlet fluids show a dependence of fluid flow rate and core length.

  12. The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zone

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawaz; Wörman, Anders; Sanchez-Vila, Xavier; Bottacin-Busolin, Andrea

    2016-12-01

    CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport.

  13. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2016-12-01

    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic

  14. Pressure-Temperature Studies and Structural Setting of Amphibolite-Grade Rocks Within the Easternmost Indus-Ysangpo Suture Zone and Forearc Complex (Tidding Formation), N. Indo-Burma Ranges of N.E. India

    NASA Astrophysics Data System (ADS)

    Braza, M.; Haproff, P. J.

    2016-12-01

    The easternmost extension of the Indus-Ysangpo suture (IYS) and Xigaze forearc complex, the Tidding Formation of northeastern India, remains the least-studied sequence representing closure of the Neotethys ocean and syn-tectonic sedimentation. In this study, we present P-T determinations coupled with detrital zircon U-Pb geochronology and detailed geologic mapping to uncover the depositional and metamorphic history of Tidding suture and forearc rocks during Himalayan orogenesis. Four mica schists were sampled from successive NW-SE-striking thrust sheets within the Dibang Valley of Arunachal Pradesh (N.E. India), southwest of the easternmost L. Cretaceous Gangdese batholith. Use of the garnet-muscovite-biotite-plagioclase (GMBP) thermobarometer and Ti-in-biotite thermometer on schist sample PH-1-8-13-26 yield peak conditions of 627 ± 28°C and 10.4 ± 1.1 kbar. Similarly, use of the garnet-biotite Fe-Mg exchange thermometer and garnet-aluminosilicate-silica-plagioclase (GASP) barometer yield 644 ± 50°C and 12 ± 1 kbar for schist sample PH-11-14-15-24 within the same thrust sheet. Both samples contain recrystallized quartz along grain boundaries and garnets contain no significant compositional zoning. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) sampled from the Mayodia klippe records peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the Mayodia klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals metamorphism of IYS rocks occurred at deep crustal levels (>30 km) during northward Neotethys subduction. Suture rocks were subsequently exhumed by orogen-scale N-dipping thrusts during growth of the easternmost Himalayan orogen.

  15. Radioecological investigations of technogenically disburbed landscape in the uranium deposit zone in Sakha Republic (Yakutia)

    SciTech Connect

    Sobakin, P.I.; Molchanova, I.V.

    1995-05-01

    The results of a radioecological investigation of the technogenically disturbed territory adjacent to a rock waste dump enriched with uranium and its decay products are given. The removal of such rocks to the surface led to the formation of a zone of radioactive contamination characterized by a high content of {sup 238}U and {sup 226}Ra in biotic and abiotic components. Transport of the radionuclides in the sediment load and liquid runoff dominated in their dispersal processes. A special role of ground mosses and lichens in the accumulation of uranium was noted.

  16. Bounce Rock Snapshot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This Mars Exploration Rover Opportunity panoramic camera image shows 'Bounce Rock,' a rock the airbag-packaged rover struck while rolling to a stop on January 24, 2004. This is the largest rock for as far as the eye can see, approximately 35 centimeters (14 inches) long and 10 centimeters (4 inches) high. There appears to be a dusty coating on the top of parts of the rock, which may have been broken when it was struck by the airbags. The rock was about 5 meters (16 feet) from the rover when this image was obtained. This is an enhanced color composite image from sol 36 of the rover's journey, generated using the camera's L2 (750 nanometer), L5 (530 nanometer), and L6 (480 nanometer) filters.

    Bounce Rock Spectra Figure 1 above is a plot of panoramic camera spectra extracted from three different regions on the rock dubbed 'Bounce.' The yellow spectrum is from the yellow box in the image on the left, from the dusty top part of the rock. The spectrum is dominated by the signature of oxidized 'ferric' iron (Fe3+) like that seen in the classic Martian dust. The red spectrum is from the darker Meridiani Planum soils that were disturbed by the airbag when it bounced near the rock. That spectrum is also dominated by ferric iron, though the reflectivity is lower. Scientists speculate that this may be because the grains are coarser in these soils compared to the dust. The green spectrum, which is from the right side of the rock, shows a strong drop in the infrared reflectance that is unlike any other rock yet seen at Meridiani Planum or Gusev Crater. This spectral signature is typical of un-oxidized 'ferrous' iron (Fe2+) in the rock, perhaps related to the presence of volcanic minerals like olivine or pyroxene. The possibility that this may be a basaltic rock that is distinctly different from the rocks seen in the Eagle Crater outcrop is being intensively explored using the rover's other instruments.

  17. The transition zone between the Pernambuco-Alagoas Domain and the Sergipano Belt (Borborema Province, NE Brazil): Geochronological constraints on the ages of deposition, tectonic setting and metamorphism of metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Neves, Sérgio P.; Rangel da Silva, José Maurício; Bruguier, Olivier

    2016-12-01

    Metasedimentary rocks in the transition zone between the Pernambuco-Alagoas Domain and the Sergipano Belt (southern Borborema Province, NE Brazil) were studied in order to place constraints on the geological evolution of this portion of West Gondwana. High-grade metamorphic conditions are recorded by the garnet-sillimanite assemblage and common anatexis in pelitic paragneisses. Two samples dated by LA-ICP-MS in the north yielded a predominance of early Neoproterozoic detrital zircons, with age peaks between 990 Ma and 827 Ma, with the youngest grain suggesting deposition after 670 Ma. Low Th/U zircons (Th/U < 0.1) in these samples display a significant spread in ages, from 691 to 568 Ma. One sample in the south is dominated by a homogenous population of Paleoproterozoic grains, with a 2200 Ma peak. The southernmost sample also contains Paleoproterozoic zircons but the most abundant population is Neoproterozoic, and characterized by age peaks at c. 670, 647 and 623 Ma. These results show that deposition of sediments in the southern PEAL Domain and in the northern Sergipano Belt occurred in the Late Neoproterozoic. The differing age spectra between samples are correlated with potential source rocks in the study area or in its proximity, reflecting variable input from local sources. The data are interpreted to indicate that during the course of an extensional event at c. 673-647 Ma, Tonian granitic intrusions and synextensional metamorphic rocks were unroofed and eroded to provide zircons for sediments deposited in the north, whereas Paleoproterozoic and synextensional magmatic rocks were the main sources for sediments in the south. Peak metamorphic conditions and contractional deformation are constrained to c. 630-600 Ma.

  18. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations

  19. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  20. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht

    2007-10-01

    The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat-Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz-sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U-Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the

  1. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2010-01-01

    This report contains a simplified provisional correlation chart that was compiled from both published and unpublished data in order to fill a need to visualize the currently accepted stratigraphic relations between Appalachian basin formations, coal beds and coal zones, and key stratigraphic units in the northern, central, and southern Appalachian basin coal regions of Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. Appalachian basin coal beds and coal zones were deposited in a variety of geologic settings throughout the Lower, Middle, and Upper Pennsylvanian and Pennsylvanian formations were defined on the presence or absence of economic coal beds and coarse-grained sandstones that often are local or regionally discontinuous. The correlation chart illustrates how stratigraphic units (especially coal beds and coal zones) and their boundaries can differ between States and regions.

  2. Polychaetes as indicators of environmental disturbance on subarctic tidal flats, Iqaluit, Baffin Island, Nunavut Territory.

    PubMed

    Samuelson, G M

    2001-09-01

    The polychaetes of the tidal flats near the town of Iqaluit, Baffin Island were analysed along gradients of environmental disturbance resulting from human activity. Sources of environmental disturbance include a sewage lagoon, garbage sites; and an area of the tidal flat that is cleared by bulldozer. Sampling of the tidal flats included 300 biological sediment cores taken from 75 sites along seven transects. Environmental disturbance has resulted in four zones of polychaete communities with increasing distance. The heavily disturbed zone is closest to the disturbances and is devoid of polychaetes. The disturbed zone follows and is characterized by low diversity the result of increased densities of a few opportunistic species such as, Capitella 'capitata' sp. The moderately disturbed zone is characterized by increased species diversity due to organic enrichment from the disturbances. The undisturbed zone, located the furthest from the sources of disturbance, is characterized by moderate levels of diversity compared to the other three zones.

