Science.gov

Sample records for diurnal activity cycles

  1. Diurnal Cycle Computations

    SciTech Connect

    Covey, Curt; Doutriaux, Charles

    2016-12-01

    Directory /export_backup/covey1/CMIP5/Precipitation/DiurnalCycle/GridpointTimeseries/CMCCBCM_etal/ on crunchy.llnl.gov contains Python / UV-CDAT scripts compositeDiurnalStatistics.py and fourierDiurB nalAllGrid.py. compositeDiurnalStatistics.py reads high-time-frequency climate data from one or more years and computes 24 hour composite-mean and composite-standard-deviation cycles for one requested month.

  2. The tropical cyclone diurnal cycle

    NASA Astrophysics Data System (ADS)

    Dunion, Jason P.

    The research presented in this thesis explores a phenomenon referred to as the tropical cyclone (TC) diurnal cycle (TCDC) and presents satellite, numerical modeling, and observational perspectives pertaining to how it can be monitored, its evolution in time and space, its relevance to TC structure and intensity, and how it manifests in numerical simulations of TCs. Infrared satellite imagery was developed and used to investigate diurnal oscillations in TCs and finds a diurnal pulsing pattern that occurs with notable regularity through a relatively deep layer from the inner core to the surrounding environment. A combination of satellite, numerical model simulations, and aircraft observations found diurnal signals in operationally analyzed radii of 50 kt winds in TCs and in satellite intensity estimates from the Advanced Dvorak Technique and spawned the development of a 24-hr conceptual clock that approximates the temporal and spatial evolution of the TCDC each day. TC diurnal pulses are revealed to significantly impact the thermodynamics and winds in the TC environment and appear as narrow, convectively active rings of high radar reflectivity in NOAA aircraft radar data and are hundreds of kilometers in length. Enhanced nighttime radiational cooling that is particularly favored in the TC outflow layer acts to pre-condition the TC environment in a way that favors triggering of the TCDC and TC diurnal pulses, while in the daytime, the stabilizing effects of shortwave warming begins to suppress TCDC processes in the storm, leading to the culmination of the TCDC each day. Schematics are presented that summarize many of the main findings in this work, including descriptions of the basic state of the TC environment as the TCDC evolves during its early and later stages each day and a TCDC-centric daytime evolution of a TC diurnal pulse, associated squall lines and gust fronts, and radial and vertical winds in the lower and upper levels of the storm. The TCDC represents a

  3. Phototrophic biofilm activity and dynamics of diurnal Cd cycling in a freshwater stream.

    PubMed

    Beck, Aaron J; Janssen, Felix; Polerecky, Lubos; Herlory, Olivier; De Beer, Dirk

    2009-10-01

    Diel cycles of dissolved cationic metal concentrations commonly occur in freshwater streams in apparent response to coincident cycles in water quality parameters (pH, O2, temperature). Hourly sampling of the Cd-contaminated Riou Mort (France) revealed large diel cycles in "total" dissolved Cd (232-357 nM; < 0.45 microm) and "truly" dissolved Cd (56-297 nM; < 0.02 microm) which were strongly correlated with changes in water pH. Using measured fluxes, a dissolved O2 model was constructed that indicated that benthic metabolic activities, respiration and photosynthesis, were responsible for the diel O2 (and thus, CO2 and pH) variation in the stream. However, microsensor measurements also showed that the pH changes occurred at the biofilm interface earlier than in the bulk water column. This difference in timing was reflected in the Cd dynamics, where pH-controlled sorption effects caused Cd partitioning from the truly dissolved pool onto the biofilm in the morning, and from the truly dissolved pool onto large colloids (0.02-0.45 microm) later in the day. Because this process causes large changes in the bioavailable Cd fraction, it has significant implications for Cd toxicity in freshwater streams. This study demonstrates the profound control of benthic microbiological processes on the cycling of heavy metals in aquatic systems.

  4. An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity

    NASA Astrophysics Data System (ADS)

    Nicholls, M. E.

    2015-08-01

    Recent cloud-resolving numerical modeling results suggest that radiative forcing causes accelerated rates of tropical cyclogenesis and early intensification. Furthermore, observational studies of tropical cyclones have found that oscillations of the cloud canopy areal extent often occur that are clearly related to the solar diurnal cycle. A theory is put forward to explain these findings. The primary mechanism that seems responsible can be considered a refinement of the mechanism proposed by Gray and Jacobson (1977) to explain diurnal variations of oceanic tropical deep cumulus convection. It is hypothesized that differential radiative cooling or heating between a relatively cloud-free environment and a developing tropical disturbance generates circulations that can have very significant influences on convective activity in the core of the system. It is further suggested that there are benefits to understanding this mechanism by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations, also known as buoyancy bores. Numerical model experiments indicate that mean environmental radiative cooling outside the cloud system is playing an important role in causing a significant horizontal differential radiative forcing and accelerating the rate of tropical cyclogenesis. As an expansive stratiform cloud layer forms aloft within a developing system the mean low-level radiative cooling is reduced, while at mid levels small warming occurs. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but at nighttime when there is strong radiative clear-sky cooling of the environment it becomes significant. Thermally driven circulations develop, characterized by relatively weak subsidence in the environment but much stronger upward motion in the cloud system. This upward motion leads to a cooling tendency and increased relative humidity. The increased relative humidity at night

  5. An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity

    NASA Astrophysics Data System (ADS)

    Nicholls, M. E.

    2015-03-01

    Recent cloud-resolving numerical modeling results suggest that radiative forcing causes accelerated rates of tropical cyclogenesis and early intensification. Furthermore, observational studies of tropical cyclones have found that oscillations of the cloud canopy areal extent often occur that are clearly related to the solar diurnal cycle. A theory is put forward to explain these findings. The primary mechanism that seems responsible can be considered a refinement of the mechanism proposed by Gray and Jacobson (1977) to explain diurnal variations of oceanic tropical deep cumulus convection. It is hypothesized that differential radiative cooling or heating between a relatively cloud-free environment and a developing tropical disturbance generates circulations that can have very significant influences on convective activity in the core of the system. It is further suggested that there are benefits to understanding this mechanism by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations, also known as buoyancy bores. Numerical model experiments indicate that mean environmental radiative cooling outside the cloud system is playing an important role in causing a significant horizontal differential radiative forcing and accelerating the rate of tropical cyclogenesis. As an expansive stratiform cloud layer forms aloft within a developing system the mean low level radiative cooling is reduced while at mid levels small warming occurs. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but at nighttime when there is strong radiative clear sky cooling of the environment it becomes significant. Thermally driven circulations develop, characterized by relatively weak subsidence in the environment but much stronger upward motion in the cloud system. This upward motion leads to a cooling tendency and increased relative humidity. The increased relative humidity at night

  6. In situ monitoring of the diurnal cycling of dynamic metal species in a stream under contrasting photobenthic biofilm activity and hydrological conditions.

    PubMed

    Tercier-Waeber, Mary-Lou; Hezard, Teddy; Masson, Matthieu; Schäfer, Jörg

    2009-10-01

    The diurnal evolution of the dynamic fraction, i.e., the potentially bioavailable fraction, of Cd, Cu, and Pb in a small river impacted by mining and smelting waste was studied in situ, under contrasting biofilm activity and hydrological conditions, using an automated voltammetric analyzer. The in situ, near real-time measurements revealed persistent dynamic metal species diurnal cycles. These cycles were affected mainly by the biochemical conditions rather than hydrological conditions. The data obtained from the in situ measurements, coupled with complementary laboratory analyses, revealed that various processes control the diurnal dynamic metal species cycles in the studied site; the trends of the diurnal cycles of the dynamic metal species can be different from those observed for the dissolved metal species measured in filtered samples. Moreover, the dynamic fraction of a given cationic metal can show diurnal cycles with opposite trends depending on the environmental conditions. All these findings highlight the interest and importance of automated, continuous measurements of specific relevant environmental metal fractions, compared to punctual weekly or monthly traditional sampling strategies of total dissolved metal analysis, to allow more appropriate water quality control and reliable assessment of metal ecotoxicological impact.

  7. Diurnal Cycle of Convection during Dynamo

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.

