Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.
Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L
2016-04-26
Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude
2015-12-21
The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.
A 2',2'-disulfide-bridged dinucleotide conformationally locks RNA hairpins.
Gauthier, Florian; Beltran, Frédéric; Biscans, Annabelle; Debart, Françoise; Dupouy, Christelle; Vasseur, Jean-Jacques
2018-05-02
The synthesis and the impact of a disulfide bridge between 2'-O-positions of two adjacent nucleotides in an RNA duplex and in the loop of RNA hairpins are reported. The incorporation of this 2',2'-disulfide (S-S) bridge enabled thermal and enzymatic stabilization of the hairpin depending on its position in the loop. The influence of the disulfide bridge on RNA folding was studied at the HIV Dimerization Initiation Site (DIS) as an RNA sequence model. We have shown that this S-S bridge locked the hairpin form, whereas the extended duplex form was generated after the reduction of the disulfide bond in the presence of tris(2-carboxyethyl)phosphine or glutathione. Thus, the S-S bridge can be useful for understanding RNA folding; an RNA molecular beacon locked by an S-S bridge was also investigated as a sensor for the detection of glutathione.
Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity.
Sharma, Himanshu; Nagaraj, Ramakrishnan
2015-01-01
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Human β-Defensin 4 with Non-Native Disulfide Bridges Exhibit Antimicrobial Activity
Sharma, Himanshu; Nagaraj, Ramakrishnan
2015-01-01
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. PMID:25785690
Role of the Conserved Disulfide Bridge in Class A Carbapenemases*
Smith, Clyde A.; Nossoni, Zahra; Toth, Marta; Stewart, Nichole K.; Frase, Hilary; Vakulenko, Sergei B.
2016-01-01
Some members of the class A β-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys69 and Cys238 residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other β-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of β-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity. PMID:27590339
Role of the Conserved Disulfide Bridge in Class A Carbapenemases.
Smith, Clyde A; Nossoni, Zahra; Toth, Marta; Stewart, Nichole K; Frase, Hilary; Vakulenko, Sergei B
2016-10-14
Some members of the class A β-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys 69 and Cys 238 residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other β-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of β-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B
2006-02-01
Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.
Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.
Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura
2009-10-01
Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.
Tarasava, Katsiaryna; Chesnov, Serge; Freisinger, Eva
2016-05-01
Metallothioneins (MTs) are low molecular weight proteins, characterized by a high cysteine content and the ability to coordinate large amounts of d(10) metal ions, for example, Zn(II), Cd(II), and Cu(I), in form of metal-thiolate clusters. Depending on intracellular conditions such as redox potential or metal ion concentrations, MTs can occur in various states ranging from the fully metal-loaded holo- to the metal-free apo-form. The Cys thiolate groups in the apo-form can be either reduced or be involved in disulfide bridges. Although oxidation-mediated Zn(II) release might be a possible mechanism for the regulation of Zn(II) availability by MTs, no concise information regarding the associated pathways and the structure of oxidized apo-MT forms is available. Using the well-studied Zn2 γ-Ec -1 domain of the wheat Zn6 Ec -1 MT we attempt here to answer several question regarding the structure and biophysical properties of oxidized MT forms, such as: (1) does disulfide bond formation increase the stability against proteolysis, (2) is the overall peptide backbone fold similar for the holo- and the oxidized apo-MT form, and (3) are disulfide bridges specifically or randomly formed? Our investigations show that oxidation leads to three distinct disulfide bridges independently of the applied oxidation conditions and of the initial species used for oxidation, that is, the apo- or the holo-form. In addition, the oxidized apo-form is as stable against proteolysis as Zn2 γ-Ec -1, rendering the currently assumed degradation of oxidized MTs unlikely and suggesting a role of the oxidation process for the extension of protein lifetime in absence of sufficient amounts of metal ions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 295-308, 2016. © 2016 Wiley Periodicals, Inc.
Valle, Aisel; Pérez-Socas, Luis Benito; Canet, Liem; Hervis, Yadira de la Patria; de Armas-Guitart, German; Martins-de-Sa, Diogo; Lima, Jônatas Cunha Barbosa; Souza, Adolfo Carlos Barros; Barbosa, João Alexandre Ribeiro Gonçalves; de Freitas, Sonia Maria; Pazos, Isabel Fabiola
2018-04-26
The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.
Role of disulfide bridges in archaeal family-B DNA polymerases.
Killelea, Tom; Connolly, Bernard A
2011-06-14
The family-B DNA polymerases obtained from the order Thermococcales, for example, Pyrococcus furiosus (Pfu-Pol) are commonly used in the polymerase chain reaction (PCR) because of their high thermostability and low error rates. Most of these polymerases contain four cysteines, arranged as two disulfide bridges. With Pfu-Pol C429-C443 forms one of the disulfides (DB1) and C507-C510 (DB2) the other. Although the disulfides are well conserved in the enzymes from the hyperthermophilic Thermococcales, they are less prevalent in euryarchaeal polymerases from other orders, and tend to be only found in other hyperthermophiles. Here, we report on the effects of deleting the disulfide bridges by mutating the relevant cysteines to serines. A variety of techniques, including differential scanning calorimetry and differential scanning fluorimetry, have shown that both disulfides make a contribution to thermostability, with DB1 being more important than DB2. However, even when both disulfides are removed, sufficient thermostability remains for normal (identical to the wild type) performance in PCR and quantitative (real-time) PCR. Therefore, polymerases totally lacking cysteine are fully compatible with most PCR-based applications. This observation opens the way to further engineering of polymerases by introduction of a single cysteine followed by appropriate chemical modification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Blechová, Miroslava; Nagelová, Veronika; Záková, Lenka; Demianová, Zuzana; Zelezná, Blanka; Maletínská, Lenka
2013-01-01
The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh
2010-08-01
The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.
Scorpion venom peptides with no disulfide bridges: a review.
Almaaytah, Ammar; Albalas, Qosay
2014-01-01
Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Faça, Vitor M; Pereira, Sandra R; Laure, Hélen J; Greene, Lewis J
2004-07-01
The determination of the disulfide pairings of SETI-II, a trypsin inhibitor isolated from Sechium edule, is described herein. The inhibitor contains 31 amino acid residues per mol, 6 of which are cysteine. Forty-five nmol (160 microg) of SETI-II was hydrolyzed with 20 microg thermolysin for 48 hr at 45 degrees C, and peptides were separated by reverse phase high performance liquid chromatography (RP-HPLC). The major products were identified by amino acid composition, Edman degradation, and on the basis of the sequence of the inhibitor. The disulfide bridge pairings and (yields) are: Cys1-Cys4 (79%), Cys2-Cys5 (21%) and Cys3-Cys6 (43%). When the reduced inhibitor was reoxidized with glutathione reduced form (GSH)/glutathione oxidized form (GSSG) at pH 8.5 for 3 hr, full activity was recovered. These data show that disulfide bridge pairing and oxidation can be determined at nanomole levels and that sensitive and quantitative Edman degradation can eliminate the final time- and material-consuming step of disulfide determinations by eliminating the need to purify and cleave each peptide containing a disulfide bridge.
Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Nyholm, Thomas; Hytönen, Vesa P; Slotte, J Peter; Kulomaa, Markku S
2003-01-24
In this study we showed that tetrameric chicken avidin can be stabilized by introducing intermonomeric disulfide bridges between its subunits. These covalent bonds had no major effects on the biotin binding properties of the respective mutants. Moreover, one of the mutants (Avd-ccci) maintained its tetrameric integrity even in denaturing conditions. The new avidin forms Avd-ci and Avd-ccci, which have native --> denatured transition midpoints (T(m)) of 98.6 and 94.7 degrees C, respectively, in the absence of biotin, will find use in applications where extreme stability or minimal leakage of subunits is required. Furthermore, we showed that the intramonomeric disulfide bridges found in the wild-type avidin affect its stability. The mutant Avd-nc, in which this bridge was removed, had a lower T(m) in the absence of biotin than the wild-type avidin but showed comparable stability in the presence of biotin.
Role of Disulfide Bridges in the Activity and Stability of a Cold-Active α-Amylase
Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo
2005-01-01
The cold-adapted α-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30°C and unfolds reversibly and sequentially with two transitions at temperatures below 12°C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with β-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. PMID:16109962
Min, Rou; Li, Jianfang; Gao, Shujuan; Zhang, Huimin; Wu, Jing; Wu, Minchen
2013-04-04
To reveal the correlation between thermostability of xylanase EvXyn11(TS) and its N-terminal disulfide bridge, an EvXyn11(TS)-encoding gene (Syxyn11) was synthesized and subjected to site-directed mutagenesis. Multiple homology alignment of protein primary structures between the EvXyn11(TS) and several GH family 11 xylanases displayed that, in their N-termini, only EvXyn11(TS) contained a disulfide bridge (Cys5-Cys32), whose effect on the xylanase thermostability was predicted by molecular dynamics simulation. We constructed a gene Syxyn11(M), encoding the mutated xylanase (EvXyn11(M)) without N-terminal disulfide bridge. Then, Syxyn11 and Syxyn11(M) were expressed in Pichia pastoris GS115, and temperature and pH properties of the expressed enzymes were analyzed. The analytical results displayed that the temperature optimum of EvXyn11(M) was 70 degrees C, which was 15 degrees C lower than that of EvXyn11(TS). The half-life (t1/2(90)) of EvXyn11(TS) at 90 degrees C was 32 min, while the t1/2(70) of EvXyn11(M) at 70 degrees C was only 8.0 min. The important role of the N-terminal disulfide bridge on the thermostability of EvXyn11(TS) was first predicted by molecular dynamics simulation, and confirmed by site-directed mutagenesis. This work provided a novel strategy to improve thermostabilities of the mesophilic family 11 xylanases with high specific activities.
Doucet, Alain; Williams, Martin; Gagnon, Mylene C; Sasseville, Maxime; Beauregard, Marc
2002-01-02
Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.
Tanghe, Magali; Danneels, Barbara; Last, Matthias; Beerens, Koen; Stals, Ingeborg; Desmet, Tom
2017-05-01
Lytic polysaccharide monooxygenases (LPMOs) are crucial components of cellulase mixtures but their stability has not yet been studied in detail, let alone been engineered for industrial applications. In this work, we have evaluated the importance of disulfide bridges for the thermodynamic stability of Streptomyces coelicolor LPMO10C. Interestingly, this enzyme was found to retain 34% of its activity after 2-h incubation at 80°C while its apparent melting temperature (Tm) is only 51°C. When its three disulfide bridges were broken, however, irreversible unfolding occurred and no residual activity could be detected after a similar heat treatment. Based on these findings, additional disulfide bridges were introduced, as predicted by computational tools (MOdelling of DIsulfide bridges in Proteins (MODiP) and Disulfide by Design (DbD)) and using the most flexible positions in the structure as target sites. Four out of 16 variants displayed an improvement in Tm, ranging from 2 to 9°C. Combining the positive mutations yielded additional improvements (up to 19°C) but aberrant unfolding patterns became apparent in some cases, resulting in a diminished capacity for heat resistance. Nonetheless, the best variant, a combination of A143C-P183C and S73C-A115C, displayed a 12°C increase in Tm and was able to retain and was able to retain no less than 60% of its activity after heat treatment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation.
Robinson, Philip J; Pringle, Marie Anne; Woolhead, Cheryl A; Bulleid, Neil J
2017-04-28
The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Disulfide Bond Formation and ToxR Activity in Vibrio cholerae
Fengler, Vera H. I.; Boritsch, Eva C.; Tutz, Sarah; Seper, Andrea; Ebner, Hanna; Roier, Sandro; Schild, Stefan; Reidl, Joachim
2012-01-01
Virulence factor production in Vibrio cholerae is complex, with ToxRS being an important part of the regulatory cascade. Additionally, ToxR is the transcriptional regulator for the genes encoding the major outer membrane porins OmpU and OmpT. ToxR is a transmembrane protein and contains two cysteine residues in the periplasmic domain. This study addresses the influence of the thiol-disulfide oxidoreductase system DsbAB, ToxR cysteine residues and ToxR/ToxS interaction on ToxR activity. The results show that porin production correlates with ToxR intrachain disulfide bond formation, which depends on DsbAB. In contrast, formation of ToxR intrachain or interchain disulfide bonds is dispensable for virulence factor production and in vivo colonization. This study further reveals that in the absence of ToxS, ToxR interchain disulfide bond formation is facilitated, whereat cysteinyl dependent homo- and oligomerization of ToxR is suppressed if ToxS is coexpressed. In summary, new insights into gene regulation by ToxR are presented, demonstrating a mechanism by which ToxR activity is linked to a DsbAB dependent intrachain disulfide bond formation. PMID:23144706
Trapping a 96° domain rotation in two distinct conformations by engineered disulfide bridges
Schultz-Heienbrok, Robert; Maier, Timm; Sträter, Norbert
2004-01-01
Engineering disulfide bridges is a common technique to lock a protein movement in a defined conformational state. We have designed two double mutants of Escherichia coli 5′-nucleotidase to trap the enzyme in both an open (S228C, P513C) and a closed (P90C, L424C) conformation by the formation of disulfide bridges. The mutant proteins have been expressed, purified, and crystallized, to structurally characterize the designed variants. The S228C, P513C is a double mutant crystallized in two different crystal forms with three independent conformers, which differ from each other by a rotation of up to 12° of the C-terminal domain with respect to the N-terminal domain. This finding, as well as an analysis of the domain motion in the crystal, indicates that the enzyme still exhibits considerable residual domain flexibility. In the double mutant that was designed to trap the enzyme in the closed conformation, the structure analysis reveals an unexpected intermediate conformation along the 96° rotation trajectory between the open and closed enzyme forms. A comparison of the five independent conformers analyzed in this study shows that the domain movement of the variant enzymes is characterized by a sliding movement of the residues of the domain interface along the interface, which is in contrast to a classical closure motion where the residues of the domain interface move perpendicular to the interface. PMID:15215524
Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila
2013-02-01
Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.
Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F
2015-03-16
The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.
Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun
2003-12-05
Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.
Disulfide bonds in ER protein folding and homeostasis
Feige, Matthias J.; Hendershot, Linda M.
2010-01-01
Proteins that are expressed outside the cell must be synthesized, folded and assembled in a way that ensures they can function in their designate location. Accordingly these proteins are primarily synthesized in the endoplasmic reticulum (ER), which has developed a chemical environment more similar to that outside the cell. This organelle is equipped with a variety of molecular chaperones and folding enzymes that both assist the folding process, while at the same time exerting tight quality control measures that are largely absent outside the cell. A major post-translational modification of ER-synthesized proteins is disulfide bridge formation, which is catalyzed by the family of protein disulfide isomerases. As this covalent modification provides unique structural advantages to extracellular proteins, multiple pathways to their formation have evolved. However, the advantages that disulfide bonds impart to these proteins come at a high cost to the cell. Very recent reports have shed light on how the cell can deal with or even exploit the side reactions of disulfide bond formation to maintain homeostasis of the ER and its folding machinery. PMID:21144725
Puertas, Juan-Miguel; Caminal, Glòria; González, Glòria
2011-09-01
Metallocarboxypeptidase inhibitors are proteins with possible applications in biomedicine given their properties as anticoagulant and antitumoral factors. They are small, eukaryotic polypeptides comprising several disulfide bridges, which makes them hard to express in inexpensive bacterial hosts. In this work, three of them were produced in high-cell-density cultures of Escherichia coli: PCI (39 residues and three bridges), LCI (66 residues and four bridges) and TCI (75 residues and six bridges). The genes coding for the mentioned inhibitors were cloned in an arabinose-inducible plasmid fused to the signal peptide of DsbA in order to have them secreted and grant the formation of the bridges. The trigger-factor defective strain KTD101 was used as the expression host. The resulting recombinant strains were cultured in fed-batch mode employing minimal media and an exponential feed profile, keeping the specific growth rate at μ = 0.1 h(-1) by limitation of the fed carbon source (glycerol). Between 380 and 540 mg l(-1) of active inhibitors were obtained in both the periplasmic extracts and extracellular media of the cultures. Later on, excretion was enhanced using a cell permeabilization treatment, allowing the recovery of over 80% of the products from the extracellular fraction. Protein yields were found to be inversely proportional to cysteine content of the inhibitor, whereas protein excretion rates were inversely proportional to the protein size. Overall, these results offer insight into the secretory production of active disulfide-bridged proteins in high-cell-density cultures of E. coli.
Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER.
Poet, Greg J; Oka, Ojore Bv; van Lith, Marcel; Cao, Zhenbo; Robinson, Philip J; Pringle, Marie Anne; Arnér, Elias Sj; Bulleid, Neil J
2017-03-01
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Wilken, Jason A; Bedows, Elliott
2004-05-04
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.
Lin, Shengguo; Wang, Xuelin; Hu, Xueyao; Zhao, Yongshan; Zhao, Mingyi; Zhang, Jinghai; Cui, Yong
2017-01-01
Scorpion venom contains a large variety of biologically active peptides. However, most of these peptides have not been identified and characterized. Peptides with three disulfide bridges, existing in the scorpion venom, have not been studied in detail and have been poorly characterized until now. Here, we report the recombinant expression and functional characterization of two kinds of venom peptides (BmKBTx and BmNaL-3SS2) with three disulfide bridges. This study adopted an effective Escherichia coli system. The genes for BmKBTx and BmNaL-3SS2 were obtained by polymerase chain reaction and cloned to the pSYPU-1b vector. After expression and purification, the two recombinant proteins were subjected to an analgesic activity assay in mice and whole-cell patchclamp recording of hNav1.7-CHO cell lines. Functional tests showed that BmKBTx and BmNaL- 3SS2 have analgesic activity in mice and can interact with the hNav1.7 subtype of the voltage-gated sodium channel (VGSC). Scorpion venom is rich in bioactive proteins, but most of their functions are unknown to us. This study has increased our knowledge of these novel disulfide-bridged peptides (DBPs) and their biological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ramos, Fernando; Flores, Henoc; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Camarillo, E Adriana
2018-01-11
The intramolecular hydrogen bond of the N-H···S type has been investigated sparingly by thermochemical and computational methods. In order to study this interaction, the standard molar enthalpies of formation in gaseous phase of diphenyl disulfide, 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide at T = 298.15 K were determined by experimental thermochemical methods and computational calculations. The experimental enthalpies of formation in gas-phase were obtained from enthalpies of formation in crystalline phase and enthalpies of sublimation. Enthalpies of formation in crystalline phase were obtained using rotatory bomb combustion calorimetry. By thermogravimetry, enthalpies of vaporization were obtained, and by combining them with enthalpies of fusion, the enthalpies of sublimation were calculated. The Gaussian-4 procedure and the atomization method were applied to obtain enthalpies of formation in gas-phase of the compounds under study. Theoretical and experimental values are in good agreement. Through natural bond orbital (NBO) analysis and a topological analysis of the electronic density, the intramolecular hydrogen bridge (N-H···S) in the 2,2'-diaminodiphenyl disulfide was confirmed. Finally, an enthalpic difference of 11.8 kJ·mol -1 between the 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide was found, which is attributed to the intramolecular N-H···S interaction.
Sakuma, Satoru; Fujita, Junko; Nakanishi, Masahiko; Wada, Shun-ich; Fujimoto, Yohko
2008-05-01
Xanthine oxidase (XO)/xanthine dehydrogenase (XD) oxidizes oxypurines to uric acid, with only the XO form producing reactive oxygen species. In the present study, the effects of cystamine S-monoxide and cystine S-monoxide (disulfide S-monoxides) on the conversion of XD to XO in rat liver were examined. A partially purified enzyme fraction from the rat liver was incubated with xanthine in the presence or absence of NAD+, and the uric acid formed was measured by HPLC. Under basal conditions, XO activity represented about 15% of the total XO plus XD activity. Cystamine S-monoxide and cystine S-monoxide converted XD into XO in a dose-dependent manner, and the concentrations required to increase XO activity by 50% were approximately 1 and 2 microM, respectively. Their respective thiols (cysteamine and cysteine) and disulfides (cystamine and cystine) up to 10 microM showed weak or no effects on the activities of XO and XD and their conversion. Experiments utilizing a sulfhydryl reducing reagent (dithiothreitol) and sulfhydryl modifiers (4,4'-dithiodipyridine and 1-fluoro-2,4-dinitrobenzene) indicated that disulfide S-monoxides-induced conversion of XD to XO occurs via disulfide bridge formation in XD, but not the modification of sulfhydryl groups. These results suggest that disulfide S-monoxides have the potential to increase the generation of reactive oxygen species through the conversion of XD to XO in liver.
Tan, Hao; Miao, Renyun; Liu, Tianhai; Cao, Xuelian; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng
2016-10-28
A novel phytase of Acidobacteria was identified from a soil metagenome, cloned, overexpressed, and purified. It has low sequence similarity (<44%) to all the known phytases. At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at physiological temperature (37°C) and could retain 92% residual activity after 30 min, indicating the phytase is acidophilic and acidostable. However the phytase shows poor stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time of the engineered phytase at 60°C and 80°C, respectively, is 3.0× and 2.8× longer than the wild-type, and its activity and acidostability are not significantly affected.
Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets.
Indu, S; Kochat, V; Thakurela, S; Ramakrishnan, C; Varadarajan, Raghavan
2011-01-01
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel β-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive χ¹ value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1°C in T(m). All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (ΔΔG⁰ = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. © 2010 Wiley-Liss, Inc.
Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru
2016-09-14
Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.
Seras-Franzoso, Joaquin; Affentranger, Roman; Ferrer-Navarro, Mario; Daura, Xavier; Villaverde, Antonio
2012-01-01
Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation. PMID:22286993
Yang, Ming; Zhang, Chunye; Zhang, Xuehan; Zhang, Michael Z; Rottinghaus, George E; Zhang, Shuping
2016-09-09
Avian beta-defensins (AvBD) are small, cationic, antimicrobial peptides. The potential application of AvBDs as alternatives to antibiotics has been the subject of interest. However, the mechanisms of action remain to be fully understood. The present study characterized the structure-function relationship of AvBD-6 and AvBD-12, two peptides with different net positive charges, similar hydrophobicity and distinct tissue expression profiles. AvBD-6 was more potent than AvBD-12 against E. coli, S. Typhimurium, and S. aureus as well as clinical isolates of extended spectrum beta lactamase (ESBL)-positive E. coli and K. pneumoniae. AvBD-6 was more effective than AvBD-12 in neutralizing LPS and interacting with bacterial genomic DNA. Increasing bacterial concentration from 10(5) CFU/ml to 10(9) CFU/ml abolished AvBDs' antimicrobial activity. Increasing NaCl concentration significantly inhibited AvBDs' antimicrobial activity, but not the LPS-neutralizing function. Both AvBDs were mildly chemotactic for chicken macrophages and strongly chemotactic for CHO-K1 cells expressing chicken chemokine receptor 2 (CCR2). AvBD-12 at higher concentrations also induced chemotactic migration of murine immature dendritic cells (DCs). Disruption of disulfide bridges abolished AvBDs' chemotactic activity. Neither AvBDs was toxic to CHO-K1, macrophages, or DCs. AvBDs are potent antimicrobial peptides under low-salt conditions, effective LPS-neutralizing agents, and broad-spectrum chemoattractant peptides. Their antimicrobial activity is positively correlated with the peptides' net positive charges, inversely correlated with NaCl concentration and bacterial concentration, and minimally dependent on intramolecular disulfide bridges. In contrast, their chemotactic property requires the presence of intramolecular disulfide bridges. Data from the present study provide a theoretical basis for the design of AvBD-based therapeutic and immunomodulatory agents.
NASA Astrophysics Data System (ADS)
MacAleese, Luke; Girod, Marion; Nahon, Laurent; Giuliani, Alexandre; Antoine, Rodolphe; Dugourd, Philippe
2018-06-01
The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations. [Figure not available: see fulltext.
Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes.
Thorpe, Colin; Hoober, Karen L; Raje, Sonali; Glynn, Nicole M; Burnside, Joan; Turi, George K; Coppock, Donald L
2002-09-01
Members of the Quiescin-sulfhydryl oxidase (QSOX) family utilize a thioredoxin domain and a small FAD-binding domain homologous to the yeast ERV1p protein to oxidize sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX enzymes are found in all multicellular organisms for which complete genomes exist and in Trypanosoma brucei, but are not found in yeast. The avian QSOX is the best understood enzymatically: its preferred substrates are peptides and proteins, not monothiols such as glutathione. Mixtures of avian QSOX and protein disulfide isomerase catalyze the rapid insertion of the correct disulfide pairings in reduced RNase. Immunohistochemical studies of human tissues show a marked and highly localized concentration of QSOX in cell types associated with heavy secretory loads. Consistent with this role in the formation of disulfide bonds, QSOX is typically found in the cell in the endoplasmic reticulum and Golgi and outside the cell. In sum, this review suggests that QSOX enzymes play a significant role in oxidative folding of a large variety of proteins in a wide range of multicellular organisms.
Controlling Disulfide Bond Formation and Crystal Growth from 2-Mercaptobenzoic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, Clare E.; Cantos, P. M.; Toby, B. H.
2011-03-02
We report disulfide bond formation from 2-mercaptobenzoic acid (2-MBA) under hydrothermal conditions as a function of pH. Under acidic conditions, 2-MBA remains unchanged. Upon increasing pH, however, we observe 50% oxidation to 2,2'-disulfanediyldibenzoic acid (2,2'-DSBA), which is isolated as a cocrystal of both the thiol and disulfide molecules. At neutral pH, we observe complete oxidation and concurrent crystal growth. The pH sensitivity of this system allows targeting crystals of specific composition from simple building units through a straightforward pH manipulation.
2010-01-01
Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory. PMID:20836848
Hatahet, Feras; Nguyen, Van Dat; Salo, Kirsi E H; Ruddock, Lloyd W
2010-09-13
The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.
Moriyama, Yoshiko; Takeda, Kunio
2017-05-01
The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.
Bridging disulfides for stable and defined antibody drug conjugates.
Badescu, George; Bryant, Penny; Bird, Matthew; Henseleit, Korinna; Swierkosz, Julia; Parekh, Vimal; Tommasi, Rita; Pawlisz, Estera; Jurlewicz, Kosma; Farys, Monika; Camper, Nicolas; Sheng, XiaoBo; Fisher, Martin; Grygorash, Ruslan; Kyle, Andrew; Abhilash, Amrita; Frigerio, Mark; Edwards, Jeff; Godwin, Antony
2014-06-18
To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.
Partial De Novo Sequencing and Unusual CID Fragmentation of a 7 kDa, Disulfide-Bridged Toxin
NASA Astrophysics Data System (ADS)
Medzihradszky, Katalin F.; Bohlen, Christopher J.
2012-05-01
A 7 kDa toxin isolated from the venom of the Texas coral snake ( Micrurus tener tener) was subjected to collision-induced dissociation (CID) and electron-transfer dissociation (ETD) analyses both before and after reduction at low pH. Manual and automated approaches to de novo sequencing are compared in detail. Manual de novo sequencing utilizing the combination of high accuracy CID and ETD data and an acid-related cleavage yielded the N-terminal half of the sequence from the reduced species. The intact polypeptide, containing 3 disulfide bridges produced a series of unusual fragments in ion trap CID experiments: abundant internal amino acid losses were detected, and also one of the disulfide-linkage positions could be determined from fragments formed by the cleavage of two bonds. In addition, internal and c-type fragments were also observed.
Paris, Guillaume; Kraszewski, Sebastian; Ramseyer, Christophe; Enescu, Mironel
2012-11-01
The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.
Lewney, Sarah; Smith, Lorna J
2012-03-01
Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species. Copyright © 2011 Wiley Periodicals, Inc.
Sheng, Jun; Ji, Xiaofeng; Zheng, Yuan; Wang, Zhipeng; Sun, Mi
2016-10-01
To determine the effects of artificial disulfide bridges on the thermostability and catalytic efficiency of chitosanase EAG1. Five artificial disulfide bridges were designed based on the structural information derived from the three-dimensional (3-D) model of chitosanase EAG1. Two beneficial mutants (G113C/D116C, A207C-L286C) were located in the flexible surface loop region, whereas the similar substitutions introduced in α-helices regions had a negligible effect. Mut5, the most active mutant, had a longer half-life at 50 °C (from 10.5 to 69.3 min) and a 200 % higher catalytic efficiency (K cat/K m) than that of the original EAG1. The contribution of disulfide bridges to enzyme thermostability is mainly dependent on its location within the polypeptide chain. Strategical placement of a disulfide bridge in flexible regions provides a rigid support and creation of a protected microenvironment, which is effective in improving enzyme's thermostability and catalytic efficiency.
Song, Jiangning; Wang, Minglei; Burrage, Kevin
2006-07-21
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.