  3. Soil disturbance by airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Disturbance of the drift at the Pathfinder landing site reveals a shallow subsurface that is slightly darker but has similar spectral properties. The top set of images, in true color, shows the soils disturbed by the last bounce of the lander on its airbags before coming to rest and the marks created by retraction of the airbags. In the bottom set of images color differences have been enhanced. The mast at center is the Atmospheric Structure Instrument/Meteorology Package (ASI/MET). The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. A shadow of the ASI/MET appears on a rock at left.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  4. Comparative geochronology in the reversely zoned plutons of the Bottle Lake Complex, Maine: U-Pb on zircons and Rb-Sr on whole rocks

    USGS Publications Warehouse

    Ayuso, R.A.; Arth, Joseph G.; Sinha, A.K.; Carlson, J.; Wones, D.R.

    1984-01-01

    The Bottle Lake Complex is a composite granitic batholith emplaced into Cambrian to Lower Devonian metasedimentary rocks. Both plutons (Whitney Cove and Passadumkeag River) are very coarse grained hornblende and biotite-bearing granites showing petrographic and geochemical reverse zonation. Two linear whole rock Rb/Sr isochrons on xenolith-free Whitney Cove and Passadumkeag River samples indicate ages of 379??5 m.y. and 381??4 m.y., respectively, in close agreement with published K-Ar ages for biotite from Whitney Cove of 377 m.y. and 379 m.y., and for hornblende 40Ar/39Ar determinations from Passadumkeag River which indicate an age of 378??4 m.y. The initial Sr isotopic ratio for Whitney Cove is 0.70553 and for Passadumkeag River is 0.70414. A whole-rock isochron on a suite of xenoliths from the Passadumkeag River granite indicates a whole rock Rb-Sr age of 496??14 m.y., with an initial Sr isotopic ratio of 0.70262. Two types of zircon exhibiting wide petrographic diversity are evident in variable proportions throughout the batholith. One of these types is preferentially found in a mafic xenolith and it is widely dispersed in the host granites forming discrete grains and probably as inclusions in the other type of zircon. U-Pb analyses of zircons give concordia intercept ages of 399??8 m.y. for Whitney Cove, 388??6 m.y. for Passadumkeag River, 415 m.y. for a mafic xenolith in Passadumkeag River, and 396??32 for combined Whitney Cove and Passadumkeag River granite. The zircons show a spread of up to 20 m.y. in the 207Pb/206Pb ages. Omitting the finest zircon fraction in the Passadumkeag River results in a concordia intercept age of 381??3 m.y., in better agreement with the whole-rock Rb-Sr and mineral K-Ar ages. For the Whitney Cove pluton, exclusion of the finest fraction does not bring the zircon age into agreement with the Rb-Sr data. Age estimates by the whole rock Rb-Sr, mineral K-Ar and Ar-Ar methods suggest that the crystallization age of the plutons is

  5. Delineation of Landslide Prone Areas based on Geotechnical and Mineralogical Evaluation of Rocks and Soil to Understand the Failure Zones in a part of Alaknanda Valley, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Asthana, H.; Singh, N.; Sen, R.; Vishwakarma, C. A.; Singh, P.; Rena, V.; Mukherjee, S.

    2016-12-01

    The exclusive physiographic, tectonic and climatic conditions, along with natural and anthropogenic factors make the Himalayan terrain prone to land failure. The land which can be used for the developmental activities are severely limited. Increasing population density, societal requirements has put stress on the same quantum of land and created considerable anthropogenic problems in landscape equilibrium. In present study thematic maps have been developed for the Alaknanda valley in the Garhwal Himalaya of Uttrakhand to assess the potential landslide hazard zones. This has been done using remote sensing GIS data, topographic maps and field investigations. Based on above results landslide hazard zonation has been done to determine the spatio-temporal extent of landslide occurrence and vulnerability. Outlook of the slopes and identification of the discontinuities present in the terrain was done on the basis of representative samples through field investigations. Grain size analysis of the following samples was carried out to estimate the percentage sand, silt and clay content of the soil. Based on the proportions of different particle sizes, a soil textural category may be assigned to the samples. Results indicated that the landslides along the section of Devprayag-Badrinath National Highway are mainly debris slides, debris flows, rock slides and rock falls. Following landslide masses are chiefly composed of boulders, rock fragments and soil. Debris flows are mostly restrained along lines of natural drainage. The area is under severe anthropogenic as well as natural influence which can be further responsible for increase in the shear stress beyond the threshold level, thus decreasing the slope stability resulting in failure zones. A high resolution remotely sensed data in digital form has been proved to be an essential tool for the preparation, interpretation and analysis of the data obtained in the GIS environment. Further mineralogical evaluations are done to

  6. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  7. "Rock Garden"

    NASA Image and Video Library

    1997-10-14

    This false color composite image of the Rock Garden shows the rocks "Shark" and "Half Dome" at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989). http://photojournal.jpl.nasa.gov/catalog/PIA00987

  8. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  9. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  10. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  11. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  12. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  13. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  14. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  15. 300 Area Disturbance Report

    SciTech Connect

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black

  16. In situ radiation measurement and estimation of U/Th ratio to reflect on the uranium bearing potential zone in metamorphic rocks of Mahendragarh district, Haryana

    NASA Astrophysics Data System (ADS)

    Somani, O. P.; Sunil Kumar, T. S.; Kukreti, B. M.; Bhaumik, B. K.; Gorikhan, R. A.

    2009-06-01

    Gross gamma radiation survey was carried out using Nal(Tl) scintillator based portable gamma ray spectrometer (PGRS) around areas of Gaonri, Dholera, Pachnota and Meghot in Mahendragarh district, Haryana. Geologically the area forms part of north Delhi fold belt comprising calc-silicate, quartz biotite schist, impure marble, quartzite and pegmatite rocks. Equivalent uranium (eU3O8) concentration in ppm was estimated in situ on a regular grid pattern of 500 m (E-W) × 1000 m (N-S) and grab samples were collected at grid locations for analyzing in the laboratory for estimating the contents of eU3Os Raeq, ThO2 and %K. A comparison with the laboratory analysed grab samples for eU308 data and in situ radiation measurements shows a good match of the two sets of data. The in situ measurements indicate higher concentration of eU3O8 in Chapra Bibipur in northeastern most corners, Maghot area in central part, Gaonri in western part and Pachnota in southwestern part of the study area. As index to uranium favorability, U(Raeq)-Th contour map (prepared using Surfer software with Krieging interpolation method for this grid size) based on the data on grab samples was generated which show three major clusters of relatively high U-Th ratio. The blocks delineated are enriched in sodic mineral albite which support albite hosted uranium mineralization potential in metamorphic rocks in Haryana.

  17. Design and installation of deep multilevel piezometer nests in Columbia River basalts at the Hanford Site, Washington. [Measurement of head in different rock zones sealed from each other

    SciTech Connect

    Jackson, R.L.; Veatch, M.D.

    1985-04-01

    The Basalt Waste Isolation Project (BWIP) was established in 1976 as part of the National Waste Terminal Storage Program, now the Office of Civilian Radioactive Waste Management. The BWIP objective is to assess the suitability of basalt as a repository medium for the long-term storage of commercial high-level radioactive waste. As part of the hydrogeologic characterization activities, BWIP designed and installed multilevel piezometer nests at three borehole cluster sites within and adjacent to the 18-square-mile reference repository location. These borehole cluster sites will provide multilevel piezometric baseline data across the reference repository location prior to, during, and after drilling a large-diameter exploratory shaft. They will also be used to monitor future hydraulic stress tests on a large scale. Three series of piezometer nests (A-, C-, and D-series) were installed at three borehole cluster sites in nine hydrogeologic units from a depth of about 500 to 3700 feet within the Columbia River Basalt Group. These multilevel monitoring zones are isolated from each other and the next overlying hydrogeologic unit by high-density cement seals. The A-series piezometer nests monitor two shallow sedimentary units. The C-series piezometer nests monitor basalt flow tops in the six deepest zones. The D-series piezometer monitors an intermediate sedimentary unit. Each piezometer tube was developed by air-lift pumping to complete the installtion prior to installing downhole pressure transducers. 23 refs., 10 figs., 1 tab.

