Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.
Hiraide, M; Mizuike, A
1975-06-01
Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.
Determination of copper by isotopic dilution.
Faquim, E S; Munita, C S
1994-01-01
A rapid and selective method was used for the determination of copper by isotopic dilution employing substoichiometric extraction with dithizone in carbon tetrachloride. The appropriate pH range for the substoichiometric extraction was 2-7. In the analysis, even a large excess of elements forming extractable complexes with dithizone does not interfere. The accuracy and precision of the method were evaluated. The method has been applied to analysis of reference materials, wheat flour, wine, and beer.
NASA Astrophysics Data System (ADS)
Salih, Bekir
2000-07-01
Poly(EGDMA-HEMA) microbeads were prepared by suspension copolymerization of ethyleneglycol dimethacrylate (EGDMA) and hydroxyethylmethacrylate (HEMA) using poly(vinylalcohol), benzoyl peroxide and toluene as the stabilizer, the initiator, and the diluent, respectively. A chelating ligand, diphenylthiocarbazone (dithizone), was then attached. The microbeads were characterized by FT-IR and elemental analysis. The affinity microbeads containing 118.9 μmol dithizone g -1 polymer were used in the adsorption/desorption of some selected lead species, Pb(II), (CH 3) 2PbCl 2, (C 2H 5) 2PbCl 2, (CH 3) 3PbCl, and (C 2H 5) 3PbCl from aqueous media containing different amounts of these species (5-200 mg l -1) at different pH values, 2.0-8.0. Adsorption rates were high, and adsorption equilibrium was reached in approximately 45 min. The detection limits of the lead species onto the dithizone-anchored affinity microbeads from solutions containing a single species was 0.28 ng ml -1 for Pb(II), 0.12 ng ml -1 for (CH 3) 3PbCl, 0.24 ng ml -1 for (C 2H 5) 3PbCl, 0.18 ng ml -1 for (CH 3) 2PbCl 2 and 0.30 ng ml -1 for (C 2H 5) 2PbCl 2 on a weight basis for lead. The same behavior was observed during competitive adsorption that is adsorption from a mixture. The affinity order of the lead species was Pb(II)>(CH 3) 2PbCl 2>(CH 3) 3PbCl>(C 2H 5) 3PbCl>(C 2H 5) 2PbCl 2 for competitive adsorption. Dithizone-anchored microbeads were found to be suitable for repeated use of more than five cycles, without noticeable loss of adsorption capacity. For the speciation of organolead compounds, ionic alkyllead compounds were derivatized by n-butyl Grignard reagent and the speciation was performed using a gas chromatography-atomic absorption spectrometry coupled system. Detection limits were improved at least 180-fold with this preconcentration approach using the dithizone-anchored microbeads.
Ishizaki, M
1978-03-01
A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.
Yin, Yong-guang; Chen, Ming; Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin
2010-06-15
A novel and simple solid phase extraction (SPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) method was developed for determination of inorganic mercury (IHg), methylmercury MeHg and ethylmercury (EtHg) in water samples in the present work. The procedure involves pre-functionalization of the commercially available C18 SPE column with dithizone, loading water sample, displacement elution of mercury species by Na(2)S(2)O(3) solution, followed by HPLC-ICP-MS determination. Characterization and optimization of operation parameters of this new SPE procedure were discussed, including eluting reagent selection, concentration of eluting reagent, volume of eluting reagent, effect of NaCl and humic acid in sample matrix. At optimized conditions, the detection limits of mercury species for 100mL water sample were about 3ngL(-1) and the average recoveries were 93.7, 83.4, and 71.7% for MeHg, IHg and EtHg, respectively, by spiking 0.2microgL(-1) mercury species into de-ion water. Stability experiment reveals that both the dithizone-functionalized SPE cartridge and the mercury species incorporated were stable in the storage procedure. These results obtained demonstrate that SPE-HPLC-ICP-MS is a simple and sensitive technique for the determination of mercury species at trace level in water samples with high reproducibility and accuracy.
Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping
2012-09-30
A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.
Kamada, T
The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.
Moghadam Zadeh, Hamid Reza; Ahmadvand, Parvaneh; Behbahani, Ali; Amini, Mostafa M; Sayar, Omid
2015-01-01
Graphene oxide nano-sheet was modified with dithizone as a novel sorbent for selective pre-concentration and determination of Cd(II) and Pb(II) in food. The sorbent was characterised by various analytical methods and the effective parameters for Cd(II) and Pb(II) adsorption were optimised during this work. The high adsorption capacity and selectivity of this sorbent makes the method capable of fast determinations of the Cd(II) and Pb(II) content in complicated matrices even at μg l(-1) levels using commonly available instrumentation. The precision of this method was < 1.9% from 10 duplicate determinations and its accuracy verified using standard reference materials. Finally, this method was applied to the determination of Cd(II) and Pb(II) ions in common food samples and satisfactory results were obtained.
Amorim, Fábio A C; Ferreira, Sérgio L C
2005-02-28
In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.
Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.
Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad
2015-02-01
In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.