    2014-12-01

    During the special observing period (SOP) of the DYNAMO/CINDY/AMIE field campaign, conducted over the Indian Ocean from October to November 2011, two sounding networks, one north and one south of the equator, took 4-8 soundings/day. This dataset with 3-hr time resolution offers a unique opportunity to investigate the diurnal cycle of Intertropical Convergence Zone (ITCZ) convection which was present within the southern sounding array (SSA) for extended periods during the SOP. For example, during the first half of October 2011 when the ITCZ was located between 3°S and 8°S, TRMM 3B42 3-h rainfall averaged over the SSA exhibited a prominent diurnal cycle with a late night/early morning maximum and an early evening minimum. The rainfall diurnal range during this period over the SSA was 4.8 mm which was ~50% of the daily mean (10.1 mm). Mean rainfall over the northern sounding array was much lighter (0.9 mm) during this period with a diurnal cycle nearly out of phase with that over the SSA. Using primarily sounding and satellite data, we will explore the characteristics of this diurnally varying convection and what, if any, influence it may have had on the Madden-Julian Oscillation (MJO) signal.

  8. Modulation Cycles of GCR Diurnal Anisotropy Variation

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Oh, S. Y.

    The diurnal variations of GCR intensity observed by the ground NM stations represent the anisotropic GCR flow at 1 AU. It is generally believed that the variation of the local time of the GCR maximum intensity (phase) has 22-year period of two sunspot cycles. However, there even exists doubt on such anisotropy variation cycle. Those different interpretations come from the lack of enough data since determining the cycle of variation in precision requires data archived over long time of at least two cycles. In order to determine the cycle of GCR anisotropy variation, we carried out the statistical study on the diurnal variation of phase. We examined the 52 years data of Huancayo (Haleakala), 38-year data from Rome, 42-year data from Oulu NM stations. We used new method in determining the yearly mean phase. We applied the F-test to determine the statistically meaningful period of anisotropy phase variation. We found that the coupling coefficients indicating the differences in phase between the NM stations are not constant but dependent on the solar cycle. The phase variation has two components of 22-year and 11-year cycles. The NM station in the high latitude (low cut-off rigidity) shows mainly the 22-year cycle in phase controlled by the diffusion effect with the solar polar magnetic field reversal. However, the lower the latitude of NM station is, the higher contribution from 11-year cycle associated with the solar sunspot cycle. This additional phase variation might be regulated by the drift effect.

  9. On the cumulus diurnal cycle over the tropical warm pool

    NASA Astrophysics Data System (ADS)

    Ruppert, James H.; Johnson, Richard H.

    2016-06-01

    An idealized cloud-resolving model experiment is executed to study the prominent cumulus diurnal cycle in suppressed regimes over the tropical warm pool. These regimes are characterized by daytime cumulus invigoration and cloud-layer moistening connected with enhanced diurnal cycles in shortwave radiative heating (SW) and sea surface temperature (SST). The relative roles of diurnally varying SW and SST in this cumulus diurnal cycle are assessed, wherein radiation is modeled and SST is prescribed. Large-scale subsidence is parameterized using the spectral weak temperature gradient (WTG) scheme, such that large-scale vertical motion (wwtg), and hence subsidence drying, is modulated by diurnal changes in diabatic heating. A control simulation exhibits daytime cumulus invigoration that closely matches observations, including midday cloud-layer moistening. This cumulus invigoration is composed of two distinct modes: (1) a midday nonprecipitating ("forced") mode of predominately shallow clouds, driven by the peak in SST and surface fluxes as the mixed layer deepens and dries; and (2) a precipitating late-afternoon ("active") mode characterized by deeper clouds in connection with a more moist cloud layer. This cloud-layer moistening is driven by the daytime relaxation of wwtg subsidence, which is prompted by the midday peak in SW. The transition from the surface flux-driven forced mode to the active precipitating mode is accompanied by a transition from relatively small-scale boundary layer circulation cells to larger cells that are highly modulated by cold pools, consistent with observations. When the diurnal cycle is removed, clouds are persistently shallower with virtually no rainfall, emphasizing the inherent nonlinearity of the cumulus diurnal cycle.

  10. Climate Implications of the Moist-convective Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Ruppert, James

    2016-04-01

    This idealized modeling study is provoked by recent observations from the tropical Indian Ocean (the DYNAMO field campaign), which demonstrate the high degree to which column humidity is modulated by the diurnal cycle of clouds. Under suppressed large-scale conditions, shallow convection prevails, and the diurnal cycles of shortwave radiative heating and sea surface temperature (SST) are at their strongest. In turn, the diurnal cycle of clouds is prominent, which is manifest in daytime cloud deepening and tropospheric moistening in response to boundary layer warming (bearing resemblance to the diurnal cycle over land). An idealized modeling study is performed to 1) assess the driving processes in the diurnal cycle (i.e., SST vs. radiative forcing) and 2) assess whether or not this diurnal cycle rectifies onto longer timescales. A cloud-resolving model framework is employed with the CM1 model (Bryan and Fritsch 2002), wherein a diurnal cycle of SST is prescribed, fully-interactive radiation varies diurnally, and the weak temperature gradient (WTG) approximation is invoked to simulate the feedbacks between the moist convection and large-scale circulation. The results suggest that the diurnal cycle is highly nonlinear, in that the diurnal fluctuation of clouds strongly rectifies onto longer timescales. The diurnal cycle must therefore be regarded as a "forcing mechanism" to the climate system. The vitality and quality of the moist-convective diurnal cycle in climate models may in turn be important to the accuracy of their simulations.

  11. Thermoperiod affects the diurnal cycle of nitrate reductase expression and activity in pineapple plants by modulating the endogenous levels of cytokinins.

    PubMed

    Freschi, Luciano; Nievola, Catarina Carvalho; Rodrigues, Maria Aurineide; Domingues, Douglas Silva; Van Sluys, Marie-Anne; Mercier, Helenice

    2009-11-01

    Nitrate reductase (NR, EC 1.6.6.1) activity in higher plants is regulated by a variety of environmental factors and oscillates with a characteristic diurnal rhythm. In this study, we have demonstrated that the diurnal cycle of NR expression and activity in pineapple (Ananas comosus, cv. Smooth Cayenne) can be strongly modified by changes in the day/night temperature regime. Plants grown under constant temperature (28 degrees C light/dark) showed a marked increase in the shoot NR activity (NRA) during the first half of the light period, whereas under thermoperiodic conditions (28 degrees C light/15 degrees C dark) significant elevations in the NRA were detected only in the root tissues at night. Under both conditions, increases in NR transcript levels occurred synchronically about 4 h prior to the corresponding elevation of the NRA. Diurnal analysis of endogenous cytokinins indicated that transitory increases in the levels of zeatin, zeatin riboside and isopentenyladenine riboside coincided with the accumulation of NR transcripts and preceded the rise of NRA in the shoot during the day and in the root at night, suggesting these hormones as mediators of the temperature-induced modifications of the NR cycle. Moreover, these cytokinins also induced NRA in pineapple when applied exogenously. Altogether, these results provide evidence that thermoperiodism can modify the diurnal cycle of NR expression and activity in pineapple both temporally and spatially, possibly by modulating the day/night changes in the cytokinin levels. A potential relationship between the day/night NR cycle and the photosynthetic pathway performed by the pineapple plants (C(3) or CAM) is also discussed.

  12. Diurnal cycle influences peripheral and brain iron levels in mice.

    PubMed

    Unger, Erica L; Earley, Christopher J; Beard, John L

    2009-01-01

    Iron movement between organ pools involves a dynamic equilibrium of iron efflux and uptake, and homeostatic mechanisms are likely involved in providing iron to cells and organs when required. Daily iron levels in the plasma pool fluctuate with the diurnal cycle, but clear explanations regarding the objectives and regulation of the flux are lacking. The association between diurnal cycle and iron flux is relevant in the disease of restless legs syndrome (RLS), where individuals display diurnal deficits in motor control, have impaired brain iron metabolism, and perhaps altered iron uptake from the plasma pool. The goal of the present study was to examine diurnal variations in peripheral and regional brain iron to evaluate iron flux between organs in iron-sufficient and iron-deficient mice. In mice fed control diet, liver iron was elevated 30-40%, and plasma iron was reduced 20-30% in the active dark period compared with the inactive light phase. Dietary iron deficiency eliminated this variation in liver iron in male and female mice and in plasma iron in male mice. Reductions in ventral midbrain and nucleus accumbens iron and ferritin were apparent in iron-deficient mice during both diurnal phases, but only during the light phase was an approximately 25% reduction in whole brain iron observed, suggesting different brain iron requirements between phases. These data demonstrate that iron flux between organs is sensitive to diurnal regulatory biology. Importantly, variations in brain iron may have temporal implications regarding neural functioning and may contribute to the diurnal cycle-dependent symptoms of RLS.