  18. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  19. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  20. A seismogenic zone in the deep crust indicated by pseudotachylytes and ultramylonites in granulite-facies rocks of Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Altenberger, U.; Prosser, G.; Grande, A.; Günter, C.; Langone, A.

    2013-10-01

    Pseudotachylyte veins frequently associated with mylonites and ultramylonites occur within migmatitic paragneisses, metamonzodiorites, as well as felsic and mafic granulites at the base of the section of the Hercynian lower crust exposed in Calabria (Southern Italy). The crustal section is tectonically superposed on lower grade units. Ultramylonites and pseudotachylytes are particularly well developed in migmatitic paragneisses, whereas sparse fault-related pseudotachylytes and thin mylonite/ultramylonite bands occur in granulite-facies rocks. The presence of sillimanite and clinopyroxene in ultramylonites and mylonites indicates that relatively high-temperature conditions preceded the formation of pseudotachylytes. We have analysed pseudotachylytes from different rock types to ascertain their deep crustal origin and to better understand the relationships between brittle and ductile processes during deformation of the deeper crust. Different protoliths were selected to test how lithology controls pseudotachylyte composition and textures. In migmatites and felsic granulites, euhedral or cauliflower-shaped garnets directly crystallized from pseudotachylyte melts of near andesitic composition. This indicates that pseudotachylytes originated at deep crustal conditions (>0.75 GPa). In mafic protoliths, quenched needle-to-feather-shaped high-alumina orthopyroxene occurs in contact with newly crystallized plagioclase. The pyroxene crystallizes in garnet-free and garnet-bearing veins. The simultaneous growth of orthopyroxene and plagioclase as well as almandine, suggests lower crustal origin, with pressures in excess of 0.85 GPa. The existence of melts of different composition in the same vein indicates the stepwise, non-equilibrium conditions of frictional melting. Melt formed and intruded into pre-existing anisotropies. In mafic granulites, brittle faulting is localized in a previously formed thin high-temperature mylonite bands. migmatitic gneisses are deformed into

  1. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks.

    PubMed

    Mills, Christopher T; Goldhaber, Martin B

    2012-10-01

    Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol Nkg(-1)) concentrations of applied (NH(4))(2)SO(4). Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH(4)(+), Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg(-1)) and high (128 meq kg(-1)) amounts of NH(4)Cl, KCl, and CaCl(2) were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba(2+) (mean 38 μmol kg(-1)) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol Nkg(-1)) and high (35 mmol Nkg(-1)) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg(-1) (5× control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more reactive than naturally

  2. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  3. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision

    NASA Astrophysics Data System (ADS)

    Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui

    2017-10-01

    The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).

  4. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  5. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  6. Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia kimberlite diatremes, Central Zone, Limpopo Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Creus, P. K.; Anthonissen, C. J.; Stoch, B.; Ekkerd, J.

    2016-05-01

    The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3-3.1 Ga, 2.7-2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E-W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03-2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2-1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.

  7. Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean-island magmatism

    NASA Astrophysics Data System (ADS)

    Höhn, Stefan; Koglin, Nikola; Klopf, Lisa; Schüssler, Ulrich; Tragelehn, Harald; Frimmel, Hartwig E.; Zeh, Armin; Brätz, Helene

    2017-06-01

    Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were sampled for geochemical characterisation and U-Pb zircon dating. The oldest rock suite comprises quartz keratophyre, brecciated keratophyre, quartz keratophyre tuff and basalt, formed in Upper Cambrian to Tremadocian time (c. 497-478 Ma). Basaltic volcanism continued until the Silurian. Quartz keratophyre shows post-collisional calc-alkaline signature, the Ordovician-Silurian basalt has alkaline signature typical of continental rift environments. The combined datasets provide evidence of Cambro-Ordovician bimodal volcanism and successive rifting until the Silurian. This evolution very likely resulted from break-up of the northern Gondwana margin, as recorded in many terranes throughout Europe. The position at the northern Gondwana margin is supported by detrital zircon grains in some tuffs, with typical Gondwana-derived age spectra mostly recording ages of 550-750 Ma and minor age populations of 950-1100 and 1700-2700 Ma. The absence of N-MORB basalt in the Frankenwald area points to a retarded break-off of the Saxothuringian terrane along a continental rift system from Uppermost Cambrian to Middle Silurian time. Geochemical data for a second suite of Upper Devonian basalt provide evidence of emplacement in a hot spot-related ocean-island setting south of the Rheic Ocean. Our results also require partial revision of the lithostratigraphy of the Frankenwald area. The basal volcanic unit of the Randschiefer Formation yielded a Tremadocian age and, therefore, should be attributed to the Vogtendorf Formation. Keratophyre of the Vogtendorf Formation, previously assigned to the Tremadoc, is most likely of Upper Devonian age.

  8. Rover, Airbags, & Surrounding Rocks

    NASA Image and Video Library

    1997-07-05

    This image of the Martian surface was taken by the Imager for Mars Pathfinder (IMP) before sunset on July 4, 1997 (Sol 1), the spacecraft's first day on Mars. The airbags have been partially retracted, and portions the petal holding the undeployed rover Sojourner can be seen at lower left. The rock in the center of the image may be a future target for chemical analysis. The soil in the foreground has been disturbed by the movement of the airbags as they retracted. http://photojournal.jpl.nasa.gov/catalog/PIA00619

  9. Disturbance to wintering western snowy plovers

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2001-01-01

    In order to better understand the nature of disturbances to wintering snowy plovers, I observed snowy plovers and activities that might disturb them at a beach near Devereux Slough in Santa Barbara, California, USA. Disturbance (activity that caused plovers to move or fly) to wintering populations of threatened western snowy plovers was 16 times higher at a public beach than at protected beaches. Wintering plovers reacted to disturbance at half the distance (∼40 m) as has been reported for breeding snowy plovers (∼80 m). Humans, dogs, crows and other birds were the main sources of disturbance on the public beach, and each snowy plover was disturbed, on average, once every 27 weekend min and once every 43 weekday min. Dogs off leash were a disproportionate source of disturbance. Plovers were more likely to fly from dogs, horses and crows than from humans and other shorebirds. Plovers were less abundant near trail heads. Over short time scales, plovers did not acclimate to or successfully find refuge from disturbance. Feeding rates declined with increased human activity. I used data from these observations to parameterize a model that predicted rates of disturbance given various management actions. The model found that prohibiting dogs and a 30 m buffer zone surrounding a 400 m stretch of beach provided the most protection for plovers for the least amount of impact to beach recreation.

  10. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  11. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  12. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  13. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  14. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  15. White Rock

    NASA Image and Video Library

    2002-05-21

    White Rock is the unofficial name for this unusual landform which was first observed during NASA Mariner 9 mission in the early 1970 and is now shown here in an image from NASA Mars Odyssey spacecraft.

  16. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. 'Lutefisk' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Spirit used its panoramic camera to take this image of a rock called 'Lutefisk' on the rover's 286th martian day (Oct. 22, 2004). The surface of the rock is studded with rounded granules of apparently more-resistant material up to several millimeters (0.1 inch) or more across. The visible portion of Lutefisk is about 25 centimeters (10 inches) across.

  18. The reason for synchronous disturbances in the atmospheric electric field and high-frequency geoacoustic emission during the seismotectonic process

    NASA Astrophysics Data System (ADS)

    Rulenko, O. P.; Marapulets, Yu. V.; Kuzmin, Yu. D.