Yang, Ming; Zhang, Chunye; Zhang, Michael Z; Zhang, Shuping
2017-02-23
Avian β-defensins (AvBD) possess broad-spectrum antimicrobial, LPS neutralizing and chemotactic properties. AvBD-12 is a chemoattractant for avian immune cells and mammalian dendritic cells (JAWSII) - a unique feature that is relevant to the applications of AvBDs as chemotherapeutic agents in mammalian hosts. To identify the structural components essential to various biological functions, we have designed and evaluated seven AvBD analogues. In the first group of analogues, the three conserved disulfide bridges were eliminated by replacing cysteines with alanine and serine residues, peptide hydrophobicity and charge were increased by changing negatively charged amino acid residues to hydrophobic (AvBD-12A1) or positively charged residues (AvBD-12A2 and AvBD-12A3). All three analogues in this group showed improved antimicrobial activity, though AvBD-12A3, with a net positive charge of +9, hydrophobicity of 40% and a predicted CCR2 binding domain, was the most potent antimicrobial peptide. AvBD-12A3 also retained more than 50% of wild type chemotactic activity. In the second group of analogues (AvBD-12A4 to AvBD-12A6), one to three disulfide bridges were removed via substitution of cysteines with isosteric amino acids. Their antimicrobial activity was compromised and chemotactic activity abolished. The third type of analogue was a hybrid that had the backbone of AvBD-12 and positively charged amino acid residues AvBD-6. The antimicrobial and chemotactic activities of the hybrid resembled that of AvBD-6 and AvBD-12, respectively. While the net positive charge and charge distribution have a dominating effect on the antimicrobial potency of AvBDs, the three conserved disulfide bridges are essential to the chemotactic property and the maximum antimicrobial activity. Analogue AvBD-12A3 with a high net positive charge, a moderate degree of hydrophobicity and a CCR2-binding domain can serve as a template for the design of novel antimicrobial peptides with chemotactic
Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.
Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro
2016-01-01
Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase.
Buey, Rubén M; Arellano, Juan B; López-Maury, Luis; Galindo-Trigo, Sergio; Velázquez-Campoy, Adrián; Revuelta, José L; de Pereda, José M; Florencio, Francisco J; Schürmann, Peter; Buchanan, Bob B; Balsera, Monica
2017-11-28
Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from Gloeobacter violaceus and Synechocystis sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.
NASA Astrophysics Data System (ADS)
Nicolardi, Simone; Giera, Martin; Kooijman, Pieter; Kraj, Agnieszka; Chervet, Jean-Pierre; Deelder, André M.; van der Burgt, Yuri E. M.
2013-12-01
Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80 % (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.
Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn
2008-01-01
Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718
Schäfer, Olga; Huesmann, David; Muhl, Christian; Barz, Matthias
2016-12-12
The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio
2013-01-01
Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032
Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures.
Roberts, Brittany L T; Patel, Kinaree; Brown, Hilda H; Borchelt, David R
2012-01-01
Pathologic aggregates of superoxide dismutase 1 (SOD1) harboring mutations linked to familial amyotrophic lateral sclerosis (fALS) have been shown to contain aberrant intermolecular disulfide cross-links. In prior studies, we observed that intermolecular bonding was not necessary in the formation of detergent- insoluble SOD1 complexes by mutant SOD1, but we were unable to assess whether this type of bonding may be important for pathologic inclusion formation. In the present study, we visually assess the formation of large inclusions by fusing mutant SOD1 to yellow fluorescent protein (YFP). Experimental constructs possessing mutations at all cysteine residues in SOD1 (sites 6, 57, 111, and 146 to F,S,Y,R or G,S,Y,R, respectively) were shown to maintain a high propensity of inclusion formation despite the inability to form disulfide cross-links. Interestingly, although aggregates form when all cysteines were mutated, double mutants of the ALS mutation C6G with an experimental mutation C111S exhibited low aggregation propensity. Overall, this study is an extension of previous work demonstrating that cysteine residues in mutant SOD1 play a role in modulating aggregation and that intermolecular disulfide bonds are not required to produce large intracellular inclusion-like structures.
Fanaei Kahrani, Zahra; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi
2017-02-01
Renilla luciferase (RLuc), also known as Renilla-luciferin 2-monooxygenase, is a light producing enzyme used in many biotechnological applications such as bioreporters. However, its kinetics stability -especially at higher temperatures- is a limiting factor for developing thermostable bioreporters. The aim of this study was to improve the stability of super Renilla luciferase 8 (SRLuc 8) which is a red-emitter variety of RLuc at higher temperatures, by introduction of a disulfide bridge into its structure. In this study, the choice of the proper disulfide bond formation was based on computational methods and enzyme functionality (active site position) which is called geometric-functional method. N45 and A71 at the N-terminal of the enzyme were selected for directed evolution. The engineered luciferase was called C-SRLuc 8 and its activity and stability were assayed. The results indicated that the kinetic stability of C-SRLuc 8 increased significantly at 60°C to 70°C as compared to SRLuc 8; the residual activity of C-SRLuc 8 was approximately 20% after incubation at 65°C for 5min. Moreover, the enzyme activity decreased compared with SRLuc 8. The molecular basis of the structural changes was considered using molecular dynamics simulations and the results indicated that the N45C/A71C crosslink was involved in a hotspot foldon which seemed to be the rate-limiting step of conformational collapse at higher temperatures. The present study may provide an opportunity for the development of the next-generation of thermostable RLuc-based biosensors. Copyright © 2016. Published by Elsevier B.V.
Liquid crystalline epoxy networks with exchangeable disulfide bonds
Li, Yuzhan; Zhang, Yuehong; Rios, Orlando; ...
2017-06-09
In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less
The effect of tensile stress on the conformational free energy landscape of disulfide bonds.
Anjukandi, Padmesh; Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Marx, Dominik
2014-01-01
Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N)2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.
Storch, E M; Daggett, V; Atkins, W M
1999-04-20
A previous molecular dynamics (MD) simulation of cytochrome b5 (cyt b5) at 25 degrees C displayed localized dynamics on the surface of the protein giving rise to the periodic formation of a cleft that provides access to the heme through a protected hydrophobic channel [Storch and Daggett (1995) Biochemistry 34, 9682]. Here we describe the production and testing of mutants designed to prevent the cleft from opening using a combination of experimental and theoretical techniques. Two mutants have been designed to close the surface cleft: S18D to introduce a salt bridge and S18C:R47C to incorporate a disulfide bond. The putative cleft forms between two separate cores of the protein: one is structural in nature and can be monitored through the fluorescence of Trp 22, and the other binds the heme prosthetic group and can be tracked via heme absorbance. An increase in motion localized to the cleft region was observed for each protein, except for the disulfide-containing variant, in MD simulations at 50 degrees C compared to simulations at 25 degrees C. For the disulfide-containing variant, the cleft remained closed. Both urea and temperature denaturation curves were nearly identical for wild-type and mutant proteins when heme absorbance was monitored. In contrast, fluorescence studies revealed oxidized S18C:R47C to be considerably more stable based on the midpoints of the denaturation transitions, Tm and U1/2. Moreover, the fluorescence changes for each protein were complete at approximately 50 degrees C and a urea concentration of approximately 3.9 M, significantly below the temperature and urea concentration (62 degrees C, 5 M urea) required to observe heme release. In addition, solvent accessibility based on acrylamide quenching of Trp 22 was lower in the S18C:R47C mutant, particularly at 50 degrees C, before heme release [presented in the accompanying paper (58)]. The results suggest that a constraining disulfide bond can be designed to inhibit dynamic cleft formation
Radiation inactivation of ricin occurs with transfer of destructive energy across a disulfide bridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haigler, H.T.; Woodbury, D.J.; Kempner, E.S.
1985-08-01
The ionizing radiation sensitivity of ricin, a disulfide-linked heterodimeric protein, was studied as a model to determine the ability of disulfide bonds to transmit destructive energy. The radiation-dependent loss of A chain enzymatic activity after irradiation of either intact ricin or ricin in which the interchain disulfide bond was disrupted gave target sizes corresponding to the molecular size of dimeric ricin or monomeric A chain, respectively. These results clearly show that a disulfide bond can transmit destructive energy between protein subunits.
Effects of disulfide bridges and backbone connectivity on water sorption by protein matrices.
Kim, Sang Beom; Singh, Rakesh S; Paul, Prem K C; Debenedetti, Pablo G
2017-08-11
Understanding the water sorption behavior of protein powders is important in applications such as the preservation of protein-based pharmaceuticals. Most globular proteins exhibit a characteristic sigmoidal water adsorption isotherm at ambient conditions. However, it is not well understood how water sorption behavior is influenced by intrinsic factors that are related to structural properties of proteins. We investigate computationally how structural constraints on proteins influence the water sorption isotherms of amorphous protein powders. Specifically, we study the effects of non-local disulfide linkages and backbone connectivity using pheromone ER-23 and lysozyme as model proteins. We find that non-local disulfide linkages can significantly restrict structural changes during hydration and dehydration, and this in turn greatly reduces the extent of hysteresis between the adsorption and desorption branches. Upon removing the backbone connectivity by breaking all peptide bonds in lysozyme, we find that the hysteresis shifts towards the lower humidity regime, and the water uptake capacity is significantly enhanced. We attribute these changes to the higher aggregation propensity of the constraint-free amino acids in dehydrated condition, and the formation of a spanning water network at high hydration levels.
Ho, Tina; Watt, Brenda; Spruce, Lynn A.; Seeholzer, Steven H.; Marks, Michael S.
2016-01-01
The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611
UV Photofragmentation Dynamics of Protonated Cystine: Disulfide Bond Rupture.
Soorkia, Satchin; Dehon, Christophe; Kumar, S Sunil; Pedrazzani, Mélanie; Frantzen, Emilie; Lucas, Bruno; Barat, Michel; Fayeton, Jacqueline A; Jouvet, Christophe
2014-04-03
Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages. Here, the S-S bond acts as a UV chromophore and absorption of one UV photon corresponds to a σ-σ* transition. We have investigated the photodissociation dynamics of protonated cystine, which is a dimer of two cysteines linked by a disulfide bridge, at 263 nm (4.7 eV) using a multicoincidence technique in which fragments coming from the same fragmentation event are detected. Two types of bond cleavages are observed corresponding to the disulfide (S-S) and adjacent C-S bond ruptures. We show that the S-S cleavage leads to three different fragment ions via three different fragmentation mechanisms. The UVPD results are compared to collision-induced dissociation (CID) and electron-induced dissociation (EID) studies.
Chen, Jianzhong; Shiyanov, Pavel; Schlager, John J; Green, Kari B
2012-02-01
It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS(3) approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including c(i-1) ions (the i(th) residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS(3) spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS(3) approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs. © American Society for Mass Spectrometry, 2011
Li, Bo; Walsh, Christopher T.
2011-01-01
Holomycin and related dithiolopyrrolone antibiotics display broad-spectrum antimicrobial activities and contain a unique 5, 5-bicyclic ring structure with an N-acylated aminopyrrolone fused to a cyclic ene-disulfide. Here we show that the intramolecular disulfide bridge is constructed from the acyclic ene-dithiol at a late stage in the pathway by a thioredoxin oxidoreductase-like enzyme HlmI from the holomycin producer Streptomyces clavuligerus. Recombinant HlmI was purified from E. coli with bound flavin adenine dinucleotide (FAD), and converts reduced holomycin to holomycin utilizing O2 as cosubstrate. As a dithiol oxidase, HlmI is functionally homologous to GliT and DepH, which perform a similar dithiol to disulfide oxidation in the biosynthesis of fungal natural product gliotoxin and epigenetic regulator compound FK228 respectively. Deletion of the hlmI gene in the wild type S. clavuligerus and in a holomycin-overproducing mutant resulted in decreased level of holomycin production and increased sensitivity toward holomycin, suggesting a self-protection role of HlmI in the holomycin biosynthetic pathway. HlmI belongs to a new clade of uncharacterized thioredoxin oxidoreductase-like enzymes, distinctive from the GliT-like enzymes and the DepH-like enzymes, and represents a third example of oxidoreductases that catalyzes disulfide formation in the biosynthesis of small molecules. PMID:21504228
NASA Astrophysics Data System (ADS)
Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu
2017-06-01
Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.
Optical spectroscopic elucidation of beta-turns in disulfide bridged cyclic tetrapeptides.
Borics, Attila; Murphy, Richard F; Lovas, Sándor
2007-01-01
Vibrational circular dichroism (VCD) spectroscopic features of type II beta-turns were characterized previously, but, criteria for differentiation between beta-turn types had not been established yet. Model tetrapeptides, cyclized through a disulfide bridge, were designed on the basis of previous experimental results and the observed incidence of amino acid residues in the i + 1 and i + 2 positions in beta-turns, to determine the features of VCD spectra of type I and II beta-turns. The results were correlated with electronic circular dichroism (ECD) spectra and VCD spectra calculated from conformational data obtained by molecular dynamics (MD) simulations. All cyclic tetrapeptides yielded VCD signals with a higher frequency negative and a lower frequency positive couplet with negative lobes overlapping. MD simulations confirmed the conformational homogeneity of these peptides in solution. Comparison with ECD spectroscopy, MD, and quantum chemical calculation results suggested that the low frequency component of VCD spectra originating from the tertiary amide vibrations could be used to distinguish between types of beta-turn structures. On the basis of this observation, VCD spectroscopic features of type II and VIII beta-turns and ECD spectroscopic properties of a type VIII beta-turn were suggested. The need for independent experimental as well as theoretical investigations to obtain decisive conformational information was recognized. Copyright 2006 Wiley Periodicals, Inc.
Wind-Driven Formation of Ice Bridges in Straits.
Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A
2017-03-24
Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.
Sarangi, Ritimukta; York, John T.; Helton, Matthew E.; Fujisawa, Kiyoshi; Karlin, Kenneth D.; Tolman, William B.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2008-01-01
Cu K-, L- and S K-edge X-ray absorption spectroscopic (XAS) data have been combined with density functional theory (DFT) calculations on [{(TMPA)Cu}2S2](ClO4)2 (1), [{Cu[HB(3,5-Pri2pz)3]}2(S2)] (2) and [{(TMEDA)Cu}2(S2)2](OTf)2 (3) to obtain a quantitative description of their ground state wavefunctions. The Cu L-edge intensities give 63% and 37% Cu d-character in the ground state of 1 and 2, respectively while the S K-pre-edge intensities reflect 20% and 48% S character in their ground states. These data indicate a more than two-fold increase in the total disulfide bonding character in 2 relative to 1. The increase in the number of Cu-S bonds in 2 (µ-η2:η2 S22− bridge) compared to 1 ((µ-η1:η1 S22− bridge), dominantly determines the large increase in covalency and Cu-disulfide bond strength in 2. Cu K- and L- and S K-pre-edge energy positions directly demonstrate the CuII/(S2−)2 nature of 3. The two disulfide(•1−)’s in 3 undergo strong bonding interactions which destabilize the resultant filled antibonding π* orbitals of the (S2−)2 fragment relative to the Cu 3d levels. This leads to an inverted bonding scheme in 3 with dominantly ligand based holes in its ground state, consistent with its description as a dicopper(II)-bis-disulfide(•1−) complex. PMID:18076173
Fast Fmoc synthesis of hAmylin1-37 with pseudoproline assisted on-resin disulfide formation.
Page, Karen; Hood, Christina A; Patel, Hirendra; Fuentes, German; Menakuru, Mahendra; Park, Jae H
2007-12-01
Human amylin (1-37) and the (1-13) fragment were synthesized with and without pseudoproline dipeptides. Thallium (III) trifluoroacetate, a mild oxidant, was used to cyclize the peptides by forming a disulfide bridge from C(2) to C(7). On the basis of our model studies, incorporation of a pseudoproline dipeptide decreases the amount of time necessary for the crude linear amylin (1-13) to cyclize on the resin. Without pseudoproline dipeptides, the 1-37 crude linear amylin was not pure enough to undergo the cyclization reaction. Following the cyclization studies, the synthesis time of the linear human amylin (1-37) was systematically reduced from 58 h to 8.5 h by shortening the reaction times. Cyclization and cleavage times were also reduced to 1.5 h.
Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems
Bocian-Ostrzycka, Katarzyna M.; Grzeszczuk, Magdalena J.; Dziewit, Lukasz; Jagusztyn-Krynicka, Elżbieta K.
2015-01-01
The bacterial proteins of the Dsb family—important components of the post-translational protein modification system—catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp. PMID:26106374
Protein stabilization by introduction of cross-strand disulfides.
Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan
2005-11-08
Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.
Potent and selective oxytocin receptor agonists without disulfide bridges.
Adachi, Yusuke; Sakimura, Katsuya; Shimizu, Yuji; Nakayama, Masaharu; Terao, Yasuko; Yano, Takahiko; Asami, Taiji
2017-06-01
Oxytocin (OT) is a neuropeptide involved in a wide variety of physiological actions, both peripherally and centrally. Many human studies have revealed the potential of OT to treat autism spectrum disorders and schizophrenia. OT interacts with the OT receptor (OTR) as well as vasopressin 1a and 1b receptors (V 1a R, V 1b R) as an agonist, and agonistic activity for V 1a R and V 1b R may have a negative impact on the therapeutic effects of OTR agonism in the CNS. An OTR-selective agonistic peptide, FE 202767, in which the structural differences from OT are a sulfide bond instead of a disulfide bond, and N-alkylglycine replacement for Pro at position 7, was reported. However, the effects of amino acid substitutions in OT have not been comprehensively investigated to compare OTR, V 1a R, and V 1b R activities. This led us to obtain a new OTR-selective analog by comprehensive amino acid substitutions of OT and replacement of the disulfide bond. A systematic amino acid scanning (Ala, Leu, Phe, Ser, Glu, or Arg) of desamino OT (dOT) at positions 2, 3, 4, 5, 7, and 8 revealed the tolerability for the substitution at positions 7 and 8. Further detailed study showed that trans-4-hydroxyproline (trans-Hyp) at position 7 and γ-methylleucine [Leu(Me)] at position 8 were markedly effective for improving receptor selectivity without decreasing the potency at the OTR. Subsequently, a combination of these amino acid substitutions with the replacement of the disulfide bond of dOT analogs with a sulfide bond (carba analog) or an amide bond (lactam analog) yielded several promising analogs, including carba-1-[trans-Hyp 7 ,Leu(Me) 8 ]dOT (14) with a higher potency (7.2pM) at OTR than that of OT and marked selectivity (>10,000-fold) over V 1a R and V 1b R. Hence, we investigated comprehensive modification of OT and obtained new OT analogs that exhibited high potency at OTR with marked selectivity. These OTR-selective agonists could be useful to investigate OTR-mediated effects on
Structural classification of small, disulfide-rich protein domains.
Cheek, Sara; Krishna, S Sri; Grishin, Nick V
2006-05-26
Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.
Go, Eden P.; Cupo, Albert; Ringe, Rajesh; Pugach, Pavel; Moore, John P.
2015-01-01
ABSTRACT We investigated whether there is any association between a native-like conformation and the presence of only the canonical (i.e., native) disulfide bonds in the gp120 subunits of a soluble recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein. We used a mass spectrometry (MS)-based method to map the disulfide bonds present in nonnative uncleaved gp140 proteins and native-like SOSIP.664 trimers based on the BG505 env gene. Our results show that uncleaved gp140 proteins were not homogeneous, in that substantial subpopulations (20 to 80%) contained aberrant disulfide bonds. In contrast, the gp120 subunits of the native-like SOSIP.664 trimer almost exclusively retained the canonical disulfide bond pattern. We also observed that the purification method could influence the proportion of an Env protein population that contained aberrant disulfide bonds. We infer that gp140 proteins may always contain a variable but substantial proportion of aberrant disulfide bonds but that the impact of this problem can be minimized via design and/or purification strategies that yield native-like trimers. The same factors may also be relevant to the production and purification of monomeric gp120 proteins that are free of aberrant disulfide bonds. IMPORTANCE It is widely thought that a successful HIV-1 vaccine will include a recombinant form of the Env protein, a trimer located on the virion surface. To increase yield and simplify purification, Env proteins are often made in truncated, soluble forms. A consequence, however, can be the loss of the native conformation concomitant with the virion-associated trimer. Moreover, some soluble recombinant Env proteins contain aberrant disulfide bonds that are not expected to be present in the native trimer. To assess whether these observations are linked, to determine the extent of disulfide bond scrambling, and to understand why scrambling occurs, we determined the disulfide bond profiles of two soluble Env
Cardiovascular effects of two disulfide analogues of sarafotoxin S6b.
Lin, W W; Chen, Y M; Lee, S Y; Nishio, H; Kimura, T; Sakakibara, S; Lee, C Y
1990-01-01
Sarafotoxin S6b (STX-b), a peptide toxin isolated from the venom of the Israeli burrowing asp, Atractaspis engaddensis, consists of 21 amino acid residues with four cysteines at positions 1,3,11 and 15. In the present study, we compared the cardiovascular effects of two synthetic STX-b analogues with different disulfide bridge locations, i.e. STX-b type A (1-15, 3-11) and STX-b type B (1-11, 3-15). At doses of 0.3-3 nmoles/kg (i.v.), type A produced a sustained pressor effect with transient increase in pulse pressure. However, at 5 nmoles/kg, it produced a transient increase followed by decrease in blood pressure, heart rate and respiratory rate within 30 sec and 12 out of 13 mice died within 10 min. Various kinds of ECG changes, suggestive of myocardial ischemia and hyperkalemia, were observed. Type A also caused a significant increase in the plasma levels of K+, lactate dehydrogenase, creatine phosphokinase, inorganic phosphate and glucose. By contrast, type B did not kill any mouse at doses up to 50 nmoles/kg. In the rat aorta, type A caused a potent vasoconstriction which was dependent on extracellular Ca2+ and was partially inhibited by verapamil and H-7, a protein kinase C inhibitor. In the rat Langendorff heart preparation, type A produced coronary vasospasm with potency about 100 times higher than that of type B. A similar potency ratio was observed for the positive inotropic effect in rat atria. These results indicate that the location of disulfide bridges in sarafotoxin S6b markedly influences the pharmacological potency and the natural sarafotoxin S6b should be type A with the disulfide bridge locations at positions 1-15 and 3-11.
Crackling sound generation during the formation of liquid bridges: A lattice gas model
NASA Astrophysics Data System (ADS)
Almeida, Alexandre B.; Buldyrev, Sergey V.; Alencar, Adriano M.
2013-08-01
Due to abnormal mechanical instabilities, liquid bridges may form in the small airways blocking airflow. Liquid bridge ruptures during inhalation are the major cause of the crackling adventitious lung sound, which can be heard using a simple stethoscope. Recently, Vyshedskiy and colleagues (2009) [1] described and characterized a crackle sound originated during expiration. However, the mechanism and origin of the expiratory crackle are still controversial. Thus, in this paper, we propose a mechanism for expiratory crackles. We hypothesize that the expiratory crackle sound is a result of the energy released in the form of acoustic waves during the formation of the liquid bridge. The magnitude of the energy released is proportional to the difference in free energy prior and after the bridge formation. We use a lattice gas model to describe the liquid bridge formation between two parallel planes. Specifically, we determine the surface free energy and the conditions of the liquid bridge formation between two parallel planes separated by a distance 2h by a liquid droplet of volume Ω and contact angle Θ, using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constrained. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameter hΩ and Θ. We can distinguish two different phases: one droplet and one liquid bridge. We observe a hysteresis curve for the energy changes between these two states, and a finite size effect in the bridge formation. We compute the release of free energy during the formation of the liquid bridge and discuss the results in terms of system size. We also calculate the force exerted from liquid bridge on the planes by studying the dependence of the free energy on the separation between the planes 2h. The simulation results are in agreement with the analytical solution.
Reynoso, Eduardo; Liu, Hua; Li, Lin; Yuan, Anthony L; Chen, She; Wang, Zhigao
2017-10-20
Necroptosis is an immunogenic cell death program that is associated with a host of human diseases, including inflammation, infections, and cancer. Receptor-interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like protein (MLKL) are required for necroptosis activation. Specifically, RIPK3-dependent MLKL phosphorylation promotes the assembly of disulfide bond-dependent MLKL polymers that drive the execution of necroptosis. However, how MLKL disulfide bond formation is regulated is not clear. In this study we discovered that the MLKL-modifying compound necrosulfonamide cross-links cysteine 86 of human MLKL to cysteine 32 of the thiol oxidoreductase thioredoxin-1 (Trx1). Recombinant Trx1 preferentially binds to monomeric MLKL and blocks MLKL disulfide bond formation and polymerization in vitro Inhibition of MLKL polymer formation requires the reducing activity of Trx1. Importantly, shRNA-mediated knockdown of Trx1 promotes MLKL polymerization and sensitizes cells to necroptosis. Furthermore, pharmacological inhibition of Trx1 with compound PX-12 induces necroptosis in multiple cancer cell lines. Altogether, these findings demonstrate that Trx1 is a critical regulator of necroptosis that suppresses cell death by maintaining MLKL in a reduced inactive state. Our results further suggest new directions for targeted cancer therapy in which thioredoxin inhibitors like PX-12 could potentially be used to specifically target cancers expressing high levels of MLKL or MLKL short isoforms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Compact Conformations of Human Protein Disulfide Isomerase
Cui, Lei; Ding, Xiang; Niu, Lili; Yang, Fuquan; Wang, Chao; Wang, Chih-chen; Lou, Jizhong
2014-01-01
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact. PMID:25084354
Thiol-Disulfide Exchange in Peptides Derived from Human Growth Hormone
Chandrasekhar, Saradha; Epling, Daniel E.; Sophocleous, Andreas M.; Topp, Elizabeth M.
2014-01-01
Disulfide bonds stabilize proteins by crosslinking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form non-native disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics were monitored to investigate the effect of pH (6.0-10.0), temperature (4-50 °C), oxidation suppressants (EDTA and N2 sparging) and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using RP-HPLC and LC-MS. Concentration vs. time data were fitted to a mathematical model using non-linear least squares regression analysis. At all pH values, the model was able to fit the data with R2≥0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. PMID:24549831
Oka, Ojore B.V.; Yeoh, Hui Y.; Bulleid, Neil J.
2015-01-01
The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm. PMID:25989104
Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung
2015-08-28
Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Reardon-Robinson, Melissa E.; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung
2015-01-01
Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. PMID:26170452
Corredor, Claudia; Tomasella, Frank P; Young, Joel
2009-01-02
Mixtures of thiuram disulfides are frequently used as accelerators in rubber stoppers for injectables and sterilized powders for injection. Rapid reactions of thiuram disulfides between themselves and with thiols yield mixed disulfides due to thiol-disulfide exchange. The possibility of exchange reactions of thiuram disulfides extracted from rubber stoppers and drug products containing pendant thiol groups have not been reported in the analysis of potential stopper extractables. In this paper we report the formation and identification of mixed thiuram disulfides of N,N,N',N'-dimethylthiuram disulfide (TMTD), N,N,N',N'-dibutylthiuram disulfide (TBTD), and captopril (a thiol-containing drug). A reversed-phase HPLC method was developed for the determination of TMTD, TBTD, captopril and their disulfides in aqueous vehicles, using a YMC ODS AQ column at 35 degrees C and mobile phases A and B consisting of acetonitrile:water:trifluoroacetic acid (TFA) (20:80:0.1) and acetonitrile:TFA (100:0.1), respectively. The captopril-TBTD and captopril-TMTD disulfides were identified by MS, with molecular ions at m/z 420.9 and m/z of 337.1, respectively. Possible structures for the fragment ions in the spectra are provided. Mixed captopril-thiuram formation was studied as a function of pH. Captopril-TMTD formation was enhanced at pH 6.0, reaching a maximum of 31.3% in 4.1h. At pH 4.0 and 2.2, the mixed captopril adduct product was still detected in solution after 20h. The impact of the formation of mixed disulfide products of thiol-containing drugs with thiurams in the HPLC profile of extractables and leachables studies is discussed.
Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.
Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François
2013-12-10
Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics
Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Zoccal, Karina Furlani; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Peigneur, Steve; Vriens, Kim; Thevissen, Karin; Cammue, Bruno Philippe Angelo; Júnior, Ronaldo Bragança Martins; Arruda, Eurico; Faccioli, Lúcia Helena; Tytgat, Jan; Arantes, Eliane Candiani
2016-08-01
The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities. Copyright © 2016. Published by Elsevier Inc.
Aparicio, David; Pérez-Luque, Rosa; Carpena, Xavier; Díaz, Mireia; Ferrer, Joan C.; Loewen, Peter C.; Fita, Ignacio
2013-01-01
Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is an essential facet in the regulation of fatty acid metabolism. The structure of human peroxisomal MCD reveals a molecular tetramer that is best described as a dimer of structural heterodimers, in which the two subunits present markedly different conformations. This molecular organization is consistent with half-of-the-sites reactivity. Each subunit has an all-helix N-terminal domain and a catalytic C-terminal domain with an acetyltransferase fold (GNAT superfamily). Intersubunit disulfide bridges, Cys-206–Cys-206 and Cys-243–Cys-243, can link the four subunits of the tetramer, imparting positive cooperativity to the catalytic process. The combination of a half-of-the-sites mechanism within each structural heterodimer and positive cooperativity in the tetramer produces a complex regulatory picture that is further complicated by the multiple intracellular locations of the enzyme. Transport into the peroxisome has been investigated by docking human MCD onto the peroxisomal import protein peroxin 5, which revealed interactions that extend beyond the C-terminal targeting motif. PMID:23482565
Gao, Bin; Zhu, Shunyi
2016-01-01
Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment. PMID:27562645
Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin
2007-12-01
Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide
Entropy Drives the Formation of Salt Bridges in the Protein GB3.
Zhang, Ning; Wang, Yefei; An, Liaoyuan; Song, Xiangfei; Huang, Qingshan; Liu, Zhijun; Yao, Lishan
2017-06-19
Salt bridges are very common in proteins. But what drives the formation of protein salt bridges is not clear. In this work, we determined the strength of four salt bridges in the protein GB3 by measuring the ΔpK a values of the basic residues that constitute the salt bridges with a highly accurate NMR titration method at different temperatures. The results show that the ΔpK a values increase with temperature, thus indicating that the salt bridges are stronger at higher temperatures. Fitting of ΔpK a values to the van't Hoff equation yields positive ΔH and ΔS values, thus indicating that entropy drives salt-bridge formation. Molecular dynamics simulations show that the protein and solvent make opposite contributions to ΔH and ΔS. Specifically, the enthalpic gain contributed from the protein is more than offset by the enthalpic loss contributed from the solvent, whereas the entropic gain originates from the desolvation effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd
2008-01-01
The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased — and, under conditions of decreased platelet adhesion, PDI inhibition reduced — fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet–secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury. PMID:18274674
Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd
2008-03-01
The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased - and, under conditions of decreased platelet adhesion, PDI inhibition reduced - fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet-secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury.