  13. Upscaling diurnal cycles of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Bodesheim, Paul; Jung, Martin; Mahecha, Miguel; Reichstein, Markus

    2017-04-01

    Carbon fluxes like Gross Primary Production (GPP) and Net Ecosystem Exchange (NEE) are important variables for studying interactions between the atmosphere and the biosphere in different ecosystems. They are typically derived from measurements at Eddy covariance towers and the FLUXNET global network consists of hundreds of such sites. In order to diagnose global GPP and NEE patterns from FLUXNET, upscaling approaches have been used in the past to extrapolate the site measurements to continental and global scale. However, respective products have a daily or monthly temporal resolution and do not allow for analyzing patterns related to diurnal variations of GPP and NEE. To raise these upscaling approaches to the next level, we present our first results on upscaling diurnal cycles of GPP and NEE with half-hourly resolution. We use random forest regression models to estimate the relationship between predictor variables and fluxes based on more than four million half-hourly observations from FLUXNET sites. We have developed and tested two approaches that overcome the mismatch in the temporal resolution between predictor variables at daily resolution and fluxes at half-hourly resolution. Based on thorough leave-one-site-out cross-validation we show that the approach works very well. Finally, we used the trained models for computing global products of half-hourly GPP and NEE that cover the years 2001 to 2014 and present global patterns of diurnal carbon flux variations derived from the upscaling approach.

  14. Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment

    NASA Astrophysics Data System (ADS)

    Mutzner, Raphael; Weijs, Steven V.; Tarolli, Paolo; Calaf, Marc; Oldroyd, Holly J.; Parlange, Marc B.

    2015-05-01

    In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campaign in the summer 2012 in an alpine catchment in the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle in one of two monitored subbasins. The two different cycles were of comparable amplitudes and the transition happened within a time span of several days. In the second monitored subbasin, we observed an ice melt-dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign and a different shape. The amplitude of the ice melt cycle decreased exponentially during the season and was larger than the amplitude of the evapotranspiration cycle which was relatively constant during the season. Our study suggests that an evapotranspiration-dominated diurnal streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types of diurnal streamflow cycles were separated using a method based on the identification of the active riparian area and measurement of evapotranspiration.

  15. Temperature cycles trigger nocturnalism in the diurnal homeotherm Octodon degus.

    PubMed

    Vivanco, Pablo; Rol, Maria Angeles; Madrid, Juan Antonio

    2010-05-01

    Body temperature regulation within a physiological range is a critical factor for guaranteeing the survival of living organisms. The avoidance of high ambient temperatures is a behavioral mechanism used by homeothermic animals living in extreme environmental conditions. As the circadian system is involved in these thermoregulatory responses, precise phase shifts and even complete temporal niche inversion have been reported. Octodon degus, a mainly diurnal rodent from Chile, has the ability to switch its phase preference for locomotor activity to coincide with the availability of a running wheel. The aims of this work are twofold: to determine whether ambient temperature cycles, with high values during the day and low values at night (HLT(a)), can induce nocturnal chronotypes in degus previously characterized as diurnal; and to learn whether HLT(a) cycles are able to act as a zeitgeber in this dual-phase species. To this end, degus were subjected to 24 h HLT(a) cycles under both 12:12 LD and DD conditions. Two experimental groups were used, one with previous wheel running experience and another naïve group, to study the influence of the thermal cycles and previous wheel running experience on the degus' dual-phasing behavior. Temperature cycles (31.3 +/- 1.5 degrees C during the day and 24.2 +/- 1.6 degrees C at night) induced a 100% nocturnalism in previously diurnal individuals. Indeed, both entrainment with nocturnal phase angle to LD and nocturnal rhythmicity induced by masking were observed. Moreover, HLT(a) cycles acted by masking, confining wheel-running activity to the cooler phase under DD conditions, with the naïve group being more sensitive than the experienced one.

  16. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due

  17. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-05-01

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  18. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis.

    PubMed

    Dodson, J Brant; Taylor, Patrick C

    2016-05-16

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  19. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice.

    PubMed

    Gutman, Roee; Dayan, Tamar; Levy, Ofir; Schubert, Iris; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage.

  20. The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice

    PubMed Central

    Dayan, Tamar; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage. PMID:21829733

  1. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM

    NASA Astrophysics Data System (ADS)

    Bernie, D. J.; Guilyardi, E.; Madec, G.; Slingo, J. M.; Woolnough, S. J.; Cole, J.

    2008-12-01

    in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden-Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20-100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean-atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.

  2. Estimating the Diurnal Cycle and Daily Insolation of Ultraviolet and Photosynthetically Active Radiation at the Sea Surface.

    PubMed

    Kuwahara, Victor S; Taguchi, Satoru

    2015-01-01

    Accurate determination of the diurnal variability and daily insolation of surface (0(+) ) and subsurface (0(-) ) irradiance are essential to estimate several physical, chemical and biological processes occurring at the surface layer of marine environments. Natural downwelling PAR and spectral UVR were examined on eight occasions at 0(+) and 0(-) to refine empirical models, particularly in the UVR spectrum. The diurnal variability in UVR and PAR were wavelength dependent and were modeled by a sinusoidal equation. The best fit for PAR at 0(+) and 0(-) was the sinusoid power of n = 2 and n = 2.5, respectively. In the UVR spectrum, sinusoids increased as wavelengths decreased ranging from n = 2-5. Higher n values in the UV-B spectrum suggest sharper increase/decrease near sunrise and sunset hours, ultimately reducing the final value of daily insolation at specified wavelengths. Calculated daily insolation of UV-B/(UV-A + PAR) ratio suggests that photoinhibition from exposure to UV-B occurs within a shorter biologically effective day length than PAR, and is high during summer and low during winter. These results suggest that biogeochemical calculations based on diurnal models of irradiance measurements would benefit from accurate solar noon references and wavelength specificity, particularly in the UVR spectrum. © 2015 The American Society of Photobiology.

  3. Evaluating the diurnal cycle in cloud top temperature from SEVIRI

    NASA Astrophysics Data System (ADS)

    Taylor, Sarah; Stier, Philip; White, Bethan; Finkensieper, Stephan; Stengel, Martin

    2017-06-01

    The variability of convective cloud spans a wide range of temporal and spatial scales and is of fundamental importance for global weather and climate systems. Datasets from geostationary satellite instruments such as the Spinning Enhanced Visible and Infrared Imager (SEVIRI) provide high-time-resolution observations across a large area. In this study we use data from SEVIRI to quantify the diurnal cycle of cloud top temperature within the instrument's field of view and discuss these results in relation to retrieval biases. We evaluate SEVIRI cloud top temperatures from the new CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) dataset against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Results show a mean bias of +0.44 K with a standard deviation of 11.7 K, which is in agreement with previous validation studies. Analysis of the spatio-temporal distribution of these errors shows that absolute retrieval biases vary from less than 5 K over the southeast Atlantic Ocean up to 30 K over central Africa at night. Night- and daytime retrieval biases can also differ by up to 30 K in some areas, potentially contributing to biases in the estimated amplitude of the diurnal cycle. This illustrates the importance of considering spatial and diurnal variations in retrieval errors when using the CLAAS-2 dataset. Keeping these biases in mind, we quantify the seasonal, diurnal, and spatial variation of cloud top temperature across SEVIRI's field of view using the CLAAS-2 dataset. By comparing the mean diurnal cycle of cloud top temperature with the retrieval bias, we find that diurnal variations in the retrieval bias can be small but are often of the same order of magnitude as the amplitude of the observed diurnal cycle, indicating that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. We show that the CLAAS-2 dataset can measure the diurnal cycle of cloud tops

  4. Multiscale Interactions over the Maritime Continent: Feedbacks between Atmospheric Convectively Coupled Kelvin Waves and Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Baranowski, D.