    2015-03-01

    The atmospheric electric field, the geoacoustic emission at frequencies of 0.7-2.0 kHz at three points, the volumetric activity of radon and thoron in the surface ground layer, the atmospheric pressure, the velocity of wind, and the intensity of rain were synchronously measured from August 27 to October 17, 2012, at the interception zone of various faults 41 km southwest of the town of Petropavlovsk-Kamchatskiy. It was found for the first time that the increase in radon and thoron concentration in the surface ground layer is accompanied by a decrease in the atmospheric electric field and simultaneous disturbance of the high-frequency geoacoustic emission. The stronger emission of these gases into the atmosphere due to the increase in velocity of the extension of subsurface sedimentary rocks during seismotectonic process is the most likely reason for the decrease in the electric field, which occured along with a geoacoustic disturbance.

  19. Legacies of catastrophic rock slope failures in mountain landscapes

    NASA Astrophysics Data System (ADS)

    Hewitt, Kenneth; Clague, John J.; Orwin, John F.

    2008-02-01

    This review examines interpretive issues relating to catastrophic, long-runout landslides in the context of large numbers of recently discovered late Quaternary events. It links relevant research in landslide science, including some novel or hitherto-ignored complexities in the nature and role of these events, to broader concerns of mountain geomorphology. Attention is drawn to mountain ranges known to have large concentrations of events. In particular, discoveries in three regions are singled out; the Karakoram Himalaya, the coastal mountains of northwestern North America, and the Southern Alps of New Zealand. In each region, many new events, or previously unrecognized complexities, have been identified in the past decade or two. Research on the sedimentology and geomorphology of prehistoric, eroded deposits has been critical to identifying rock avalanches, including many that were formerly attributed to other processes. Discoveries of rock avalanches in the ancient stratigraphic record have helped with the field recognition of rock-avalanche materials and in developing facies models of deposits with complex emplacement histories. The stratigraphic record also provides insights into interactions of streaming rock debris with deformable substrates. Such interactions are responsible for "landslide-tectonized" forms and transformation of rock avalanches into debris flows. Of special interest are runout geometries involving the interactions of rock avalanches with topography or substrate materials, and travel over glaciers. Other emerging issues relate to reconstruction of detachment-zone geometries, and slow, deep-seated slope movements that may trigger catastrophic failure. Most previous landslide studies have focused on individual events or general models, whereas the questions addressed here arise from a comparative approach emphasizing common and contrasting features among events in sets and in different regions. The scale and frequency of landslides in the

  20. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  1. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  2. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  3. 'Wopmay' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by NASA's Mars Exploration Rover Opportunity shows an unusual, lumpy rock informally named 'Wopmay' on the lower slopes of 'Endurance Crater.' The rock was named after the Canadian bush pilot Wilfrid Reid 'Wop' May. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe the lumps in Wopmay may be related to cracking and alteration processes, possibly caused by exposure to water. The area between intersecting sets of cracks eroded in a way that created the lumpy appearance. Rover team members plan to drive Opportunity over to Wopmay for a closer look in coming sols. This image was taken by the rover's panoramic camera on sol 248 (Oct. 4, 2004), using its 750-, 530- and 480-nanometer filters.

  4. All-trans-retinoic acid activates SDF-1/CXCR4/ROCK2 signaling pathway to inhibit chondrogenesis.

    PubMed

    Hu, Qin-Xiao; Li, Xue-Dong; Xie, Peng; Wu, Chu-Cheng; Zheng, Gui-Zhou; Lin, Fei-Xiang; Xie, Da; Zhang, Qi-Hao; Liu, De-Zhong; Wang, Yun-Guo; Chang, Bo; Du, Shi-Xin

    2017-01-01

    Recent studies have indicated that ATRA inhibits chondrogenesis and can lead to congenital clubfoot (CCF). The molecular mechanism of ATRA-induced chondrogenesis is not clear. As RhoA/ROCK and SDF-1/CXCR4 signaling play important molecular roles for a variety of cellular processes, we hypothesized that RhoA/ROCK2 and SDF-1/CXCR4 signaling are involved in ATRA-induced chondrogenesis in rat embryo hind limb bud mesenchymal cells (rEHBMCs). We found that ATRA dose-dependently inhibits proliferation and expression of chondrogenic transcription factors (SOX9 and COL2A1) in rEHBMCs. In contrast, ATRA increases the expression of ROCK2, SDF-1 and CXCR4. Pharmacological inhibition of ROCK signaling and SDF-1/CXCR4 signaling by Y27632 and AMD3100, respectively, resulted in elevated expression of SOX9 and COL2A1. In addition, we found that disturbing SDF-1/CXCR4 signaling by AMD3100 decreases ATRA-induced ROCK2 expression. In vivo studies we also confirm that SOX9 expression of early-stage cartilage progenitors in the proliferative zone and COL2A1 expression in prehypertrophic chondrocytes are decreased in ATRA-treated rat embryo hind limb. Together, these results show that ATRA activates SDF-1/CXCR4/ROCK2 signaling to inhibit chondrogenesis to lead to CCF by suppressing differentiation through down-regulation of SOX9 and COL2A1 expression in rat embryo hind limb bud mesenchymal cells.

  5. In-situ zircon U-Pb age and Hf-O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj-Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks

    NASA Astrophysics Data System (ADS)

    Honarmand, Maryam; Li, Xian-Hua; Nabatian, Ghasem; Neubauer, Franz

    2017-01-01

    The Lower Permian Hasan-Robat syenogranite occurs as a single pluton and intruded the Upper Carboniferous-Lower Permian sandstones and dolomitic limestones in the central part of the Sanandaj-Sirjan zone. This syenogranitic intrusion shows A-type granitic affinity and is a good representative of Early Permian igneous activity in Iran. SIMS U-Pb zircon analyses indicate a crystallization age of 294.2 ± 2.5 Ma for the Hasan-Robat A-type granite. In-situ Lu-Hf and oxygen isotope analyses of magmatic zircons were carried out to infer the magma sources and evolution of the Hasan-Robat A-type syenogranite. The Hf-O zircon isotopic compositions are relatively homogeneous, with nearly chondritic ɛHf(t) values of -0.8 to +2.4 corresponding to two-stage zircon Hf model ages of 1.15-1.36 Ga. The δ18O values of zircon range from +7.6 to +8.6‰. The Hf model ages of the Hasan-Robat zircons is within the range of those reported from the Cadomian granitoids in Iran. The isotopic features of the Hasan-Robat syenogranite are in good agreement with Hf isotopic values and Hf and Nd model ages reported from the Cadomian arc magmatic suites in Iran. Thus, partial melting of these Cadomian igneous rocks would be the favorite source for the Hasan-Robat syenogranitic magma during the opening of the Neotethys Ocean and separation of Iranian terranes from the northern margin of Gondwana.

  6. Effect of crustal heterogeneities and effective rock strength on the formation of HP and UHP rocks.

    NASA Astrophysics Data System (ADS)

    Reuber, Georg; Kaus, Boris; Schmalholz, Stefan; White, Richard

    2015-04-01

    The formation of high pressure and ultra-high pressure rocks has been controversially discussed in recent years. Most existing petrological interpretations assume that pressure in the Earth is lithostatic and therefore HP and UHP rocks have to come from great depth, which usually involves going down a subduction channel and being exhumed again. Yet, an alternative explanation points out that pressure in the lithosphere is often non-lithostatic and can be either smaller or larger than lithostatic as a function of location and time. Whether this effect is tectonically significant or not depends on the magnitude of non-lithostatic pressure, and as a result a number of researchers have recently performed numerical simulations to address this. Somewhat disturbingly, they obtained widely differing results with some claiming that overpressures as large as a GPa can occur (Schmalholz et al. 2014), whereas others show that overpressures of exhumed rocks are generally less than 20% and thus insignificant (Li et al. 2010; Burov et al. 2014). In order to understand where these discrepancies come from, we reproduce the simulations of Li et al (2010) of a typical subduction and collision scenario, using an independently developed numerical code (MVEP2). For the same model setup and parameters, we confirm the earlier results of Li et al. (2010) and obtain no more than ~20% overpressure in exhumed rocks of the subduction channel. Yet, a critical assumption in their models is that the subducted crust is laterally homogeneous and that it has a low effective friction angle that is less than 7o. The friction angle of (dry) rocks is experimentally well-constrained to be around 30o, and low effective friction angles require, for example, high-fluid pressures. Whereas high fluid pressures might exist in the sediment-rich upper crust, they are likely to be much lower or absent in the lower crust from which melt has been extracted or in rocks that underwent a previous orogenic cycle. In a

  7. Tectonic zoning of Wrangel Island, Arctic region

    NASA Astrophysics Data System (ADS)

    Sokolov, S. D.; Tuchkova, M. I.; Moiseev, A. V.; Verzhbitskii, V. E.; Malyshev, N. A.; Gushchina, M. Yu.