NASA Astrophysics Data System (ADS)
Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis
2018-02-01
The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.
NASA Astrophysics Data System (ADS)
Zargoosh, Kiomars; Babadi, Fatemeh Farhadian
2015-02-01
A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.
NASA Technical Reports Server (NTRS)
Morgan, R. S.; Sattilaro, R. F.
1972-01-01
Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.
The determination of copper in biological materials by flame spectrophotometry
Newman, G. E.; Ryan, M.
1962-01-01
A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334
Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S
2016-10-01
A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.
Flow injection method for sulphide determination using an organic mercury compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaqoob, M.; Anwar, M.; Masood, A.S.
1991-04-01
A simple flow injection analysis method is described for the determination of soluble sulfide, based on the complexation of sulfide with p-hydroxymercurbenzoic acid, in the presence of dithizone used as an indicator. The reaction is very rapid, with a sampling rate of 90/hr. and requires a very short length post injection reaction coil. The detection limit and precision are 0.01 mM and 0.7%, respectively.
Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Kiyani, Sajede
2014-01-01
A new selective chemodosimeter probe was developed by the introduction of dithizone (DTZ) as a simple and available dye for detection of cyanide in aqueous media which enables recognition of cyanide over other competing anions such as acetate, dihydrogen phosphate, fluoride and benzoate through covalent bonding. The sensing properties of DTZ were investigated in DMSO/H2O (1:9) and have demonstrated a very high selectivity toward the cyanide anions. A reasonable recognition mechanism was suggested using UV-Vis, (1)H NMR and FTIR spectroscopy techniques. Time dependent density function theory (TDDFT) computations of UV-Vis excitation for DTZ2-CN adduct agreed well with our experimental findings. The detection limit of the new chromogenic probe was measured to be 0.48 μmol L(-1) which is much lower than most recently reported chromogenic probes for cyanide determination. The analytical utility of the method for the analysis of cyanide ions in electroplating wastewater (EPWW), human serum, tap and mineral water samples was demonstrated and the results were compared successfully with the conventional reference method. The short time response and the detection by the naked eye make the method available for the detection and quantitative determination of cyanide in a variety of real samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Kui; Mei, Qingsong; Guan, Guijian; Liu, Bianhua; Wang, Suhua; Zhang, Zhongping
2010-11-15
The development of a simple and on-site assay for the detection of organophosphorus pesticed residues is very important for food safety and exosystem protection. This paper reports the surface coordination-originated fluorescence resonance energy transfer (FRET) of CdTe quantum dots (QDs) and a simple ligand-replacement turn-on mechanism for the highly sensitive and selective detection of organophosphorothioate pesticides. It has been demonstrated that coordination of dithizone at the surface of CdTe QDs in basic media can strongly quench the green emission of CdTe QDs by a FRET mechanism. Upon the addition of organophosphorothioate pesticides, the dithizone ligands at the CdTe QD surface are replaced by the hydrolyzate of the organophosphorothioate, and hence the fluorescence is turned on. The fluorescence turn on is immediate, and the limit of detection for chlorpyrifos is as low as ∼0.1 nM. Two consecutive linear ranges allow a wide determination of chlorpyrifos concentrations from 0.1 nM to 10 μM. Importantly, the fluorescence turn-on chemosensor can directly detect chlorpyrifos residues in apples at a limit of 5.5 ppb, which is under the maximum residue limit allowed by the U.S. Environmental Protection Agency. The very simple strategy reported here should facilitate the development of fluorescence turn-on chemosensors for chemo/biodetection.
Shnepfe, M.M.
1975-01-01
A sensitive spectrofluorimetric procedure with rhodamine B in the presence of aluminum chloride is given for determining submicrogram and microgram quantities of thallium in silicate rocks. Samples are decomposed with a mixture of hydrofluoric and nitric acids and then treated with hydrochloric acid. Thallium is extracted as its dithizonate with chloroform from an alkaline medium containing ascorbate, citrate, and cyanide and then back-extracted with dilute nitric acid. After destruction of the organic matter and treatment with bromine, hydrochloric acid, aluminum chloride, and rhodamine B, the {A table is presented}. ?? 1975.
NASA Astrophysics Data System (ADS)
Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping
2006-07-01
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.
NASA Astrophysics Data System (ADS)
Wang, XiaoFei; Zhu, Yong; Zhu, Sheng; Fan, JinChen; Xu, QunJie; Min, YuLin
2018-03-01
In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g-1 after 400th cycles at 1000 mA g-1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.
Biosorption of Mercury (II) from Aqueous Solutions onto Fungal Biomass
Martínez-Juárez, Víctor M.; Cárdenas-González, Juan F.; Torre-Bouscoulet, María Eugenia; Acosta-Rodríguez, Ismael
2012-01-01
The biosorption of mercury (II) on 14 fungal biomasses, Aspergillus flavus I–V, Aspergillus fumigatus I-II, Helminthosporium sp., Cladosporium sp., Mucor rouxii mutant, M. rouxii IM-80, Mucor sp 1 and 2, and Candida albicans, was studied in this work. It was found that the biomasses of the fungus M. rouxii IM-80, M. rouxii mutant, Mucor sp1, and Mucor sp 2 were very efficient removing the metal in solution, using dithizone, reaching the next percentage of removals: 95.3%, 88.7%, 80.4%, and 78.3%, respectively. The highest adsorption was obtained at pH 5.5, at 30°C after 24 hours of incubation, with 1 g/100 mL of fungal biomass. PMID:23028382
Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza
2016-01-01
The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS.