    2015-12-01

    Interactions between atmospheric convectively coupled Kelvin waves (CCKW), initiated over the Indian Ocean, and the diurnally varying convection over the Maritime Continent are primary interest of this presentation. Mutliscale interactions between local and propagating convection lead to substantial enhancement of the local diurnal cycle over that region. CCKW activity strongly modulates magnitude of the diurnal cycle of precipitation over the Maritime Continent, but not its temporal evolution, which maintains characteristics of a diurnal cycle. The impact is such that precipitation is highly increased during convective part of the CCKW and little suppressed during its non-convective part. Timing of the increase in diurnal cycle magnitude strongly depends on the time of the day of the CCKW approach to the Maritime Continent. It is shown that precipitation anomaly associated with CCKW is phase locked with local diurnal cycle of precipitation over the Maritime Continent and that has implications for CCKW ability to propagate across that region. The composite daily-zonal evolution of the precipitation anomaly associated with CCKW is such that it is "in-phase" with local diurnal cycle over Sumatra, Borneo and surrounding seas. This presentation is based on analysis of TRMM precipitation data and newly developed CCKW trajectories database.

  5. The Diurnal Cycle of Precipitation in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bowman, K. P.; Fowler, M. D.

    2015-12-01

    Position and intensity data from the International Best Track Archive for Climate Stewardship (IBTrACS) are combined with global, gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) for the period 1998 to 2013 to study diurnal variability of precipitation in tropical cyclones. The comprehensive global coverage and large sample size afforded by the two data sets allow robust statistical analysis of storm-averaged diurnal variations and permit stratification of the data in various ways. There is a clearly detectable diurnal variation of precipitation in tropical cyclones with peak rainfall occurring near 0600 local time. For storms of all intensities the amplitude of the diurnal harmonic, which dominates the diurnal cycle, is approximately 7% of the mean rain rate. This corresponds to a peak-to-peak variation of about 15% over the course of the day. The diurnal cycle is similar in all ocean basins. There is evidence that the amplitude of the diurnal cycle increases with increasing storm intensity, but the results are not statistically significant. The results have implications for hurricane forecasting and for our understanding of the processes that regulate oceanic convection.

  6. Controls on diurnal streamflow cycles in a high altitude catchment in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Mutzner, R.; Weijs, S. V.; Tarolli, P.; Calaf, M.; Oldroyd, H. J.; Parlange, M. B.

    2014-12-01

    The study of streamflow diurnal cycles is of primary importance to understand hydrological processes happening at various spatial scales. In high altitude alpine catchments, streamflow diurnal cycles are typically dominated by snow or icemelt. During a field campaign in the summer 2012 in a small catchment in the Swiss Alps (Val Ferret catchment, draining area of 20.4 km2, mean altitude of 2423 m above sea level (asl), ranging from 1773 m to 3206 m asl, glaciarized area: 2%), we observed streamflow diurnal cycles throughout the season in two monitored sub-basins of the watershed. To study in detail the diurnal cycles, we make use of a wireless network of meteorological stations, time-lapse photography, a fully equipped energy-balance station and water electrical conductivity monitored at the gauging stations. In the first sub-basin, we observed a transition from a snowmelt to an evapotranspiration induced diurnal streamflow cycle. In the second sub-basin, we observed a snowmelt/icemelt dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between icemelt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign. The amplitude of the icemelt cycle decreased exponentially during the season and was larger than of the amplitude of the evapotranspiration cycle which was relatively constant during the season. A conceptual model was applied to estimate the effect of evapotranspiration on the diurnal streamflow cycle in the icemelt dominated sub-basin. The model makes use of the latent heat measured at the energy balance station, the streamflow loss due to evapotranspiration and the computation of active evapotranspiration areas. Our study suggests that evapotranspiration from the riparian area damps the icemelt-diurnal streamflow cycle resulting in a possible underestimation of glacier mass changes.

  7. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-08-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010-2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal

  8. DIURNAL CYCLE OF PRECIPITABLE WATER VAPOR OVER SPAIN

    SciTech Connect

    Ortiz de Galisteo, J. P.; Cachorro, V. E.; Toledano, C.; Torres, B.; Laulainen, Nels S.; Bennouna, Yasmine; de Frutos, A. M.

    2011-05-20

    Despite the importance of the diurnal cycle of precipitable water vapor (PWV), its knowledge is very limited due to the lack of data with sufficient temporal resolution. Currently, from GPS receivers, PWV can be obtained with high temporal resolution in all weather conditions for all hours of the day. In this study we have calculated the diurnal cycle of PWV for ten GPS stations over Spain. The minimum value is reached approximately at the same time at all the stations, ~0400-0500 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The amplitude of the cycle ranges between 0.72 mm and 1.78 mm. The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The amplitude of the PWV cycle, relative to the annual mean value, ranges between 8.8 % on the Mediterranean coast and 3.6 % on the Atlantic coast. Two distinctly different seasonal diurnal cycles have been identified, one in winter and other in summer, with spring and autumn being only transition states. The winter cycle is quite similar at all locations, whereas in summer, local effects are felt strongly, making the diurnal cycle quite different between stations. The amplitude of the summer cycle is 1.69 mm, it is almost double the winter one (0.93 mm). Analogous to the annual cycles, the seasonal cycles of the different stations are more similar during the night and early morning hours than during the afternoon. The observed features of the PWV diurnal cycle are explained in a qualitative way on the basis of the air temperature, the transport of moisture by local winds, and the turbulent vertical mixing.

  9. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-04-01

    Hourly SST fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the Northern European Shelf seas. Six years of SST fields from the SEVIRI dataset are validated against the polar orbiting Advanced Along Track Scanning Radiometer (AATSR) archive to identify biases in the SEVIRI data. Identification of the diurnal signal requires a night-time SST field representative of foundation temperatures, i.e. well-mixed conditions and free of any diurnal signal. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic Seas while smallest diurnal signals are found in the Tropics. Longer diurnal warming duration is identified in the high latitudes compared to the Tropics. The mean diurnal signal of monthly mean SST can be up to 0.5° in specific regions.

  10. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    PubMed Central

    Taylor, Patrick C.

    2016-01-01

    Abstract Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear‐sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear‐sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis‐based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation. PMID:27840782

  11. Numerical Experiments of the Diurnal Cycle of Axisymmetric Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Navarro, E. L.; Hakim, G. J.

    2015-12-01

    Recent observational and modeling studies have shown that the diurnal cycle of radiation may be fundamentally linked to structural changes in the lifetime of a tropical cyclone. While these studies suggest that an underlying mechanism within the storm may exist, the dynamics for this response are still largely unexplained. Previous modeling studies were limited due to model configuration (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. In this presentation, two new investigations are discussed to reexamine the role of the daily cycle of radiation on axisymmetric hurricane structure. In the first study, a tropical cyclone lasting 324 days is generated in Cloud Model 1 (CM1, see Bryan and Rotunno 2009) to quantify a tropical cyclone diurnal signal. A coherent response is observed in the temperature, wind, and cloud ice fields that accounts for up to a third of the overall variance. Composite analysis of each hour of the day shows a diurnal cycle in the storm intensity that, relative to the mean, intensifies in the early hours of the morning and is consistent with observational studies. Examination of the radial and vertical wind suggests two distinct circulations forced by the diurnal cycle: (1) a radiatively-driven circulation in the outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation within the storm due to latent heating. These responses are coupled and are periodic with respect to the diurnal cycle. In the second study, following the method of Pendergrass and Willoughby (2009) and Willoughby (2009), hypothesis tests using various prescribed, periodic heating distributions are performed to examine the dynamical response of the storm to radiation. Results reveal significant changes to the secondary-circulation structure of the storm, as well as to the intensification of the primary vortex. Sensitivity to the chosen heating distribution as well as to the initial vortex are discussed

  12. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan; Tawfik, Ahmed

    2016-01-01

    We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables) as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a corresponding rise in

  13. Main diurnal cycle pattern of rainfall in East Java

    NASA Astrophysics Data System (ADS)

    Rais, Achmad Fahruddin; Yunita, Rezky

    2017-08-01

    The diurnal cycle pattern of rainfall was indicated as an intense feature in East Java. The research of diurnal cycle generally was only based on satellite estimation which had limitations in accuracy and temporal resolution. The hourly rainfall data of Climate Prediction Center Morphing Technique (CMORPH) and gauge were blended using the best correction method between transformation distribution (DT) and quantile mapping (QM) to increase the accuracy. We used spatiotemporal composite to analyse the concentration patterns of maximum rainfall and principal component analysis (PCA) to identify the spatial and temporal dominant patterns of diurnal rainfall. QM was corrected CMORPH data since it was best method. The eastern region of East Java had a rainfall peak at 14 local time (LT) and the western region had a rainfall peak at 16 LT.