    2017-01-01

    The Northern, Central, and Southern zones are distinguished by stratigraphic, lithologic, and structural features. The Northern Zone is characterized by Upper Silurian-Lower Devonian sedimentary rocks, which are not known in other zones. They have been deformed into near-meridional folds, which formed under settings of near-latitudinal shortening during the Ellesmere phase of deformation. In the Central Zone, mafic and felsic volcanic rocks that had been earlier referred to Carboniferous are actually Neoproterozoic and probably Early Cambrian in age. Together with folded Devonian-Lower Carboniferous rocks, they make up basement of the Central Zone, which is overlain with a angular unconformity by slightly deformed Lower (?) and Middle Carboniferous-Permian rocks. The Southern Zone comprises the Neoproterozoic metamorphic basement and the Devonian-Triassic sedimentary cover. North-vergent fold-thrust structures were formed at the end of the Early Cretaceous during the Chukchi (Late Kimmerian) deformation phase.

  8. Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study

    NASA Astrophysics Data System (ADS)

    Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang

    2017-09-01

    Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in

  9. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has…

  10. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  11. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  12. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock

  13. Experimental and Numerical Study on Stress Relaxation of Sandstones Disturbed by Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Zhu, Wancheng; Li, Shuai; Niu, Leilei; Liu, Kai; Xu, Tao

    2016-10-01

    Time-dependent rheological deformation of rocks affects the stability of underground stopes or constructions. It may also be altered by dynamic disturbances, such as rock blasting. To study such effects, a new stress relaxation-disturbance testing machine was invented, capable of loading conditions for stress relaxation and dynamic disturbance. Effects of testing machine stiffness on rock deformation behavior were examined to confirm that rocks had undergone stress relaxation. Stress relaxation tests on specimens under uniaxial compression were carried out over 6 or more days. Under single-stage stress relaxation, axial stress relaxed within 5-7 days, stabilizing at constant strain. During two-stage stress relaxation, larger stress decay was observed under the higher strain level. A dynamic disturbance from a pendulum hammer was applied to specimens under stress relaxation to evaluate their response. In these tests, stress decline and strain increase were related to residual strain induced by the dynamic disturbance. The strain variation in specimens was found to be within 1.5 % of values before the disturbance. Finally, a damage-based constitutive model for rocks subjected to stress relaxation and dynamic disturbance is proposed. It reproduces the stress relaxation behavior of rock observed in our experiments. The model was used to quantify stress relaxation of rocks and the effects of dynamic disturbance on this process. The larger stress decay of rocks under higher strain is likely related to damage in the rock. Clearly, increases in strain and decreases in stress induced by dynamic loading, coupled with rock damage, are over-estimated in our numerical simulations.

  14. Rover, airbags, & surrounding rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken by the Imager for Mars Pathfinder (IMP) before sunset on July 4 (Sol 1), the spacecraft's first day on Mars. The airbags have been partially retracted, and portions the petal holding the undeployed rover Sojourner can be seen at lower left. The rock in the center of the image may be a future target for chemical analysis. The soil in the foreground has been disturbed by the movement of the airbags as they retracted.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  15. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  16. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  17. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  19. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  20. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  1. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  2. Disturbance regimes of stream and riparian systems - a disturbance-cascade perspective

    NASA Astrophysics Data System (ADS)

    Nakamura, Futoshi; Swanson, Frederick J.; Wondzell, Steven M.

    2000-10-01

    Geomorphological processes that commonly transport soil down hillslopes and sediment and woody debris through stream systems in steep, mountainous, forest landscapes can operate in sequence down gravitational flowpaths, forming a cascade of disturbance processes that alters stream and riparian ecosystems. The affected stream and riparian landscape can be viewed through time as a network containing a shifting mosaic of disturbance patches - linear zones of disturbance created by the cascading geomorphological processes. Ecological disturbances range in severity from effects of debris flows, which completely remove alluvium, riparian soil and vegetation along steep, narrow, low-order channels, to localized patches of trees toppled by floating logs along the margins of larger channels. Land-use practices can affect the cascade of geomorphological processes that function as disturbance agents by changing the frequency and spatial pattern of events and the quantity and size distribution of material moved. A characterization of the disturbance regime in a stream network has important implications for ecological analysis. The network structure of stream and riparian systems, for example, may lend resilience in response to major disturbances by providing widely distributed refuges. An understanding of disturbance regime is a foundation for designing management systems.

  3. Natural disturbance production functions

    Treesearch

    Jeffrey P. Prestemon; D. Evan Mercer; John M. Pye

    2008-01-01

    Natural disturbances in forests are driven by physical and biological processes. Large, landscape scale disturbances derive primarily from weather (droughts, winds, ice storms, and floods), geophysical activities (earthquakes, volcanic eruptions), fires, insects, and diseases. Humans have invented ways to minimize their negative impacts and reduce their rates of...

  4. An experimental assessment of vehicle disturbance effects on migratory shorebirds

    USGS Publications Warehouse

    Tarr, Nathan M.; Simons, T.R.; Pollock, K.H.

    2010-01-01

    Off-road vehicle (ORV) traffic is one of several forms of disturbance thought to affect shorebirds at migration stopover sites. Attempts to measure disturbance effects on shorebird habitat use and behavior at stopover sites are difficult because ORV disturbance is frequently confounded with habitat and environmental factors. We used a before-after-control-impact experimental design to isolate effects of vehicle disturbance from shorebird responses to environmental and habitat factors. We manipulated disturbance levels within beach closures along South Core Banks, North Carolina, USA, and measured changes in shorebird abundance and location, as well as the activity of one focal species, the sanderling (Calidris alba), within paired control and impact plots. We applied a discrete treatment level of one flee-response-inducing event every 10 minutes on impact plots. We found that disturbance reduced total shorebird and black-bellied plover (Pluvialis squatarola) abundance and reduced relative use of microhabitat zones above the swash zone (wet sand and dry sand) by sanderlings, black-bellied plovers, willets (Tringa semipalmata), and total shorebirds. Sanderlings and total shorebirds increased use of the swash zone in response to vehicle disturbance. Disturbance reduced use of study plots by sanderlings for resting and increased sanderling activity, but we did not detect an effect of vehicle disturbance on sanderling foraging activity. We provide the first estimates of how a discrete level of disturbance affects shorebird distributions among ocean beach microhabitats. Our findings provide a standard to which managers can compare frequency and intensity of disturbance events at other shorebird stopover and roosting sites and indicate that limiting disturbance will contribute to use of a site by migratory shorebirds. ?? 2010 The Wildlife Society.