Bellei, Marzia; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Borsari, Marco; Lancellotti, Lidia; Ranieri, Antonio; Sola, Marco; Battistuzzi, Gianantonio
2018-01-01
Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding. In this work, we investigated the influence of the Cys46/Cys55 disulfide bond on the redox properties and on the pH-dependent conformational equilibria of hNgb, using UV-vis spectroelectrochemistry, cyclic voltammetry, electronic absorption spectroscopy and magnetic circular dichroism (MCD). We found that the SS bridge significantly affects the heme Fe(III) to Fe(II) reduction enthalpy (ΔH°' rc ) and entropy (ΔS°' rc ), mostly as a consequence of changes in the reduction-induced solvent reorganization effects, without affecting the axial ligand-binding interactions and the polarity and electrostatics of the heme environment. Between pH3 and 12, the electronic properties of the heme of ferric hNgb are sensitive to five acid-base equilibria, which are scarcely affected by the Cys46/Cys55 disulfide bridge. The equilibria occurring at extreme pH values induce heme release, while those occurring between pH5 and 10 alter the electronic properties of the heme without modifying its axial coordination and low spin state. They involve the sidechains of non-coordinating aminoacids close to the heme and at least one heme propionate. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of disulfide bonds on the denatured state of barnase.
Clarke, J.; Hounslow, A. M.; Bond, C. J.; Fersht, A. R.; Daggett, V.
2000-01-01
The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended beta-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. PMID:11206061
Photo-reduction on the rupture of disulfide bonds and the related protein assembling
NASA Astrophysics Data System (ADS)
Wang, Wei
It has been found that many proteins can self-assemble into nanoscale assemblies when they unfold or partially unfold under harsh conditions, such as low pH, high temperature, or the presence of denaturants, and so on. These nanoscale assemblies can have some applications such as the drug-delivery systems (DDSs). Here we report a study that a very physical way, the UV illumination, can be used to facilitate the formation of protein fibrils and nanoparticles under native conditions by breaking disulfide bonds in some disulfide-containing proteins. By controlling the intensity of UV light and the illumination time, we realized the preparation of self-assembly nanoparticles which encapsulate the anticancer drug doxorubicin (DOX) and can be used as the DDS for inhibiting the growth of tumor. The formation of fibrillary assemblies was also observed. The rupture of disulfide bonds through photo-reduction process due to the effect of tryptophan and tyrosine was studied, and the physical mechanism of the assembling of the related disulfide-containing proteins was also discussed. We thank the financial support from NSF of China and the 973 project.
Zhang, Liqun
2017-04-01
Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon
2011-07-15
Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less
A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.
Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A
2007-02-02
The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.
Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.
Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire
2016-01-01
Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.
Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.
Rushdi, Ahmed I; Simoneit, Bernd R T
2005-12-01
Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.
Thiol Disulfide Homeostasis in Schizophrenic Patients Using Atypical Antipsychotic Drugs
Ersan, Etem Erdal; Aydin, Hüseyin; Erdoğan, Serpil; Erşan, Serpil; Alişik, Murat; Bakir, Sevtap; Erel, Özcan; Koç, Derya
2018-01-01
Objective Schizophrenia is a severe, debilitating mental disorder characterized by behavioral abnormalities. Although several studies have investigated the role of oxidative stress and the effects of antipsychotic drugs on oxidative markers in schizophrenia, adequate information is not available on these issues. The aim of this study is to determine the changes in oxidative status and thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. Methods Thirteen schizophrenic patients using atypical antipsychotic drugs and 30 healthy controls were included this study. The concentrations of total oxidant status (TOS), total antioxidant status (TAS), native thiol, total thiol, and disulfide levels were determined in the study population. Results The TAS (p=0.001), total thiol, and native thiol levels (p<0.001) were higher in the patients compared to the controls, whereas the TOS and disulfide levels were lower in the patients than in the controls (p<0.001). Conclusion These results may suggest that atypical antipsychotic drugs have a useful therapeutic effect by reducing oxidative stress via the inhibition of the formation of disulfide bonds. The study population number was one of the limitations of this study. Therefore, further studies are needed to establish the association between thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. PMID:29397665
Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang
2017-05-26
The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology
Structure-based approach to the prediction of disulfide bonds in proteins.
Salam, Noeris K; Adzhigirey, Matvey; Sherman, Woody; Pearlman, David A
2014-10-01
Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H
2002-07-01
Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
Nguyen, Van Dat; Hatahet, Feras; Salo, Kirsi E H; Enlund, Eveliina; Zhang, Chi; Ruddock, Lloyd W
2011-01-07
Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes. Here we show that the introduction of Erv1p, a sulfhydryl oxidase and a disulfide isomerase allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. The production of disulfide bonded proteins was also aided by the use of an appropriate fusion protein to keep the folding intermediates soluble and by choice of media. By combining the pre-expression of a sulfhydryl oxidase and a disulfide isomerase with these other factors, high level expression of even complex disulfide bonded eukaryotic proteins is possible Our results show that the production of eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli is possible. The required exogenous components can be put onto a single plasmid vector allowing facile transfer between different prokaryotic strains. These results open up new avenues for the use of E. coli as a microbial cell factory.
Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.
Honda, Ryo
2018-02-27
Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung
2018-05-01
The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide
Formation of a cylindrical bridge in cell division
NASA Astrophysics Data System (ADS)
Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.
2007-11-01
In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.
Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.
Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P
2015-10-09
Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced
The impact of protein disulfide bonds on the amyloid fibril morphology
Kurouski, Dmitry
2014-01-01
Amyloid fibrils are associated with many neurodegenerative diseases. Being formed from more than 20 different proteins that are functionally or structurally unrelated, amyloid fibrils share a common cross-β core structure. It is a well-accepted hypothesis that fibril biological activity and the associated toxicity vary with their morphology. Partial denaturation of a native protein usually precedes the initial stage of fibrillation, namely the nucleation process. Low pH and elevated temperature, typical conditions of amyloid fibril formation in vitro, resulted in partial denaturation of the proteins. Cleavage of disulfide bonds results typically in significant disruption of protein native structure and in the formation of the molten global state. Herein we report on a comparative investigation of fibril formation by apo-α-lactalbumin and its analog that contains only one of the four original disulfide bonds using deep UV resonance and non-resonance Raman spectroscopy and atomic force microscopy. Significant differences in the aggregation mechanism and the resulting fibril morphology were found. PMID:24693331
2011-01-01
Background Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and a disulfide isomerase allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. The production of disulfide bonded proteins was also aided by the use of an appropriate fusion protein to keep the folding intermediates soluble and by choice of media. By combining the pre-expression of a sulfhydryl oxidase and a disulfide isomerase with these other factors, high level expression of even complex disulfide bonded eukaryotic proteins is possible Conclusions Our results show that the production of eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli is possible. The required exogenous components can be put onto a single plasmid vector allowing facile transfer between different prokaryotic strains. These results open up new avenues for the use of E. coli as a microbial cell factory. PMID:21211066
Behavioral toxicology of carbon disulfide and toluene.
Weiss, B; Wood, R W; Macys, D A
1979-01-01
Organic solvents are pervasive in the communal and industrial environments. Although many are potent central nervous system agents, clearly delineated behavioral effects have played only a minor role in the formation of exposure standards. A comprehensive behavioral pharmacology and toxicology of these compounds is one aim of US/USSR collaboration. The current report describes some actions of carbon disulfide and toulene. Earlier data about the actions of carbon disulfide on pigeon operant performance indicated disruption of schedule-controlled key-pecking. Primate data are now described from a situation designed to determine aversive thresholds to electrical stimulation. Effective concentrations of carbon disulfide produced both a rise in the amount of electric shock tolerated and a diminution of the response force exerted by the monkeys. In experiments with toluene, pigeons were shown to elevate key-pecking rate in an operant situation at certain concentrations. Toluene also was studied for its capacity to maintain self-administration in the same way as drugs of abuse. Monkeys worked to gain access to toulene vapor just as they work for opiates or amphetamines. The current experiments demonstrate how comprehensive the range of behavioral toxicology needs to be to deal with environmental health issues. Images FIGURE 3. FIGURE 5. PMID:109294
2012-01-01
Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains. PMID:22569138
Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae
2018-06-15
The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.
Reactions of Pd(II) and Pt(II) Complexes With Tetraethylthiouram Disulfide
Cervantes, G.; Molins, E.; Miravitlles, C.
1997-01-01
The reactions of tetraethylthiouram disulfide (DTS), an inhibitor of the nephrotoxicity of Pt(II) drugs, an efficient agent in the treatment of chronic alcoholism, in the treatment of HIV infections, AIDS and heavy metal toxicity, and a fungicide and herbicide, with K2[PtCl4], in ratio 1:1 and 1:2, gave the compounds [PtCl2DTS] and [Pt(S2CNEt2)2] respectively. The reaction of the complexes K2[PdCl4], Pd(AcO)2 and [PdCl2(PhCN)2], where PhCN = Benzonitrile, with tetraethylthiouram disulfide in ratio 1:1 or 1:2, yielded orange crystals identified as [Pd(S2CNEt2)2]. The crystals were suitable for study by X-ray diffraction. The -S-S- bridge in the tetraethylthiouram disulfude molecule was broken and the two molecules of the thiocarbamate derivative were bound to the Pd(II) by the equivalents sulfur atoms. All the compounds were characterized by IR, 1H and 13C NMR spectroscopies. PMID:18475812
Disulfide-Mediated β-Strand Dimers: Hyperstable β-Sheets Lacking Tertiary Interactions and Turns.
Kier, Brandon L; Anderson, Jordan M; Andersen, Niels H
2015-04-29
Disulfide bonds between cysteine residues are essential to the structure and folding of many proteins. Yet their role in the design of structured peptides and proteins has frequently been limited to use as intrachain covalent staples that reinforce existing structure or induce knot-like conformations. In β-hairpins, their placement at non-H-bonding positions across antiparallel strands has proven useful for achieving fully folded positive controls. Here we report a new class of designed β-sheet peptide dimers with strand-central disulfides as a key element. We have found that the mere presence of a disulfide bond near the middle of a short peptide chain is sufficient to nucleate some antiparallel β-sheet structure; addition of β-capping units and other favorable cross-strand interactions yield hyperstable sheets. Strand-central cystines were found to be superior to the best designed reversing turns in terms of nucleating β-sheet structure formation. We have explored the limitations and possibilities of this technique (the use of disulfides as sheet nucleators), and we provide a set of rules and rationales for the application and further design of disulfide-tethered "turnless" β-sheets.
Minor element distribution in iron disulfides in coal: a geochemical review
Kolker, Allan
2012-01-01
Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to
Grumbt, Barbara; Stroobant, Vincent; Terziyska, Nadia; Israel, Lars; Hell, Kai
2007-12-28
Mia40p and Erv1p are components of a translocation pathway for the import of cysteine-rich proteins into the intermembrane space of mitochondria. We have characterized the redox behavior of Mia40p and reconstituted the disulfide transfer system of Mia40p by using recombinant functional C-terminal fragment of Mia40p, Mia40C, and Erv1p. Oxidized Mia40p contains three intramolecular disulfide bonds. One disulfide bond connects the first two cysteine residues in the CPC motif. The second and the third bonds belong to the twin CX(9)C motif and bridge the cysteine residues of two CX(9)C segments. In contrast to the stabilizing disulfide bonds of the twin CX(9)C motif, the first disulfide bond was easily accessible to reducing agents. Partially reduced Mia40C generated by opening of this bond as well as fully reduced Mia40C were oxidized by Erv1p in vitro. In the course of this reaction, mixed disulfides of Mia40C and Erv1p were formed. Reoxidation of fully reduced Mia40C required the presence of the first two cysteine residues in Mia40C. However, efficient reoxidation of a Mia40C variant containing only the cysteine residues of the twin CX(9)C motif was observed when in addition to Erv1p low amounts of wild type Mia40C were present. In the reconstituted system the thiol oxidase Erv1p was sufficient to transfer disulfide bonds to Mia40C, which then could oxidize the variant of Mia40C. In summary, we reconstituted a disulfide relay system consisting of Mia40C and Erv1p.
Naimuddin, Mohammed; Kubo, Tai
2011-12-01
We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.
Thiol/disulfide homeostasis in asphalt workers.
Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric
2016-09-02
The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.
Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki
2014-04-28
It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle.
Bae, Jae-Bum; Park, Joo-Hong; Hahn, Mi-Young; Kim, Min-Sik; Roe, Jung-Hye
2004-01-09
sigmaR is a sigma factor for transcribing genes to defend cells against oxidative stresses in the antibiotic-producing bacterium Streptomyces coelicolor. The availability of sigmaR is regulated by RsrA, an anti-sigma factor, whose sigmaR-binding activity is regulated by redox changes in the environment, via thiol-disulfide exchange. We found that reduced RsrA contains zinc in a stoichiometric amount, whereas oxidized form has very little: 1 mol of zinc per mol of RsrA was released upon oxidation as monitored by a chromogenic Zn-chelator, 4-(2-pyridylazo)-resorcinol (PAR). Measurement of zinc bound in several RsrA mutants of various cysteine and histidine substitutions suggested that C3, H7, C41, and C44 serve as zinc-binding sites. The zinc-binding and sigmaR-binding activities of mutant proteins did not coincide, suggesting that zinc might not be absolutely required for the anti-sigma activity of RsrA. Zn-free apo-RsrA bound sigmaR and inhibited sigmaR-dependent transcription in vitro. Compared with Zn-RsrA, the anti-transcription activity of apo-RsrA was about threefold lower and its sigmaR-binding affinity decreased by about ninefold when measured by surface plasmon resonance analysis. Apo-RsrA was more sensitive to protease, suggesting that zinc allows RsrA to maintain a more compact structure, optimized for binding sigmaR. The cysteine pairs that form disulfide bonds were determined by MALDI-TOF mass spectrometry, revealing formation of the critical disulfide bond between C11 and one of the essential cysteine residues C41 or 44, most likely C44. An improved model for the mechanism of redox-modulation of RsrA was presented.
Gąciarz, Anna
2017-01-01
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the
Gąciarz, Anna; Ruddock, Lloyd W
2017-01-01
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-05-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-01-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M
2005-01-14
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.
Thiol/disulfide homeostasis in postmenopausal osteoporosis.
Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O
2017-04-01
To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p < 0.05). The native thiol/total thiol percent ratio was 85.6% ± 4.8 in group 1 and 73.8% ± 24.9 in group 2 (p = 0.01). The native thiol/total thiol percent ratio was significantly lower in group 2 after adjustment for the years since menopause and age (p < 0.05). Thiol/disulfide homeostasis shifted to the disulfide side independent of age and years since menopause in postmenopausal osteoporosis.
Scaling law on formation and rupture of a dynamical liquid bridge
NASA Astrophysics Data System (ADS)
Zhang, Huang; Zhang, Zehao; Liu, Qianfeng; Li, Shuiqing; Department of Thermal Engineering, Tsinghua University Collaboration; Institute of Nuclear Energy; Technology, Tsinghua University Collaboration
2017-11-01
The formation and breakup of a pendular liquid bridge in dynamic state is investigated experimentally. The experimental setup arises from a system to measure the coefficient of restitution (COR) of a glass sphere impacting and bouncing on a wetted surface. We compare the effect of surface tension and gravity on the liquid bridge rupture by the capillary length κ-1. For water and liquid 1 (50% water mixed with 50% glycerol), the gravity is dominant on the liquid bridge breakup. And we find that the rupture distance is in good linear trend with the non-dimensional number G by the scaling law analysis. Further, for liquid 2 (25% water mixed with 75% glycerol) that is relatively high viscous, the linear changing of the rupture distance with the capillary number Ca is found. The relation of the rupture distance with G and Ca would be helpful in understanding the complex behavior of the dynamical liquid bridge. This work was funded by the Major State Basic Research Development Program of China (Grant No. 2016YFC0203705) and the China Postdoctoral Science Foundation (Grant No. 2016M601024).
Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks
NASA Astrophysics Data System (ADS)
Rosenthal-Kim, Emily Quinn
The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight
Besir, Hüseyin
2017-01-01
Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for
van Anken, Eelco; Sanders, Rogier W.; Liscaljet, I. Marije; Land, Aafke; Bontjer, Ilja; Tillemans, Sonja; Nabatov, Alexey A.; Paxton, William A.; Berkhout, Ben
2008-01-01
Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins. PMID:18653472
Impaired Thiol-Disulfide Balance in Acute Brucellosis.
Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan
2017-05-24
The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p < 0.001, for both). The disulfide/native thiol ratios and disulfide/total thiol ratios were significantly higher, and native thiol/total thiol ratios were significantly lower in patients with acute brucellosis than in the healthy controls (p < 0.001, for all ratios). There were either positive or negative relationships between ceruloplasmin levels and thiol-disulfide parameters. The thiol-disulfide homeostasis was impaired in acute brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.
Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.
Xie, Tong; Yu, Linda; Bader, Martin W; Bardwell, James C A; Yu, Chang-An
2002-01-18
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.
Niu, Yingbo; Zhang, Lihui; Yu, Jiaojiao; Wang, Chih-chen; Wang, Lei
2016-01-01
The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway. PMID:26846856
The role of disulfide bond in hyperthermophilic endocellulase.
Kim, Han-Woo; Ishikawa, Kazuhiko
2013-07-01
The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.
Nakamura, Hitomi; Oda-Ueda, Naoko; Ueda, Tadashi; Ohkuri, Takatoshi
2018-01-01
We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH 1 and CL domains was deleted by substitution of Cys with Ala (Fab ΔSS ). DSC measurements showed that the Tm values of Fab ΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of Fab ΔSS . The resulting Fab (mutSS Fab ΔSS ) had the mutations H:V177C and L:Q160C in Fab ΔSS , confirming the formation of the disulfide bond between CH 1 and CL. The thermostability of mutSS Fab ΔSS was approximately 5 °C higher than that of Fab ΔSS . Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of Fab ΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation. Copyright © 2017 Elsevier Inc. All rights reserved.
Inoue, H; Hirobe, M
1987-05-29
The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.
Lei, Zhao; Chen, Xiao Dong
2016-01-01
N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644
Pompa, Andrea; Vitale, Alessandro
2006-01-01
Most seed storage proteins of the prolamin class accumulate in the endoplasmic reticulum (ER) as large insoluble polymers termed protein bodies (PBs), through mechanisms that are still poorly understood. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin γ-zein forms ER-located PBs. Zeolin has 6 Cys residues and, like γ-zein with 15 residues, is insoluble unless reduced. The contribution of disulfide bonds to zeolin destiny was determined by studying in vivo the effects of 2-mercaptoethanol (2-ME) and by zeolin mutagenesis. We show that in tobacco (Nicotiana tabacum) protoplasts, 2-ME enhances interactions of newly synthesized proteins with the ER chaperone BiP and inhibits the secretory traffic of soluble proteins with or without disulfide bonds. In spite of this general inhibition, 2-ME enhances the solubility of zeolin and relieves its retention in the ER, resulting in increased zeolin traffic. Consistently, mutated zeolin unable to form disulfide bonds is soluble and efficiently enters the secretory traffic without 2-ME treatment. We conclude that disulfide bonds that lead to insolubilization are a determinant for PB-mediated protein accumulation in the ER. PMID:17041149
Yuen, Christen Y L; Shek, Roger; Kang, Byung-Ho; Matsumoto, Kristie; Cho, Eun Ju; Christopher, David A
2016-08-22
In eukaryotes, classical protein disulfide isomerases (PDIs) facilitate the oxidative folding of nascent secretory proteins in the endoplasmic reticulum by catalyzing the formation, breakage, and rearrangement of disulfide bonds. Terrestrial plants encode six structurally distinct subfamilies of PDIs. The novel PDI-B subfamily is unique to terrestrial plants, and in Arabidopsis is represented by a single member, PDI8. Unlike classical PDIs, which lack transmembrane domains (TMDs), PDI8 is unique in that it has a C-terminal TMD and a single N-terminal thioredoxin domain (instead of two). No PDI8 isoforms have been experimentally characterized to date. Here we describe the characterization of the membrane orientation, expression, sub-cellular localization, and biochemical function of this novel member of the PDI family. Histochemical staining of plants harboring a PDI8 promoter:β-glucuronidase (GUS) fusion revealed that the PDI8 promoter is highly active in young, expanding leaves, the guard cells of cotyledons, and in the vasculature of several organs, including roots, leaves, cotyledons, and flowers. Immunoelectron microscopy studies using a PDI8-specific antibody on root and shoot apical cells revealed that PDI8 localizes to the endoplasmic reticulum (ER). Transient expression of two PDI8 fusions to green fluorescent protein (spGFP-PDI8 and PDI8-GFP-KKED) in leaf mesophyll protoplasts also resulted in labeling of the ER. Protease-protection immunoblot analysis indicated that PDI8 is a type I membrane protein, with its catalytic domain facing the ER lumen. The lumenal portion of PDI8 was able to functionally complement the loss of the prokaryotic protein foldase, disulfide oxidase (DsbA), as demonstrated by the reconstitution of periplasmic alkaline phosphatase in Escherichia coli. The results indicate that PDI8 is a type I transmembrane protein with its catalytic domain facing the lumen of the ER and functions in the oxidation of cysteines to produce disulfide
Nicolardi, Simone; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M
2014-06-03
Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.
Transfer of molybdenum disulfide to various metals
NASA Technical Reports Server (NTRS)
Barton, G. C.; Pepper, S. V.
1977-01-01
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Srouji, R. G.; Hansen, S. O.
2017-12-01
The technology development within the structural design of long-span bridges in Norwegian fjords has created a need for reformulating the calculation format and the physical quantities used to describe the properties of wind and the associated wind-induced effects on bridge decks. Parts of a new probabilistic format describing the incoming, undisturbed wind is presented. It is expected that a fixed probabilistic format will facilitate a more physically consistent and precise description of the wind conditions, which in turn increase the accuracy and considerably reduce uncertainties in wind load assessments. Because the format is probabilistic, a quantification of the level of safety and uncertainty in predicted wind loads is readily accessible. A simple buffeting response calculation demonstrates the use of probabilistic wind data in the assessment of wind loads and responses. Furthermore, vortex-induced fatigue damage is discussed in relation to probabilistic wind turbulence data and response measurements from wind tunnel tests.
Uchimura, Hiromasa; Kim, Yusam; Mizuguchi, Takaaki; Kiso, Yoshiaki; Saito, Kazuki
2011-01-01
A concise method was developed for quantifying native disulfide-bond formation in proteins using isotopically labeled internal standards, which were easily prepared with proteolytic 18O-labeling. As the method has much higher throughput to estimate the amounts of fragments possessing native disulfide arrangements by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) than the conventional high performance liquid chromatography (HPLC) analyses, it allows many different experimental conditions to be assessed in a short time. The method was applied to refolding experiments of a recombinant neuregulin 1-β1 EGF-like motif (NRG1-β1), and the optimum conditions for preparing native NRG1-β1 were obtained by quantitative comparisons. Protein disulfide isomerase (PDI) was most effective at the reduced/oxidized glutathione ratio of 2:1 for refolding the denatured sample NRG1-β1 with the native disulfide bonds. PMID:21500299
Chen, Chen; Wang, Jiahong; Cai, Ruiping; Yuan, Yanmeng; Guo, Zhanyun; Grewer, Christof; Zhang, Zhou
2016-01-01
Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins.
21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide complex...
21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide complex...
Integrated Risk Information System (IRIS)
Carbon disulfide ; CASRN 75 - 15 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E
Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin
NASA Astrophysics Data System (ADS)
Raven, M. R.; Adkins, J. F.; Sessions, A. L.
2013-12-01
The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to
A PDI-catalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero1.
Ramming, Thomas; Okumura, Masaki; Kanemura, Shingo; Baday, Sefer; Birk, Julia; Moes, Suzette; Spiess, Martin; Jenö, Paul; Bernèche, Simon; Inaba, Kenji; Appenzeller-Herzog, Christian
2015-06-01
Oxidative folding in the endoplasmic reticulum (ER) involves ER oxidoreductin 1 (Ero1)-mediated disulfide formation in protein disulfide isomerase (PDI). In this process, Ero1 consumes oxygen (O2) and releases hydrogen peroxide (H2O2), but none of the published Ero1 crystal structures reveal any potential pathway for entry and exit of these reactants. We report that additional mutation of the Cys(208)-Cys(241) disulfide in hyperactive Ero1α (Ero1α-C104A/C131A) potentiates H2O2 production, ER oxidation, and cell toxicity. This disulfide clamps two helices that seal the flavin cofactor where O2 is reduced to H2O2. Through its carboxyterminal active site, PDI unlocks this seal by forming a Cys(208)/Cys(241)-dependent mixed-disulfide complex with Ero1α. The H2O2-detoxifying glutathione peroxidase 8 also binds to the Cys(208)/Cys(241) loop region. Supported by O2 diffusion simulations, these data describe the first enzymatically controlled O2 access into a flavoprotein active site, provide molecular-level understanding of Ero1α regulation and H2O2 production/detoxification, and establish the deleterious consequences of constitutive Ero1 activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R
2016-11-01
Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide
Nassal, M; Rieger, A
1993-01-01
Hepatitis B virus, the prototypic member of the Hepadnaviridae, is a small enveloped DNA virus that replicates via reverse transcription. Efficient usage of its compact 3.2-kb genome is exemplified by the pre-C/C gene from which two proteins with largely overlapping primary sequences but distinctly different properties are synthesized: the self-assembling core protein p21c (hepatitis B core antigen [HbcAg]) and the secretory, nonparticulate protein p17e (hepatitis B e antigen [HbeAg]). Mature p17e carries a 10-amino-acid N-terminal extension with a Cys residue (Cys-7). Using transient transfection of a human liver cell line with constructs expressing wild-type p17 or a series of Cys mutants of p17, we show that Cys-7 forms an intramolecular S-S bond to Cys61, which in assembly-competent core proteins is available for intermolecular disulfide bonds between two neighboring subunits. Removal of the Cys-7/Cys61 bond by mutating either residue has differential effects: in the absence of Cys-7, secretion is relatively efficient and independent of Cys61; however, the molecules are exported as homodimers exhibiting both HBe and HBc antigenicity. In the absence of Cys61, the nonpaired Cys-7 interferes with secretion efficiency. The amino acid sequence flanking Cys-7 also contributes to the formation of the proper intramolecular S-S bond. These results suggest that the Cys-7/Cys61 bond imposes on p17e a conformation that is critical for its secretion and distinct biophysical and antigenic properties. This mechanism adds selective disulfide formation to the repertoire of hepatitis B virus for efficient use of its tiny genome. Images PMID:8510224
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may...
40 CFR 180.467 - Carbon disulfide; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on the...
Soft Computing Methods for Disulfide Connectivity Prediction.
Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.
Levin, Lihie; Zelzion, Ehud; Nachliel, Esther; Gutman, Menachem; Tsfadia, Yossi; Einav, Yulia
2013-01-01
The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567–Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process. PMID:23527123
Rich, Alisa L; Patel, Jay T
2015-01-01
Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.
Kirkpatrick, D L
1989-01-01
The reactions between the cellular tripeptide, glutathione (GSH) and four disulfide derivatives of 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) (compounds 1-4) were studied kinetically. The decyl and phenyl derivatives of 6-MP and 6-TG were reacted with GSH in phosphate buffer (pH 7.4 or 6.0) at 25.0 degrees C and were monitored spectrophotometrically by observing the release of 6-MP and 6-TG. Second order kinetics were observed, with rate constants of 142, 564, 4174 and 429 M-1 s-1 being measured for compounds 1-4, respectively. When the reactions were carried out in the presence of GSH-S-transferase the rates were enhanced 1.3-5.4 times those observed in the absence of enzyme. Products of the reactions were isolated by chromatography and tentatively identified by TLC or fast atom bombardment mass spectrometry. It was observed that GSH reacted with each disulfide in a 1:1 manner, forming a mixed disulfide between GSH and decanethiol or thiophenol while releasing 6-MP or 6-TG. It was concluded that the reported depletion of GSH from EMT6 cells after exposure to these disulfides could be due to their reaction with GSH, and the formation of the mixed disulfides.
Jensen, Dorthe H.; Jetten, Jolanda
2015-01-01
It is increasingly recognized that graduates’ achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students’ socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students’ professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students’ parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students’ professional identity
Jensen, Dorthe H; Jetten, Jolanda
2015-01-01
It is increasingly recognized that graduates' achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students' socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students' professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students' parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students' professional identity development.
Chen, Anwei; Shang, Cui; Shao, Jihai; Lin, Yiqing; Luo, Si; Zhang, Jiachao; Huang, Hongli; Lei, Ming; Zeng, Qingru
2017-01-02
A novel composite of carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III), i.e., MMIC-Fe(III) composite, was prepared as an efficient adsorbent for the simultaneous removal of tetracycline (TC) and Cd(II). This adsorbent showed excellent performance in removing TC and Cd(II) due to its rapid kinetics, high adsorption capacity, good reusability, and was well suited for use with real water samples. Kinetics studies demonstrated that the adsorption proceeded according to a pseudo-second order model. The adsorption isotherms were well described by the Langmuir model, with maximum adsorption capacity for TC and Cd(II) being 516.29 and 194.31mg/g, respectively. The synergistic effect of TC and Cd(II) adsorption might be due to the formation of TC-Cd(II) complex bridging the adsorbate and adsorbent. These properties demonstrate the potential application of MMIC-Fe(III) for the simultaneous removal of TC and Cd(II), and may provide some information for the synergistic removal of antibiotics and heavy metals from aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie
2018-05-16
The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.