Cheng, Guihong; He, Man; Peng, Hanyong; Hu, Bin
2012-01-15
A fast and simple method for analysis of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II) in environmental and biological samples was developed by combining magnetic solid phase extraction (MSPE) with inductively coupled plasma-optical emission spectrometry (ICP-OES) detection. Dithizone modified silica-coated magnetic Fe(3)O(4) nanoparticles (H(2)Dz-SCMNPs) were prepared and used for MSPE of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II). The prepared magnetic nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The factors affecting the extraction of the target metal ions such as pH, sample volume, eluent, and interfering ions had been investigated and the adsorption mechanism of the target metals on the self-prepared H(2)Dz-SCMNPs was investigated by FT-IR and X-ray photo electron spectroscopy (XPS). Under the optimized conditions, the detection limits of the developed method for Cr(III), Cu(II), Pb(II) and Zn(II) were 35, 11, 62, and 8ngL(-1), respectively, with the enrichment factor of 100. The relative standard deviations (RSDs, c=10μgL(-1), n=7) were in the range of 1.7-3.1% and the linear range was 0.1-100μgL(-1). The proposed method had been validated by two certified reference materials (GSBZ50009-88 environmental water and GBW07601 human hair), and the determined values were in good agreement with the certified values. The method was also applied for the determination of trace metals in real water and human hair samples with recoveries in the range of 85-110% for the spiked samples. The developed MSPE-ICP-OES method has the advantages of simplicity, rapidity, selectivity, high extraction efficiency and is suitable for the analysis of samples with large volume and complex matrix. Copyright © 2011 Elsevier B.V. All rights reserved.
Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie
2015-01-01
Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p < 0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p < 0.001). However, islet purity was routinely estimated as significantly higher with the manual method versus the ADIA method (p < 0.001). The ADIA method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.
Erarpat, Sezin; Özzeybek, Gözde; Chormey, Dotse Selali; Bakırdere, Sezgin
2017-12-01
In this study, dispersive liquid-liquid microextraction (DLLME) and slotted quartz tube (SQT) were coupled to flame atomic absorption spectrometry (FAAS) to increase the sensitivity of lead. Conditions such as the formation of the lead-dithizone complex, efficiency of the DLLME method and the output of the SQT were systematically optimized to improve the detection limit for the analyte. The conventional FAAS system was improved upon by about 3.0 times with SQT-FAAS, 32 times with DLLME-FAAS and 142 times with DLLME-SQT-FAAS. The method was applicable over a wide linear range (10-500 μg L -1 ). The limit of detection (LOD) determined by DLLME-SQT-FAAS for seawater and mussel were 2.7 μg L -1 and 270 μg kg -1 , respectively. The percent recoveries obtained for mussel and seawater samples (spiked at 20 and 50 μg L -1 ) were 95-96% and 98-110%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of Lead in Urine by Atomic Absorption Spectrophotometry1
Selander, Stig; Cramé, Kim
1968-01-01
A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975
Zhang, Xiao-fang; Zhu, Bi-lin; Li, Wei; Wang, Lei; Zhang, Lei; Wu, Ting; Du, Yi-ping
2015-07-01
In this paper, a method of determination of trace lead in water by UV-Visible diffuse reflectance spectroscopy combined with surfactant and membrane filtration enrichment was proposed. In the NH3 x H2O-NH4Cl buffer solution with pH 8.5, the lead(II) ion would react with dithizone to form the red complex under vigorous stirring, which is hydrophobic and can be enriched by the mixed cellulose ester membrane. In addition, the nonionic surfactant Polyoxyethylene lauryl ether (Brij-30) was added into the solution to improve the enrichment efficiency, then visible diffuse reflectance spectra of the membrane were measured directly after the membrane were naturally dried. We also optimized the reaction conditions which may affect the complexation reaction process, such as type of surfactants, the concentration of the surfactant, the reaction acidity, the concentration of dithizone as well as the reaction time. The research results show that under the optimum conditions, a good linear correlation between absorbance at 485 nm and concentration of lead in the range of 5.0-100.0 microg x L(-1) was obtained with a squared correlation coefficient (R2) of 0.9906, and the detection limit was estimated accordingly to be 2.88 microg x L(-1). To determine real water sample, the interference from some potential coexisting ions was also studied at the optimal conditions when the concentration of lead (II) ion standard solution was fixed to 20 microg x L(-1). The results indicate that the following ions cannot interfere in the determination of lead with the proposed method: 500 times of the K+, Na+, Ca2+, Mg2+, NH4+, NO3-, Cl-, CH3COO-, SO4(2-); 10 times of the Al3+ (using 10% NaF as a masking reagent to avoid the interference); 10 times of the Fe3+ (using 10% NaF and 10% sodium potassium tartrate as masking reagents); 10 times of Hg2+ or Zn2+ (using 10% NaSCN and 10% potassium sodium tartrate as masking reagents); the same amount of Cd2+, Cu2+. The proposed method was applied to the determnation of lead (II) in bottled water as a real sample. The determination results show good agreements between the proposed method and graphite furnace atomic absorption spectrometry (GFAAS) method. The recoveries in case of spiked real samples were between 95.4% and 104.5%, and the standard deviations (SD) were between 0.5 micro x L(-1) and 1.5 microg x L(-1), which indicate that the method developed in the present work with advantages of accuracy, simpleness, sensitiveness are of potential application for the determination of trace lead in water samples.