  5. Rafted Rock

    NASA Image and Video Library

    2016-11-09

    This area of Amazonis Planitia to the west of the large volcano Olympus Mons was once flooded with lava. A huge eruption flowed out across the relatively flat landscape. Sometimes called "flood basalt," the lava surface quickly cooled and formed a thin crust of solidified rock that was pushed along with the flowing hot liquid rock. Hills and mounds that pre-dated the flooding eruption became surrounded, forming obstructions to the relentless march of lava. In this image, these obstructions appeared to have poked up and sliced through the lava crust as the molten rock and crust moved together from west to east, over and past the stationary mounds. The result is a series of parallel grooves or channels with the obstructing mound remaining at the western end as the flow came to rest. From such images scientists can reconstruct the direction of the lava flow, potentially tracing it back to the source vent. http://photojournal.jpl.nasa.gov/catalog/PIA21204

  6. Disturbance and change in biodiversity

    PubMed Central

    Dornelas, Maria

    2010-01-01

    Understanding how disturbance affects biodiversity is important for both fundamental and applied reasons. Here, I investigate how disturbances with different ecological effects change biodiversity metrics. I define three main types of disturbance effects: D disturbance (shifts in mortality rate), B disturbance (shifts in reproductive rates) and K disturbance (shifts in carrying capacity). Numerous composite disturbances can be defined including any combination of these three types of ecological effects. The consequences of D, B and K disturbances, as well as of composite DBK disturbances are examined by comparing metrics before and after a disturbance, in disturbed and undisturbed communities. I use simulations of neutral communities and examine species richness, total abundance and species abundance distributions. The patterns of change in biodiversity metrics are consistent among different types of disturbance. K disturbance has the most severe effects, followed by D disturbance, and B disturbance has nearly negligible effects. Consequences of composite DBK disturbances are more complex than any of the three types of disturbance, with unimodal relationships along a disturbance gradient arising when D, B and K are negatively correlated. Importantly, regardless of disturbance type, community isolation enhances the negative consequences and hinders the positive effects of disturbances. PMID:20980319

  7. Disturbance and change in biodiversity.

    PubMed

    Dornelas, Maria

    2010-11-27

    Understanding how disturbance affects biodiversity is important for both fundamental and applied reasons. Here, I investigate how disturbances with different ecological effects change biodiversity metrics. I define three main types of disturbance effects: D disturbance (shifts in mortality rate), B disturbance (shifts in reproductive rates) and K disturbance (shifts in carrying capacity). Numerous composite disturbances can be defined including any combination of these three types of ecological effects. The consequences of D, B and K disturbances, as well as of composite DBK disturbances are examined by comparing metrics before and after a disturbance, in disturbed and undisturbed communities. I use simulations of neutral communities and examine species richness, total abundance and species abundance distributions. The patterns of change in biodiversity metrics are consistent among different types of disturbance. K disturbance has the most severe effects, followed by D disturbance, and B disturbance has nearly negligible effects. Consequences of composite DBK disturbances are more complex than any of the three types of disturbance, with unimodal relationships along a disturbance gradient arising when D, B and K are negatively correlated. Importantly, regardless of disturbance type, community isolation enhances the negative consequences and hinders the positive effects of disturbances.

  8. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  9. Disturbed island ecology.

    PubMed

    Whittaker, R J

    1995-10-01

    The natural occurrence of significant disturbances to the operation of insular ecosystems has tended to be downplayed in the development of island ecological theory. Despite the importance of events such as Hurricane Hugo, which in 1989 affected islands in the Caribbean, islands that are disturbed tend to be viewed as deviants from the `true path' described by equilibrium models. However, particularly with organisms of long generation times, it is questionable whether such models are applicable. This may be as important for wildlife managers to take account of as for theorists. Disturbance regime should be incorporated into island ecological models alongside other ecological factors structuring colonization patterns and turnover.

  10. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  11. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  12. Rock mechanics. Second edition

    SciTech Connect

    Jumikis, A.R.

    1983-01-01

    Rock Mechanics, 2nd Edition deals with rock as an engineering construction material-a material with which, upon which, and within which civil engineers build structures. It thus pertains to hydraulic structures engineering; to highway, railway, canal, foundation, and tunnel engineering; and to all kinds of rock earthworks and to substructures in rock. Major changes in this new edition include: rock classification, rock types and description, rock testing equipment, rock properties, stability effects of discontinuity and gouge, grouting, gunite and shotcrete, and Lugeon's water test. This new edition also covers rock bolting and prestressing, pressure-grouted soil anchors, and rock slope stabilization.

  13. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  14. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  15. Integrating landscape disturbance and indicator species in conservation studies.

    PubMed

    Cardoso, Pedro; Rigal, François; Fattorini, Simone; Terzopoulou, Sofia; Borges, Paulo A V

    2013-01-01

    Successful conservation plans are conditioned by our ability to detect anthropogenic change in space and time and various statistical analyses have been developed to handle this critical issue. The main objective of this paper is to illustrate a new approach for spatial analysis in conservation biology. Here, we propose a two-step protocol. First, we introduce a new disturbance metric which provides a continuous measure of disturbance for any focal communities on the basis of the surrounding landscape matrix. Second, we use this new gradient to estimate species and community disturbance thresholds by implementing a recently developed method called Threshold Indicator Taxa ANalysis (TITAN). TITAN detects changes in species distributions along environmental gradients using indicators species analysis and assesses synchrony among species change points as evidence for community thresholds. We demonstrate our method with soil arthropod assemblages along a disturbance gradient in Terceira Island (Azores, Portugal). We show that our new disturbance metric realistically reflects disturbance patterns, especially in buffer zones (ecotones) between land use categories. By estimating species disturbance thresholds with TITAN along the disturbance gradient in Terceira, we show that species significantly associated with low disturbance differ from those associated with high disturbance in their biogeographical origin (endemics, non-endemic natives and exotics) and taxonomy (order). Finally, we suggest that mapping the disturbance community thresholds may reveal areas of primary interest for conservation, since these may host indigenous species sensitive to high disturbance levels. This new framework may be useful when: (1) both local and regional processes are to be reflected on single disturbance measures; (2) these are better quantified in a continuous gradient; (3) mapping disturbance of large regions using fine scales is necessary; (4) indicator species for disturbance are

  16. Integrating Landscape Disturbance and Indicator Species in Conservation Studies

    PubMed Central

    Fattorini, Simone; Terzopoulou, Sofia; Borges, Paulo A. V.

    2013-01-01

    Successful conservation plans are conditioned by our ability to detect anthropogenic change in space and time and various statistical analyses have been developed to handle this critical issue. The main objective of this paper is to illustrate a new approach for spatial analysis in conservation biology. Here, we propose a two-step protocol. First, we introduce a new disturbance metric which provides a continuous measure of disturbance for any focal communities on the basis of the surrounding landscape matrix. Second, we use this new gradient to estimate species and community disturbance thresholds by implementing a recently developed method called Threshold Indicator Taxa ANalysis (TITAN). TITAN detects changes in species distributions along environmental gradients using indicators species analysis and assesses synchrony among species change points as evidence for community thresholds. We demonstrate our method with soil arthropod assemblages along a disturbance gradient in Terceira Island (Azores, Portugal). We show that our new disturbance metric realistically reflects disturbance patterns, especially in buffer zones (ecotones) between land use categories. By estimating species disturbance thresholds with TITAN along the disturbance gradient in Terceira, we show that species significantly associated with low disturbance differ from those associated with high disturbance in their biogeographical origin (endemics, non-endemic natives and exotics) and taxonomy (order). Finally, we suggest that mapping the disturbance community thresholds may reveal areas of primary interest for conservation, since these may host indigenous species sensitive to high disturbance levels. This new framework may be useful when: (1) both local and regional processes are to be reflected on single disturbance measures; (2) these are better quantified in a continuous gradient; (3) mapping disturbance of large regions using fine scales is necessary; (4) indicator species for disturbance are

  17. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  18. Indicators: Human Disturbance

    EPA Pesticide Factsheets

    Human disturbance is a measure of the vulnerability of aquatic resources to a variety of harmful human activities such as tree removal, road building, construction near shorelines/streambanks, and artificial hardening of lakeshores with retaining walls.