Ding, Haitao; Gao, Fen; Liu, Danfeng; Li, Zeli; Xu, Xiaohong; Wu, Min; Zhao, Yuhua
2013-12-10
Rational design was applied to glucose 1-dehydrogenase (LsGDH) from Lysinibacillus sphaericus G10 to improve its thermal stability by introduction of disulfide bridges between subunits. One out of the eleven mutants, designated as DS255, displayed significantly enhanced thermal stability with considerable soluble expression and high specific activity. It was extremely stable at pH ranging from 4.5 to 10.5, as it retained nearly 100% activity after incubating at different buffers for 1h. Mutant DS255 also exhibited high thermostability, having a half-life of 9900min at 50°C, which was 1868-fold as that of its wild type. Moreover, both of the increased free energy of denaturation and decreased entropy of denaturation of DS255 suggested that the enzyme structure was stabilized by the engineered disulfide bonds. On account of its robust stability, mutant DS255 would be a competitive candidate in practical applications of chiral chemicals synthesis, biofuel cells and glucose biosensors. Copyright © 2013 Elsevier Inc. All rights reserved.
Sobierajska, Katarzyna; Skurzynski, Szymon; Stasiak, Marta; Kryczka, Jakub; Cierniewski, Czeslaw S.; Swiatkowska, Maria
2014-01-01
Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa. Specific interaction of both proteins was demonstrated by a solid phase binding assay, surface plasmon resonance analysis, and immunoprecipitation experiments. Second, using confocal microscopy, we found that both proteins colocalized when spreading MEG-01 cells on fibronectin. Colocalization of PDI and β-actin could be abolished by the membrane-permeable sulfhydryl blocker, N-ethylmaleimide, by the RGD peptide, and by anti-αIIbβ3 antibodies. Consequently, down-regulation of PDI expression by antisense oligonucleotides impaired the spreading of cells and initiated reorganization of the cytoskeleton. Third, because of transfection experiments followed by immunoprecipitation and confocal analysis, we provided evidence that PDI binds to the β-actin Cys374 thiol. Formation of the β-actin-PDI complex was mediated by integrin-dependent signaling in response to the adhesion of cells to the extracellular matrix. Our data suggest that PDI is released from subcellular compartments to the cytosol and translocated toward the periphery of the cell, where it forms a disulfide bond with β-actin when MEG-01 cells adhere via the αIIbβ3 integrin to fibronectin. Thus, PDI appears to regulate cytoskeletal reorganization by the thiol-disulfide exchange in β-actin via a redox-dependent mechanism. PMID:24415753
Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curbo, Sophie; Gaudin, Raphael; Carlsten, Mattias
2009-12-25
Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4R{alpha} receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown tomore » be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.« less
MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis
Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui
2017-01-01
Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α–induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis. PMID:28827318
MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.
Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao
2017-09-05
Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.
Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.
Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng
2015-12-01
As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.
Enhancing protein stability with extended disulfide bonds
Liu, Tao; Wang, Yan; Luo, Xiaozhou; ...
2016-05-09
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less
NASA Astrophysics Data System (ADS)
Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.
2016-06-01
Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.
21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c) Conditions...
Bai, Shouli; Chen, Qingshuo; Lu, Chao; Lin, Jin-Ming
2013-03-20
In general, the reduction of disulfide bonds with tris(2-carboxyethyl)phosphine (TCEP) is performed using off-line operation, which is not only time-consuming but also vulnerable to the spontaneous re-oxidation of thiols during sample preparation and subsequent analysis procedures. To the best of our knowledge, there has been not any case on the on-line reduction for biological disulfides coupled with high performance liquid chromatography (HPLC). In this study, these obstacles are overcome by packing Zn(II)-TCEP complexes into a home-made column. The as-synthesized Zn(II)-TCEP complexes enable efficient reduction of disulfide bonds at pH 3.0. This acidic pH value was compatible with that of the mobile phase for HPLC separation of thiols and disulfides. Therefore, using fluorosurfactant-prepared triangular gold nanoparticles as HPLC postcolumn specific chemiluminescence (CL) reagents for thiols, the feasibility of the established on-line reduction column has been confirmed for the direct identification of both thiols and disulfides by incorporating this reduction column into a single chromatographic separation. Detection limits for these analytes range from 8.3 to 25.4 nM and the linear range in a log-log plot can comprise three orders of magnitude. Finally, the utility of this automated on-line reduction of disulfides-HPLC-CL system has been demonstrated for the reliable determination of thiols and disulfides in human urine and plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.
2015-12-01
RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.
Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather
2018-04-01
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass
Attallah, Carolina; Aguilar, María Fernanda; Garay, A Sergio; Herrera, Fernando E; Etcheverrigaray, Marina; Oggero, Marcos; Rodrigues, Daniel E
2017-10-01
The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: V H 22 and V H 92 in the variable heavy chain (V H ) and V L 23, V L 87 and V L 88 in the variable light chain (V L ). The influence of two unusual contiguous Cys at positions V L 87 and V L 88 was studied by considering the wild type fragment and mutant variants: V L -C88S, V L -C87S, V L -C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that V L -C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the V L -C87 by a usual residue at this position like Tyr caused distant structural changes at the V H region that confers a higher mobility to the V H -CDR2 and V H -CDR3 loops improving the scFv binding to the antigen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J
2006-12-05
We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.
Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang
2016-08-26
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection.
Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang
2016-01-01
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370
Fire Control Agent Effectiveness for Hazardous Chemical Fires: Carbon Disulfide.
1981-01-01
Fires..................................... 46 12. AFFF Fire Control Data for Carbon Disulfide Fires............................. 47 13. Extinguishment...Disulfide and Hexane Fires ....... 67 22. Comparison of AFFF Fire Control Times for Carbon Disulfide and Hexane Fires ................... 68 23. Comparison of...Data .............. 27 2. Summary of Fluoroprotein Foam Fire Test Data ....... 28 3. Summary of AFFF Fire Test Data ..................... 29 4. Summary
Louzada, Ruy Andrade; Corre, Raphaël; Ameziane-El-Hassani, Rabii; Hecht, Fabio; Cazarin de Menezes, Juliana; Buffet, Camille; Carvalho, Denise P; Dupuy, Corinne
2018-05-30
Dual oxidases (DUOX1 and DUOX2) were initially identified as H2O2 sources involved in thyroid hormone synthesis. Congenital hypothyroidism (CH) resulting essentially from inactivating mutations of the DUOX2 gene highlighted that DUOX2 is the major H2O2 provider to thyroperoxidase. The role of DUOX1 in the thyroid remains unknown. A recent study suggests that it could compensate for the DUOX2 deficiency in CH. Both DUOX and their maturation factors DUOXA form a stable complex at the cell surface, which is fundamental for their respective enzymatic activity. Recently, intra- and intermolecular disulfide bridges were identified that are essential for the structure and the function of the complex DUOX2-DUOXA2. In this study, we investigated the involvement of cysteine residues conserved in DUOX1 towards the formation of disulfide bridges, which could be important for the function of the DUOX1-DUOXA1 complex. To analyse the role of these cysteine residues in both the targeting and function of dual oxidase, different human DUOX1 mutants were constructed, where the cysteine residues were replaced with glycine. The effect of these mutations on the cell surface expression and H2O2-generating activity of the complex DUOX1-DUOXA1 was analysed. Mutations of two cysteine residues (cys-118 and cys-1165), involved in the formation of the intramolecular disulfide bridge between the N-terminal ectodomain and one of the extracellular loops, mildly altered the function and the targeting of DUOX1, while this bridge is crucial for DUOX2 function. Unlike DUOXA2, with respect to DUOX2, the stability of the maturation factor DUOXA1 is not dependent on the oxidative folding of DUOX1. Only mutation of cys-579 induced a strong alteration of both targeting and function of the oxidase by preventing the covalent interaction between DUOX1 and DUOXA1 Conclusion: It is an intermolecular disulfide bridge and not an intramolecular disulfide bridge that is important in both the trafficking and H2O2
Logan, Todd; Clark, Lindsay; Ray, Soumya S
2010-07-13
Loss-of-function mutations such as L166P, A104T, and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson's disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. To look for common dynamical signatures among the DJ-1 mutants, short MD simulations of up to 1000 ps were conducted to identify the weakest region of the protein (residues 38-70). In an attempt to stabilize the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the preexisting Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, improved their ability to scavenge reactive oxygen species (ROS), and restored a chaperone-like function of blocking alpha-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of the V51C mutation. The results presented here point to the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics.
Barinova, K V; Serebryakova, M V; Muronetz, V I; Schmalhausen, E V
2017-12-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic protein involved in numerous non-glycolytic functions. S-glutathionylated GAPDH was revealed in plant and animal tissues. The role of GAPDH S-glutathionylation is not fully understood. Rabbit muscle GAPDH was S-glutathionylated in the presence of H 2 O 2 and reduced glutathione (GSH). The modified protein was assayed by MALDI-MS analysis, differential scanning calorimetry, dynamic light scattering, and ultracentrifugation. Incubation of GAPDH in the presence of H 2 O 2 together with GSH resulted in the complete inactivation of the enzyme. In contrast to irreversible oxidation of GAPDH by H 2 O 2 , this modification could be reversed in the excess of GSH or dithiothreitol. By data of MALDI-MS analysis, the modified protein contained both mixed disulfide between Cys150 and GSH and the intrasubunit disulfide bond between Cys150 and Cys154 (different subunits of tetrameric GAPDH may contain different products). S-glutathionylation results in loosening of the tertiary structure of GAPDH, decreases its affinity to NAD + and thermal stability. The mixed disulfide between Cys150 and GSH is an intermediate product of S-glutathionylation: its subsequent reaction with Cys154 results in the intrasubunit disulfide bond in the active site of GAPDH. The mixed disulfide and the C150-C154 disulfide bond protect GAPDH from irreversible oxidation and can be reduced in the excess of thiols. Conformational changes that were observed in S-glutathionylated GAPDH may affect interactions between GAPDH and other proteins (ligands), suggesting the role of S-glutathionylation in the redox signaling. The manuscript considers one of the possible mechanisms of redox regulation of cell functions. Copyright © 2017 Elsevier B.V. All rights reserved.
Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes.
Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G; Qin, Ling; Zheng, Yi; Handel, Tracy M
2016-01-01
Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. © 2016 Elsevier Inc. All rights reserved.
Ji, Xiaoxiao; Tong, Peng; Yang, Dawei; Wang, Baomin; Zhao, Jinfeng; Li, Yang; Qu, Jingping
2017-03-21
The treatment of [Cp*Fe(μ-η 2 :η 4 -bdt)FeCp*] (1, Cp* = η 5 -C 5 Me 5 , bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S 8 ) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η 2 :η 2 -bdt)(cis-μ-η 1 :η 1 -S 2 )FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S 8 , another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C 6 H 4 S 2 ))(cis-μ-η 1 :η 1 -S 2 )FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)} 2 (trans-μ-η 1 :η 1 -S 2 )] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S 8 , which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η 2 :η 2 -S 2 )(cis-μ-η 1 :η 1 -S 2 )FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1 H NMR spectroscopy.
Thiol/disulfide homeostasis in patients with ankylosing spondylitis
Dogru, Atalay; Balkarli, Ayse; Cetin, Gozde Yildirim; Neselioglu, Salim; Erel, Ozcan; Tunc, Sevket Ercan; Sahin, Mehmet
2016-01-01
Ankylosing spondylitis (AS) is a chronic inflammatory disease. In many inflammatory diseases, increased production of pro-inflammatory cytokines is associated with an increase in oxidative stress mediators. Thiol/disulfide homeostasis is a marker for oxidative stress. The aim of this study was to examine the dynamic thiol/disulfide homeostasis in AS. Sixty-nine patients with AS and 60 age- and sex-matched controls were included in the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and visual analogue scale (VAS) were used to determine the disease activity. Native thiol, total thiol, and disulfide levels were measured with a novel automated method recently described by Erel and Neselioglu. The aforementioned method is also optionally manual spectrophotometric assay. The total thiol levels were significantly lower in the AS group compared with the control group (p = 0.03). When the patients were divided into active (n = 35) and inactive (n = 34) subgroups using BASDAI scores, the native plasma thiol and total thiol levels were significantly lower in the active AS patients compared to the inactive AS patients (p = 0.02, p = 0.03 respectively). There was a negative correlation between the plasma native thiol levels and VAS, BASDAI scores. Thiol/disulfide homeostasis may be used for elucidating the effects of oxidative stress in AS. Understanding the role of thiol/disulfide homeostasis in AS might provide new therapeutic intervention strategies for patients. PMID:27186972
Thiol/disulfide redox states in signaling and sensing
Go, Young-Mi; Jones, Dean P.
2015-01-01
Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510
Nagao, Junya; Miyashita, Masahiro; Nakagawa, Yoshiaki; Miyagawa, Hisashi
2015-08-01
La1 is a 73-residue cysteine-rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N-acylurea approach with Fmoc-SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Sagong, Hye-Young; Kim, Kyung-Jin
2017-01-01
Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.
Dynamic disulfide/thiol homeostasis in lead exposure denoted by a novel method.
Bal, Ceylan; Ağış, Erol Rauf; Gündüzöz, Meşide; Büyükşekerci, Murat; Alışık, Murat; Şen, Orhan; Tutkun, Engin; Yılmaz, Ömer Hınç
2017-05-01
Lead is a toxic heavy metal, and prevention of human exposure to lead has not been accomplished yet. The toxicity of lead is continually being investigated, and the molecular mechanisms of its toxicity are still being revealed. In this study, we used a novel method to examine thiol (SH)/disulfide homeostasis in workers who were occupationally exposed to lead. A total of 80 such workers and 70 control subjects were evaluated, and their native and total SH values were measured in serum using a novel method; their blood lead levels were also assessed. The novel method used for SH measurements was based on the principle of measuring native SH, after which disulfide bonds were reduced and total SHs were measured. These measurements allowed us to calculate disulfide amounts, disulfide/total SH percent ratios, disulfide/native SH percent ratios, and native SH /total SH percent ratios. We found that disulfide levels were significantly higher in workers who were exposed to lead (21.08(11.1-53.6) vs. 17.9(1.7-25), p < 0.001). Additionally, the disulfide/native SH and disulfide/total SH percent ratios were higher in exposed workers, while the native SH/total SH percent ratios were higher in the control subjects. Furthermore, the lead and disulfide levels showed a positive correlation, with p < 0.001 and a correlation coefficient of 0.378. Finally, the novel method used in this study successfully showed a switch from SH to disulfide after lead exposure, and the method is fully automated, easy, cheap, reliable, and reproducible. Use of this method in future cases may provide valuable insights into the management of lead exposure.
A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.
Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed
2012-08-24
We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.
PSMA-targeted bispecific Fab conjugates that engage T cells.
Patterson, James T; Isaacson, Jason; Kerwin, Lisa; Atassi, Ghazi; Duggal, Rohit; Bresson, Damien; Zhu, Tong; Zhou, Heyue; Fu, Yanwen; Kaufmann, Gunnar F
2017-12-15
Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity. Copyright © 2017. Published by Elsevier Ltd.
Simakov, Nikolay; Leonard, David A.; Smith, Jeremy C.; ...
2016-09-26
Widespread antibiotic resistance, particularly when mediated by broad-spectrum β-lactamases, has major implications for public health. Substitutions in the active site often allow broad-spectrum enzymes to accommodate diverse types of β-lactams. Substitutions observed outside the active site are thought to compensate for the loss of thermal stability. The OXA-1 clade of class D β-lactamases contains a pair of conserved cysteines located outside the active site that forms a disulfide bond in the periplasm. In this paper, the effect of the distal disulfide bond on the structure and dynamics of OXA-1 was investigated via 4 μs molecular dynamics simulations. The results revealmore » that the disulfide promotes the preorganized orientation of the catalytic residues and affects the conformation of the functionally important Ω loop. Furthermore, principal component analysis reveals differences in the global dynamics between the oxidized and reduced forms, especially in the motions involving the Ω loop. A dynamical network analysis indicates that, in the oxidized form, in addition to its role in ligand binding, the KTG family motif is a central hub of the global dynamics. Finally, as activity of OXA-1 has been measured only in the reduced form, we suggest that accurate assessment of its functional profile would require oxidative conditions mimicking periplasm.« less
Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice
Philippi, Vanessa; Stockhausen, Sven; Busse, Johanna; Antonelli, Antonella; Miller, Meike; Schubert, Irene; Hoseinpour, Parandis; Chandraratne, Sue; von Brühl, Marie-Luise; Gaertner, Florian; Lorenz, Michael; Agresti, Alessandra; Coletti, Raffaele; Antoine, Daniel J.; Heermann, Ralf; Jung, Kirsten; Reese, Sven; Laitinen, Iina; Schwaiger, Markus; Walch, Axel; Sperandio, Markus; Nawroth, Peter P.; Reinhardt, Christoph; Jäckel, Sven; Bianchi, Marco E.; Massberg, Steffen
2016-01-01
Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1−/− chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis. PMID:27574188
Karamoko, Mohamed; Cline, Sara; Redding, Kevin; Ruiz, Natividad; Hamel, Patrice P.
2011-01-01
Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond–forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b6f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment. PMID:22209765
NASA Astrophysics Data System (ADS)
Amalric, Julien; Marchand-Brynaert, Jacqueline
2011-12-01
A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.
Beta-endorphin. Synthesis and biological activity of analogs with disulfide bridges.
Blake, J; Helmeste, D M; Li, C H
1985-06-01
Two analogs of human beta-endorphin (beta-EP) which contain cystine bridges, [Cys15-Cys26,Phe27,Gly31]-beta-EP (I) and [Cys16-Cys26,Phe27,Gly31]-beta-EP (II), were synthesized by the solid-phase method. Peptides I and II were shown to contain 2-2.5 times the opiate receptor binding activity of beta-endorphin. We also synthesized two analogs with reduced alkylated cysteine residues and these peptides, [Arg9,19,24,28,29 Cys(Cam)11,26,Phe27,Gly31] and [Arg9,19,24,28,29,Cys-(Cam)12,26,Phe27,Gly31], were shown to have approximately the same opiate receptor activity as beta-endorphin.
Mao, X Y; Tong, P S; Gualco, S; Vink, S
2012-07-01
We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Niyitanga, Theophile; Jeong, Hae Kyung
2018-05-01
Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.
Design of new disulfide-based organic compounds for the improvement of self-healing materials.
Matxain, Jon M; Asua, José M; Ruipérez, Fernando
2016-01-21
Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these
40 CFR 180.467 - Carbon disulfide; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Carbon disulfide; tolerances for residues. 180.467 Section 180.467 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.467 Carbon disulfide; tolerances for...
40 CFR 180.467 - Carbon disulfide; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Carbon disulfide; tolerances for residues. 180.467 Section 180.467 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.467 Carbon disulfide; tolerances for...
40 CFR 180.467 - Carbon disulfide; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Carbon disulfide; tolerances for residues. 180.467 Section 180.467 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.467 Carbon disulfide; tolerances for...
21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram of...
21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Shuyan; Sun, Cancan; Tan, Kemin
Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less
Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong
2018-05-16
A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rate limiting mechanisms in lithium-molybdenum disulfide batteries
NASA Astrophysics Data System (ADS)
Laman, F. C.; Stiles, J. A. R.; Brandt, K.; Shank, R. J.
1985-03-01
One limitation of secondary lithium batteries using intercalation cathodes is generally related to relatively low power densities. Significant advances towards overcoming this limitation have been made in cells based on a utilization of lithium-molybdenum disulfide technology. Rate limiting mechanisms in cells of the lithium-molybdenum disulfide system have been studied with the aid of a frequency response analysis. It was found that diffusion-related contributions to cell impedance, and interfacial and resistive contributions to cell impedance, can be readily segregated by virtue of the fact that the diffusion-controlled mechanisms dominate the low frequency end of the impedance spectra, while the other mechanisms dominate the high frequency end. The present investigation is concerned with rate limitations at the high end of the frequency spectrum in lithium-molybdenum disulfide cathodes.
46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section 151.50-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings...
Protein disulfide isomerase a multifunctional protein with multiple physiological roles
NASA Astrophysics Data System (ADS)
Ali Khan, Hyder; Mutus, Bulent
2014-08-01
Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.
GDAP: a web tool for genome-wide protein disulfide bond prediction.
O'Connor, Brian D; Yeates, Todd O
2004-07-01
The Genomic Disulfide Analysis Program (GDAP) provides web access to computationally predicted protein disulfide bonds for over one hundred microbial genomes, including both bacterial and achaeal species. In the GDAP process, sequences of unknown structure are mapped, when possible, to known homologous Protein Data Bank (PDB) structures, after which specific distance criteria are applied to predict disulfide bonds. GDAP also accepts user-supplied protein sequences and subsequently queries the PDB sequence database for the best matches, scans for possible disulfide bonds and returns the results to the client. These predictions are useful for a variety of applications and have previously been used to show a dramatic preference in certain thermophilic archaea and bacteria for disulfide bonds within intracellular proteins. Given the central role these stabilizing, covalent bonds play in such organisms, the predictions available from GDAP provide a rich data source for designing site-directed mutants with more stable thermal profiles. The GDAP web application is a gateway to this information and can be used to understand the role disulfide bonds play in protein stability both in these unusual organisms and in sequences of interest to the individual researcher. The prediction server can be accessed at http://www.doe-mbi.ucla.edu/Services/GDAP.
Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.
Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper
2016-11-01
We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.
Disulfide oil hazard assessment using categorical analysis and a mode of action determination.
Morgott, David; Lewis, Christopher; Bootman, James; Banton, Marcy
2014-01-01
Diethyl and diphenyl disulfides, naphtha sweetening (Chemical Abstracts Service [CAS] # 68955-96-4), are primarily composed of low-molecular-weight dialkyl disulfides extracted from C4 to C5 light hydrocarbon streams during the refining of crude oil. The substance, commonly known as disulfide oil (DSO), can be composed of up to 17 different disulfides and trisulfides with monoalkyl chain lengths no greater than C4. The disulfides in DSO constitute a homologous series of chemical constituents that are perfectly suited for a hazard evaluation using a read-across/worst-case approach. The DSO constituents exhibit a common mode of action that is operable at all trophic levels. The observed oxidative stress response is mediated by reactive oxygen species and free radical intermediates generated after disulfide bond cleavage and subsequent redox cycling of the resulting mercaptan. Evidence indicates that the lowest series member, dimethyl disulfide (DMDS), can operate as a worst-case surrogate for other members of the series, since it displays the highest toxicity. Increasing the alkyl chain length or degree of substitution has been shown to serially reduce disulfide toxicity through resonance stabilization of the radical intermediate or steric inhibition of the initial enzymatic step. The following case study examines the mode of action for dialkyl disulfide toxicity and documents the use of read-across information from DMDS to assess the hazards of DSO. The results indicate that DSO possesses high aquatic toxicity, moderate environmental persistence, low to moderate acute toxicity, high repeated dose toxicity, and a low potential for genotoxicity, carcinogenicity, and reproductive/developmental effects.
Methods of measuring Protein Disulfide Isomerase activity: a critical overview
NASA Astrophysics Data System (ADS)
Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise
2014-09-01
Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.
Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis
2010-01-01
Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.
2016-01-01
Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.
ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface.
Tran, Tri M; Hong, Sohee; Edwan, Jehad H; Colbert, Robert A
2016-06-01
Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. Published by Elsevier Ltd.
ERAP1 Reduces Accumulation of Aberrant and Disulfide-Linked Forms of HLA-B27 on the Cell Surface
Tran, Tri; Hong, Sohee; Edwan, Jehad; Colbert, Robert A.
2016-01-01
Objective Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. Methods ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. Results ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Conclusions Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. PMID:27107845
Chim, Nicholas; Riley, Robert; The, Juliana; Im, Soyeon; Segelke, Brent; Lekin, Tim; Yu, Minmin; Hung, Li Wei; Terwilliger, Tom; Whitelegge, Julian P.; Goulding, Celia W.
2010-01-01
Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here we present structural, biochemical and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pKa for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein co-expression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicate anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions. PMID:20060836
Complete localization of disulfide bonds in GM2 activator protein.
Schütte, C. G.; Lemm, T.; Glombitza, G. J.; Sandhoff, K.
1998-01-01
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398). PMID:9568910
Peigneur, Steve; Paolini-Bertrand, Marianne; Gaertner, Hubert; Biass, Daniel; Violette, Aude; Stöcklin, Reto; Favreau, Philippe; Tytgat, Jan; Hartley, Oliver
2014-12-19
Conotoxins are venom peptides from cone snails with multiple disulfide bridges that provide a rigid structural scaffold. Typically acting on ion channels implicated in neurotransmission, conotoxins are of interest both as tools for pharmacological studies and as potential new medicines. δ-Conotoxins act by inhibiting inactivation of voltage-gated sodium channels (Nav). Their pharmacology has not been extensively studied because their highly hydrophobic character makes them difficult targets for chemical synthesis. Here we adopted an acid-cleavable solubility tag strategy that facilitated synthesis, purification, and directed disulfide bridge formation. Using this approach we readily produced three native δ-conotoxins from Conus consors plus two rationally designed hybrid peptides. We observed striking differences in Nav subtype selectivity across this group of compounds, which differ in primary structure at only three positions: 12, 23, and 25. Our results provide new insights into the structure-activity relationships underlying the Nav subtype selectivity of δ-conotoxins. Use of the acid-cleavable solubility tag strategy should facilitate synthesis of other hydrophobic peptides with complex disulfide bridge patterns. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Lim, Joel Louis; Tan, Kimberly-Anne
2017-01-01
This case report describes the first case of a bone bridge formation across the left L5/S1 neuroforamen after instrumented posterolateral fusion for L5/S1 isthmic spondylolisthesis. Our patient was a 70-year-old lady who had grade 2, L5/S1 isthmic spondylolisthesis and bilateral S1 nerve root compression. She suffered from mechanical low back pain and neurogenic claudication, with radicular pain over both S1 dermatomes. She underwent in-situ, instrumented, posterolateral fusion and was asymptomatic for more than 13 years before developing progressive onset of left radicular pain over the L5 dermatome. Imaging revealed a bisected left L5/S1 neuroforamen secondary to a bone bridge formation resulting in stenosis. The pars defect in this case may have had sufficient osteogenic and osteoinductive factors to heal following spinal stabilization. Although in-situ posterolateral fusion is an accepted surgical treatment for isthmic spondylolisthesis, surgeons should consider reduction of the spondylolisthesis and excision of the pars defects to avoid this possible long-term complication. PMID:28435923
Lim, Joel Louis; Tan, Kimberly-Anne; Hey, Hwee Weng Dennis
2017-03-01
This case report describes the first case of a bone bridge formation across the left L5/S1 neuroforamen after instrumented posterolateral fusion for L5/S1 isthmic spondylolisthesis. Our patient was a 70-year-old lady who had grade 2, L5/S1 isthmic spondylolisthesis and bilateral S1 nerve root compression. She suffered from mechanical low back pain and neurogenic claudication, with radicular pain over both S1 dermatomes. She underwent in-situ, instrumented, posterolateral fusion and was asymptomatic for more than 13 years before developing progressive onset of left radicular pain over the L5 dermatome. Imaging revealed a bisected left L5/S1 neuroforamen secondary to a bone bridge formation resulting in stenosis. The pars defect in this case may have had sufficient osteogenic and osteoinductive factors to heal following spinal stabilization. Although in-situ posterolateral fusion is an accepted surgical treatment for isthmic spondylolisthesis, surgeons should consider reduction of the spondylolisthesis and excision of the pars defects to avoid this possible long-term complication.
Bidasee, Keshore R; Nallani, Karuna; Besch, Henry R; Dincer, U Deniz
2003-06-01
In a previous study, we showed that after 6 weeks of streptozotocin-induced diabetes (6D), expression of type 2 ryanodine receptor calcium-release channels (RyR2) did not change significantly in rat hearts. However, the ability of this protein to bind [3H]ryanodine was compromised. Loss in activity therefore resulted from diabetes-induced increases in post-translational modifications on RyR2. In the present study, the effects of diabetes on one type of modification, namely, changes in oxidative state of reactive sulfhydryls was investigated. RyR2 protein from 6D bound 42.3 +/- 7.6 less [3H]ryanodine than RyR2 from controls (6C). The loss in binding was minimized with 2 weeks of insulin treatment initiated after 4 weeks of diabetes (77.8 +/- 5.5% of 6C). Pretreating RyR2 from 6D with 2 mM dithiothreitol in vitro increases [3H]ryanodine binding by 60.8 +/- 5.3%. Dithiothreitol pretreatment of RyR2 from 6C increased [3H]ryanodine binding by 16.8 +/- 4.3%. The reagent pyrocoll interacts with distinct classes of free sulfhydryl groups on 6C RyR2 to induce two major effects. At concentrations < or = 10 microM, it deactivates RyR2 (decreases [3H]ryanodine binding), whereas at higher concentrations it activates them (increases [3H]ryanodine binding). This reagent was unable to activate RyR2 from 6D. Although RyR2 from insulin-treated animals was deactivated by low concentrations of pyrocoll, it was only partially activated at higher concentrations. These data suggest that the dysfunction of RyR2 induced by diabetes may be due in part to formation of disulfide bonds between adjacent sulfhydryl groups and that these changes were attenuated with insulin treatment.