Torjussen, W; Haug, F M; Olsen, A; Andersen, I
1978-01-01
Histochemical methods and energy dispersive X-ray micro-analysis (EDX-analysis) were evaluated in model experiments and on tissue sections for their usefulness in detecting traces of metals in biological tissue. The goal for this study was to establish a method for localization of nickel deposits in the nasal mucosa, where it has been found in concentrations between 1 and 40 microgram/g in nickel exposed individuals. The histochemical methods tested were staining with dimethylglyoxime, rubeanic acid and dithizone, the Turnbull and Prussian blue methods and TIMM'S sulphide silver procedure. In model experiments nickel-, cobalt-, copper-, zinc- and ironsalts were applied to thin-layer chromatography sheets (TLC-sheets) and stained by the histochemical methods. Spots containing 500 and 50 ng of these metals represented the smallest amounts that could consistently be detected in these experiments, except for the sulphide silver method which seemed a little more sensitive. With the latter method, moreover, zinc was detected in 40 micrometer thick cryostat sections of gelatine made up with 1 microgram/g of the metal. For nickel the corresponding figure was 10 to 50 microgram/g. On specimens of nasal mucosa from nickel-exposed workers, a faint colour was obtained in 40 micron thick cryostat sections from specimens that had been immersed in dithizone, but the colour was too weak for histological analysis. None of the other coloured chelating agents caused noticeable staining when applied to blocks or to cryostat sections. TIMM'S sulphide silver method caused strong staining of the basal layers of the surface epithelium and of fibroblast-like cells in the underlying connective tissue. This staining pattern is described in more detail in a separate report. Rat liver tissue was analyzed by atomic absorption before and after araldite embedding. Blocks of gelatine made up with nickel, copper, zinc and iron were embedded in epoxy resin and analyzed by atomic absorption. Large changes in the metal concentrations, usually an increase, were found after embedding. Ultrathin sections from this material were used to test the sensitivity of the EDX-equipment. Referring to the concentrations determined by atomic absorption in the embedded material, iron was detected at 1215 microgram/g and 362 microgram/g (gelatine standards) but not at 167 microgram/g (rat liver). Similar values could not be determined for nickel, copper or zinc, because of background radiation resulting from the presence of these metals in the instrument. We did not succeed in establishing a procedure for detecting nickel deposits in nasal mucosa with any of the methods which were tested. The most sensitive but least specific of the tested methods for visualizing heavy metals in the nasal mucosa, was TIMM'S sulphide silver procedure. The preparation of tissue for this method is discussed.
Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage.
Lee, Jeong Seok; An, Seong Yeong; Kwon, Il Keun; Heo, Jung Sun
2014-10-01
Human periodontal ligament-derived stem cells (PDLSCs) demonstrate self-renewal capacity and multilineage differentiation potential. In this study, we investigated the transdifferentiation potential of human PDLSCs into pancreatic islet cells. To form three-dimensional (3D) clusters, PDLSCs were cultured in Matrigel with media containing differentiation-inducing agents. We found that after 6 days in culture, PDLSCs underwent morphological changes resembling pancreatic islet-like cell clusters (ICCs). The morphological characteristics of PDLSC-derived ICCs were further assessed using scanning electron microscopy analysis. Using reverse transcription-polymerase chain reaction analysis, we found that pluripotency genes were downregulated, whereas early endoderm and pancreatic differentiation genes were upregulated, in PDLSC-derived ICCs compared with undifferentiated PDLSCs. Furthermore, we found that PDLSC-derived ICCs were capable of secreting insulin in response to high concentrations of glucose, validating their functional differentiation into islet cells. Finally, we also performed dithizone staining, as well as immunofluorescence assays and fluorescence-activated cell sorting analysis for pancreatic differentiation markers, to confirm the differentiation status of PDLSC-derived ICCs. These results demonstrate that PDLSCs can transdifferentiate into functional pancreatic islet-like cells and provide a novel, alternative cell population for pancreatic repair. Copyright © 2014 John Wiley & Sons, Ltd.
Biological characterization of metanephric mesenchymal stem cells from the Beijing duck.