  19. Disturbances by Prometheus

    NASA Image and Video Library

    2006-09-05

    The clumpy disturbed appearance of the brilliant F ring constantly changes. The irregular structure of the ring is due, in large part, to the gravitational perturbations on the ring material by one of Saturn moons, Prometheus

  20. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  1. Assessment of mechanical rock alteration caused by CO 2 -water mixtures using indentation and scratch experiments

    SciTech Connect

    Sun, Yuhao; Aman, Michael; Espinoza, D. Nicolas

    2016-02-01

    CO2 injection into geological formations disturbs the geochemical equilibrium between water and minerals. Thus, some mineral phases are prone to dissolution and precipitation with ensuing changes of petrophysical and geomechanical properties of the host formations. Chemically-assisted degradation of mechanical properties can endanger the structural integrity of the storage formation and must be carefully studied and considered to guarantee safe long-term trapping. Few experimental data sets involving CO2 alteration and mechanical testing of rock samples are available since these experiments are length, expensive, and require specialized equipment and personnel. Autoclave experiments are easier to perform and control but result in a limited 'skin depth' of chemically-altered zone near the surface of the sample. This article presents the validation of micro-indentation and micro-scratch tests as efficient tools to assess the alteration of mechanical properties of rocks geochemically altered by CO2-water mixtures. Results from tests on sandstone and siltstone from Crystal Geyser, Utah naturally altered by CO2-acidified water show that mechanical parameters measured with indentation (indentation hardness, Young's modulus and contact creep compliance rate) and scratching (scratch hardness and fracture toughness) consistently indicated weakening of the rock after CO2-induced alteration. Decreases of measured parameters vary from 14% to 87%. Experimental results and analyses show that micromechanical tests are potentially quick and reliable tools to determine the change of mechanical properties of rocks subject to exposure to CO2-acidified water, particularly in well-controlled autoclave experiments. Measured parameters are not intended to provide inputs for coupled reservoir simulation with geomechanics but rather to inform the execution of larger scale tests investigating the susceptibility of rock facies to chemical alteration by CO2-water mixtures. Recognizing this

  2. Soil disturbance effects on the composition of seed-dispersing ants in roadside environments.

    PubMed

    Palfi, Zsofia; Spooner, Peter G; Robinson, Wayne

    2017-02-01

    Myrmecochory (the dispersal of seeds by ants) is a significant ecological process in sclerophyll woodlands, but habitat disturbance is known to alter the extent and success of this mutualism. We investigated the influence of soil disturbance on the composition of the seed-dispersing ant community. Surveys were conducted in roadside verges where soils are regularly disturbed by road maintenance activities. Using a 'cafeteria' bait station approach, we selected 24 roads of different widths to investigate ant composition and abundance in relation to soil disturbance. We found ant species richness was greater in non-disturbed than disturbed zones, where road verge width significantly influenced results. The composition and abundance of individual seed-dispersing ant species varied between disturbed and non-disturbed zones. Rhytidoponera metallica were more abundant in non-disturbed sites, whereas Melophorus bruneus and Monomorium rothseini were more frequently recorded in disturbed areas. Commonly found Iridomyrmex purpureus was significantly more abundant in disturbed zones in narrow roadsides and vice versa in wide roadsides, and strongly influenced total community composition. Variation in the abundance of commonly recorded Iridomyrmex and Monomorium genera were related more to site conditions (roadside width and habitat) than soil disturbance. The rich composition of seed dispersing ants in roadside environments, and the effects of soil disturbances on these ant communities that we describe, provide a key insight to important seed dispersal vectors occurring in fragmented rural landscapes.

  3. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  5. 1992 system disturbances

    SciTech Connect

    Not Available

    1993-10-01

    When a utility experiences an electric system emergency that requires reporting to the DOE, the utility sends a copy of the report to its Regional Council, which then sends a copy to NERC. Canadian utilities often voluntarily file emergency reports to DOE and NERC as well. NERC's annual review of system disturbances begins in November when the Disturbance Analysis Working Group meets to discuss each disturbance reported to NERC so far that year. The Group then contacts the Regional Council or utility(ies) involved and requests a detailed report of each incident. The Group then summarizes the report for this Review and analyzes it using the NERC Operating Guides and Planning Policies and Guides as the analysis categories. The Commentary section includes the conclusions and recommendations that were formulated from the analyses in this report plus the general experiences of the Working Group through the years. In 1992, utilities reported 22 incidents of system disturbances, load reductions, or unusual occurrences. This is eight fewer than reported in 1991. These incidents are listed chronologically and categorized as: fourteen system interruptions that resulted in loss of customer service, eight unusual occurrences that did not cause a service interruption. No public appeals to reduce demand or voltage reductions occurred in 1992. This document contains reports of 11 incidents plus a summary of the damage from Hurricane Andrew. Each utility or Region approved its analysis in this report. Included is a table of Disturbances by Analysis Category that offers a quick review of the categories applicable to each incident.

  6. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  7. Forest development leading to disturbances

    Treesearch

    Clinton E. Carlson; Stephen F. Arno; Jimmie Chew; Catherine A. Stewart

    1995-01-01

    Natural disturbance in western U.S.A. forest ecosystems is related to forest succession, growth, and structural development. Natural disturbance may be biotic (insects and diseases) or abiotic (fire, wind, avalanche, etc.). Natural disturbances are more appropriately thought of as natural processes; disturbance is a social connotation implicating economic loss. Forest...

  8. Evolution of Rock Cracks Under Unloading Condition

    NASA Astrophysics Data System (ADS)

    Huang, R. Q.; Huang, D.

    2014-03-01

    Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension-shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension-shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.

  9. Sleep disturbances in Parkinsonism.

    PubMed

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  10. Lunar Rocks

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Natural polish in granitic rocks

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Brodsky, E. E.; Stock, G. M.; White, J. C.

    2016-12-01

    Fault mirrors are highly smooth and reflective rock surfaces that are found in many shear zones around the world. Recent studies suggest that fault mirrors are formed during high velocity slip on faults and therefore may serve as an indicator for seismic slip. In contrast, other studies suggest that fault mirrors may form under high normal stress at sub-seismic velocities and at room temperature. Fault mirrors are observed within the fault core of many rock type environments including limestone, dolomite, chert and rhyolite. However, to the best of our knowledge, they are missing in faults hosted in granite. Moreover, mirror-like surfaces form during high velocity rotary shear experiments in many types of rock but not in sheared granite blocks. The absence of fault mirrors in granite is surprising, particularly since there exists extensive glacial polish on granitic bedrock. Glacial polish describes the smooth and reflective rock surfaces formed at the base of glaciers that carved the underlying bedrock. In addition to their import for studies of glacial dynamics and geomorphology, glacially polished surfaces may hold some significance for fault mechanics. Glacial polish and fault mirrors share many similarities. At field exposures they both present highly smooth surfaces and striations that clearly point in the slip direction. Studies on carbonate fault mirrors showed that individual highly reflective surfaces are composed of a thin nanograin layer. Preliminary SEM observations on samples collected from granitic rocks at Yosemite National Park suggest that these polished surfaces are also coated by an ultrathin cohesive layer composed of nanograins. Although there are clear differences between glacial and fault-zone environments, the similarity between these textures, and the fact that both are formed during shear, suggest that a similar mechanism is responsible for their formation. The comparison raises questions about the importance of high fluid contents and

  12. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia

    NASA Astrophysics Data System (ADS)

    Hewitt, Kenneth

    2009-01-01

    Catastrophic rock slope failures in rugged terrain commonly generate rock avalanches. When these occur in glacier basins the extent of landslide run out and its emplacement geometry are affected by movement over ice. Substantial modifications of glacier activity and sedimentation can follow. Ice activity leads to rapid modification, transport and dispersal of landslide debris. The nature of these interactions is described from observations over 20 years at Bualtar Glacier in the Karakoram. In August 1986 rock avalanches descended onto the ablation zone of the glacier. Their moisture content and patterns of deposition were affected by travel over ice. Glacier movement increased sharply at and below the rock avalanche deposits and, within a few months, the glacier surged. A second surge occurred 2 years later. Major slope failures and debris flows were triggered beyond the ice margins, and ponded melt water led to small outburst floods. By 2005 the landslide material had been transported some 9 km, about one third of this distance in the surges. Eventually it was fully reworked to become less readily distinguishable from other heavy supraglacial debris. A large area of thickened ice persisted where the debris reduced ablation; a positive impact on mass balance equivalent to a 20% increase in annual accumulation. However, it occurred as a moving segment of the ablation zone. In 10 years it had, in effect, replaced the mass transferred in the surges. Data for the mid-1980s indicate the rock avalanches exceeded pre-existing supraglacial debris by roughly five times and, over a 30 year period, will equal almost 500 years of normal supraglacial transport to the glacier margins. Other impacts of the episode suggest a doubling of this contribution to denudation. Similar developments were observed at three other glaciers where recent rock avalanches occurred and at twenty-one prehistoric rock avalanches newly identified as having spread over glaciers. It seems inadequate to

  13. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    PubMed

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients.