Structure and Expression of Genes for Flavivirus Immunogens
1988-02-01
regions, corresponding to amino acid residues 280 to 414 of the E protien , also reacted with 10 monoclonal antibodies (MAbs) generated against antigens... protien sequence. Furthermore, the presentation of these epitopes apparently requires the formation of a disulfide bridge between Cys-304 and Cys-335. 5
Engineered fluorescent proteins illuminate the bacterial periplasm
Dammeyer, Thorben; Tinnefeld, Philip
2012-01-01
The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins. PMID:24688673
Nam, Hanyeob; Kim, Hong-Seok; Han, Jae-Hee; Kwon, Sang Jik; Cho, Eou Sik
2018-09-01
As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.
The influence of disulfide bonds on the mechanical stability of proteins is context dependent.
Manteca, Aitor; Alonso-Caballero, Álvaro; Fertin, Marie; Poly, Simon; De Sancho, David; Perez-Jimenez, Raul
2017-08-11
Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Automated recording of bridge inspection data in the Pontis format.
DOT National Transportation Integrated Search
1995-04-01
A large percentage of bridges in the state of Iowa are classified as structurally or fiinctionally : deficient. These bridges annually compete for a share of Iowa's limited transportation budget. To : avoid an increase in the number of deficient brid...
Wu, Chuanliu; Wang, Shuo; Brülisauer, Lorine; Leroux, Jean-Christophe; Gauthier, Marc A
2013-07-08
Disulfide bonds stabilize the tertiary- and quaternary structure of proteins. In addition, they can be used to engineer redox-sensitive (bio)materials and drug-delivery systems. Many of these applications require control of the stability of the disulfide bond. It has recently been shown that the charged microenvironment of the disulfide can be used to alter their stability by ∼3 orders of magnitude in a predictable and finely tunable manner at acidic pH. The aim of this work is to extend these findings to physiological pH and to demonstrate the validity of this approach in complex redox milieu. Disulfide microenvironments were manipulated synergistically with steric hindrance herein to control disulfide bond stability over ∼3 orders of magnitude at neutral pH. Control of disulfide stability through microenvironmental effects could also be observed in complex redox buffers (including serum) and in the presence of cells. Such fine and predictable control of disulfide properties is not achievable using other existing approaches. These findings provide easily implementable and general tools for controlling the responsiveness of biomaterials and drug delivery systems toward various local endogenous redox environments.
2016-01-01
Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA. PMID:25584637
Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.
Castillo, Valentina; Oñate, Maritza; Woehlbier, Ute; Rozas, Pablo; Andreu, Catherine; Medinas, Danilo; Valdés, Pamela; Osorio, Fabiola; Mercado, Gabriela; Vidal, René L; Kerr, Bredford; Court, Felipe A; Hetz, Claudio
2015-01-01
ERp57 (also known as grp58 and PDIA3) is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER) stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.
Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and ERO1 in Soybean1[OPEN
Okuda, Aya; Masuda, Taro; Koishihara, Katsunori; Mita, Ryuta; Iwasaki, Kensuke; Hara, Kumiko; Naruo, Yurika; Hirose, Akiho; Tsuchi, Yuichiro
2016-01-01
Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the a′ domain among the a, a′, and b domains of GmPDIM. A disulfide bond introduced into the active center of the a′ domain of GmPDIM was shown to be transferred to the active center of the a domain of GmPDIM and the a domain of GmPDIM directly oxidized the active centers of both the a or a′ domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants. PMID:26645455
Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio
2017-07-28
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaluzhna, Oksana; Li, Ying; Allison, Thomas C.
2012-10-09
Inverse-micelle-encapsulated water formed in the two-phase Brust-Schiffrin method (BSM) synthesis of Au nanoparticles (NPs) is identified as essential for dialkyl diselenide/disulfide to react with the Au(III) complex in which the Se-Se/S-S bond is broken, leading to formation of higher-quality Au NPs.
Fabrication of inorganic molybdenum disulfide fullerenes by arc in water
NASA Astrophysics Data System (ADS)
Sano, Noriaki; Wang, Haolan; Chhowalla, Manish; Alexandrou, Ioannis; Amaratunga, Gehan A. J.; Naito, Masakazu; Kanki, Tatsuo
2003-01-01
Closed caged fullerene-like molybdenum disulfide (MoS 2) nano-particles were obtained via an arc discharge between a graphite cathode and a molybdenum anode filled with microscopic MoS 2 powder submerged in de-ionized water. A statistical study of over 150 polyhedral fullerene-like MoS 2 nano-particles in plan view transmission electron microscopy revealed that the majority consisted of 2-3 layers with diameters of 5-15 nm. We show that the nano-particles are formed by seamless folding of MoS 2 sheets. A model based on the agglomeration of MoS 2 fragments over an extreme temperature gradient around a plasma ball in water is proposed to explain the formation of nano-particles.
21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms. ...
Positions of disulfide bonds in rye (Secale cereale) seed chitinase-a.
Yamagami, T; Funatsu, G; Ishiguro, M
2000-06-01
The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.
Raman investigation of molybdenum disulfide with different polytypes
NASA Astrophysics Data System (ADS)
Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik
The Raman spectra of molybdenum disulfide (MoS2) with different polytypes are investigated. Although 2H-MoS2 is most common in nature, the 3R phase can exist due to a small difference in the formation energy. However, only a few studies are reported for the 3R phase, and most studies have focused on the 2H phase. We found the 2H, 3R and mixed phases of exfoliated few-layer MoS2 from natural molybdenite crystals. The crystal structures of 2H- and 3R-MoS2 are confirmed by the HR-TEM measurements. By using 3 different excitation energies, we compared the Raman spectra of different polytypes in detail. We show that the Raman spectroscopy can be used to identify not only the number of layers but also the polytypes of MoS2.
Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin.
Kamikubo, Yuichi; De Guzman, Roberto; Kroon, Gerard; Curriden, Scott; Neels, Jaap G; Churchill, Michael J; Dawson, Philip; Ołdziej, Stanisław; Jagielska, Anna; Scheraga, Harold A; Loskutoff, David J; Dyson, H Jane
2004-06-01
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is
Zanetti, Giulia; Azarnia Tehran, Domenico; Pirazzini, Marcon; Binz, Thomas; Shone, Clifford C; Fillo, Silvia; Lista, Florigio; Rossetto, Ornella; Montecucco, Cesare
2015-12-01
Botulinum neurotoxins (BoNTs) form a growing family of metalloproteases with a unique specificity either for VAMP, SNAP25 or syntaxin. The BoNTs are grouped in seven different serotypes indicated by letters from A to G. These neurotoxins enter the cytosol of nerve terminals via a 100 kDa chain which binds to the presynaptic membrane and assists the translocation of a 50 kDa metalloprotease chain. These two chains are linked by a single disulfide bridge which plays an essential role during the entry of the metalloprotease chain in the cytosol, but thereafter it has to be reduced to free the proteolytic activity. Its reduction is mediated by thioredoxin which is continuously regenerated by its reductase. Here we show that inhibitors of thioredoxin reductase or of thioredoxin prevent the specific proteolysis of VAMP by the four VAMP-specific BoNTs: type B, D, F and G. These compounds are effective not only in primary cultures of neurons, but also in preventing the in vivo mouse limb neuroparalysis. In addition, one of these inhibitors, Ebselen, largely protects mice from the death caused by a systemic injection. Together with recent results obtained with BoNTs specific for SNAP25 and syntaxin, the present data demonstrate the essential role of the thioredoxin-thioredoxin reductase system in reducing the interchain disulfide during the nerve intoxication mechanism of all serotypes. Therefore its inhibitors should be considered for a possible use to prevent botulism and for treating infant botulism. Copyright © 2015 Elsevier Inc. All rights reserved.
Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A
2015-11-15
The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.
Improvement of single domain antibody stability by disulfide bond introduction.
Hagihara, Yoshihisa; Saerens, Dirk
2012-01-01
The successful medical application of single domain antibodies largely depends on their functionality. This feature is partly determined by the intrinsic stability of the single domain. Therefore a lot of research has gone into the elucidation of rules to uniformly increase stability of antibodies. Recently, a novel intra-domain disulfide bond was independently discovered by two research groups, after either rational design or careful investigation of the naturally occurring camelid antibody repertoire. By introducing this particular disulfide bond within a single domain antibody, the conformational stability can be increased in general. In this chapter it is described how to introduce this extra intra-domain disulfide bond and how to estimate the biophysical and biochemical impact of this cystine on the domain.
Farajzadeh-Sheikh, Ahmad; Jolodar, Abbas; Ghaemmaghami, Shamsedin
2013-01-01
Scorpion venom glands produce some antimicrobial peptides (AMP) that can rapidly kill a broad range of microbes and have additional activities that impact on the quality and effectiveness of innate responses and inflammation. In this study, we reported the identification of a cDNA sequence encoding cysteine-free antimicrobial peptides isolated from venomous glands of this species. Total RNA was extracted from the Iranian mesobuthus eupeus venom glands, and cDNA was synthesized by using the modified oligo (dT). The cDNA was used as the template for applying Semi-nested RT- PCR technique. PCR Products were used for direct nucleotide sequencing and the results were compared with Gen Bank database. A 213 BP cDNA fragment encoding the entire coding region of an antimicrobial toxin from the Iranian scorpion M. Eupeus venom glands were isolated. The full-length sequence of the coding region was 210 BP contained an open reading frame of 70 amino with a predicted molecular mass of 7970.48 Da and theoretical Pi of 9.10. The open reading frame consists of 210 BP encoding a precursor of 70 amino acid residues, including a signal peptide of 23 residues a propertied of 7 residues, and a mature peptide of 34 residues with no disulfide bridge. The peptide has detectable sequence identity to the Lesser Asian mesobuthus eupeus MeVAMP-2 (98%), MeVAMP-9 (60%) and several previously described AMPs from other scorpion venoms including mesobuthus martensii (94%) and buthus occitanus Israelis (82%). The secondary structure of the peptide mainly consisted of α-helical structure which was generally conserved by previously reported scorpion counterparts. The phylogenetic analysis showed that the Iranian MeAMP-like toxin was similar but not identical with that of venom antimicrobial peptides from lesser Asian scorpion mesobuthus eupeus.
Krug, Ulrike; Zebisch, Matthias; Krauss, Michel; Sträter, Norbert
2012-01-01
The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3. PMID:22130673
Generating disulfides with the quiescin sulfhydryl oxidases
Heckler, Erin J.; Rancy, Pumtiwitt C.; Kodali, Vamsi K.; Thorpe, Colin
2008-01-01
The Quiescin-sulfhydryl oxidase (QSOX) family of flavoenzymes catalyzes the direct and facile insertion of disulfide bonds into unfolded reduced proteins with concomitant reduction of oxygen to hydrogen peroxide. This review discusses the chemical mechanism of these enzymes and the involvement of thioredoxin and flavin-binding domains in catalysis. The variability of CxxC motifs in the QSOX family is highlighted and attention is drawn to the steric factors that may promote efficient thiol/disulfide exchange during oxidative protein folding. The varied cellular location of these multi-domain sulfhydryl oxidases is reviewed and potential intracellular and extracellular roles are summarized. Finally, this review identifies important unresolved questions concerning this ancient family of sulfhydryl oxidases. PMID:17980160
NASA Astrophysics Data System (ADS)
Yeom, Bongjun; Char, Kookheon
2016-06-01
Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.
Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa
2016-01-01
Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. PMID:26289739
Site‐Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome
Kuan, Seah Ling; Wang, Tao
2016-01-01
Abstract The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site‐directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site‐selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications. PMID:27778400
ten Cate, A Tessa; Dankers, Patricia Y W; Sijbesma, Rint P; Meijer, E W
2005-07-22
Stereoselective cyclization of cystine-based bifunctional 2-ureido-4[1H]-pyrimidinone derivatives in CDCl(3) solutions was demonstrated by (1)H NMR spectroscopy. Thiolate-catalyzed disulfide exchange in solution led to the equilibration of different diastereomers of 1. At low concentrations, where formation of cyclic assemblies is the dominant mode of association, the molecules act as their own template. At these concentrations the meso diastereomer is formed preferentially, indicating a higher stability of its cyclic assemblies under the applied conditions, in comparison to the other diastereomers.
Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.
Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing
2015-02-11
A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.
Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa
2016-01-01
Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... carbon disulfide unless: (1) The containment system has a gas free certificate issued under the standards...
Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Gopalakrishnan, Ranganath; Schaer, Tifany; Marger, Fabrice; Hovius, Ruud; Bertrand, Daniel; Pojer, Florence; Heinis, Christian
2014-11-01
The disulfide bonds that form between two cysteine residues are important in defining and rigidifying the structures of proteins and peptides. In polypeptides containing multiple cysteine residues, disulfide isomerization can lead to multiple products with different biological activities. Here, we describe the development of a dithiol amino acid (Dtaa) that can form two disulfide bridges at a single amino acid site. Application of Dtaas to a serine protease inhibitor and a nicotinic acetylcholine receptor inhibitor that contain disulfide constraints enhanced their inhibitory activities 40- and 7.6-fold, respectively. X-ray crystallographic and NMR structure analysis show that the peptide ligands containing Dtaas have retained their native tertiary structures. We furthermore show that replacement of two cysteines by Dtaas can avoid the formation of disulfide bond isomers. With these properties, Dtaas are likely to have broad application in the rational design or directed evolution of peptides and proteins with high activity and stability.
A switch in disulfide linkage during minicollagen assembly in Hydra nematocysts.
Engel, U; Pertz, O; Fauser, C; Engel, J; David, C N; Holstein, T W
2001-06-15
The smallest known collagens with only 14 Gly-X-Y repeats referred to as minicollagens are the main constituents of the capsule wall of nematocysts. These are explosive organelles found in Hydra, jellyfish, corals and other Cnidaria. Minicollagen-1 of Hydra recombinantly expressed in mammalian 293 cells contains disulfide bonds within its N- and C-terminal Cys-rich domains but no interchain cross-links. It is soluble and self-associates through non-covalent interactions to form 25-nm-long trimeric helical rod-like molecules. We have used a polyclonal antibody prepared against the recombinant protein to follow the maturation of minicollagens from soluble precursors present in the endoplasmic reticulum and post-Golgi vacuoles to the disulfide-linked insoluble assembly form of the wall. The switch from intra- to intermolecular disulfide bonds is associated with 'hardening' of the capsule wall and provides an explanation for its high tensile strength and elasticity. The process is comparable to disulfide reshuffling between the NC1 domains of collagen IV in mammalian basement membranes.
21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1802 Piperazine-carbon disulfide comple...
In-Source Reduction of Disulfide-Bonded Peptides Monitored by Ion Mobility Mass Spectrometry
NASA Astrophysics Data System (ADS)
Stocks, Bradley B.; Melanson, Jeremy E.
2018-02-01
Many peptides with antimicrobial activity and/or therapeutic potential contain disulfide bonds as a means to enhance stability, and their quantitation is often performed using electrospray ionization mass spectrometry (ESI-MS). Disulfides can be reduced during ESI under commonly used instrument conditions, which has the potential to hinder accurate peptide quantitation. We demonstrate that this in-source reduction (ISR) is predominantly observed for peptides infused from acidic solutions and subjected to elevated ESI voltages (3-4 kV). ISR is readily apparent in the mass spectrum of oxytocin—a small, single disulfide-containing peptide. However, subtle m/z shifts due to partial ISR of highly charged (z ≥ 3) peptides with multiple disulfide linkages may proceed unnoticed. Ion mobility (IM)-MS separates ions on the basis of charge and shape in the gas phase, and using insulin as a model system, we show that IM-MS arrival time distributions (ATDs) are particularly sensitive to partial ISR of large peptides. Isotope modeling allows for the relative quantitation of disulfide-intact and partially reduced states of the mobility-separated peptide conformers. Interestingly, hepcidin peptides ionized from acidic solutions at elevated ESI voltages undergo gas-phase compaction, ostensibly due to partial disulfide ISR. Our IM-MS results lead us to propose that residual acid is the likely cause of disparate ATDs recently measured for hepcidin from different suppliers [Anal. Bioanal. Chem. 409, 2559-2567 (2017)]. Overall, our results demonstrate the utility of IM-MS to detect partial ISR of disulfide-bonded peptides and reinforce the notion that peptide/protein measurements should be carried out using minimally activating instrument conditions. [Figure not available: see fulltext.
Mohanram, Harini; Bhattacharjya, Surajit
2014-04-21
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.
Mohanram, Harini; Bhattacharjya, Surajit
2014-01-01
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules. PMID:24756162
Multiple system atrophy following chronic carbon disulfide exposure.
Frumkin, H
1998-01-01
Carbon disulfide toxicity is well characterized. The principal target organ is the nervous system, although cardiovascular, reproductive, ophthalmologic, and other effects are also recognized. The neurotoxicity manifests in three ways: encephalopathy, peripheral and cranial nerve dysfunction, and movement abnormalities. This report describes a case of olivopontocerebellar atrophy, a form of multiple system atrophy, developing in an adult after over 30 years of occupational exposure to carbon disulfide. The patient presented with the insidious onset of balance problems, impotence, and irritability, without tremor, cogwheel rigidity, bradykinesia, or changes in facial expression. Over the next few years severe ataxia developed, and the clinical diagnosis was confirmed with computed tomography and magnetic resonance imaging scans. The patient experienced multiple medical complications and died approximately 9 years after diagnosis. This case is consistent with a large body of clinical and experimental literature, much of it 50 years old, showing that carbon disulfide can cause movement disorders. It also serves as a reminder that movement disorders, ranging from parkinsonism to dystonia, are associated with a variety of toxic exposures such as manganese, carbon monoxide, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and medications. Images Figure 1 PMID:9721261
Garg, Saurabh; Alam, Md Suhail; Bajpai, Richa; Kishan, KV Radha; Agrawal, Pushpa
2009-01-01
Background Mycobacterium tuberculosis, an intracellular pathogen encounters redox stress throughout its life inside the host. In order to protect itself from the redox onslaughts of host immune system, M. tuberculosis appears to have developed accessory thioredoxin-like proteins which are represented by ORFs encoding WhiB-like proteins. We have earlier reported that WhiB1/Rv3219 is a thioredoxin like protein of M. tuberculosis and functions as a protein disulfide reductase. Generally thioredoxins have many substrate proteins. The current study aims to identify the substrate protein(s) of M. tuberculosis WhiB1. Results Using yeast two-hybrid screen, we identified alpha (1,4)-glucan branching enzyme (GlgB) of M. tuberculosis as a interaction partner of WhiB1. In vitro GST pull down assay confirmed the direct physical interaction between GlgB and WhiB1. Both mass spectrometry data of tryptic digests and in vitro labeling of cysteine residues with 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid showed that in GlgB, C95 and C658 are free but C193 and C617 form an intra-molecular disulfide bond. WhiB1 has a C37XXC40 motif thus a C40S mutation renders C37 to exist as a free thiol to form a hetero-disulfide bond with the cysteine residue of substrate protein. A disulfide mediated binary complex formation between GlgB and WhiB1C40S was shown by both in-solution protein-protein interaction and thioredoxin affinity chromatography. Finally, transfer of reducing equivalent from WhiB1 to GlgB disulfide was confirmed by 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid trapping by the reduced disulfide of GlgB. Two different thioredoxins, TrxB/Rv1471 and TrxC/Rv3914 of M. tuberculosis could not perform this reaction suggesting that the reduction of GlgB by WhiB1 is specific. Conclusion We conclude that M. tuberculosis GlgB has one intra-molecular disulfide bond which is formed between C193 and C617. WhiB1, a thioredoxin like protein interacts with GlgB and
Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure*
Pronker, Matti F.; Bos, Trusanne G. A. A.; Sharp, Thomas H.; Thies-Weesie, Dominique M. E.; Janssen, Bert J. C.
2015-01-01
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members. PMID:25903135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.
2010-07-13
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} formore » one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.« less
Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui
2005-01-01
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron–sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron–sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Å for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron–sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended α-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron–sulfur cofactor at its active site, and thus a new activity and mechanism of action. PMID:15987909
Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui
2005-07-01
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.
Kar, Paramita; Biswas, Rituparna; Drew, Michael G B; Ida, Yumi; Ishida, Takayuki; Ghosh, Ashutosh
2011-04-07
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate- and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO(2))](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-antiμ-1κO:2κO' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of χ(ac)' and a concomitant increase of χ(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The μ-nitrito-1κO:2κO' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the χ(ac)' and χ(ac)'' show frequency dependence. © The Royal Society of Chemistry 2011
Ang, Swee Kim; Lu, Hui
2009-10-16
Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX(16)C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX(16)C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur.
Ang, Swee Kim; Lu, Hui
2009-01-01
Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX16C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX16C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur. PMID:19679655
Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao
2013-01-01
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs. 73 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs. 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research. PMID:22448817
Electrochemistry-assisted top-down characterization of disulfide-containing proteins.
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao
2012-04-17
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.
Free energy landscape of a minimalist salt bridge model.
Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei
2016-01-01
Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.
Selective disulfide reduction for labeling and enhancement of Fab antibody fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirley, Terence L., E-mail: terry.kirley@uc.edu; Greis, Kenneth D.; Norman, Andrew B.
Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’){sub 2} fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’){sub 2} fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neithermore » homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be
Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty
2013-01-01
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738
Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping
2017-01-01
Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105
Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong
2015-01-01
The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911
New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.
Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon
2011-10-18
Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three Bridge Fryer's Ford Bridge, Nimrod Bridge, and Ward's ...
Three Bridge - Fryer's Ford Bridge, Nimrod Bridge, and Ward's Crossing Bridge - Fryer's Ford Bridge, Spanning East Fork of Point Remove Creek at Fryer Bridge Road (CR 67), Solgohachia, Conway County, AR
Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R.
2015-01-01
We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines. PMID:26193265
Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R
2015-07-17
We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.
Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang
2015-07-03
In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10 -3more » mA cm -2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.« less
Gao, Min-Rui; Chan, Maria K.Y.; Sun, Yugang
2015-01-01
Layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of −103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10−3 mA cm−2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance. PMID:26138031
NASA Astrophysics Data System (ADS)
Mirzahosseini, Arash; Noszál, Béla
2016-11-01
Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.
Cochran, A G; Tong, R T; Starovasnik, M A; Park, E J; McDowell, R S; Theaker, J E; Skelton, N J
2001-01-31
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify this process, we have investigated the structural stability of 10-residue, disulfide-constrained beta-hairpins and assessed their suitability as scaffolds for beta-turn display. Using disulfide formation as a probe, relative free energies of folding were measured for 19 peptides that differ at a one strand position. A tryptophan substitution promotes folding to a remarkable degree. NMR analysis confirms that the measured energies correlate well with the degree of beta-hairpin structure in the disulfide-cyclized peptides. Reexamination of a subset of the strand substitutions in peptides with different turn sequences reveals linear free energy relationships, indicating that turns and strand-strand interactions make independent, additive contributions to hairpin stability. Significantly, the tryptophan strand substitution is highly stabilizing with all turns tested, and peptides that display model turns or the less stable C'-C' ' turn of CD4 on this tryptophan "stem" are highly structured beta-hairpins in water. Thus, we have developed a small, structured beta-turn scaffold, containing only natural L-amino acids, that may be used to display peptide libraries of limited conformational diversity on phage.
Structural and Mechanistic Insights into Unusual Thiol Disulfide Oxidoreductase
Garcin, Edwige B.; Bornet, Olivier; Elantak, Latifa; Vita, Nicolas; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne
2012-01-01
Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (−181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pKa of all protonable residues, including the cysteine and histidine residues. Thus, the pKa values for the thiol group of Cys31 and Cys34 are 4.8 and 11.3, respectively. The His33 pKa value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His33 in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism. PMID:22128175
Characterization of single-domain antibodies with an engineered disulfide bond.
Hussack, Greg; Mackenzie, C Roger; Tanha, Jamshid
2012-01-01
Camelidae single-domain antibodies (VHHs) represent a unique class of emerging therapeutics. Similar to other recombinant antibody fragments (e.g., Fabs, scFvs), VHHs are amenable to library screening and selection, but benefit from superior intrinsic biophysical properties such as high refolding efficiency, high solubility, no tendency for aggregation, resistance to proteases and chemical denaturants, and high expression, making them ideal agents for antibody-based drug design. Despite these favorable biophysical characteristics, further improvements to VHH stability are desirable when considering applications in adverse environments like high heat, low humidity, pH extremes, and the acidic, protease-rich gastrointestinal tract. Recently, the introduction of a disulfide bond into the hydrophobic core of camelid VHHs increased antibody thermal and conformational stability. Here, we present additional protocols for characterizing the effects of the introduced disulfide bond on a panel of llama VHHs. Specifically, we employ mass spectrometry fingerprinting analysis of VHH peptides to confirm the presence of the introduced disulfide bond, size exclusion chromatography, and surface plasmon resonance to examine the effects on aggregation state and target affinity, and circular dichroism spectroscopy and protease digestion assays to assess the effects on thermal and proteolytic stability. The disulfide bond stabilization strategy can be incorporated into antibody library design and should lead to hyperstabilized single-domain antibodies (VHHs, VHs), and possibly Fabs and scFvs, if selection pressures such as denaturants or proteases are introduced during antibody selection.
Formation of nanoscale water bridges
NASA Astrophysics Data System (ADS)
Riedo, Elisa; Szoszkiewicz, Robert; Li, Tai-De; Gao, Jianping; Landman, Uzi
2006-03-01
The water bridges provide stability to sand castles, act as transport channels for dip-pen nanolitography and increase adhesion and friction in micro- and nano- devices such as MEMS. The kinetics of capillary condensation and growth at the nanoscale is studied here using friction force microscopy and molecular dynamics calculations. At 40% relative humidity we find that the meniscus nucleation times increase from 0.7 ms up to 4.2 ms when the temperature decreases from 332 K to 299 K. The nucleation times grow exponentially with the inverse temperature 1/T obeying an Arrhenius law. We obtain a nucleation energy barrier of 7.8*10̂-20˜J and an attempt frequency ranging between 4-250˜GHz, in excellent agreement with theoretical predictions. These results provide direct experimental evidence that capillary condensation is a thermally activated phenomenon.
Bianco, Christopher L; Akaike, Takaaki; Ida, Tomoaki; Nagy, Peter; Bogdandi, Virag; Toscano, John P; Kumagai, Yoshito; Henderson, Catherine F; Goddu, Robert N; Lin, Joseph; Fukuto, Jon M
2018-05-29
The signaling associated with hydrogen sulfide (H 2 S) remains to be established and recent studies have alluded to the possibility that H 2 S-derived species play important roles. Of particular interest are hydropersulfides (RSSH) and related polysulfides (RSS n R, n>1). This work elucidates the fundamental chemical relationship between these sulfur species as well as examine their biological effects. Using standard analytical techniques ( 1 H-NMR and mass spectrometry), the equilibrium reactions between H 2 S, disulfides (RSSR), RSSH, dialkyltrisulfides (RSSSR) and thiols (RSH) were examined. Their ability to protect cells from electrophilic and/or oxidative stress was also examined using cell culture. H 2 S, RSSR, RSSH, RSSSR and RSH are all in a dynamic equilibrium. In a biological system, these species can exist simultaneously and thus it is difficult to discern which species is (are) the biological effector (s). Treatment of cells with the dialkyl trisulfide cysteine trisulfide (Cys-SSS-Cys) results in high intracellular levels of hydropersulfides and protection from electrophilic stress. In aqueous systems, the reaction between H 2 S and RSSR results in the formation of equilbria whereby H 2 S, RSH, RSSR, RSSH and RSSSR are present. In a biological system, any of these species can be responsible for the observed biological activity. These equilibrium species can also be generated via the reaction of RSH with RSSSR. Due to these equilibria, Cys-SSS-Cys can be a method for generating any of the other species. Importantly, HEK293T cells treated with Cys-SSS-Cys results in increased levels of hydropersulfides, allowing examination of the biological effects of RSSH. This article is protected by copyright. All rights reserved.
Characterization of defects in copper antimony disulfide
Willian de Souza Lucas, Francisco; Peng, Haowei; Johnston, Steve; ...
2017-09-19
Copper antimony disulfide (CuSbS 2) has several excellent bulk optoelectronic properties for photovoltaic absorber applications. Here, we report on the defect properties in CuSbS 2thin film materials and photovoltaic devices studied using several experimental methods supported by theoretical calculations.
Formation and resulfidization of a South Texas roll-type uranium deposit
Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.