  14. Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment

    PubMed Central

    Powell, Weston T.; LaSalle, Janine M.

    2015-01-01

    The circadian cycle is a genetically encoded clock that drives cellular rhythms of transcription, translation and metabolism. The circadian clock interacts with the diurnal environment that also drives transcription and metabolism during light/dark, sleep/wake, hot/cold and feast/fast daily and seasonal cycles. Epigenetic regulation provides a mechanism for cells to integrate genetic programs with environmental signals in order produce an adaptive and consistent output. Recent studies have revealed that DNA methylation is one epigenetic mechanism that entrains the circadian clock to a diurnal environment. We also review recent circadian findings in the epigenetic neurodevelopmental disorders Prader–Willi, Angelman and Rett syndromes and hypothesize a link between optimal brain development and intact synchrony between circadian and diurnal rhythms. PMID:26105183

  15. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-09-01

    Hourly SST (sea surface temperature) fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the northern European shelf seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. Identification of the diurnal signal requires an SST foundation temperature field representative of well-mixed conditions which typically occur at night-time or under moderate and strong winds. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic seas while weaker diurnal signals are found in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5 K in specific regions.

  16. Hypothalamic-pituitary-adrenal (HPA) axis function in the California mouse (Peromyscus californicus): Changes in baseline activity, reactivity, and fecal excretion of glucocorticoids across the diurnal cycle

    PubMed Central

    Harris, Breanna N.; Saltzman, Wendy; de Jong, Trynke R.; Milnes, Matthew R.

    2012-01-01

    The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamicpituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24 hours, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5 mg/kg, s.c.) was required to suppress plasma CORT for 8 h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from 3H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2–4 h post-injection whereas mice injected during the morning did so at 14–16 h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays. PMID:23026495

  17. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-01-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  18. Monthly covariability of Amazonian convective cloud properties and radiative diurnal cycle

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2017-02-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  19. Diurnal cycle of convection during the CAIPEEX 2011 experiment

    NASA Astrophysics Data System (ADS)

    Resmi, EA; Malap, Neelam; Kulkarni, Gayatri; Murugavel, P.; Nair, Sathy; Burger, Roelof; Prabha, Thara V.

    2016-10-01

    The diurnal cycle of convective storm events is investigated in the study with the help of C-band radar reflectivity data during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX 2011) in combination with other ground-based observations. A threshold reflectivity of 25 dBZ is used to identify the initiation of storms. Observations from collocated sensors such as a microwave radiometer profiler, water vapor measurement from eddy covariance system, and wind lidar measurements are used to investigate the characteristic features and diurnal cycle of convectively initiated storms from 21st September to 5th November 2011. The maximum reflectivity follows a normal distribution with a mean value of 40 dBZ. The cloud depth over the domain varied between 5 and 15 km corresponding to a range of reflectivity of 30-50 dBZ values. In the diurnal cycle, double maximum in the precipitation flux is noted—one during the afternoon hours associated with the diurnal heating and the other in the nocturnal periods. The nocturnal precipitation maximum is attributed to initiation of several single-cell storms (of congestus type) with a duration that is larger than the storms initiated during the daytime. The convective available potential energy (CAPE) showed a diurnal variation and was directly linked with the surface level water vapor content. The high CAPE favored single storms with a reflectivity >40 dBZ and higher echo top heights. In the evening or late night hours, a nocturnal low-level jet present over the location together with the reduced stability above the cloud base favored enhancement of low-level moisture, CAPE, and further initiation of new convection. The study illustrated how collocated observations could be used to study storm initiation and associated thermodynamic features.

  20. Diurnal Variability in Optical Properties and Carbon Stocks as Indicators of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Mannino, A.

    2016-12-01

    On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from geostationary ocean color satellites to discern diurnal variability in optical properties and derived products including carbon stocks, fluxes, primary production and biogeochemical cycling culminated in a series of field campaigns in the Chesapeake Bay, northern Gulf of Mexico and Korean coastal seas with support from the NASA GEO-CAPE mission pre-formulation activities. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor diurnal changes in community production, carbon and nitrogen stocks and optical properties. Signification diurnal variation in optical properties, particulate organic carbon and nitrogen, chlorophyll-a, and nutrients were measured. However, diurnal changes in dissolved organic carbon and colored dissolved organic matter absorption were generally small. Field measurements are compared with GOCI satellite observations. Our results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in optical properties, carbon stocks and net production within coastal ecosystems.

  1. Diurnal Cycles in Water Quality Across the Periodic Table

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2013-12-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline several methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically

  2. Diurnal Cycle of Convective Cloud Systems over the Maritime Continent and Its Variability During MJO

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2015-12-01

    It has been well documented that the diurnal maximum of convection and precipitation is observed during the morning hours (AM) over the ocean, whereas the maximum is during the afternoon hours (PM) over land. However, the difference between AM and PM precipitation in the coastal/adjacent seas over the Maritime Continent (MC) is 2-3 times larger than anywhere else in the tropics. Most large mesoscale convective systems (MCSs) during the local active phases of the MJO are over water of the MC. This makes the convective signals of the Madden-Julian Oscillation (MJO) much larger over the water than over the islands when the MJO moves through the MC. In this study, we examine the diurnal cycle of formation, propagation, and dissipation of MCSs by tracking cloud clusters in time and space using hourly satellite IR data and 3-hourly TRMM data. It is found that the large AM precipitation over the adjacent seas is a result of the propagating MCSs from the islands to the sea during the night, which are forced by the enhanced land breeze from the high mountains of the islands in the MC. MCSs can also initiate over the seas during the diurnal maximum of SST in the afternoon and continue to grow into the night and maximize during the early morning. The diurnal cycle of convection is modulated by the MJO. The two factors together may explain the large diurnal amplitude over the adjacent seas of the MC than that of the open ocean. The complex interactions of the convection, local and large-scale circulation, and the unique land-sea geography of the MC are further investigated using a high-resolution, coupled atmosphere-ocean model. The result indicates that the diurnal cycle of SST is affected by the tidal mixing in the ocean, which may be an important factor contributing to the air-sea interaction on the diurnal and MJO time scales.

  3. Sampling of the Diurnal Cycle of Precipitation using TRMM

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Bell, Thomas L.; Xu, Li-Ming; Starr, David OC. (Technical Monitor)

    2001-01-01

    We examine the temporal sampling of tropical regions using observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR). We conclude that PR estimates at any one hour, even using three years of data, are inadequate to describe the diurnal cycle of precipitation over regions smaller than 12 degrees, due to high spatial variability in sampling. We show that the optimum period of accumulation is four hours. Diurnal signatures display half as much sampling error when averaged over four hours of local time. A similar pattern of sampling variability is found in the TMI data, despite the TMI's wider swath and increased sampling. These results are verified using an orbital model. The sensitivity of the sampling to satellite altitude is presented, as well as sampling patterns at the new TRMM altitude of 402.5 km.

  4. Diurnal Radiation Cycle Impact in Different Stages of Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Tang, X.

    2015-12-01

    This work examines the impact of diurnally varying radiation cycle on the intensity, structure and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations.During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under favorable environmental conditions. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification (RI). Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that leads to stronger/broader outer rainbands and larger storm size during the mature stage of the hurricane but there is little impact on the hurricane intensity in terms of maximum surface wind speed. There is no apparent eyewall replacement cycle (ERC) simulated in both sensitivity experiments without the diurnal cycle (daytime only and nighttime only) while the control forecast undergoes secondary eyewall formation during the mature stage of Edourad (as observed), suggesting the potential role of the diurnally varying radiative impact. Through changing the strength of the initial vortex during the formation stage, the diurnal cycle may also alter the track of the storm.

  5. Diurnal cycles in water quality across the periodic table

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2014-05-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically useful

  6. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  7. Modulation Cycles of Galactic Cosmic Ray Diurnal Anisotropy Variation

    NASA Astrophysics Data System (ADS)

    Oh, S. Y.; Yi, Y.; Bieber, J. W.