  14. Economics of Soil Disturbance

    Treesearch

    Han-Sup Han

    2007-01-01

    Economic implications of soil disturbance are discussed in four categories: planning and layout, selection of harvesting systems and equipment, long-term site productivity loss, and rehabilitation treatments. Preventive measures are more effective in minimizing impacts on soils than rehabilitation treatments because of the remedial expenses, loss of productivity until...

  15. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff

  16. Analysis of a Possibility of Electromagnetic Earthquake Triggering by Ionospheric Disturbations

    NASA Astrophysics Data System (ADS)

    Novikov, V.; Ruzhin, Y.

    2012-12-01

    It is well known that some ionospheric perturbations precede strong earthquakes, and there are attempts to detect and apply them as precursors for short-term earthquake prediction. In that case it is assumed that the processes of earthquake preparation in lithosphere can provide disturbances in ionosphere. From another hand, theoretical, field, and laboratory experimental results obtained during implementation of research projects in Russia within recent ten years demonstrated an evidence of artificial electromagnetic triggering of earthquakes, when electric current density provided by special pulsed power systems at the earthquake source depth (5-10 km) is 10^-7 - 10^-8 A/m^2 is comparable with the density of telluric currents induced in the crust by ionospheric disturbances. In this case it may be supposed that some reported preseismic ionosperic anomalies provide triggering effect for earthquake occurrence. To clear the details of ionosphere-lithosphere coupling and a possibility of electromagnetic triggering of seismic events an analysis of ionospheric precursors of earthquakes, statistical analysis of geomagnetic field variations and seismic activity, laboratory studies of dynamics of deformation of stressed rocks under the electromagnetic impact, as well as theoretical analysis of the possible mechanisms of interaction of rocks with electromagnetic field and their verification in laboratory experiments at the special test equipment, which simulates behavior of the fault zone under external triggering factors were catrried out. A model of electromagnetic triggering of seismic events caused by ionospheric electromagnetic perturbations is proposed based on the fluid migration to the fault under critical stressed state due to interaction of conductive fluid with telluric currents and geomagnetic field. A possibility of development of physical method of short-term earthquake prediction based on electromagnetic triggering effects is discussed.

  17. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  18. Forest disturbances under climate change

    NASA Astrophysics Data System (ADS)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-06-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

  19. Methods of seismic zone localization in the highly stressed geological environment in mining natural-engineering system

    NASA Astrophysics Data System (ADS)

    Kozyrev, A.; Fedotova, Iu.; Zhuravleva, O.

    2012-04-01

    During developing mineral deposits in the geological environment the anomalous energy-saturated zones (parts of highly stressed rocks) are being formed. As a result in the rock mass rockbursts and mining-induced earthquakes occur. The largest mining-induced earthquakes (M 4.0 - 4.2) were registered at the mines of the Khibiny and Lovozersky massifs of the Kola Peninsula. The energy-saturated zones migrate subject to displacement of front of working faces. Location and dimensions of the zones are estimated according to data of analytical investigations and experimental determinations in the rock mass. In some cases (for example, when developing blocks-pillars and transition zones between open and underground mining operations or adjacent mines) all the mining area is a united energy-saturated zone, where the main problems occur concerning mining workings stability management, and under rockbursts hazardous conditions there occur problems concerning mining-induced seismicity manifestations. Parameters of geological environment seismic emission are objective indicators of geological environment energy-saturation. The assessment of their changing is a basis of methods of seismic zones localization and detection of their migration during mining operations development. To assess a current state and determine conditions of transition of geological environment parts into the critical state there carried out investigations concerning space-time regularities of rock mass seismicity parameters changing in the mines' geomechanical space. The following parameters are considered as characteristics of rock mass seismicity: fractal criterion, dip angle criterion for seismic events recurrence graph, concentration criterion, and criterion of fissures' average length. A complex assessment of single parameters range is applied to get the better results. The analysis also takes into account influence of deterministic factors: fracture disturbances and stope face boundaries. Analysis

  20. Zone lines

    Treesearch

    Kevin T. Smith

    2001-01-01

    Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.

  1. Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Chen, Yi; Liu, Chuan-Zhou; Wang, Jian-Gang; Su, Bin; Gao, Yi-Jie; Wu, Fu-Yuan; Sein, Kyaing; Yang, Yue-Heng; Mao, Qian

    2016-03-01

    Scheelite, which is an important ore of tungsten and colored gemstone, is well developed in the calc-silicate rocks from the Mogok metamorphic belt (MMB), Myanmar. In this study, the textural, mineralogical, and compositional characteristics of scheelite and its associated minerals were systematically investigated to constrain the petrogenesis of scheelite-bearing calc-silicate rocks and the tungsten transfer and mineralization mechanism in a hydrothermal-metasomatic system. The petrological evidence, bulk and mineral geochemical signatures, and mass-transfer calculations indicate that the calc-silicate rocks formed by local metasomatism of marble via the introduction of an externally derived Si-Al-Fe-W-F-bearing, H2O-rich fluid phase. The distinct compositional zonations [F, Fe, Ca, and heavy rare earth elements (HREEs)] of garnet in the calc-silicate rocks record a two-stage metasomatic process and significant compositional variation in the associated fluid. The late-stage metasomatic fluid that led to the formation of the F-rich garnet rims, scheelite, and most of the calc-silicate minerals has noticeably higher fluorine activity (aF-), oxygen fugacity (fo2), and HREE content than the early-stage metasomatic fluid responsible for the garnet cores. The MMB scheelite exhibits typical "skarn-type" compositional characteristics with a high LaN/YbN ratio (100-180), a negative Eu anomaly (δEu = 0.3-0.5), and a high Mo content (1100-1330 ppm). These geochemical signatures are primarily controlled by the protolith, metasomatic fluid, redox conditions, and coexisting mineral phases. The enrichment of rare earth elements (REEs) and high field strength elements (HFSEs) in the MMB scheelite was dominated by two substitution reactions: Ca2+ + W6+ = REE3+ + HFSE5+ and 3Ca2+ = 2REE3+ + □Ca (where □Ca is a Ca-site vacancy). Considerable amounts of F and OH in the metasomatic fluid substituted for O in the garnet via the substitute reaction 4(F, OH)- = 4O2- + Si4+, leading

  2. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  3. Accelerated Weathering of Rocks.

    DTIC Science & Technology

    1977-08-01

    Dry tests en polished specimens with alternating heating and co- oling actions; ii) Wet tests in destilled water, with alternating...Rock-type Dry tests KxlO2 Wet tests KxlO2 Sound rock SR 3.64 8.31 Medium altered rock MAR 4.96 31.58 Very altered rock VAR 8.89 116.20 TABLE X...Sound rock SR Medium altered rock Very altered rock" KAR VAR ’ Reflectivity R (%) dry test wet test dry test wet test dry test wet

  4. Waveguide disturbance detection method

    DOEpatents

    Korneev, Valeri A.; Nihei, Kurt T.; Myer, Larry R.

    2000-01-01

    A method for detection of a disturbance in a waveguide comprising transmitting a wavefield having symmetric and antisymmetric components from a horizontally and/or vertically polarized source and/or pressure source disposed symmetrically with respect to the longitudinal central axis of the waveguide at one end of the waveguide, recording the horizontal and/or ver