Chen, Jia; Pu, Yabin; Sun, Yujiao; Zhang, Ping; Li, Qian; Wang, Kunfu; Wang, Wenjie; Ma, Yuehui; Guan, Weijun
2016-02-01
Mesenchymal stem cells (MSCs) possess self-proliferation and multi-directional differentiation abilities. Previous studies on MSCs have mostly focused on the bone marrow, lungs, pancreas and umbilical cord blood, with few studies on metanephric tissues in ducks. For the present study, the Beijing duck was selected as an experimental animal. Duck embryo metanephric mesenchymal stem cells (MMSCs) were studied. MMSC isolation culture, analysis of biological characteristics, induced differentiation and identification were performed in preliminary experiments. In the current study, surface antigens and gene expression patterns were detected using immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. The induced cells, adipocytes, hepatocytes, epithelial cells and islet cells were identified by oil red O staining, periodic acid-Schiff staining, immunofluorescence and dithizone staining, respectively. RT-PCR was performed for detection of specific marker genes. The results suggested that the biological characteristics of MMSCs were similar to those of the MSCs previously analyzed. Primary MMSCs were sub-cultured to passage 21. The induced cells exhibit typical staining and immunofluorescence indicating the expression of specific genes. This demonstrates that MMSCs may be a novel alternative source of MSCs for experimental and clinical applications.
Olko, A; Abratowska, A; Zyłkowska, J; Wierzbicka, M; Tukiendorf, A
2008-02-01
Plants of Armeria maritima are found both on unpolluted sites and on soils strongly polluted with heavy metals. Seedlings of A. maritima from a zinc-lead calamine heap in ore-mining region (Bolesław population) and from unpolluted area (Manasterz population) were tested to determine the zinc, cadmium and lead tolerance. In hydroponic experiments Bolesław population was more tolerant to zinc, cadmium and lead. Localization of heavy metals in roots was determined using the histochemical method for detecting metal-complexes with dithizone. Their accumulation was found in root hairs, rhizoderma and at the surface of the central cylinder. Glutathione level in plants increased after metal treatment of both populations. However, its high level was not correlated with phytochelatin production. These metal-binding complexes were not detected in plants exposed to zinc, cadmium or lead. Changes of organic acids concentrations in Armeria treated with metals may suggest their role in metal translocation from roots to shoots. The content of organic acids, especially malate, decreased in the roots and increased in the leaves. These changes may be important in Pb-tolerance of Manasterz population and in Zn-, Cd-tolerance of calamine population from Bolesław.
Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S
2015-09-03
This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental studies on islets isolation, purification and function in rats
Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli
2015-01-01
To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021
Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei
2016-01-01
Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105
Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi
2010-11-15
An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.
Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław
2014-01-01
Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.
Growth of ZnO nanowires on polypropylene membrane surface-Characterization and reactivity
NASA Astrophysics Data System (ADS)
Bojarska, Marta; Nowak, Bartosz; Skowroński, Jarosław; Piątkiewicz, Wojciech; Gradoń, Leon
2017-01-01
Need for a new membrane is clearly visible in recent studies, mostly due to the fouling phenomenon. Authors, focused on problem of biofouling caused by microorganisms that are present in water environment. An attempt to form a new membrane with zinc oxide (ZnO) nanowires was made; where plasma treatment was used as a first step of modification followed by chemical bath deposition. Such membrane will exhibit additional reactive properties. ZnO, because of its antibacterial and photocatalytic properties, is more and more often used in commercial applications. The authors used SEM imaging, measurement of the contact angle, XRD and the FT-IR analysis for membrane characterization. Amount of ZnO deposited on membrane surface was also investigated by dithizone method. Photocatalytic properties of such membranes were examined through methylene blue and humic acid degradation in laboratory scale modules with LEDs as either: wide range white or UV light source. Antibacterial and antifouling properties of polypropylene membranes modified with ZnO nanowires were examined through a series of tests involving microorganisms: model gram-positive and -negative bacteria. The obtained results showed that it is possible to modify the membrane surface in such a way, that additional reactive properties will be given. Thus, not only did the membrane become a physical barrier, but also turned out to be a reactive one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Pei; Tong, Zhiqing; Bai, Bo, E-mail: baibochina@163.com
Porous hollow carbonaceous microspheres (PHCMs) fabricated from yeast cells by hydrothermal treatment have stimulated interest because of their outstanding chemical and physical properties. Herein, the functionalizations of PHCMs by further coating of α-Fe{sub 2}O{sub 3} nanoparticles onto the surface were carried out. The structure of resulted α-Fe{sub 2}O{sub 3}@PHCMs products were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and BET specific surface area measurements (BET), respectively. Its promising application was evaluated by the Fenton-like degradation of fluorescent whitening agent-VBL from aqueous solutions. - Graphical abstract: In thismore » work, novel α-Fe{sub 2}O{sub 3}@porous hollow carbonaceous microspheres (α-Fe{sub 2}O{sub 3}@PHCMs) were synthesized through a combination of hydrothermal method and calcinations route and achieved excellent removal efficiency for fluorescent whitening Agent-VBL. - Highlights: • The hybrid α-Fe{sub 2}O{sub 3}@ porous hollow microspheres (PHCMs) were firstly fabricated. • The formation mechanism of α-Fe{sub 2}O{sub 3}@PHCMs microspheres was proposed and verified. • Dithizone played a key role in the synthesis of α-Fe{sub 2}O{sub 3}@PHCMs composites. • A favorable removal for the fluorescent whitening agent-VBL were achieved.« less
Saeinasab, Morvarid; Matin, Maryam M; Rassouli, Fatemeh B; Bahrami, Ahmad Reza
2016-05-01
Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.
Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng
2014-11-01
Human umbilical cord mesenchymal stromal cells (hUC-MSCs) hold great potential as a therapeutic candidate to treat diabetes, owing to their unlimited source and ready availability. In this study, we differentiated hUC-MSCs with in vitro-synthesized pancreatic-duodenal homebox 1 (PDX1) messenger (m)RNA into islet-like cell clusters. hUC-MSCs were confirmed by both biomarker detection and functional differentiation. In vitro-synthesized PDX1 messenger RNA can be transfected into hUC-MSCs efficiently. The upregulated expression of PDX1 protein can be detected 4 h after transfection and remains detectable for 36 h. The induction of islet-like structures was confirmed by means of morphology and dithizone staining. Reverse transcriptase-polymerase chain reaction results revealed the expression of some key pancreatic transcription factors, such as PDX1, NeuroD, NKX6.1, Glut-2 and insulin in islet-like cell clusters. Immunofluorescence analysis showed that differentiated cells express both insulin and C-peptide. Enzyme-linked immunosorbent assay analysis validated the insulin secretion of islet-like cell clusters in response to the glucose stimulation. Our results demonstrate the use of in vitro-synthesized PDX1 messenger RNA to differentiate hUC-MSCs into islet-like cells and pave the way toward the development of reprogramming and directed-differentiation methods for the expression of encoded proteins. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
A preclinical evaluation of alternative site for islet allotransplantation
He, Sirong; Yuan, Yujia; Han, Pengfei; Wang, Dan; Chen, Younan; Liu, Jingping; Tian, Bole; Yang, Guang; Yi, Shounan; Gao, Fabao; Zhong, Zhihui; Li, Hongxia; Cheng, Jingqiu; Lu, Yanrong
2017-01-01
The bone marrow cavity (BMC) has recently been identified as an alternative site to the liver for islet transplantation. This study aimed to compare the BMC with the liver as an islet allotransplantation site in diabetic monkeys. Diabetes was induced in Rhesus monkeys using streptozocin, and the monkeys were then divided into the following three groups: Group1 (islets transplanted in the liver with immunosuppressant), Group 2 (islets transplanted in the tibial BMC), and Group 3 (islets transplanted in the tibial BMC with immunosuppressant). The C-peptide and blood glucose levels were preoperatively measured. An intravenous glucose tolerance test (IVGTT) was conducted to assess graft function, and complete blood cell counts were performed to assess cell population changes. Cytokine expression was measured using an enzyme-linked immune sorbent assay (ELISA) and MILLIPLEX. Five monkeys in Group 3 exhibited a significantly increased insulin-independent time compared with the other groups (Group 1: 78.2 ± 19.0 days; Group 2: 58.8 ± 17.0 days; Group 3: 189.6 ± 26.2 days) and demonstrated increases in plasma C-peptide 4 months after transplantation. The infusion procedure was not associated with adverse effects. Functional islets in the BMC were observed 225 days after transplantation using the dithizone (DTZ) and insulin/glucagon stains. Our results showed that allogeneic islets transplanted in the BMC of diabetic Rhesus monkeys remained alive and functional for a longer time than those transplanted in the liver. This study was the first successful demonstration of allogeneic islet engraftment in the BMC of non-human primates (NHPs). PMID:28358858
Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F
2016-06-27
In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P < 0.01). By using a dynamic three-dimensional cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.
Lin, Han-Tso; Chiou, Shih-Hwa; Kao, Chung-Lan; Shyr, Yi-Ming; Hsu, Chien-Jen; Tarng, Yih-Wen; Ho, Larry L-T; Kwok, Ching-Fai; Ku, Hung-Hai
2006-07-28
To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of beta-cell differentiation in these PSCs were evaluated as well. By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel(TM) was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs. A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-alpha, CD73 (SH2), CD81, CD105(SH3). In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus.
Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.
Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven
2017-06-01
Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.
[Isolation, purification and primary culture of rat pancreatic beta-cells].
Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei
2009-01-01
To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.
Ouyang, Jingfeng; Huang, Wei; Yu, Wanwan; Xiong, Wei; Mula, Ramanjaneya V R; Zou, Hongbin; Yu, Yongping
2014-02-05
Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity. We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3β (HNF 3β) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan
2011-12-01
Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.
NASA Astrophysics Data System (ADS)
Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin
2007-05-01
A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.
Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.
Kis, Mariann; Sipka, Gábor; Maróti, Péter
2017-05-01
Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca 2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H + ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10 5 ) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM) -1 and 1 (mM) -1 , respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.
Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong
2016-09-01
Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall components.