    2010-03-01

    The diurnal variation of the galactic cosmic ray (GCR) count rates measured by a ground-based neutron monitor (NM) station represents an anisotropic flow of GCR at 1 AU. The variation of the local time of GCR maximum intensity (we call the phase) is thought in general to have a period of two sunspot cycles (22 years). However, other interpretations are also possible. In order to determine the cyclic behavior of GCR anisotropic variation more precisely, we have carried out a statistical study on the diurnal variation of the phase. We examined 54-year data of Huancayo (Haleakala), 40-year data from Rome, and 43-year data from Oulu NM stations using the ‘pile-up’ method and the F-test. We found that the phase variation has two components: of 22-year and 11-year cycles. All NM stations show mainly the 22-year phase variation controlled by the drift effect due to solar polar magnetic field reversal, regardless of their latitudinal location (cut-off rigidity). However, the lower the NM station latitude is (the higher the cut-off rigidity is), the higher is the contribution from the 11-year phase variation controlled by the diffusion effect due to the change in strength of the interplanetary magnetic fields associated with the sunspot cycle.

  8. Deep greedy learning under thermal variability in full diurnal cycles

    NASA Astrophysics Data System (ADS)

    Rauss, Patrick; Rosario, Dalton

    2017-08-01

    We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.

  9. Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Tastula, Esa-Matti; Vihma, Timo; Andreas, Edgar L.; Galperin, Boris

    2013-05-01

    diurnal cycles of near-surface meteorological parameters over Antarctic sea ice in six widely used atmospheric reanalyses are validated against observations from Ice Station Weddell. The station drifted from February through May 1992 and provided the most extensive set of meteorological observations ever collected in the Antarctic sea ice zone. For the radiative and turbulent surface fluxes, both the amplitude and shape of the diurnal cycles vary considerably among different reanalyses. Near-surface temperature, specific humidity, and wind speed in the reanalyses all feature small diurnal ranges, which, in most cases, fall within the uncertainties of the observed cycle. A skill score approach revealed the superiority of the ERA-Interim reanalysis in reproducing the observed diurnal cycles. An explanation for the shortcomings in the reanalyses is their failure to capture the diurnal cycle in cloud cover fraction, which leads to errors in other quantities as well. Apart from the diurnal cycles, NCEP-CFSR gave the best error statistics.

  10. Seasonal variation of the diurnal cycles of earth's radiation budget determined from ERBE

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Wielicki, B. A.; Gibson, G. G.; Denn, F. M.; Young, D. F.

    1990-01-01

    ERBE scanner data from the Earth Radiation Budget Satellite and NOAA-9 satellites obtained from February 1985 through January 1986 are used to investigate the diurnal cycles of both LW radiation and albedo for each month of the year. Seasonal variations of the diurnal cycles are examined for the deserts, vegetated land, and oceans over the globe. Comparisons are made between clear-sky and total-scene conditions. ERBE satellite data showed that many areas of the earth exhibit significant diurnal variations in both LW flux and albedo. The LW diurnal range was found to be greatest for deserts and smallest for oceans, whereas the albedo diurnal amplitude factor is a maximum over the tropical oceans and a minimum over land. Cloud cover and seasonal variations have a major effect on the diurnal cycles. Generally, maximum diurnal ranges were found in the summer hemisphere and minimum values in the winter hemisphere.

  11. Seasonal variation of the diurnal cycles of earth's radiation budget determined from ERBE

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Wielicki, B. A.; Gibson, G. G.; Denn, F. M.; Young, D. F.

    1990-01-01

    ERBE scanner data from the Earth Radiation Budget Satellite and NOAA-9 satellites obtained from February 1985 through January 1986 are used to investigate the diurnal cycles of both LW radiation and albedo for each month of the year. Seasonal variations of the diurnal cycles are examined for the deserts, vegetated land, and oceans over the globe. Comparisons are made between clear-sky and total-scene conditions. ERBE satellite data showed that many areas of the earth exhibit significant diurnal variations in both LW flux and albedo. The LW diurnal range was found to be greatest for deserts and smallest for oceans, whereas the albedo diurnal amplitude factor is a maximum over the tropical oceans and a minimum over land. Cloud cover and seasonal variations have a major effect on the diurnal cycles. Generally, maximum diurnal ranges were found in the summer hemisphere and minimum values in the winter hemisphere.

  12. Cycle-to-Cycle Variations in the Diurnal Variation of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Thomas, Simon; Owen, Chris; Owens, Matt; Lockwood, Mike

    2016-04-01

    We examine mean profiles of the diurnal variations in galactic cosmic ray flux using a number of neutron monitors at different magnetic latitudes and longitudes. By splitting all of the hourly neutron monitor data by the solar magnetic polarity and analysing the mean normalised neutron monitor count rates between these, we see that the diurnal variation changes phase by 1-2 hours between the two polarity states for the majority of non-polar neutron monitors. The intensity and variability of a heliospheric magnetic field is analysed for every day and found not to be the cause of the phase change. Some polar neutron monitors, however, show different, smaller amplitude variations in phase between polarity cycles. Time series of the time of the maximum in the diurnal variation are presented between 1965 and 2013. Our results agree with previous work by confirming the presence of a 22-year variation in the peak time of the diurnal variation and a 11-year variation in the amplitude, but also show that not all neutron monitors show the same trend. An analysis of the magnetic latitude dependence of the diurnal variation shows that the time-of-day of the peak and trough of this variation gives opposing changes to the amplitude of the 22-year change. We suggest that this could be due to changes in the configeration of the heliospheric magnetic field for consecutive cycles.

  13. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010-2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural

  14. Cumulus moistening, the diurnal cycle, and large-scale tropical dynamics

    NASA Astrophysics Data System (ADS)

    Ruppert, James H., Jr.

    Observations and modeling techniques are employed to diagnose the importance of the diurnal cycle in large-scale tropical climate. In the first part of the study, soundings, radar, and surface flux measurements collected in the Indian Ocean DYNAMO experiment (Dynamics of the Madden--Julian Oscillation, or MJO) are employed to study MJO convective onset. According to these observations, MJO onset takes place as follows: moistening of the low--midtroposphere is accomplished by cumuliform clouds that deepen as the drying by large-scale subsidence and horizontal advection simultaneously wane. This relaxing of subsidence is tied to decreasing column radiative cooling, which links back to the evolving cloud population. A new finding from these observations is the high degree to which the diurnal cycle linked to air-sea and radiative fluxes invigorates clouds and drives column moistening each day. This diurnally modulated cloud field exhibits pronounced mesoscale organization in the form of open cells and horizontal convective rolls. Based on these findings, it is hypothesized that the diurnal cycle and mesoscale cloud organization represent two manners in which local convective processes promote more vigorous day-to-day tropospheric moistening than would otherwise occur. A suite of model tests are carried out in the second part of the study to 1) test the hypothesis that the diurnal cycle drives moistening on longer timescales, and 2) better understand the relative roles of diurnally varying sea surface temperature (SST) and direct atmospheric radiative heating in the diurnal cycle of convection. Moist convection is explicitly represented in the model, the diurnal cycle of SST is prescribed, and cloud-interactive radiation is simulated with a diurnal cycle in shortwave heating. The large-scale dynamics are parameterized using the spectral weak temperature gradient (WTG) technique recently introduced by Herman and Raymond. In this scheme, external (i.e., large

  15. Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons Between Observation and a GCM

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Randall, David A.; Fowler, Laura D.

    2000-01-01

    The simulated diurnal cycle is in many ways an ideal test bed for new physical parameterizations. The purpose of this paper is to compare observations from the Tropical Rainfall Measurement Mission, the Earth Radiation Budget Experiment, the International Satellite Cloud Climatology Project, the Clouds and the Earth's Radiant Energy System Experiment, and the Anglo-Brazilian Amazonian Climate Observation Study with the diurnal variability of the Amazonian hydrologic cycle and radiative energy budget as simulated by the Colorado State University general circulation model, and to evaluate improvements and deficiencies of the model physics. The model uses a prognostic cumulus kinetic energy (CKE) to relax the quasi-equilibrium closure of the Arakawa-Schubert cumulus parameterization. A parameter, alpha, is used to relate the CKE to the cumulus mass flux. This parameter is expected to vary with cloud depth, mean shear, and the level of convective activity, but up to now a single constant value for all cloud types has been used. The results of the present study show clearly that this approach cannot yield realistic simulations of both the diurnal cycle and the monthly mean climate state. Improved results are obtained using a version of the model in which alpha is permitted to vary with cloud depth.