1979-01-01
Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant
Blood-Stable, Tumor-Adaptable Disulfide Bonded mPEG-(Cys)4-PDLLA Micelles for Chemotherapy
Lee, Seung-Young; Kim, Sungwon; Tyler, Jacqueline; Park, Kinam; Cheng, Ji-Xin
2012-01-01
Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier made of disulfide (DS) bonded mPEG-(Cys)4-PDLLA micelles. Intravenously injected disulfide bonded micelles stably retained doxorubicin in the bloodstream and efficiently delivered the drug to a tumor, with a 7-fold increase of the drug in the tumor and 1.9-fold decrease in the heart, as compared with self-assembled (SA), non-crosslinked mPEG-PDLLA micelles. In vivo administration of disulfide bonded micelles led to doxorubicin accumulation in cancer cell nuclei, which was not observed after administration of self-assembled micelles. With a doxorubicin dose as low as 2 mg/kg, disulfide bonded micelles almost completely suppressed tumor growth in mice. PMID:23079665
Luong, Truc Thanh; Reardon-Robinson, Melissa E; Siegel, Sara D; Ton-That, Hung
2017-05-15
Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium Actinomyces oris is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial v itamin K ep o xide r eductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the A. oris membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation. Like deletion of the VKOR gene, alanine replacement of individual cysteine residues abrogated polymicrobial interactions and biofilm formation, concomitant with the failure to form adhesive pili on the bacterial surface. Intriguingly, the mutation of the cysteine at position 101 to alanine (C101A mutation) resulted in a high-molecular-weight complex that was positive for MdbA and VKOR by immunoblotting and was absent in other alanine substitution mutants and the C93A C101A double mutation and after treatment with the reducing agent β-mercaptoethanol. Consistent with this observation, affinity purification followed by immunoblotting confirmed this MdbA-VKOR complex in the C101A mutant. Furthermore, ectopic expression of the Mycobacterium tuberculosis VKOR analog in the A. oris VKOR deletion (ΔVKOR) mutant rescued its defects, in contrast to the expression of M. tuberculosis VKOR variants known to be nonfunctional in the disulfide relay that mediates reoxidation of the disulfide bond-forming catalyst DsbA in Escherichia coli Altogether, the results support a model of a disulfide relay, from its start with the pair C93/C101 to the C175-X-X-C178 motif, that is required for MdbA reoxidation and appears to be conserved in members of the class
Mendonça, Pedro O R de; Lotfi, Claudimara F P
2011-04-10
Modified synthetic N-POMC(1-28) without disulfide bridges has been shown to act as an adrenal mitogen. Cyclins and their inhibitors are the major cell cycle controls, but in the adrenal cortex the effect of ACTH and N-POMC on the expression of these proteins remains unclear. In this work, we evaluate the effect of different synthetic N-POMC peptides on the S-phase of the cell cycle. In addition, we examine the cyclin E expression in rat adrenal cortex. Rats treated with dexamethasone were injected with ACTH and/or synthetic modified N-POMC and/or synthetic N-POMC with disulfide bridges. DNA synthesis was determined by BrdU incorporation and protein expression was analyzed by immunoblotting and immunohistochemistry. The results showed that similarly to modified N-POMC without disulfide bridges, administration of synthetic N-POMC with disulfide bridges and the combination of ACTH and N-POMC promoted an increase of BrdU-positive nuclei in adrenal cortex. However, the proliferative effect of N-POMC was comparable to that of ACTH only in the zona glomerulosa. An increase in cyclin E expression was observed 6 h after N-POMC treatment in the outer fraction of the adrenal cortex, in agreement with immunohistochemical findings in the zona glomerulosa. In summary, the effect of synthetic N-POMC with disulfide bridges was similar to modified synthetic N-POMC, increasing proliferation in the adrenal cortex, confirming previous evidence that disulfide bridges are not essential to the N-POMC mitogenic effect. Moreover, cyclin E appears to be involved in the N-POMC- and ACTH-stimulated proliferation in the zona glomerulosa of the adrenal cortex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty
2012-12-18
The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.
NASA Technical Reports Server (NTRS)
Spalvins, T.
1973-01-01
Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.
2013-12-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less
Salt bridges: geometrically specific, designable interactions.
Donald, Jason E; Kulp, Daniel W; DeGrado, William F
2011-03-01
Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.
Autoregulation of von Willebrand factor function by a disulfide bond switch
Butera, Diego; Passam, Freda; Ju, Lining; Cook, Kristina M.; Woon, Heng; Aponte-Santamaría, Camilo; Gardiner, Elizabeth; Davis, Amanda K.; Murphy, Deirdre A.; Bronowska, Agnieszka; Luken, Brenda M.; Baldauf, Carsten; Jackson, Shaun; Andrews, Robert; Gräter, Frauke; Hogg, Philip J.
2018-01-01
Force-dependent binding of platelet glycoprotein Ib (GPIb) receptors to plasma von Willebrand factor (VWF) plays a key role in hemostasis and thrombosis. Previous studies have suggested that VWF activation requires force-induced exposure of the GPIb binding site in the A1 domain that is autoinhibited by the neighboring A2 domain. However, the biochemical basis of this “mechanopresentation” remains elusive. From a combination of protein chemical, biophysical, and functional studies, we find that the autoinhibition is controlled by the redox state of an unusual disulfide bond near the carboxyl terminus of the A2 domain that links adjacent cysteine residues to form an eight-membered ring. Only when the bond is cleaved does the A2 domain bind to the A1 domain and block platelet GPIb binding. Molecular dynamics simulations indicate that cleavage of the disulfide bond modifies the structure and molecular stresses of the A2 domain in a long-range allosteric manner, which provides a structural explanation for redox control of the autoinhibition. Significantly, the A2 disulfide bond is cleaved in ~75% of VWF subunits in healthy human donor plasma but in just ~25% of plasma VWF subunits from heart failure patients who have received extracorporeal membrane oxygenation support. This suggests that the majority of plasma VWF binding sites for platelet GPIb are autoinhibited in healthy donors but are mostly available in heart failure patients. These findings demonstrate that a disulfide bond switch regulates mechanopresentation of VWF. PMID:29507883
Autoregulation of von Willebrand factor function by a disulfide bond switch.
Butera, Diego; Passam, Freda; Ju, Lining; Cook, Kristina M; Woon, Heng; Aponte-Santamaría, Camilo; Gardiner, Elizabeth; Davis, Amanda K; Murphy, Deirdre A; Bronowska, Agnieszka; Luken, Brenda M; Baldauf, Carsten; Jackson, Shaun; Andrews, Robert; Gräter, Frauke; Hogg, Philip J
2018-02-01
Force-dependent binding of platelet glycoprotein Ib (GPIb) receptors to plasma von Willebrand factor (VWF) plays a key role in hemostasis and thrombosis. Previous studies have suggested that VWF activation requires force-induced exposure of the GPIb binding site in the A1 domain that is autoinhibited by the neighboring A2 domain. However, the biochemical basis of this "mechanopresentation" remains elusive. From a combination of protein chemical, biophysical, and functional studies, we find that the autoinhibition is controlled by the redox state of an unusual disulfide bond near the carboxyl terminus of the A2 domain that links adjacent cysteine residues to form an eight-membered ring. Only when the bond is cleaved does the A2 domain bind to the A1 domain and block platelet GPIb binding. Molecular dynamics simulations indicate that cleavage of the disulfide bond modifies the structure and molecular stresses of the A2 domain in a long-range allosteric manner, which provides a structural explanation for redox control of the autoinhibition. Significantly, the A2 disulfide bond is cleaved in ~75% of VWF subunits in healthy human donor plasma but in just ~25% of plasma VWF subunits from heart failure patients who have received extracorporeal membrane oxygenation support. This suggests that the majority of plasma VWF binding sites for platelet GPIb are autoinhibited in healthy donors but are mostly available in heart failure patients. These findings demonstrate that a disulfide bond switch regulates mechanopresentation of VWF.
Amprazi, Maria; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Fellas, Georgios; Kyriazidis, Ioannis; Pérez, Javier; Kokkinidis, Michael
2014-01-01
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials. PMID:25024213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poor, Catherine B.; Chen, Peng R.; Duguid, Erica
2010-01-20
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds withmore » surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.« less
Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A
2013-12-01
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.
2013-01-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579
Huang, Sheng Yu; Chen, Sung Fang; Chen, Chun Hao; Huang, Hsuan Wei; Wu, Wen Guey; Sung, Wang Chou
2014-09-02
Snake venom consists of toxin proteins with multiple disulfide linkages to generate unique structures and biological functions. Determination of these cysteine connections usually requires the purification of each protein followed by structural analysis. In this study, dimethyl labeling coupled with LC-MS/MS and RADAR algorithm was developed to identify the disulfide bonds in crude snake venom. Without any protein separation, the disulfide linkages of several cytotoxins and PLA2 could be solved, including more than 20 disulfide bonds. The results show that this method is capable of analyzing protein mixture. In addition, the approach was also used to compare native cytotoxin 3 (CTX III) and its scrambled isomer, another category of protein mixture, for unknown disulfide bonds. Two disulfide-linked peptides were observed in the native CTX III, and 10 in its scrambled form, X-CTX III. This is the first study that reports a platform for the global cysteine connection analysis on a protein mixture. The proposed method is simple and automatic, offering an efficient tool for structural and functional studies of venom proteins.
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type and...
Sadowsky, Jack D; Pillow, Thomas H; Chen, Jinhua; Fan, Fang; He, Changrong; Wang, Yanli; Yan, Gang; Yao, Hui; Xu, Zijin; Martin, Shanique; Zhang, Donglu; Chu, Phillip; Dela Cruz-Chuh, Josefa; O'Donohue, Aimee; Li, Guangmin; Del Rosario, Geoffrey; He, Jintang; Liu, Luna; Ng, Carl; Su, Dian; Lewis Phillips, Gail D; Kozak, Katherine R; Yu, Shang-Fan; Xu, Keyang; Leipold, Douglas; Wai, John
2017-08-16
Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.
Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.
Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S
2011-04-26
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.
Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani
2014-04-01
A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.
Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.
Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B
2016-11-25
Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab') 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab') 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.
ArrayBridge: Interweaving declarative array processing with high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros
Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less
Enhanced Preliminary Assessment Report: Old Bridge Army Housing Units, Old Bridge, New Jersey
1989-11-01
overlain by the Old Bridge (or Magothy ) aquifer. The basement rock in Middlesex County consists of basalt, sandstone, and shale of Triassic age. The...Woodbury Clay and Merchantville formations form a confining layer above the Magothy aquifer; the thickness of this confining layer is less than 100 feet
Hagihara, Yoshihisa; Mine, Shouhei; Uegaki, Koichi
2007-12-14
We report for the first time the stabilization of an immunoglobulin fold domain by an engineered disulfide bond. In the llama single-domain antibody, which has human chorionic gonadotropin as its specific antigen, Ala49 and Ile70 are buried in the structure. A mutant with an artificial disulfide bond at this position showed a 10 degrees C higher midpoint temperature of thermal unfolding than that without the extra disulfide bond. The modified domains exhibited an antigen binding affinity comparable with that of the wild-type domain. Ala49 and Ile70 are conserved in camel and llama single-domain antibody frameworks. Therefore, domains against different antigens are expected to be stabilized by the engineered disulfide bond examined here. In addition to the effect of the loop constraints in the unfolded state, thermodynamic analysis indicated that internal interaction and hydration also control the stability of domains with disulfide bonds. The change in physical properties resulting from mutation often causes unpredictable and destabilizing effects on these interactions. The introduction of a hydrophobic cystine into the hydrophobic region maintains the hydrophobicity of the protein and is expected to minimize the unfavorable mutational effects.
Bal, C; Büyükşekerci, M; Koca, C; Ağış, E R; Erdoğan, S; Baran, P; Gündüzöz, M; Yilmaz, Öh
2016-09-01
In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group (p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used. © The Author(s) 2015.
Szurmant, Hendrik; Bunn, Michael W; Cho, Stephen H; Ordal, George W
2004-12-03
Previously, we characterized the organization of the transmembrane (TM) domain of the Bacillus subtilis chemoreceptor McpB using disulfide crosslinking. Cysteine residues were engineered into serial positions along the two helices through the membrane, TM1 and TM2, as well as double mutants in TM1 and TM2, and the extent of crosslinking determined to characterize the organization of the TM domain. In this study, the organization of the TM domain was studied in the presence and absence of ligand to address what ligand-induced structural changes occur. We found that asparagine caused changes in crosslinking rate on all residues along the TM1-TM1' helical interface, whereas the crosslinking rate for almost all residues along the TM2-TM2' interface did not change. These results indicated that helix TM1 rotated counterclockwise and that TM2 did not move in respect to TM2' in the dimer on binding asparagine. Interestingly, intramolecular crosslinking of paired substitutions in 34/280 and 38/273 were unaffected by asparagine, demonstrating that attractant binding to McpB did not induce a "piston-like" vertical displacement of TM2 as seen for Trg and Tar in Escherichia coli. However, these paired substitutions produced oligomeric forms of receptor in response to ligand. This must be due to a shift of the interface between different receptor dimers, within previously suggested trimers of dimers, or even higher order complexes. Furthermore, the extent of disulfide bond formation in the presence of asparagine was unaffected by the presence of the methyl-modification enzymes, CheB and CheR, or the coupling proteins, CheW and CheV, demonstrating that these proteins must have local structural effects on the cytoplasmic domain that is not translated to the entire receptor. Finally, disulfide bond formation was also unaffected by binding proline to McpC. We conclude that ligand-binding induced a conformational change in the TM domain of McpB dimers as an excitation signal that is
Cady, Nathaniel C.; McKean, Kurt A.; Behnke, Jason; Kubec, Roman; Mosier, Aaron P.; Kasper, Stephen H.; Burz, David S.; Musah, Rabi A.
2012-01-01
Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed. PMID:22715388
Esperante, Sebastián A; Covaleda, Giovanni; Trejo, Sebastián A; Bronsoms, Sílvia; Aviles, Francesc X; Ventura, Salvador
2017-07-14
Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.
Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan
2016-12-01
We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.
23 CFR 650.407 - Application for bridge replacement or rehabilitation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Application for bridge replacement or rehabilitation... Rehabilitation Program § 650.407 Application for bridge replacement or rehabilitation. (a) Agencies participate... agency for review and processing. The State is responsible for submitting the six computer card format or...
23 CFR 650.407 - Application for bridge replacement or rehabilitation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Application for bridge replacement or rehabilitation... Rehabilitation Program § 650.407 Application for bridge replacement or rehabilitation. (a) Agencies participate... agency for review and processing. The State is responsible for submitting the six computer card format or...
23 CFR 650.407 - Application for bridge replacement or rehabilitation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Application for bridge replacement or rehabilitation... Rehabilitation Program § 650.407 Application for bridge replacement or rehabilitation. (a) Agencies participate... agency for review and processing. The State is responsible for submitting the six computer card format or...
Tails and bridges in the parabolic restricted three-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep M.; Garcia-Taberner, Laura; Ollé, Mercè
2017-12-01
After a close encounter of two galaxies, bridges and tails can be seen between or around them. A bridge would be a spiral arm between a galaxy and its companion, whereas a tail would correspond to a long and curving set of debris escaping from the galaxy. The goal of this paper is to present a mechanism, applying techniques of dynamical systems theory, that explains the formation of tails and bridges between galaxies in a simple model, the so-called parabolic restricted three-body problem, i.e. we study the motion of a particle under the gravitational influence of two primaries describing parabolic orbits. The equilibrium points and the final evolutions in this problem are recalled,and we show that the invariant manifolds of the collinear equilibrium points and the ones of the collision manifold explain the formation of bridges and tails. Massive numerical simulations are carried out and their application to recover previous results are also analysed.
Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye
2016-04-08
Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the
Ukuwela, Ashwinie A; Bush, Ashley I; Wedd, Anthony G; Xiao, Zhiguang
2017-11-09
Glutaredoxins (Grxs) are a class of GSH (glutathione)-dependent thiol-disulfide oxidoreductase enzymes. They use the cellular redox buffer GSSG (glutathione disulfide)/GSH directly to catalyze these exchange reactions. Grxs feature dithiol active sites and can shuttle rapidly between three oxidation states, namely dithiol Grx(SH) 2 , mixed disulfide Grx(SH)(SSG) and oxidized disulfide Grx(SS). Each is characterized by a distinct standard reduction potential [Formula: see text] The [Formula: see text] values for the redox couple Grx(SS)/Grx(SH) 2 are available, but a recent estimate differs by over 100 mV from the literature values. No estimates are available for [Formula: see text] for the mixed disulfide couple Grx(SH)(SSG)/(Grx(SH) 2 + GSH). This work determined both [Formula: see text] and [Formula: see text] for two representative Grx enzymes, Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The empirical approaches were verified rigorously to overcome the sensitivity of these redox-labile enzymes to experimental conditions. The classic method of acid 'quenching' was demonstrated to shift the thiol-disulfide redox equilibria. Both enzymes exhibit an [Formula: see text] (vs. SHE) at a pH of 7.0. Their [Formula: see text] values (-213 and -230 mV for EcGrx1 and HsGrx1, respectively) are slightly less negative than that ([Formula: see text]) of the redox buffer GSSG/2GSH. Both [Formula: see text] and [Formula: see text] vary with log [GSH], but the former more sensitively by a factor of 2. This confers dual catalytic functions to a Grx enzyme as either an oxidase at low [GSH] or as a reductase at high [GSH]. Consequently, these enzymes can participate efficiently in either glutathionylation or deglutathionylation. The catalysis is demonstrated to proceed via a monothiol ping-pong mechanism relying on a single Cys residue only in the dithiol active site. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin
2014-09-01
The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide
NASA Astrophysics Data System (ADS)
Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael
2016-06-01
HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.
Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennelley, K.J.; Abrams, P.I.; Vicic, J.C.
1989-01-01
Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C.more » The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.« less
Pilipczuk, Justyna; Zalewska-Piątek, Beata; Bruździak, Piotr; Czub, Jacek; Wieczór, Miłosz; Olszewski, Marcin; Wanarska, Marta; Nowicki, Bogdan; Augustin-Nowacka, Danuta; Piątek, Rafał
2017-01-01
Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond that joins their A and B strands. Here, we investigated how this disulfide bond affects the stability and folding/unfolding pathway of DraE. We found that the disulfide bond stabilizes self-complemented DraE (DraE-sc) by ∼50 kJ mol−1 in an exclusively thermodynamic manner, i.e. by lowering the free energy of the native state and with almost no effect on the free energy of the transition state. This finding was confirmed by experimentally determined folding and unfolding rate constants of DraE-sc and a disulfide bond-lacking DraE-sc variant. Although the folding of both proteins exhibited similar kinetics, the unfolding rate constant changed upon deletion of the disulfide bond by 10 orders of magnitude, from ∼10−17 s−1 to 10−7 s−1. Molecular simulations revealed that unfolding of the disulfide bond-lacking variant is initiated by strands A or G and that disulfide bond-mediated joining of strand A to the core strand B cooperatively stabilizes the whole protein. We also show that the disulfide bond in DraE is recognized by the DraB chaperone, indicating a mechanism that precludes the incorporation of less stable, non-oxidized DraE forms into the fimbriae. PMID:28739804
Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide
2014-07-14
Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n
2003-08-06
From left, incoming KSC Director James W. Kennedy looks on as departing KSC Director Roy D. Bridges Jr. shakes hands with the 45th Space Wing Commander Brig. Gen. J. Gregory Pavlovich. The occasion is the unveiling of the new sign on the NASA Causeway naming the bridge for Bridges who is leaving KSC to become the director of NASA's Langley Research Center, Hampton, Va. The bridge spans the Banana River on the NASA Causeway and connects Kennedy Space Center and Cape Canaveral Air Force Station.
Wei, Yifeng; Li, Bin; Prakash, Divya; ...
2015-11-04
Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less
Nagy, Péter
2013-05-01
Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Observation of two distinct negative trions in tungsten disulfide monolayers
Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; ...
2015-09-25
We report on the observation of two distinct photogenerated negative trion states T A and T B in two-dimensional tungsten disulfide (2D-WS 2) monolayers. These trions are postulated to emerge from their parent excitons X A and X B, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between T A and T B photoformation, following dissociation of X A and X B through hole trapping at internal or substrate defect sites. While T A arises directly from its parent X A, Tmore » B emerges through a different transition accessible only after X B dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS 2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T 1) and ~1.98 eV (T 2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons X A and X B’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level X A using λ pump < 2.4 eV forms only trion T 1, which implies that the electron that remains from the dissociation of exciton X A is involved in the creation of this trion with a binding energy ~ 10 meV with respect to X A. The absorption peak that corresponds to trion T 2 appears when λ pump > 2
Alkali metal intercalates of molybdenum disulfide.
NASA Technical Reports Server (NTRS)
Somoano, R. B.; Hadek, V.; Rembaum, A.
1973-01-01
Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.
Moderate temperature sodium cells. I - Transition metal disulfide cathodes
NASA Astrophysics Data System (ADS)
Abraham, K. M.; Pitts, L.; Schiff, R.
1980-12-01
TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.
Moderate temperature sodium cells. I - Transition metal disulfide cathodes
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Pitts, L.; Schiff, R.
1980-01-01
TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.
Hill, Heather E; Pioszak, Augen A
2013-03-01
Adrenomedullin (AM) is a peptide hormone that is a potent vasodilator and is essential for vascular development. The AM receptor is a heterodimeric cell surface receptor composed of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, in association with either of two receptor activity modifying protein (RAMP) coreceptors, RAMP2 or -3. The extracellular domains (ECDs) of CLR and the RAMPs form the primary AM binding site. Here, we present novel methodology for expression and purification of a heterodimeric AM receptor ECD complex as an MBP-CLR ECD fusion protein in association with the RAMP2 ECD. Co-expression of the RAMP2 ECD with the disulfide bond isomerase DsbC in the oxidizing cytoplasm of E. coli trxB gor enabled proper disulfide formation in vivo. The isolated RAMP2 ECD was purified to homogeneity. Co-expression of a soluble MBP-CLR ECD fusion protein with DsbC in E. coli trxB gor yielded a heterogeneous mixture of species with misfolded ECD. Incubation of affinity-purified MBP-CLR ECD in vitro with purified RAMP2 ECD, DsbC, and glutathione redox buffer promoted proper folding of the CLR ECD and formation of a stable MBP-CLR ECD:RAMP2 ECD complex that was purified by size-exclusion chromatography and which exhibited specific AM binding. Approximately 40mg of highly purified complex was obtained starting with 6L bacterial cultures for each protein. The methodology reported here will facilitate structure/function studies of the AM receptor. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, Robert C.; Harry, G. Jean; Valentine, William M.
2005-09-01
Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions ismore » consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.« less
Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin
2015-01-01
Abstract Motivation: Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g. >3 bonds, is too low to effectively assist structure assembly simulations. Results: We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ Contact: zhng@umich.edu or hbshen@sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254435
Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.
Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin
2017-11-27
Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p < .01). This is the first study demonstrating the thiol/disulfide homeostasis in pregnant women with OSAS. Native thiol and total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.
Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P
2012-07-13
The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.
Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase.
Lee, J; Hofhaus, G; Lisowsky, T
2000-07-14
The yeast ERV1 gene encodes a small polypeptide of 189 amino acids that is essential for mitochondrial function and for the viability of the cell. In this study we report the enzymatic activity of this protein as a flavin-linked sulfhydryl oxidase catalyzing the formation of disulfide bridges. Deletion of the amino-terminal part of Erv1p shows that the enzyme activity is located in the 15 kDa carboxy-terminal domain of the protein. This fragment of Erv1p still binds FAD and catalyzes the formation of disulfide bonds but is no longer able to form dimers like the complete protein. The carboxy-terminal fragment contains a conserved CXXC motif that is present in all homologous proteins from yeast to human. Thus Erv1p represents the first FAD-linked sulfhydryl oxidase from yeast and the first of these enzymes that is involved in mitochondrial biogenesis.
Bevans, Carville G.; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes
2015-01-01
In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant α-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades. PMID:26230708
Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes
2015-07-29
In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.
Tran, T T Nha; Brinkworth, Craig S; Bowie, John H
2015-01-30
To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides. Copyright © 2014 John Wiley & Sons, Ltd.
Selenocysteine in thiol/disulfide-like exchange reactions.
Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N
2013-05-01
Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.
Lubrication and failure mechanisms of molybdenum disulfide films. 1: Effect of atmosphere
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1978-01-01
Friction, wear, and wear lives of rubbed molybdenum disulfide (MoS2 films applied to sanded 440C HT steel surfaces were evaluated in moist air, dry air, and dry argon. Optical microscope observations were made as a function of sliding distance to determine the effect of moisture and oxygen on the lubricating and failure mechanisms of MoS2 films. In general, the lubrication process consisted of the formation of a thin, metallic colored, coalesced film of MoS2 that flowed between the surfaces in relative motion. In air, failure was due to the transformation of the metallic colored, coalesced films to a black, powdery material. Water in the air appeared to accelerate the transformation rate. In argon, no transformation of MoS2 was observed with the microscope, but cracking and spalling of the coalesced film occurred and resulted in the gradual depletion of the film.
47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...
47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemoto, Naoto, E-mail: nemoto@fms.saitama-u.ac.jp; Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005; Janusys Corporation, 508, Saitama Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844
2012-04-27
Highlights: Black-Right-Pointing-Pointer Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. Black-Right-Pointing-Pointer Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. Black-Right-Pointing-Pointer Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library bymore » in vitro peptide selection using the evolutionary molecular engineering method 'cDNA display'. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.« less
The alkaline earth intercalates of molybdenum disulfide
NASA Technical Reports Server (NTRS)
Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.
1975-01-01
Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.
Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity.
Okada, Kazushi; Fukui, Masayuki; Zhu, Bao-Ting
2016-08-26
Glutathione depletion is a distinct cause underlying many forms of pathogenesis associated with oxidative stress and cytotoxicity. Earlier studies showed that glutamate-induced glutathione depletion in immortalized murine HT22 hippocampal neuronal cells leads to accumulation of reactive oxygen species (ROS) and ultimately cell death, but the precise mechanism underlying these processes is not clear. Here we show that during the induction of glutathione depletion, nitric oxide (NO) accumulation precedes ROS accumulation. While neuronal NO synthase (nNOS) in untreated HT22 cells exists mostly as a monomer, glutathione depletion results in increased formation of the dimer nNOS, accompanied by increases in the catalytic activity. We identified that nNOS dimerization is catalyzed by protein disulfide isomerase (PDI). Inhibition of PDI's isomerase activity effectively abrogates glutathione depletion-induced conversion of monomer nNOS into dimer nNOS, accumulation of NO and ROS, and cytotoxicity. Furthermore, we found that PDI is present in untreated cells in an inactive S-nitrosylated form, which becomes activated following glutathione depletion via S-denitrosylation. These results reveal a novel role for PDI in mediating glutathione depletion-induced oxidative cytotoxicity, as well as its role as a valuable therapeutic target for protection against oxidative cytotoxicity. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Arteca, Gustavo A.; Tapia, O.
Using computer-simulated molecular dynamics, we study the effect of sequence mutation on the unfolding mechanism of a native fold. The system considered is the native fold of hen egg-white lysozyme, exposed to centrifugal unfolding in vacuo. This unfolding bias elicits configurational transitions that imitate the behaviour of anhydrous proteins diffusing after electrospraying from neutral-pH solutions. By changing the sequences threaded onto the native fold of lysozyme, we probe the role of disulfide bridges and the effect of a global mutation. We find that the initial denaturing steps share common characteristics for the tested sequences. Recurrent features are: (i) the presence of dumbbell conformers with significant residual secondary structure, (ii) the ubiquitous formation of hairpins and two-stranded β-sheets regardless of disulfide bridges, and (iii) an unfolding pattern where the reduction in folding complexity is highly correlated with the decrease in chain compactness. These findings appear to be intrinsic to the shape of the native fold, suggesting that similar unfolding pathways may be accessible to many protein sequences.
USDA-ARS?s Scientific Manuscript database
Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...
Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.
Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran
2013-05-01
With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.
Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus.
Rodríguez-Ravelo, Rodolfo; Batista, Cesar V F; Coronas, Fredy I V; Zamudio, Fernando Z; Hernández-Orihuela, Lorena; Espinosa-López, Georgina; Ruiz-Urquiola, Ariel; Possani, Lourival D
2015-12-01
A complete mass spectrometry analysis of venom components from male and female scorpions of the species Rhophalurus junceus of Cuba is reported. In the order of 200 individual molecular masses were identified in both venoms, from which 63 are identical in male and females genders. It means that a significant difference of venom components exists between individuals of different sexes, but the most abundant components are present in both sexes. The relative abundance of identical components is different among the genders. Three well defined groups of different peptides were separated and identified. The first group corresponds to peptides with molecular masses of 1000-2000 Da; the second to peptides with 3500-4500 Da molecular weight, and the third with 6500-8000 Da molecular weights. A total of 86 peptides rich in disulfide bridges were found in the venoms, 27 with three disulfide bridges and 59 with four disulfide bridges. LC-MS/MS analysis allowed the identification and amino acid sequence determination of 31 novel peptides in male venom. Two new putative K(+)-channel peptides were sequences by Edman degradation. They contain 37 amino acid residues, packed by three disulfide bridges and were assigned the systematic numbers: α-KTx 1.18 and α-KTx 2.15. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seiwert, Bettina; Karst, Uwe
2007-09-15
A method for the simultaneous determination of a series of thiols and disulfides in urine samples has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. The sample is first exposed to N-(2-ferroceneethyl)maleimide, thus leading to the derivatization of free thiol groups in the sample. After quantitative reaction and subsequent reduction of the disulfide-bound thiols by tris(2-carboxyethyl)phosphine, the newly formed thiol functionalities are reacted with ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide. The reaction products are determined by LC/MS/MS in the multiple reaction mode, and precursor ion scan as well as neutral loss scan is applied to detect unknown further thiols. The method was successfully applied to the analysis of free and disulfide-bound thiols in urine samples. Limits of detection are 30 to 110 nM, and the linear range comprises two decades of concentration, thus covering the relevant concentration range of thiols in urine samples. The thiol and disulfide concentrations were referred to the creatinine content to compensate for different sample volumes. As some calibration standards for the disulfides are not commercially available, they were synthesized in an electrochemical flow-through cell. This allowed the synthesis of hetero- and homodimeric disulfides.