Kitzmann, J P; Karatzas, T; Mueller, K R; Avgoustiniatos, E S; Gruessner, A C; Balamurugan, A N; Bellin, M D; Hering, B J; Papas, K K
2014-01-01
Replacement of β-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations. Copyright © 2014 Elsevier Inc. All rights reserved.
Taylor, M J; Baicu, S
2011-11-01
A critical component of treating type I diabetes by transplantation is the availability of sufficient high-quality islets. Currently, islets can be obtained only by reliance on an expensive, inconsistent, and toxic enzyme digestion process. As an alternative, we hypothesize that cryobiologic techniques can be used for differential freeze destruction of the pancreas to release islets that are selectively cryopreserved in situ. Pancreases were procured from juvenile pigs with the use of approved procedures. The concept of cryo-isolation is based on differential processing of the pancreas in 5 stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water (or saline solution) to fully distend the gland; 3) freezing the entire pancreas to -160°C, and stored in liquid nitrogen; 4) mechanically crushing and pulverizing the frozen pancreas into small fragments; and 5) thawing, filtering and washing the frozen fragments with RPMI 1640 culture medium to remove the CPA. Finally, the filtered effluent (cryo-isolate) was stained with dithizone for identification of intact islets, and samples were taken for static glucose-stimulated insullin release assessment. As predicted the cryo-isolated contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact embedded islets. The degree of cleavage of the cryoprotected islets from the freeze-destroyed exocrine cells, was variable. Islets were typically larger than their counterparts isolated from juvenile pigs with conventional enzyme-digestion techniques. Functionally, the islets from replicate cryo-isolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7 (n = 3). An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze-destruction of acinar tissue is feasible and proposed as a novel method that avoids the problems associated with conventional collagenase digestion methods. Copyright © 2011 Elsevier Inc. All rights reserved.
Fakhri, Yadolah; Mohseni, Seyed Mohsen; Jafarzadeh, Saeedeh; Langarizadeh, Ghazaleh; Moradi, Bigard; Zandsalimi, Yahya; Rahimizadeh, Aziz; Mirzaei, Maryam
2015-01-01
The presence of heavy metals such as lead in drinking water resources can be dangerous for human because of toxicity and biological accumulation. The consumption of water or food which contains lead in high concentration can lead to prevent from Hemoglobin Synthesis (Anemia) and Kidney diseases. In this present study, the researcher collected 432 samples of bottled water in the popular marks in summer and winter from the surface of Bandar Abbas. The lead concentration was measured by atomic absorption Spectrophotometer in model DR2800 through the Dithizone method. CDI, R and HQ which are caused by lead for adult men, women and children, have been calculated and evaluated through the equations of EPA and WHO. The mean concentration of lead, which is 3.46±0.47 µg/l, and its range, which is 1.9-17.6 µg/l, are lower than the guideline of WHO (10 µg/l) and MPC of EPA is (15 µg/l). But the 40 samples of the bottled water (9.2%) have the concentration higher than guideline WHO and 8 samples (1.85%) has the concentration higher than the permissible limits of the EPA. CDI in different age groups is as following manner: Children>adult men>adult women. CDI in children is more than twice as much as in the adult men and women. The R of lead for children (24E-7), adult men (11E-7) and for adult women (10E-7) are more than the acceptable level of R in EPA (1E-6) but less than the acceptable level of R in WHO (1E-4). Since HQ of adult men (34E-5), adult women (31E-5) and children (84E-5), is lower than 1, it can be said that the population of Bandar Abbas is in a safe area regarding the HQ of the bottled water’s lead. PMID:25946951
Metal transport capabilities of anticancer copper chelators.
Gaál, Anikó; Orgován, Gábor; Mihucz, Victor G; Pape, Ian; Ingerle, Dieter; Streli, Christina; Szoboszlai, Norbert
2018-05-01
In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC 50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC 50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC 50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85). Copyright © 2018 Elsevier GmbH. All rights reserved.
Jafarian, Arefeh; Taghikani, Mohammad; Abroun, Saeid; Allahverdi, Amir; Lamei, Maryam; Lakpour, Niknam; Soleimani, Masoud
2015-01-01
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. A number of studies have led to the notion that some miRNAs have key roles in control of pancreatic islet development and insulin secretion. Based on some studies on miRNAs pattern, the researchers in this paper investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose so extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. Although derived IPCs by miR-375 alone were capable to express insulin and other endocrine specific transcription factors, the cells lacked the machinery to respond to glucose. It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. Although the roles of miR-375 and miR-9 are well known in pancreatic development and insulin secretion, the use of these miRNAs in transdifferentiation was never demonstrated. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.
NASA Astrophysics Data System (ADS)
Hua, M.; Garduno, L.; Mondragon, J. D.; Cuff, K. E.