  16. Sleep-wake cycle and diurnal fluctuation of amyloid-β as biomarkers of brain amyloid pathology

    PubMed Central

    Roh, Jee Hoon; Huang, Yafei; Bero, Adam W.; Kasten, Tom; Stewart, Floy R.; Bateman, Randall J.; Holtzman, David M.

    2013-01-01

    Aggregation of amyloid-β (Aβ) in the brain begins to occur years prior to the clinical onset of Alzheimer’s disease (AD). Prior to Aβ aggregation, levels of extracellular, soluble interstitial fluid (ISF) Aβ, which are regulated by neuronal activity and the sleep-wake cycle, correlate with the amount of Aβ deposition in the brain seen later. The amount and quality of sleep declines with aging and to a greater extent in AD. How sleep quality amount as well as the diurnal fluctuation in Aβ change with age and Aβ aggregation are not well understood. We report that a normal sleep-wake cycle and diurnal fluctuation of ISF Aβ is present in the brain of APPswe/PS1δE9 mice before Aβ plaque formation. Following plaque formation, the sleep-wake cycle markedly deteriorated and diurnal fluctuation of ISF Aβ dissipated. As in mice, diurnal fluctuation of cerebrospinal fluid (CSF) Aβ in young adult humans with presenilin mutations was also markedly attenuated with Aβ plaque formation. Virtual elimination of Aβ deposits in the mouse brain by active immunization with Aβ42 normalized the sleep-wake cycle and the diurnal fluctuation of ISF Aβ. These data suggest that Aβ aggregation disrupts the sleep-wake cycle and diurnal fluctuation of Aβ. Sleep-wake behavior and diurnal fluctuation of Aβ in the central nervous system appear to be functional and biochemical markers respectively of Aβ-associated pathology that should be explored in humans diagnostically prior to and following symptom onset and in response to treatment. PMID:22956200

  17. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent: DIURNAL CYCLE AND MJO

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; Burleyson, Casey D.; De Mott, Charlotte; Kerns, Brandon; Benedict, James J.; Martini, Matus N.

    2016-10-08

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. An analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.

  18. Children's Diurnal Cortisol Activity during the First Year of School

    ERIC Educational Resources Information Center

    Yang, Pei-Jung; Lamb, Michael E.; Kappler, Gregor; Ahnert, Lieselotte

    2017-01-01

    The present study examined 4- to 5-year-old British children's diurnal cortisol activity during their first year of school. The children's cortisol was measured before enrollment (baseline), upon enrollment, and both 3 and 6 months after enrollment. On each day, cortisol was sampled four times, providing information about the diurnal amount of…

  19. Children's Diurnal Cortisol Activity during the First Year of School

    ERIC Educational Resources Information Center

    Yang, Pei-Jung; Lamb, Michael E.; Kappler, Gregor; Ahnert, Lieselotte

    2017-01-01

    The present study examined 4- to 5-year-old British children's diurnal cortisol activity during their first year of school. The children's cortisol was measured before enrollment (baseline), upon enrollment, and both 3 and 6 months after enrollment. On each day, cortisol was sampled four times, providing information about the diurnal amount of…

  20. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    NASA Technical Reports Server (NTRS)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  1. Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Holle, R. L.

    1986-01-01

    Lightning location data from northeastern Colorado and central Florida for the summer months of 1983 have been studied to ascertain the diurnal development of spatial distributions of flash frequencies. The data sources are discussed, and for both investigated regions, the regional geographic and climatic characteristics, the day-to-day variability of lightning activity, the diurnal cycle over the entire region, the spatial distribution of lightning activity, the diurnal changes of spatial distribution, and the diurnal variation of lightning at individual sites are described in detail. In both regions, the time and space distributions of lightning are modulated by the topographic features and the contrasts of the terrain. Lightning activity is a relatively rare and variable phenomenon in both regions when day-to-day frequencies are considered. There thus must be meteorological parameters that determine the extent and frequency of lightning occurrence.

  2. Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.

    PubMed

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A F; de la Torre Cortes, Pilar; Pronk, Jack T; Daran-Lapujade, Pascale

    2014-07-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles

    PubMed Central

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A. F.; de la Torre Cortes, Pilar; Pronk, Jack T.

    2014-01-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  4. Metabolic Cycles Are Linked to the Cardiovascular Diurnal Rhythm in Rats with Essential Hypertension

    PubMed Central

    Waki, Hidefumi; Bhuiyan, Mohammad E. R.; Gouraud, Sabine S.; Maeda, Masanobu

    2011-01-01

    Background The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm. Methodology/Principal Findings To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues. Conclusions/Significance These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles. PMID:21364960

  5. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Dodson, J. B.; Taylor, P. C.

    2015-12-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the top-of-atmospheric radiative budget in convectively active regions varies by up to 7 Wm-2. These facts suggest that convective clouds connect atmospheric state and radiation variability beyond clear sky effects alone. We use CloudSat and CERES data to further examine the nature of these connections. First, we quantify covaraibility in multiple Amazonian cloud properties, in particular the deep convective cores (DCCs) and associated convective anvils (DCAs). We find a large significant inverse relationship between DCC frequency and updraft intensity, the latter of which being estimated with radar reflectivity. There is also a significant positive relationship between intensity and DCC top height. DCAs have a similar inverse relationship of frequency to convective intensity, but the DCA top height is mostly insensitive to intensity. Ice water content increases in both DCCs and DCAs as intensity increases, but the magnitude of DCA sensitivity decreases with distance to the convective core. The microphysical properties of DCCs core also carry into DCAs, and the influence decreases with increasing distance from the core. Second, we examine the role that cloud variability has on radiative variability. Previous research has found that anomalous atmospheric states that enhance (reduce) deep convection tend to shift the daily outgoing longwave radiation and cloud albedo maxima earlier (later) in the day by 2-3 hr. We find a similar sensitivity of the radiative diurnal cycle to anomalous cloud properties. In particular, increased anomalous DCC/DCA frequency shifts

  6. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States

    USGS Publications Warehouse

    Lundquist, J.D.; Cayan, D.R.

    2002-01-01

    The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.

  7. Diurnal evolution of cycling biomechanical parameters during a 60-s Wingate test.

    PubMed

    Lericollais, R; Gauthier, A; Bessot, N; Davenne, D

    2011-12-01

    The purpose of this study was to assess the evolution of pedaling kinetics and kinematics during a short-term fatigue cycling exercise at two times of day. Twenty active male subjects were asked to perform a 60-s Wingate test against a constant braking resistance during two experimental sessions at 06:00 and 18:00 hours, i.e., very close to the hours of core temperature values, which are, respectively, the lowest and the highest. The results showed that the fatigue index was higher (P<0.05) at 18:00 hours (71.4%) than at 06:00 hours (69.2%) and power output was higher (P<0.05) in the evening than in the morning during the first 20 s of the test, after which no difference was observed. Taken together, these results showed a greater progression of fatigue in the evening than in the morning. The diurnal variations in performance and fatigue were associated (P<0.001) with diurnal changes in cycling kinematic parameters, characterized by a reduction in the range of motion of the ankle angle in the evening. These findings show that a time-of-day effect on movement patterns occurs during an anaerobic cycling exercise and that this phenomenon has a direct influence on performance and fatigue.

  8. Mesoscale Influences of Wind Farms Throughout a Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Fitch, A. C.; Lundquist, J. K.; Olson, J. B.