2013-01-01
Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118
Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan
2017-12-01
Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
Kawata, Y; Hongo, K; Mizobata, T; Nagai, J
1998-12-01
The refolding characteristics of Taka-amylase A (TAA) from Aspergillus oryzae in the presence of the chaperonin GroE were studied in terms of activity and fluorescence. Disulfide-bonded (intact) TAA and non-disulfide-bonded (reduced) TAA were unfolded in guanidine hydrochloride and refolded by dilution into buffer containing GroE. The intermediates of both intact and reduced enzymes were trapped by GroEL in the absence of nucleotide. Upon addition of nucleotides such as ATP, ADP, CTP or UTP, the intermediates were released from GroEL and recovery of activity was detected. In both cases, the refolding yields in the presence of GroEL and ATP were higher than spontaneous recoveries. Fluorescence studies of intrinsic tryptophan and a hydrophobic probe, 8-anilinonaphthalene-1-sulfonate, suggested that the intermediates trapped by GroEL assumed conformations with different hydrophobic properties. The presence of protein disulfide isomerase or reduced and oxidized forms of glutathione in addition to GroE greatly enhanced the refolding reaction of reduced TAA. These findings suggest that GroE has an ability to recognize folding intermediates of TAA protein and facilitate refolding, regardless of the existence or absence of disulfide bonds in the protein.
Selenocysteine in Thiol/Disulfide-Like Exchange Reactions
Marino, Stefano M.
2013-01-01
Abstract Significance: Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. Recent Advances: The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. Critical Issues: We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. Future Directions: It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec. Antioxid. Redox Signal. 18, 1675–1689. PMID:23121622
47 CFR 80.331 - Bridge-to-bridge communication procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...
47 CFR 80.331 - Bridge-to-bridge communication procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...
Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors.
Acero Sánchez, Josep Ll; Fragoso, Alex; Joda, Hamdi; Suárez, Guillaume; McNeil, Calum J; O'Sullivan, Ciara K
2016-07-01
The interface between the sample and the transducer surface is critical to the performance of a biosensor. In this work, we compared different strategies for covalent self-assembly of antibodies onto bare gold substrates by introducing disulfide groups into the immunoglobulin structure, which acted as anchor molecules able to chemisorb spontaneously onto clean gold surfaces. The disulfide moieties were chemically introduced to the antibody via the primary amines, carboxylic acids, and carbohydrates present in its structure. The site-directed modification via the carbohydrate chains exhibited the best performance in terms of analyte response using a model system for the detection of the stroke marker neuron-specific enolase. SPR measurements clearly showed the potential for creating biologically active densely packed self-assembled monolayers (SAMs) in a one-step protocol compared to both mixed SAMs of alkanethiol compounds and commercial immobilization layers. The ability of the carbohydrate strategy to construct an electrochemical immunosensor was investigated using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) transduction. Graphical Abstract Left: Functionalization strategies of bare gold substrates via direct bio-SAM using disulfide-containing antibody chemically modified via their primary amines (A), carbohydrates (B) and carboxylic acids (C). Right: Dependence of the peak height with NSE concentration at NSE21-CHO modified electrochemical immunosensor. Inset: Logarithmic calibration plot.
Apostolovic, Danijela; Luykx, Dion; Warmenhoven, Hans; Verbart, Dennis; Stanic-Vucinic, Dragana; de Jong, Govardus A H; Velickovic, Tanja Cirkovic; Koppelman, Stef J
2013-12-01
Conglutins, the major peanut allergens, Ara h 2 and Ara h 6, are highly structured proteins stabilized by multiple disulfide bridges and are stable towards heat-denaturation and digestion. We sought a way to reduce their potent allergenicity in view of the development of immunotherapy for peanut allergy. Isoforms of conglutin were purified, reduced with dithiothreitol and subsequently alkylated with iodoacetamide. The effect of this modification was assessed on protein folding and IgE-binding. We found that all disulfide bridges were reduced and alkylated. As a result, the secondary structure lost α-helix and gained some β-structure content, and the tertiary structure stability was reduced. On a functional level, the modification led to a strongly decreased IgE-binding. Using conditions for limited reduction and alkylation, partially reduced and alkylated proteins were found with rearranged disulfide bridges and, in some cases, intermolecular cross-links were found. Peptide mass finger printing was applied to control progress of the modification reaction and to map novel disulfide bonds. There was no preference for the order in which disulfides were reduced, and disulfide rearrangement occurred in a non-specific way. Only minor differences in kinetics of reduction and alkylation were found between the different conglutin isoforms. We conclude that the peanut conglutins Ara h 2 and Ara h 6 can be chemically modified by reduction and alkylation, such that they substantially unfold and that their allergenic potency decreases. © 2013.
Estimation of potential bridge scour at bridges on state routes in South Dakota, 2003-07
Thompson, Ryan F.; Fosness, Ryan L.
2008-01-01
Flowing water can erode (scour) soils and cause structural failure of a bridge by exposing or undermining bridge foundations (abutments and piers). A rapid scour-estimation technique, known as the level-1.5 method and developed by the U.S. Geological Survey, was used to evaluate potential scour at bridges in South Dakota in a study conducted in cooperation with the South Dakota Department of Transportation. This method was used during 2003-07 to estimate scour for the 100-year and 500-year floods at 734 selected bridges managed by the South Dakota Department of Transportation on State routes in South Dakota. Scour depths and other parameters estimated from the level-1.5 analyses are presented in tabular form. Estimates of potential contraction scour at the 734 bridges ranged from 0 to 33.9 feet for the 100-year flood and from 0 to 35.8 feet for the 500-year flood. Abutment scour ranged from 0 to 36.9 feet for the 100-year flood and from 0 to 45.9 feet for the 500-year flood. Pier scour ranged from 0 to 30.8 feet for the 100-year flood and from 0 to 30.7 feet for the 500-year flood. The scour depths estimated by using the level-1.5 method can be used by the South Dakota Department of Transportation and others to identify bridges that may be susceptible to scour. Scour at 19 selected bridges also was estimated by using the level-2 method. Estimates of contraction, abutment, and pier scour calculated by using the level-1.5 and level-2 methods are presented in tabular and graphical formats. Compared to level-2 scour estimates, the level-1.5 method generally overestimated scour as designed, or in a few cases slightly underestimated scour. Results of the level-2 analyses were used to develop regression equations for change in head and average velocity through the bridge opening. These regression equations derived from South Dakota data are compared to similar regression equations derived from Montana and Colorado data. Future level-1.5 scour investigations in South
Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin
2017-01-01
It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.
Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China
Zhao, Yang; Lee, Harry F.; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin
2017-01-01
It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368–1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China. PMID:28792976
The Contribution of Interchain Salt Bridges to Triple-Helical Stability in Collagen
Gurry, Thomas; Nerenberg, Paul S.; Stultz, Collin M.
2010-01-01
Abstract Studies on collagen and collagen-like peptides suggest that triple-helical stability can vary along the amino acid chain. In this regard, it has been shown that lysine residues in the Y position and acidic residues in the X′ position of (GPO)3GXYGX′Y′(GPO)3 peptides lead to triple-helical structures with melting temperatures similar to (GPO)8 (where O is hydroxyproline), which is generally regarded as the most stable collagen-like sequence of this length. This enhanced stability has been attributed to the formation of salt bridges between adjacent collagen chains. In this study, we explore the relationship between interchain salt bridge formation and triple-helical stability using detailed molecular simulations. Although our results confirm that salt bridges promote triple-helical stability, we find that not all salt bridges are created equal. In particular, lysine-glutamate salt bridges are most stabilizing when formed between residues in the middle strand (B) and the trailing strand (C), whereas lysine-aspartate salt bridges are most stabilizing when formed between residues in the leading (A) and middle (B) strand—the latter observation being consistent with recent NMR data on a heterotrimeric model peptide. Overall, we believe these data clarify the role of salt bridges in modulating triple-helical stability and can be used to guide the design of collagen-like peptides that have specific interchain interactions. PMID:20513408
Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P
2012-10-01
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.
Arisawa, Mieko; Sawahata, Kyosuke; Yamada, Tomoki; Sarkar, Debayan; Yamaguchi, Masahiko
2018-02-16
Organophosphorus compounds with a phosphorus atom attached to a phenyl group and two organothio/organoseleno groups were synthesized using the rhodium-catalyzed insertion reaction of the PhP group of pentaphenylcyclopentaphosphine (PhP) 5 with acyclic disulfides and diselenides. The method was applied to the synthesis of heterocyclic compounds containing the S-P-S group by the reaction of (PhP) 5 and cyclic disulfides such as 1,2-dithietes, 1,2-dithiocane, 1,4,5-dithiopane, and 1,2-dithiolanes.
jacking Item 22: Bridge removal (column) Item 23: Bridge removal (portion) Item 24: Approach slab removal for: Search Menu Log in Register PEER Center - 325 Davis Hall, University of California, Berkeley, CA
Observation of two distinct negative trions in tungsten disulfide monolayers
NASA Astrophysics Data System (ADS)
Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher; Xiao, Kai; Yoon, Mina; Sumpter, Bobby; Puretzky, Alexander; Geohegan, David
2015-09-01
Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2 D W S2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ˜2.02 eV (T1) and ˜1.98 eV (T2) . The dynamics measurements indicate that trion formation by the probe is enabled by photodoped 2D WS2 crystals with electrons remaining after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the characteristic absorption bands of excitons XA and XB at ˜2.03 and ˜2.40 eV , respectively, were separately monitored and compared to the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump<2.4 eV forms only trion T1, implying that the electron remaining from dissociation of exciton XA is involved in the creation of this trion with a binding energy ˜10 meV with respect to XA. The absorption peak corresponding to trion T2 appears when λpump<2.4 eV , which is just sufficient to excite exciton XB. The dynamics of trion T2 formation are found to correlate with the disappearance of the bleach of the XB exciton, indicating the involvement of holes participating in the bleach dynamics of exciton XB. Static electrical-doping photoabsorption measurements confirm the presence of an induced absorption peak similar to that of T2. Since the proposed trion formation process here involves exciton dissociation through hole trapping by defects in the 2D crystal or substrate, this discovery highlights the strong role of defects in defining optical and electrical properties of 2D metal chalcogenides, which is relevant to a broad spectrum of basic science and technological applications.
NASA Astrophysics Data System (ADS)
Honson, Nicolette S.; Plettner, Erika
2006-06-01
Males of the gypsy moth, Lymantria dispar, are attracted by a pheromone released by females. Pheromones are detected by olfactory neurons housed in specialized sensory hairs located on the antennae of the male moth. Once pheromone molecules enter the sensilla lymph, a highly abundant pheromone-binding protein (PBP) transports the molecule to the sensory neuron. The PBPs are members of the insect odorant-binding protein family, with six conserved cysteine residues. In this study, the disulfide bond connectivities of the pheromone-binding proteins PBP1 and PBP2 from the gypsy moth were found to be cysteines 19-54, 50-109, and 97-118 for PBP1, and cysteines 19-54, 50-110, and 97-119 for PBP2, as determined by cyanylation reactions and cyanogen bromide chemical cleavage. We have discovered that the second disulfide linkage is the most easily reduced of the three, and this same linkage is missing among four cysteine-containing insect odorant-binding proteins (OBPs). We are the first to identify the unique steric and electronic properties of this second disulfide linkage.
Structure and dynamics of a salt-bridge model system in water and DMSO
NASA Astrophysics Data System (ADS)
Lotze, S.; Bakker, H. J.
2015-06-01
We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.
Rech, Virginia C; Mezzomo, Nathana J; Athaydes, Genaro A; Feksa, Luciane R; Figueiredo, Vandré C; Kessler, Adriana; Franceschi, Itiane D DE; Wannmacher, Clovis M D
2018-01-01
Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.
Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.
Liu, Dongsheng; Cowburn, David
2016-01-01
The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.
... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...
Zarate, Ximena; Saavedra-Torres, Mario; Rodriguez-Serrano, Angela; Gomez, Tatiana; Schott, Eduardo
2018-04-30
The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back-transfer from the TiO 2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor-Bridge-Donor (A-Bridge-D) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back-transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A-Bridge-D structured dyes. Specifically, eight famous sulfur containing π-bridges were analyzed (A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO 2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Smith, Lachlan J; Elliott, Dawn M
2011-05-01
Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence
Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko
2014-01-01
Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451
Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells
NASA Technical Reports Server (NTRS)
Stiles, J. A.
1984-01-01
The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.
Insights into the Role of the Unusual Disulfide Bond in Copper-Zinc Superoxide Dismutase*
Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F.; Cao, Xiaohang; Taylor, Alexander B.; Whitson, Lisa J.; Holloway, Stephen P.; Hart, P. John; Cabelli, Diane E.; Gralla, Edith Butler; Valentine, Joan Selverstone
2015-01-01
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. PMID:25433341
Selles, Benjamin; Zannini, Flavien; Couturier, Jérémy; Jacquot, Jean-Pierre
2017-01-01
Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b’-a’ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution. PMID:28362814
Zabetakis, Dan; Olson, Mark A.; Anderson, George P.; Legler, Patricia M.; Goldman, Ellen R.
2014-01-01
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds. PMID:25526640
The collapse of Tacoma Narrows Bridge: a piece to the puzzle
NASA Astrophysics Data System (ADS)
Walther, J. H.; Christensen, D. S.; Malthe, M. G.; Roenne, M.; Spietz, H. J.; Larsen, A.; Larsen, S. V.
2017-11-01
On Nov. 7th 1940 the newly constructed Tacoma Narrows Bridge collapsed due to excessive torsional oscillations caused by the formation and shedding of large coherent vortices. The subsequent wind tunnel tests conducted on both section- and full bridge models concluded that the bridge should have collapsed at a wind speed corresponding to approximately half of the wind speed at the day of the collapse. This discrepancy questions our understanding of the phenomena responsible for the failure of the bridge. The present study aims at clarifying this ``mystery'' by considering historical records made available by the US coast guards, and by performing wind tunnel tests and detailed numerical flow simulations. Our findings indicate that the discrepancy is caused by an until now unnoticed yawed wind direction relative to the bridge, which was present at the day of the collapse. Danish Council for Independent Research Grant No. 4184-00349B.
NASA Astrophysics Data System (ADS)
Chen, C.; Howat, I. M.; de la Peña, S.
2015-12-01
Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler,A.; Burden, S.; Hubbard, S.
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed exclusively in skeletal muscle, where it is required for formation of the neuromuscular junction. MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. Here, we report the crystal structure of the agrin-responsive first and second immunoglobulin-like domains (Ig1 and Ig2) of the MuSK ectodomain at 2.2 {angstrom} resolution. The structure reveals that MuSK Ig1 and Ig2 are Ig-like domains of the I-set subfamily, which are configured in a linear, semi-rigid arrangement. In addition to the canonical internal disulfide bridge, Ig1 contains a second, solvent-exposed disulfide bridge, which our biochemical datamore » indicate is critical for proper folding of Ig1 and processing of MuSK. Two Ig1-2 molecules form a non-crystallographic dimer that is mediated by a unique hydrophobic patch on the surface of Ig1. Biochemical analyses of MuSK mutants introduced into MuSK{sup -/-} myotubes demonstrate that residues in this hydrophobic patch are critical for agrin-induced MuSK activation.« less
Li, Hongbin; Fernandez, Julio M
2003-11-14
The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.
Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.
Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós
2016-09-14
Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.
Sińczuk-Walczak, H
2000-01-01
Carbon disulfide is a poison of particularly neotropic properties. In order to diagnose chronic occupational intoxication with carbon disulfide, a very careful examination of the central and peripheral nervous systems in required. The presence of subjective disorders only does not as yet provide grounds for diagnosing chronic intoxication. Organic changes like chronic encephalopathy or polyneuropathy after excluding the so called 'idiopathic' neurological diseases, may serve as a basis for certifying occupational disease.
ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2).
Ostadhossein, Alireza; Rahnamoun, Ali; Wang, Yuanxi; Zhao, Peng; Zhang, Sulin; Crespi, Vincent H; van Duin, Adri C T
2017-02-02
Two-dimensional layers of molybdenum disulfide, MoS 2 , have been recognized as promising materials for nanoelectronics due to their exceptional electronic and optical properties. Here we develop a new ReaxFF reactive potential that can accurately describe the thermodynamic and structural properties of MoS 2 sheets, guided by extensive density functional theory simulations. This potential is then applied to the formation energies of five different types of vacancies, various vacancy migration barriers, and the transition barrier between the semiconducting 2H and metallic 1T phases. The energetics of ripplocations, a recently observed defect in van der Waals layers, is examined, and the interplay between these defects and sulfur vacancies is studied. As strain engineering of MoS 2 sheets is an effective way to manipulate the sheets' electronic and optical properties, the new ReaxFF description can provide valuable insights into morphological changes that occur under various loading conditions and defect distributions, thus allowing one to tailor the electronic properties of these 2D crystals.
Ruan, Qijun; Chen, Yeming; Kong, Xiangzhen; Hua, Yufei
2015-04-08
It is well-known that disulfide-mediated interactions are important when soy protein is heated, in which soy proteins are dissociated and rearranged to some new forms. In this study, the disulfide bond (SS) linked polymer, which was composed of the acidic (A) polypeptides of glycinin, basic (B) polypeptides of glycinin, and a small amount of α' and α of β-conglycinin, was formed as the major product, accompanied by the formation of SS-linked dimer of B and monomer of A as minor products. The role of sulfhydryl (SH) of different subunits/polypeptides for forming intermolecular SS was investigated. The SH of B in glycinin (Cys298 of G1, Cys289 of G2, Cys440 of G4) was transformed into SS in polymer identified by mass spectrometry analysis. The SH content of polymer was lower than that of glycinin and β-conglycinin subunits when heated. The SH content of B in polymer was lower than that in glycinin subunit, and both of them were decreased by heating. The SH content of A in polymer was increased and higher than that of B in polymer and A in glycinin subunit when heated. These results indicated that the SH of B in glycinin subunit was subjected to not only SH oxidation but also SH-SS exchange (with SS of A) for forming intermolecular SS of polymer. The SH oxidation and SH-SS exchange were proven by the change of SH content for the first time. The SH of B was suggested to be reactive for forming intermolecular SS of polymer.
The complete microspeciation of ovothiol A disulfide: a hexabasic symmetric biomolecule.
Mirzahosseini, Arash; Orgován, Gábor; Tóth, Gergő; Hosztafi, Sándor; Noszál, Béla
2015-03-25
The site-specific acid-base properties of ovothiol A disulfide (OvSSOv), the smallest hexabasic multifunctional biomolecule with complex interdependent moieties, were studied with (1)H NMR-pH and potentiometric titrations. The unprecedented complexity of the protonation microequilibria could be overcome by taking into account the mirror-image molecular symmetry, synthesizing and studying auxiliary model compounds and developing a custom-tailored evaluation method. The amino, imidazole, and carboxylate moieties are quantified in terms of 192 microscopic protonation constants and 64 microspecies, 96 and 36 of which are chemically different ones, respectively. Nine pairwise interactivity parameters also characterize the OvSSOv-proton system at the level of molecular subunits. These data allow understanding and influencing the co-dependent acid-base and redox properties of the highly complex OvSH-OvSSOv and related thiol-disulfide systems, which provide protection against oxidative stress. This work is the first complete microspeciation of a hexabasic molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.
Li, Zhengkai; Ke, Fang; Deng, Hang; Xu, Hualong; Xiang, Haifeng; Zhou, Xiangge
2013-05-14
A simple and efficient protocol for copper-catalyzed coupling reactions between aryl halides and elemental sulfur or selenium has been developed. A variety of disulfides and diselenides can be obtained in moderate to excellent yields up to 96%.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.
2018-05-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry.
Wormwood, Kelly L; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C
2018-05-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. Graphical Abstract ᅟ.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.
2018-04-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.
Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu
2018-04-30
In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.
Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.
Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander
2014-03-06
Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.
Chow, Sun Y S; Wong, Roy C H; Zhao, Shirui; Lo, Pui-Chi; Ng, Dennis K P
2018-04-17
A series of disulfide-linked dendritic phthalocyanines were synthesized by using the Cu I -catalyzed alkyne-azide cycloaddition reaction as the key step. Whereas these compounds were essentially nonaggregated in N,N-dimethylformamide, they were stacked in citrate solution (pH 7.4, with 1 % Cremophor EL), as shown by the broad appearance of their Q-band absorption. Having two-to-six zinc(II) phthalocyanine units in a molecule, these compounds were significantly self-quenched, particularly in citrate solution. Both the fluorescence intensity and singlet-oxygen generation efficiency were significantly lower than those of the monomeric counterparts, and the self-quenching efficiency increased as the number of phthalocyanine units increased. Upon interaction with 5 mm glutathione (GSH) in citrate solution, the fluorescence intensity of these compounds increased as a result of cleavage of the disulfide linkages and separation of the phthalocyanine units, which thereby reduced the self-quenching effect. The "on/off" ratios were found to be 7, 18, 23, and 21 for the dimeric (PC2), trimeric (PC3), tetrameric (PC4), and hexameric (PC6) systems, respectively. GSH also enhanced the fluorescence emission inside human colon adenocarcinoma HT29 cells and promoted the formation of singlet oxygen of these compounds. Upon irradiation, their half maximal inhibitory concentration (IC 50 ) values were found to be in the range of 0.18 to 0.38 μm. Finally, the biodistribution and activation of PC2 and PC6 were also examined in HT29 tumor-bearing nude mice. For both compounds, the fluorescence intensity per unit area at the tumor was found to grow gradually during the first 24 h. Whereas the intensity then dropped for PC2, the intensity for PC6 remained steady over the following 6 d, which might have been a result of the enhanced permeability and retention effect arising from the larger molecular mass of the hexameric system. © 2018 Wiley-VCH Verlag GmbH & Co. KGa
Konarev, Dmitri V; Troyanov, Sergey I; Ustimenko, Kseniya A; Nakano, Yoshiaki; Shestakov, Alexander F; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N
2015-05-18
Coordination of two bridging cobalt atoms to fullerenes by the η(2) type in {Co(dppe)}2{μ2-η(2):η(2)-η(2):η(2)-[(C60)2]}·3C6H4Cl2 [1; dppe = 1,2-bis(diphenylphosphino)ethane] triggers fullerene dimerization with the formation of two intercage C-C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C-C bonds and η(2)-coordination-bridged metal atoms.
Leader, Avi; Mor-Cohen, Ronit; Ram, Ron; Sheptovitsky, Vera; Seligsohn, Uri; Rosenberg, Nurit; Lahav, Judith
2015-12-01
Protein disulfide isomerase (PDI) catalyzes disulfide bond exchange. It is crucial for integrin-mediated platelet adhesion and aggregation and disulfide bond exchange is necessary for αIIbβ3 and αvβ3 activation. However, the role of disulfide bond exchange and PDI in the post-ligation phase of αIIbβ3 and αvβ3 mediated cell adhesion has yet to be determined. To investigate a possible such role, we expressed wild type (WT) human αIIb and either WT human β3, or β3 harboring single or double cysteine to serine substitutions disrupting Cys473-Cys503 or Cys523-Cys544 bonds, in baby hamster kidney (BHK) cells, leading to expression of both human αIIbβ3 and a chimeric hamster/human αvβ3. Adhesion to fibrinogen-coated wells was studied in the presence or absence of bacitracin, a PDI inhibitor, with and without an αvβ3 blocker. Flow cytometry showed WT and mutant αIIbβ3 expression in BHK cells and indicated that mutated αIIbβ3 receptors were constitutively active while WT αIIbβ3 was inactive. Both αIIbβ3 and αvβ3 integrins, WT and mutants, mediated adhesion to fibrinogen as shown by reduced but still substantial adhesion following treatment with the αvβ3 blocker. Mutated αIIbβ3 integrins disrupted in the Cys523-Cys544 bond still depended on PDI for adhesion as shown by the inhibitory effect of bacitracin in the presence of the αvβ3 blocker. Mutated integrins disrupted in the Cys473-Cys503 bond showed a similar trend. PDI-mediated disulfide bond exchange plays a pivotal role in the post-ligation phase of αIIbβ3-mediated adhesion to fibrinogen, while this step in αvβ3-mediated adhesion is independent of disulfide exchange. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness
NASA Astrophysics Data System (ADS)
Soylemez, Emrecan; de Boer, Maarten P.
2017-12-01
Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Protective role of RAD50 on chromatin bridges during abnormal cytokinesis.
Schröder-Heurich, Bianca; Wieland, Britta; Lavin, Martin F; Schindler, Detlev; Dörk, Thilo
2014-03-01
Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.
Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide.
Prabakar, Sujay; Collins, Sean; Northover, Bryan; Tilley, Richard D
2011-01-07
The synthesis of inorganic fullerene (IF) nanoparticles and IF hollow spheres of titanium disulfide by a simple colloidal route is reported. The injection temperature of the titanium precursor into the solvent mixture was found to be important in controlling the morphology.
Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase.
Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F; Cao, Xiaohang; Taylor, Alexander B; Whitson, Lisa J; Holloway, Stephen P; Hart, P John; Cabelli, Diane E; Gralla, Edith Butler; Valentine, Joan Selverstone
2015-01-23
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
An improved bridge safety index for narrow bridges.
DOT National Transportation Integrated Search
1983-08-01
In this report, a new bridge safety index is developed based upon an extensive : statistical study of accident data on 78 bridges. A total of 655 accidents : were recorded at these bridges over the six-year period between 1974 and 1979. : Cluster ana...
Geosynchronous Performance of a Lithium-titanium Disulfide Battery
NASA Technical Reports Server (NTRS)
Otzinger, B.
1985-01-01
An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.
Zheng, Naiyu; Zeng, Jianing; Manney, Amy; Williams, Lakenya; Aubry, Anne-Françoise; Voronin, Kimberly; Buzescu, Adela; Zhang, Yan J; Allentoff, Alban; Xu, Carrie; Shen, Hongwu; Warner, William; Arnold, Mark E
2016-04-15
To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein. Copyright © 2016 Elsevier B.V. All rights reserved.
Walden, Patricia M; Halili, Maria A; Archbold, Julia K; Lindahl, Fredrik; Fairlie, David P; Inaba, Kenji; Martin, Jennifer L
2013-01-01
The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, Pedram; Asadi, Mohammad; Liu, Cong
2017-01-24
Electrocatalytic conversion of carbon dioxide (CO2) into energy-rich fuels is considered to be the most efficient approach to achieve a carbon neutral cycle. Transition-metal dichalcogenides (TMDCs) have recently shown a very promising catalytic performance for CO2 reduction reaction in an ionic liquid electrolyte. Here, we report that the catalytic performance of molybdenum disulfide (MoS2), a member of TMDCs, can be significantly improved by using an appropriate dopant. Our electrochemical results indicate that 5% niobium (Nb)-doped vertically aligned MoS2 in ionic liquid exhibits 1 order of magnitude higher CO formation turnover frequency (TOF) than pristine MoS2 at an overpotential range ofmore » 50-150 mV. The TOF of this catalyst is also 2 orders of magnitude higher than that of Ag nanoparticles over the entire range of studied overpotentials (100-650 mV). Moreover, the in situ differential electrochemical mass spectrometry experiment shows the onset overpotential of 31 mV for this catalyst, which is the lowest onset potential for CO2 reduction reaction reported so far. Our density functional theory calculations reveal that low concentrations of Nb near the Mo edge atoms can enhance the TOF of CO formation by modifying the binding energies of intermediates to MoS2 edge atoms.« less
Graf, Darin C.; Warpinski, Norman R.
1996-01-01
A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND ...
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
Li, Kuirong; Zhou, Wenhui; Gu, Guizhen; Zhou, Shiyi; Zheng, Yuxin; Yu, Shanfa
2014-10-01
To study the effects of exposed to different concentrations of carbon disulfide on neurological signs of workers. Collection the information of concentration of carbon disulfide in the workplace or workers individuals exposed of a chemical fiber industry from 2004 to 2011, a total of 3 537 workers exposed to carbon disulfide were detected muscle strength and muscle tone, knee reflex, Achilles tendon reflex, trembling limbs, sensory function, and three chatter. Chi-square test was used for statistical analysis on abnormal neurological signs of workers. Eight hours time-weighted average concentration range of workers exposed to carbon disulfide in this chemical fiber industry was 0.2-41.0 mg/m(3), geometric mean was 2.38 mg/m(3). Concentration of carbon disulfide exposure of 1 771 workers was from 0.2 to 2.5 mg/m3( ≤ 2.5 mg/m(3)), 642 workers was 2.6-4.8 mg/m(3) (< 5.0 mg/m(3)), other 1 051 workers was from 5.1 to 41.0 mg/m(3) ( > 5.0 mg/m(3)) in all subjects. The different detection rates of knee reflex were 3.0% (31/1 045), 3.7% (21/574), 4.8% (16/331), 3.3% (10/305), 5.9% (11/187), 6.7% (68/1 022), the different detection rates of Achilles tendon reflex were 2.2% (23/1 045), 3.7% (21/574), 2.7% (9/331), 2.3% (7/305), 2.1% (4/187), 5.6% (57/1 022), the different detection rates of sensory dysfunction were 0.4% (4/1 045), 0.5% (3/574), 0.6% (2/331), 0.0% (0/305), 2.1% (4/187), 1.7% (17/1 022) in different cumulative amount of contact groups ( ≤ 10.0, 10.1-20.0, 20.1-30.0, 30.1-40.0, 40.1-50.0, >50.0 mg/m(3) per year), and the differences were statistically significant (χ(2) = 19.53, 21.27 and 15.89, all P values were <0.01) . Stratified according to age and gender, in addition to the ≤ 25 years group the difference of detection rate analysis on Achilles tendon reflex was statistically significant in the different concentration group (the ratio of on Achilles tendon reflex in the different groups of concentration of carbon disulfide exposure of 2.5, 2.6-5.0,
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND ...
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM (OLDER STYLE) SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
5. View of Clark Fork Vehicle Bridge facing east. Bridge ...
5. View of Clark Fork Vehicle Bridge facing east. Bridge from south shore of Clark Fork River-southernmost span. 1900-era Northern Pacific Railway Bridge in background. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Molybdenum disulfide and water interaction parameters
NASA Astrophysics Data System (ADS)
Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.