2004-12-01
Several recently published articles by the Washington Post exposing the alarming concentration of lead in drinking water from schools and homes in the Washington D.C. area sparked our interest in the correlation between lead-containing materials used in plumbing and rate of lead solubility. Elementary children who attend schools in various regions of the District were contacted by San Francisco Bay Area- based high school students who are participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project. After receiving a thorough explanation of required sampling procedures, the elementary school children sent 500 ml water samples from their homes and schools to Berkeley along with information on the locations from which the water samples were collected. These water samples were analyzed for lead content at the Environmental Science Research Program laboratory at Lawrence Hall of Science. The majority of the samples contained more than 15 ppb of lead, which is the EPA action level. We hypothesize that there are three possible sources of lead in the drinking water: 1) lead pipes in the water main; 2) lead pipes in the service main; and 3) lead soldering that was often previously used to connect piping. We chose to investigate the effect of lead-based solder on the overall lead concentration in water. Using a soldering iron, we melted lead solder to create discs ranging from one to five centimeter diameter and one to thirty-six grams of mass. These discs were then placed into a beaker with 500 ml of 7.1pH distilled water and allowed to stand for 48 hours. At the end of 48 hours, the water samples were prepared for analysis using the EPA approved lead-dithizone procedure. Results showed an exponential relationship between disc surface area and the concentration of dissolved lead measured in the sample. Therefore, lead-based solder can represent a possible major source of lead contamination.
Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I
2018-01-01
An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiao, Mei; An, LiLong; Yang, XueYi; Ge, Xin; Qiao, Hai; Zhao, Ting; Ma, XiaoFei; Fan, JingZhuang; Zhu, MengYang; Dou, ZhongYing
2008-09-01
The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant transplantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1 x 10(9) mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with beta-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet-like clusters, as identified by dithizone staining, which expressed the transcription factor of the insulin and secreted the insulin and C-peptide. Furthermore, the transplantation of mhPSCs-induced pancreatic islets into the subcapsular region of the kidney in streptozotocin-induced diabetic rats could reduce blood glucose levels and prolong the life time.
Leng, San-Hua; Lu, Fu-Er
2005-01-01
AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601
Zhang, Yihua; Dou, Zhongying
2014-05-08
Bone marrow mesenchymal stem cells (BMSCs) possess low immunogenicity and immunosuppression as an allograft, can differentiate into insulin-producing cells (IPCs) by in vitro induction, and may be a valuable cell source to regenerate pancreatic islets. However, the very low differentiation efficiency of BMSCs towards IPCs under adherent induction has thus far hindered the clinical exploitation of these cells. The aim of this study is to explore a new way to efficiently induce BMSCs into IPCs and lay the groundwork for their clinical exploitation. In comparison with adherent induction, BMSCs of human first-trimester abortus (hfBMSCs) under a nonadherent state were induced towards IPCs in noncoated plastic dishes using a three-stage induction procedure developed by the authors. Induction effects were evaluated by statistics of the cell clustering rate of induced cells, and ultrastructural observation, dithizone staining, quantitative polymerase chain reaction and immunofluorescence assay, insulin and c-peptide release under glucose stimulus of cell clusters, as well as transplantation test of the cell clusters in diabetic model mice. With (6.175 ± 0.263) × 105 cells in 508.5 ± 24.5 cell clusters, (3.303 ± 0.331) × 105 single cells and (9.478 ± 0.208) × 105 total cell count on average, 65.08 ± 2.98% hfBMSCs differentiated into pancreatic islet-like cell clusters after nonadherent induction. With (3.993 ± 0.344) × 105 cells in 332.3 ± 41.6 cell clusters, (5.437 ± 0.434) × 105 single cells and (9.430 ± 0.340) × 105 total cell count on average, 42.37 ± 3.70% hfBMSCs differentiated into pancreatic islet-like cell clusters after adherent induction (P < 0.01, n = 10). The former is significantly higher than the latter. Calculated according to the cell clustering rate and IPC percentage in the cell clusters, 29.80 ± 3.95% hfBMSCs differentiated into IPCs after nonadherent induction and 18.40 ± 2.08% hfBMSCs differentiated into IPCs after adherent induction (P < 0.01, n = 10), the former significantly higher than the latter. The cell clusters expressed a broad gene profile related to pancreatic islet cells, released insulin and c-peptide in a glucose concentration-dependent manner, and normalized hyperglycemia of streptozocin-induced mice for at least 80 days following xenograft. Blood glucose of grafted mice rose again after their graft removed. A series of examination of the grafts showed that transplanted cells produced human insulin in recipients. Our studies demonstrate that nonadherent induction can greatly promote BMSCs to form pancreatic islet-like cell clusters, thereby improving the differentiation efficiency of BMSCs towards IPCs.
The relationships between mercury and selenium in plankton and fish from a tropical food web.
do A Kehrig, Helena; Seixas, Tércia G; Palermo, Elisabete A; Baêta, Aida P; Castelo-Branco, Christina W; Malm, Olaf; Moreira, Isabel
2009-01-01
Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70-290 microm) and mesoplankton (>or=290 microm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 microg g(-1) dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g(-1)) than in Micropogonias furnieri (2.9 and 15.3 nmol g(-1)), Bagre spp (1.3 and 3.4 nmol g(-1)) and Mugil liza (0.3 and 5.1 nmol g(-1)), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.