2017-09-01
Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.
Galectin-9 binds to O-glycans on protein disulfide isomerase.
Schaefer, Katrin; Webb, Nicholas E; Pang, Mabel; Hernandez-Davies, Jenny E; Lee, Katharine P; Gonzalez, Pascual; Douglass, Martin V; Lee, Benhur; Baum, Linda G
2017-09-01
Changes in the T cell surface redox environment regulate critical cell functions, such as cell migration, viral entry and cytokine production. Cell surface protein disulfide isomerase (PDI) contributes to the regulation of T cell surface redox status. Cell surface PDI can be released into the extracellular milieu or can be internalized by T cells. We have found that galectin-9, a soluble lectin expressed by T cells, endothelial cells and dendritic cells, binds to and retains PDI on the cell surface. While endogenous galectin-9 is not required for basal cell surface PDI expression, exogenous galectin-9 mediated retention of cell surface PDI shifted the disulfide/thiol equilibrium on the T cell surface. O-glycans on PDI are required for galectin-9 binding, and PDI recognition appears to be specific for galectin-9, as galectin-1 and galectin-3 do not bind PDI. Galectin-9 is widely expressed by immune and endothelial cells in inflamed tissues, suggesting that T cells would be exposed to abundant galectin-9, in cis and in trans, in infectious or autoimmune conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Graf, D.C.; Warpinski, N.R.
1996-08-13
A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, D.C.; Warpinski, N.R.
A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.
Long-term bridge performance high priority bridge performance issues.
DOT National Transportation Integrated Search
2014-10-01
Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...
Hudson, Devin A; Gannon, Shawn A; Thorpe, Colin
2015-03-01
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment. Copyright © 2014 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1980-01-01
This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...
Stream Stability and Scour Assessments at Bridges in Massachusetts
Parker, Gene W.; Bratton, Lisa; Armstrong, David S.
1997-01-01
In 1989, the Federal Highway Administration mandated that every state establish a program to evaluate the vulnerability to floods of all bridges over water. The Massachusetts Highway Department entered into a cooperative effort with the U.S. Geological Survey to comply with this mandate. Geomorphic and hydraulic characteristics were collected and were used to assess the processes that affect stream stability and current scour problems and potential near 2,361 bridge sites in Massachusetts. As a result of these assessments, the Massachusetts Highway Department will prioritize the bridge inventory for action regarding scour safety. A data base was prepared that includes the geomorphic and hydraulic data collected during field assessments. In addition to the data base, this report includes the historical development of the bridge scour program, the methods used for data collection during assessments, the methods used for quality assurance and quality control, and how the data base was digitally formatted to be presented on a CD-ROM. A user's guide provides assistance in the use of this electronic data base and report.
OVERVIEW OF BRIDGES WITH WAIKELE CANAL BRIDGE IN CENTER, OR&L ...
OVERVIEW OF BRIDGES WITH WAIKELE CANAL BRIDGE IN CENTER, OR&L BRIDGE IN BACKGROUND. SHOWING THE EARTHEN INCLINE THAT RAISES FARRINGTON HIGHWAY OVER THE FORMER OR&L TRACKS. NOTE THE 1963 WESTBOUND BRIDGE IN THE FOREGROUND. VIEW FACING EAST. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI
47 CFR 80.163 - Operator requirements of the Bridge-to-Bridge Act.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operator requirements of the Bridge-to-Bridge... Requirements § 80.163 Operator requirements of the Bridge-to-Bridge Act. Each ship subject to the Bridge-to-Bridge Act must have on board a radio operator who holds a restricted radiotelephone operator permit or...
47 CFR 80.163 - Operator requirements of the Bridge-to-Bridge Act.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operator requirements of the Bridge-to-Bridge... Requirements § 80.163 Operator requirements of the Bridge-to-Bridge Act. Each ship subject to the Bridge-to-Bridge Act must have on board a radio operator who holds a restricted radiotelephone operator permit or...
Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia
NASA Astrophysics Data System (ADS)
Meinardi, Simone; Simpson, Isobel J.; Blake, Nicola J.; Blake, Donald R.; Rowland, F. Sherwood
2003-05-01
We identify dimethyl disulfide (DMDS) as the major reduced sulfur-containing gas emitted from bushfires in Australia's Northern Territory. Like dimethyl sulfide (DMS), DMDS is oxidized in the atmosphere to sulfur dioxide (SO2) and methane sulfonic acid (MSA), which are intermediates in the formation of sulfuric acid (H2SO4). The mixing ratios of DMDS and DMS were the highest we have ever detected, with maximum values of 113 and 35 ppbv, respectively, whereas background values were below the detection limit (10 pptv). Molar emission ratios relative to carbon monoxide (CO) were [1.6 +/- 0.1] × 10-5 and [6.2 +/- 0.3] × 10-6, for DMDS and DMS respectively, while molar emission ratios relative to carbon dioxide (CO2) were [4.7 +/- 0.4] × 10-6 and [1.4 +/- 0.4] × 10-7, respectively. Assuming these observations are representative of biomass burning, we estimate that biomass burning could yield up to 175 Gg/yr of DMDS (119 Gg S/yr) and 13 Gg/yr of DMS.
Bridge health monitoring metrics : updating the bridge deficiency algorithm.
DOT National Transportation Integrated Search
2009-10-01
As part of its bridge management system, the Alabama Department of Transportation (ALDOT) must decide how best to spend its bridge replacement funds. In making these decisions, ALDOT managers currently use a deficiency algorithm to rank bridges that ...
Streamflow and streambed scour in 2010 at bridge 339, Copper River, Alaska
Conaway, Jeffrey S.; Brabets, Timothy P.
2011-01-01
The distribution of the Copper River's discharge through the bridges was relatively stable until sometime between 1969-70 and 1982-85. The majority of the total Copper River discharge in 1969-70 passed through three bridges on the western side of the delta, but by 1982-1985, 25 to 62 percent of the flow passed through bridge 342 on the eastern side of the Copper River Delta. In 2004, only 8 percent of the flow passed through the western bridges, while 90 percent of the discharge flowed through two bridges on the eastern side of the delta. Migration of the river across the delta and redistribution of discharge has resulted in streambed scour at some bridges, overtopping of the road during high flows, prolonged highway closures, and formation of new channels through forests. Scour monitoring at the eastern bridges has recorded as much as 44 feet of fill at one pier and 33 feet of scour at another. In 2009, flow distribution began to shift from the larger bridge 342 to bridge 339. In 2010, flow in excess of four times the design discharge scoured the streambed at bridge 339 to a level such that constant on-site monitoring was required to evaluate the potential need for bridge closure. In 2010, instantaneous flow through bridge 339 was never less than 30 percent and was as high as 49 percent of the total Copper River discharge. The percentage of flow through bridge 339 decreased when the overall Copper River discharge increased. The increased discharge through bridge 339 is attributed to a shift in the approach channel 3,500 feet upstream. Bridge channel alignment and analysis of flow distribution as of October 2010 indicate these hydrologic hazards will persist in 2011.
Guardrails for use on historic bridges: volume 2--bridge deck overhang design.
DOT National Transportation Integrated Search
2016-11-01
Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are : made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridge...
47 CFR 80.309 - Watch required by the Bridge-to-Bridge Act.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch required by the Bridge-to-Bridge Act. 80... Safety Watches § 80.309 Watch required by the Bridge-to-Bridge Act. In addition to the watch requirement contained in § 80.148, all vessels subject to the Bridge-to-Bridge Act must keep a watch on the designated...
47 CFR 80.309 - Watch required by the Bridge-to-Bridge Act.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch required by the Bridge-to-Bridge Act. 80... Safety Watches § 80.309 Watch required by the Bridge-to-Bridge Act. In addition to the watch requirement contained in § 80.148, all vessels subject to the Bridge-to-Bridge Act must keep a watch on the designated...
Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.
Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo
2013-09-03
Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.
The inverse problem for definition of the shape of a molten contact bridge
NASA Astrophysics Data System (ADS)
Kharin, Stanislav N.; Sarsengeldin, Merey M.
2017-09-01
The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.
1. View of bridge from Interstate 195 (Washington Bridge) looking ...
1. View of bridge from Interstate 195 (Washington Bridge) looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI
Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge
L. E. Hislop; M. A. Ritter
The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...
Hiramatsu, Hirotsugu; Goto, Yuji; Naiki, Hironobu; Kitagawa, Teizo
2005-06-08
A structural model of amyloid fibril formed by the #21-31 fragment of beta2-microglobulin is proposed from microscope IR measurements on specifically 13C-labeled peptide fibrils and Raman spectra of the dispersed fibril solution. The 13C-shifted amide frequency indicated the secondary structure of the labeled residues. The IR spectra have demonstrated that the region between F22 and V27 forms the core part with the extended beta-sheet structure. Raman spectra indicated the formation of a dimer with a disulfide bridge between C25 residues.
Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils
2018-05-30
We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.
GOETHALS BRIDGE FROM NORTH SIDE OVER ARTHUR KILL. RAILROAD BRIDGE ...
GOETHALS BRIDGE FROM NORTH SIDE OVER ARTHUR KILL. RAILROAD BRIDGE IN FOREGROUND - Goethals Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY
Kaltner, Herbert; Szabó, Tamás; Fehér, Krisztina; André, Sabine; Balla, Sára; Manning, Joachim C; Szilágyi, László; Gabius, Hans-Joachim
2017-06-15
The emerging significance of recognition of cellular glycans by lectins for diverse aspects of pathophysiology is a strong incentive for considering development of bioactive and non-hydrolyzable glycoside derivatives, for example by introducing S/Se atoms and the disulfide group instead of oxygen into the glycosidic linkage. We report the synthesis of 12 bivalent thio-, disulfido- and selenoglycosides attached to benzene/naphthalene cores. They present galactose, for blocking a plant toxin, or lactose, the canonical ligand of adhesion/growth-regulatory galectins. Modeling reveals unrestrained flexibility and inter-headgroup distances too small to bridge two sites in the same lectin. Inhibitory activity was first detected by solid-phase assays using a surface-presented glycoprotein, with relative activity enhancements per sugar unit relative to free cognate sugar up to nearly 10fold. Inhibitory activity was also seen on lectin binding to surfaces of human carcinoma cells. In order to proceed to characterize this capacity in the tissue context monitoring of lectin binding in the presence of inhibitors was extended to sections of three types of murine organs as models. This procedure proved to be well-suited to determine relative activity levels of the glycocompounds to block binding of the toxin and different human galectins to natural glycoconjugates at different sites in sections. The results on most effective inhibition by two naphthalene-based disulfides and a selenide raise the perspective for broad applicability of the histochemical assay in testing glycoclusters that target biomedically relevant lectins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peptide-formation on cysteine-containing peptide scaffolds
NASA Technical Reports Server (NTRS)
Chu, B. C.; Orgel, L. E.
1999-01-01
Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity
Gaspar, Renato Simões
2016-01-01
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.
Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade
2016-01-01
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE ...
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE (HAER No. PA-116). - Philadelphia & Reading Railroad, Reading Depot Bridge, North Sixth Street at Woodward Street, Reading, Berks County, PA
NASA Astrophysics Data System (ADS)
Johnson, J.; Brackley, C. A.; Cook, P. R.; Marenduzzo, D.
2015-02-01
We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.
1. VIEW OF SWING BRIDGE FROM KEDZIE AVENUE BRIDGE, LOOKING ...
1. VIEW OF SWING BRIDGE FROM KEDZIE AVENUE BRIDGE, LOOKING EAST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL
Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge ...
Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge Deck, Navigating Bridge, Forecastle Deck, Upper Deck, Second Deck and Hold - Saugatuck, James River Reserve Fleet, Newport News, Newport News, VA
Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N
2008-05-23
Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.
Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi
2014-05-01
Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3. View of Clark Fork Vehicle Bridge facing southwest. Bridge ...
3. View of Clark Fork Vehicle Bridge facing southwest. Bridge from north shore of Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Dopstadt, Julian; Neubauer, Lisa; Tudzynski, Paul; Humpf, Hans-Ulrich
2016-01-01
Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.
Tudzynski, Paul; Humpf, Hans-Ulrich
2016-01-01
Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873
NASA Astrophysics Data System (ADS)
Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.
2012-12-01
We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).
Formative Feedback in a Malaysian Primary School ESL Context
ERIC Educational Resources Information Center
Sardareh, Sedigheh Abbasnasab
2016-01-01
The idea of providing students with formative feedback is a crucial part of formative assessment. Teachers need to provide students with feedback that improves their learning. In other words, formative feedback should provide learners with information that help them bridge their learning gap. As formative assessment itself is a newly introduced…
OVERVIEW OF BRIDGES WITH OR&L BRIDGE IN CENTER, WAIKELE CANAL ...
OVERVIEW OF BRIDGES WITH OR&L BRIDGE IN CENTER, WAIKELE CANAL BRIDGE IN BACKGROUND. SHOWING THE EARTHEN INCLINE THAT RAISES FARRINGTON HIGHWAY OVER THE FORMER OR&L TRACKS. VIEW FACING SOUTHWEST. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI
A 65 Ah rechargeable lithium molybdenum disulfide battery
NASA Technical Reports Server (NTRS)
Brandt, K.
1986-01-01
A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.
Cormode, David P; Evans, Andrew J; Davis, Jason J; Beer, Paul D
2010-07-28
A disulfide functionalized bis-ferrocene urea acyclic receptor and disulfide functionalized mono- and bis-ferrocene amide and urea appended upper rim calix[4]arene receptors were prepared for the fabrication of SAM redox-active anion sensors. 1H NMR and diffusive voltammetric anion recognition investigations revealed each receptor to be capable of complexing and electrochemically sensing anions via cathodic perturbations of the respective receptor's ferrocene/ferrocenium redox couple. SAMs of a ferrocene urea receptor 3 and ferrocene urea calixarene receptor 17 exhibited significant enhanced magnitudes of cathodic response upon anion addition as compared to observed diffusive perturbations. SAMs of 17 were demonstrated to sense the perrhenate anion in aqueous solutions.
4. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...
4. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shoreof Clark Fork River showing 4 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Prakash, Divya; Walters, Karim A; Martinie, Ryan J; McCarver, Addison C; Kumar, Adepu K; Lessner, Daniel J; Krebs, Carsten; Golbeck, John H; Ferry, James G
2018-05-02
Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster. UV-Vis, EPR and Mӧssbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active-site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR advancing the physiological understanding of FDRs role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show FDR homologs are widespread in diverse microbes from the domain Bacteria. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
2. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...
2. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
7. View of Clark Fork Vehicle Bridge facing northwest. Bridge ...
7. View of Clark Fork Vehicle Bridge facing northwest. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
4. View of bridge deck from northeast approach (bridge deck ...
4. View of bridge deck from northeast approach (bridge deck from southwest approach is virtually identical - Big Cottonwood River Bridge No. 246, Spanning Big Cottonwood River at Cottonwood Street (City Road No. 165), New Ulm, Brown County, MN
Meng, Ke; Thampi, K Ravindranathan
2014-12-10
For the first time, a quasisolid thiolate/disulfide-based electrolyte was prepared using succinonitrile as a matrix. An optimized configuration of the quasisolid electrolyte contains 5-mercapto-1-methyltetrazole N-tetramethylammonium/disulfide/LiClO4/N-methylbenzimidazole in the molar ratio of 0.8:0.8:0.1:0.1. Dye-sensitized solar cells fabricated using this quasisolid electrolyte, together with N719 dye-sensitized photoelectrode and CoS counter electrode, attained power conversion efficiencies of 4.25% at 1 sun and 6.19% at 0.1 sun illumination intensities. The optimized quasisolid electrolyte, when introduced to quasisolid CdS quantum-dot-sensitized solar cells, exhibited a power conversion efficiency of 0.94%, despite the fact that CdS absorbs only a small fraction of the visible light, unlike dyes. The encouraging results show the potential for the utilization of the quasisolid thiolate/disulfide-based electrolyte in sensitized solar cells.
Yano, Hiroyuki; Kuroda, Masaharu
2006-01-01
Accumulating evidence suggests that redox regulations play important roles in a broad spectrum of biological processes. Recently, Yano et al. developed a disulfide proteome technique that comprehensively visualizes redox change in proteins. In this paper, using the disulfide proteome, we examined rice bran and identified fragments of embryo-specific protein and dienelactone hydrolase as putative targets of thioredoxin. Also, monitoring of the endogenous and recombinant effects of thioredoxin on rice bran proteins and supporting in vivo observations propose a mechanism of redox regulation in seed germination, in which thioredoxin activates cysteine protease with a concurrent unfolding of its substrate, the embryo-specific protein. Our findings suggest that thioredoxin controls the lifetime of specific proteins effectively by regulating the redox reactions coordinately. The model study demonstrates that the disulfide proteome technique is useful not only for identifying targets of thioredoxin, but also for clarify the detailed mechanism of redox regulation.
NYSDOT Bridge Deck Task Force evaluation of bridge deck cracking on NYSDOT bridges
DOT National Transportation Integrated Search
2007-02-01
This paper presents a summary of knowledge gained by the NYSDOT Bridge Deck Task Force (BDTF). Although the paper contains recommendations to reduce the prevalence and severity of bridge deck cracking, it does not include a silver bullet soluti...
Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W
2017-06-15
The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.
Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla
2015-08-13
Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.
Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji
2017-01-01
We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawanago, Takamasa, E-mail: kawanago.t.ab@m.titech.ac.jp; Oda, Shunri
In this study, we apply self-assembled-monolayer (SAM)-based gate dielectrics to the fabrication of molybdenum disulfide (MoS{sub 2}) field-effect transistors. A simple fabrication process involving the selective formation of a SAM on metal oxides in conjunction with the dry transfer of MoS{sub 2} flakes was established. A subthreshold slope (SS) of 69 mV/dec and no hysteresis were demonstrated with the ultrathin SAM-based gate dielectrics accompanied by a low gate leakage current. The small SS and no hysteresis indicate the superior interfacial properties of the MoS{sub 2}/SAM structure. Cross-sectional transmission electron microscopy revealed a sharp and abrupt interface of the MoS{sub 2}/SAM structure.more » The SAM-based gate dielectrics are found to be applicable to the fabrication of low-voltage MoS{sub 2} field-effect transistors and can also be extended to various layered semiconductor materials. This study opens up intriguing possibilities of SAM-based gate dielectrics in functional electronic devices.« less
NASA Astrophysics Data System (ADS)
Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu
2018-01-01
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.
Sugarbaker, Paul H
2018-07-01
The hepatic bridge forms a tunnel of liver parenchyma that may obscure peritoneal metastases associated with the round ligament. Visualization and then resection of nodules associated with this structure is necessary. The incidence of a hepatic bridge and the extent that it covered the round ligament was determined in consecutive patients. Extent of coverage of the round ligament by the hepatic bridge was determined: Class 1 indicates up to one-third of the round ligament obscured, Class 2 up to two-thirds and Class 3 more than two-thirds. In 102 patients in whom the round ligament of the liver could be completely visualized, 50 had a hepatic bridge. Class 1 was 22 (44%) of the bridges, Class 2 was 16 (32%) and Class 3 was 12 (24%). A hepatic bridge was more frequently present in 28 of 45 male patients (62%) vs. 22 of 57 female patients (38%). Approximately one-half of our patients having cytoreductive surgery for peritoneal metastases were observed to have a hepatic bridge. Up to 56% of these patients have Class 2 or 3 hepatic bridge and may require division of the hepatic bridge to completely visualize the contents of the tunnel created by this structure. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge
J. P. Wacker; M. A. Ritter
The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping
2013-04-01
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.
An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon
2015-07-01
Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOT National Transportation Integrated Search
2013-09-01
The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge Engineering an...
DOT National Transportation Integrated Search
1994-11-01
NCDOTs Bridge Policy establishes controlling design elements for new and reconstructed bridges on the state road system. It includes information to address sidewalks and bicycle facilities on bridges, including minimum handrail heights and sidewal...
Bridged graphite oxide materials
NASA Technical Reports Server (NTRS)
Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)
2010-01-01
Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.
Belancic Majcenovic, Andrea; Schneider, Rémi; Lepoutre, Jean-Paul; Lempereur, Valérie; Baumes, Raymond
2002-11-06
Ethanethiol and diethyl disulfide (DEDS) most often occurred at levels above their olfactive threshold in wines with nauseous sulfur-linked smells. As ethanethiol is very oxidizable and chemically reactive, a stable isotopic dilution analysis of both ethanethiol and its disulfide in wines using solid phase microextraction and GC-MS was developed. The latter involved the determination of the proportion of DEDS formed by oxidation of the thiol during the analysis conditions, which was obtained by the use of two differently labeled disulfide standards. An original synthesis of labeled ethanethiol standards in conditions minimizing oxidation was developed, and the corresponding labeled diethyl disulfides were obtained from these thiols. This analytical method was used to follow the levels of these sulfur compounds during aging in a young red wine spiked with ethanethiol and added with enological tannins, with or without oxygen addition. The total levels of these two sulfur compounds were shown to decrease steadily after 60 days of aging, up to 83%. The effect of oxygen sped this decrease, but the effect of enological tannins was very slight. Residual ethanethiol was detected in its disulfide form from approximately 36% in the nonoxygenated wines to 69% in the oxygenated samples.
50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 ...
50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 AND 9 SHOWING CABLE COUNTERWEIGHT SYSTEM AND SCREW-TYPE VERTICAL ADJUSTMENT MACHINERY (LIFTING SCREWS). LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
16. LOG AND PLANK BRIDGE ON ACCESS ROAD NEAR BRIDGE ...
16. LOG AND PLANK BRIDGE ON ACCESS ROAD NEAR BRIDGE SITE; SAME STRUCTURE AS SHOWN IN PHOTO #12. ZION NP NEGATIVE NO. 967 ZIO. - Zion-Mount Carmel Highway, Virgin River Bridge, Spanning North Fork of Virgin River on Zion-Mount Carmel Highway, Springdale, Washington County, UT
Reeves, B. D.; Joshi, N.; Campanello, G. C.; Hilmer, J. K.; Chetia, L.; Vance, J. A.; Reinschmidt, J. N.; Miller, C. G.; Giedroc, D. P.; Dratz, E. A.; Singel, D. J.; Grieco, P. A.
2014-01-01
A three step protocol for protein S-nitrosothiol conversion to fluorescent mixed disulfides with purified proteins, referred to as the thiosulfonate switch, is explored which involves: 1) thiol blocking at pH 4.0 using S-phenylsulfonylcysteine (SPSC); 2) trapping of protein S-nitrosothiols as their S-phenylsulfonylcysteines employing sodium benzenesulfinate; and 3) tagging the protein thiosulfonate with a fluorescent rhodamine based probe bearing a reactive thiol (Rhod-SH), which forms a mixed disulfide between the probe and the formerly S-nitrosated cysteine residue. S-nitrosated bovine serum albumin and the S-nitrosated C-terminally truncated form of AdhR-SH (alcohol dehydrogenase regulator) designated as AdhR*-SNO were selectively labelled by the thiosulfonate switch both individually and in protein mixtures containing free thiols. This protocol features the facile reaction of thiols with S-phenylsulfonylcysteines forming mixed disulfides at mild acidic pH (pH = 4.0) in both the initial blocking step as well as in the conversion of protein-S-sulfonylcysteines to form stable fluorescent disulfides. Labelling was monitored by TOF-MS and gel electrophoresis. Proteolysis and peptide analysis of the resulting digest identified the cysteine residues containing mixed disulfides bearing the fluorescent probe, Rhod-SH. PMID:24986430
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
DOT National Transportation Integrated Search
2013-04-01
The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice : newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated ...
Instrumentation to Aid in Steel Bridge Fabrication : Bridge Virtual Assembly System
DOT National Transportation Integrated Search
2018-05-01
This pool funded project developed a BRIDGE VIRTUAL ASSEMBLY SYSTEM (BRIDGE VAS) that improves manufacturing processes and enhances quality control for steel bridge fabrication. The system replaces conventional match-drilling with virtual assembly me...
Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations
NASA Astrophysics Data System (ADS)
Courtier, A. M.; Constantin, C.; Wilson, C. F.
2013-12-01
We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.
The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome.
Kisly, Ivan; Gulay, Suna P; Mäeorg, Uno; Dinman, Jonathan D; Remme, Jaanus; Tamm, Tiina
2016-05-22
During translation, the two eukaryotic ribosomal subunits remain associated through 17 intersubunit bridges, five of which are eukaryote specific. These are mainly localized to the peripheral regions and are believed to stabilize the structure of the ribosome. The functional importance of these bridges remains largely unknown. Here, the essentiality of the eukaryote-specific bridge eB12 has been investigated. The main component of this bridge is ribosomal protein eL19 that is composed of an N-terminal globular domain, a middle region, and a long C-terminal α-helix. The analysis of deletion mutants demonstrated that the globular domain and middle region of eL19 are essential for cell viability, most likely functioning in ribosome assembly. The eB12 bridge, formed by contacts between the C-terminal α-helix of eL19 and 18S rRNA in concert with additional stabilizing interactions involving either eS7 or uS17, is dispensable for viability. Nevertheless, eL19 mutants impaired in eB12 bridge formation displayed slow growth phenotypes, altered sensitivity/resistance to translational inhibitors, and enhanced hyperosmotic stress tolerance. Biochemical analyses determined that the eB12 bridge contributes to the stability of ribosome subunit interactions in vitro. 60S subunits containing eL19 variants defective in eB12 bridge formation failed to form 80S ribosomes regardless of Mg(2+) concentration. The reassociation of 40S and mutant 60S subunits was markedly improved in the presence of deacetylated tRNA, emphasizing the importance of tRNAs during the subunit association. We propose that the eB12 bridge plays an important role in subunit joining and in optimizing ribosome functionality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction
DOT National Transportation Integrated Search
2017-09-01
Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Meuzelaar, Heleen; Vreede, Jocelyne; Woutersen, Sander
2016-06-07
Using a combination of ultraviolet circular dichroism, temperature-jump transient-infrared spectroscopy, and molecular dynamics simulations, we investigate the effect of salt bridges between different types of charged amino-acid residue pairs on α-helix folding. We determine the stability and the folding and unfolding rates of 12 alanine-based α-helical peptides, each of which has a nearly identical composition containing three pairs of positively and negatively charged residues (either Glu(-)/Arg(+), Asp(-)/Arg(+), or Glu(-)/Lys(+)). Within each set of peptides, the distance and order of the oppositely charged residues in the peptide sequence differ, such that they have different capabilities of forming salt bridges. Our results indicate that stabilizing salt bridges (in which the interacting residues are spaced and ordered such that they favor helix formation) speed up α-helix formation by up to 50% and slow down the unfolding of the α-helix, whereas salt bridges with an unfavorable geometry have the opposite effect. Comparing the peptides with different types of charge pairs, we observe that salt bridges between side chains of Glu(-) and Arg(+) are most favorable for the speed of folding, probably because of the larger conformational space of the salt-bridging Glu(-)/Arg(+) rotamer pairs compared to Asp(-)/Arg(+) and Glu(-)/Lys(+). We speculate that the observed impact of salt bridges on the folding kinetics might explain why some proteins contain salt bridges that do not stabilize the final, folded conformation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1988-01-01
Described and discussed in this exposition are a number of unusual or notable bridges proposed in this century that for various reasons were not built. Emphasis is placed on bridges in the United States, although some bridges in other countries are a...
Bridging suture makes consistent and secure fixation in double-row rotator cuff repair.
Fukuhara, Tetsutaro; Mihata, Teruhisa; Jun, Bong Jae; Neo, Masashi
2017-09-01
Inconsistent tension distribution may decrease the biomechanical properties of the rotator cuff tendon after double-row repair, resulting in repair failure. The purpose of this study was to compare the tension distribution along the repaired rotator cuff tendon among three double-row repair techniques. In each of 42 fresh-frozen porcine shoulders, a simulated infraspinatus tendon tear was repaired by using 1 of 3 double-row techniques: (1) conventional double-row repair (no bridging suture); (2) transosseous-equivalent repair (bridging suture alone); and (3) compression double-row repair (which combined conventional double-row and bridging sutures). Each specimen underwent cyclic testing at a simulated shoulder abduction angle of 0° or 40° on a material-testing machine. Gap formation and tendon strain were measured during the 1st and 30th cycles. To evaluate tension distribution after cuff repair, difference in gap and tendon strain between the superior and inferior fixations was compared among three double-row techniques. At an abduction angle of 0°, gap formation after either transosseous-equivalent or compression double-row repair was significantly less than that after conventional double-row repair (p < 0.01). During the 30th cycle, both transosseous-equivalent repair (p = 0.02) and compression double-row repair (p = 0.01) at 0° abduction had significantly less difference in gap formation between the superior and inferior fixations than did conventional double-row repair. After the 30th cycle, the difference in longitudinal strain between the superior and inferior fixations at 0° abduction was significantly less with compression double-row repair (2.7% ± 2.4%) than with conventional double-row repair (8.6% ± 5.5%, p = 0.03). Bridging sutures facilitate consistent and secure fixation in double-row rotator cuff repairs, suggesting that bridging sutures may be beneficial for distributing tension equally among all sutures during double-row repair
BRIDGE BUILDER WILLIAM FLINNS CAMP & BRIDGE BUILDING OUTFIT. INTERIOR ...
BRIDGE BUILDER WILLIAM FLINNS CAMP & BRIDGE BUILDING OUTFIT. INTERIOR VIEW SHOWING LABORERS AT MEAL TIME. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX
NASA Astrophysics Data System (ADS)
Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad
2017-04-01
A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.