    2012-12-01

    Few observations are available to give insight into the interaction between large wind farms and the boundary layer. As wind farm deployment increases, questions are arising on the potential impact on meteorology within and downwind of large wind farms. While large-eddy simulation can provide insight into the detailed interaction between individual turbines and the boundary layer, to date it has been too computationally expensive to simulate wind farms with large numbers of turbines and the resulting wake far downstream. Mesoscale numerical weather prediction models provide the opportunity to investigate the flow in and around large wind farms as a whole, and the resulting impact on meteorology. To this end, we have implemented a wind farm parameterization in the Weather Research and Forecasting (WRF) model, which represents wind turbines by imposing a momentum sink on the mean flow; converting kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. We simulate a wind farm covering 10x10 km over land, consisting of 100 turbines each of nominal power output of 5 MW. Results will be presented showing how the wake structure varies dramatically over a diurnal cycle characteristic of a region in the Great Plains of the US, where wind farm deployment is planned. At night, a low-level jet forms within the rotor area, which is completely eliminated by energy extraction within the wind farm. The deep stable layer and lack of higher momentum air aloft at this time maximises the wind deficit and the length of the wake. The presentation will discuss the maximum reduction of wind speed within and downwind from the farm, and the wake e

  9. Linking diurnal cycles of river flow to interannual variations in climate

    USGS Publications Warehouse

    Lundquist, Jessica D.; Dettinger, Michael D.

    2003-01-01

    Many rivers in the Western United States have diurnal variations exceeding 10% of their mean flow in the spring and summer months. The shape and timing of the diurnal cycle is influenced by an interplay of the snow, topography, vegetation, and meteorology in a basin, and the measured result differs between wet and dry years. The largest interannual differences occur during the latter half of the melt season, as the snowline retreats to the highest elevations and most shaded slopes in a basin. In most basins, during this period, the hour of peak discharge shifts to later in the day, and the relative amplitude of the diurnal cycle decreases. The magnitude and rate of these changes in the diurnal cycle vary between years and may provide clues about how long- term hydroclimatic variations affect short-term basin dynamics.

  10. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2016-01-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  11. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  12. Effects of the light-dark cycle on diurnal rhythms of diet-induced thermogenesis in humans.

    PubMed

    Fukuda, Yumi; Morita, Takeshi

    2017-09-29

    This study aimed to clarify the effect of light exposure during the daytime and nighttime on diet-induced thermogenesis (DIT), which is one kind of energy expenditure, and the contribution of autonomic nervous activities (ANA) to the mechanism behind such effects. We found that the light-dark cycle significantly induced a diurnal rhythm of DIT, with afternoon levels tending to be higher than nighttime levels. By contrast, no such rhythms were observed under constant light or dark conditions. There were also no significant differences in ANA between the light conditions. These findings demonstrate that a diminished light-dark cycle leads to disruption of the diurnal rhythm of metabolism and so the retention of ordinary light-dark cycles may be recommended for health maintenance.

  13. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women.

    PubMed

    Boivin, Diane B; Shechter, Ari; Boudreau, Philippe; Begum, Esmot Ara; Ng Ying-Kin, Ng Mien Kwong

    2016-09-27

    This study quantifies sex differences in the diurnal and circadian variation of sleep and waking while controlling for menstrual cycle phase and hormonal contraceptive use. We compared the diurnal and circadian variation of sleep and alertness of 8 women studied during two phases of the menstrual cycle and 3 women studied during their midfollicular phase with that of 15 men. Participants underwent an ultradian sleep-wake cycle (USW) procedure consisting of 36 cycles of 60-min wake episodes alternating with 60-min nap opportunities. Core body temperature (CBT), salivary melatonin, subjective alertness, and polysomnographically recorded sleep were measured throughout this procedure. All analyzed measures showed a significant diurnal and circadian variation throughout the USW procedure. Compared with men, women demonstrated a significant phase advance of the CBT but not melatonin rhythms, as well as an advance in the diurnal and circadian variation of sleep measures and subjective alertness. Furthermore, women experienced an increased amplitude of the diurnal and circadian variation of alertness, mainly due to a larger decline in the nocturnal nadir. Our results indicate that women are likely initiating sleep at a later circadian phase than men, which may be one factor contributing to the increased susceptibility to sleep disturbances reported in women. Lower nighttime alertness is also observed, suggesting a physiological basis for a greater susceptibility to maladaptation to night shift work in women.

  14. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women

    PubMed Central

    Boivin, Diane B.; Shechter, Ari; Boudreau, Philippe; Begum, Esmot Ara; Ng Ying-Kin, Ng Mien Kwong

    2016-01-01

    This study quantifies sex differences in the diurnal and circadian variation of sleep and waking while controlling for menstrual cycle phase and hormonal contraceptive use. We compared the diurnal and circadian variation of sleep and alertness of 8 women studied during two phases of the menstrual cycle and 3 women studied during their midfollicular phase with that of 15 men. Participants underwent an ultradian sleep–wake cycle (USW) procedure consisting of 36 cycles of 60-min wake episodes alternating with 60-min nap opportunities. Core body temperature (CBT), salivary melatonin, subjective alertness, and polysomnographically recorded sleep were measured throughout this procedure. All analyzed measures showed a significant diurnal and circadian variation throughout the USW procedure. Compared with men, women demonstrated a significant phase advance of the CBT but not melatonin rhythms, as well as an advance in the diurnal and circadian variation of sleep measures and subjective alertness. Furthermore, women experienced an increased amplitude of the diurnal and circadian variation of alertness, mainly due to a larger decline in the nocturnal nadir. Our results indicate that women are likely initiating sleep at a later circadian phase than men, which may be one factor contributing to the increased susceptibility to sleep disturbances reported in women. Lower nighttime alertness is also observed, suggesting a physiological basis for a greater susceptibility to maladaptation to night shift work in women. PMID:27621470

  15. Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations

    NASA Astrophysics Data System (ADS)

    Liu, Chuntao; Zipser, Edward J.

    2008-02-01

    The diurnal cycles of surface rainfall, population of precipitation systems, deep intense convection reaching near the tropopause, lightning flash counts, cold clouds, and vertical structure of precipitation are analyzed over the tropics, using 9 years of TRMM Precipitation Radar, Visible and Infrared Scanner, and Lightning Imaging Sensor measurements. The diurnal cycles over land include a late afternoon maximum of precipitation systems, with phase differences among cloud, precipitation, flash counts, and radar echo at different altitudes. Over ocean, the diurnal cycles are interpreted as having contributions from nocturnal precipitation systems and early afternoon showers. There are double peaks of radar reflectivity above 12 km near 0230 and 0530 local time over oceans. The oceanic clouds with infrared brightness temperature < 235 K have two peaks, one during the night and the other in early afternoon.

  16. Idealized Numerical Modeling Experiments of the Diurnal Cycle of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Navarro, Erika L.

    Numerical experiments are performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in the high cloudiness of tropical cyclones (TCs) has been well documented in the past, the impact to storm structure and intensity remains unknown. Previous modeling work attributes differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. Here, a numerically-simulated TC in a statistical steady-state is examined to quantify the TC response to the daily cycle of radiation, and a modified, Sawyer-Eliassen approach is applied to evaluate the dynamical mechanism. Fourier analysis in time reveals a spatially coherent pattern in the temperature, wind, and latent heating tendency fields that is statistically significant at the 95% level. This signal accounts for up to 62% of the variance in the temperature field of the upper troposphere, and is mainly concentrated in the TC outflow layer. Composite analysis reveals a cycle in the storm intensity in the low-levels, which lags a periodic response in the latent heating tendency by 6 h. Average magnitudes of the azimuthal wind anomalies near the radius of maximum wind (RMW) are 1 m/s and account for 21% of the overall variance. A hypothesis is drawn from these results that the TC diurnal cycle is comprised of two distinct, periodic circulations: (1) a radiatively-driven circulation in the TC outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation in the lower and middle troposphere due to anomalous latent heating from convection. These responses are coupled and are periodic with respect to the diurnal cycle. Using a modified, Sawyer-Eliassen approach for time-varying heating, these hypotheses are evaluated to determine the impact of periodic diurnal heating on a balanced vortex. Periodic heating near the top of the vortex produces a local overturning

  17. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles.

    PubMed

    Sinturel, Flore; Gerber, Alan; Mauvoisin, Daniel; Wang, Jingkui; Gatfield, David; Stubblefield, Jeremy J; Green, Carla B; Gachon, Frédéric; Schibler, Ueli

    2017-05-04

    The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Diurnal variability of the hydrologic cycle in a general circulation model

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Dazlich, Donald A.; HARSHVARDHAN

    1991-01-01

    In the present Colorado State University GCM simulation-based analysis of the diurnal and semidiurnal variability of precipitation, precipitable water, evaporation, cloudiness, horizontal moisture flux convergence, and cloud radiative forcing, a realistic afternoon precipitation maximum is obtained over land in warm rainy regions, as well as an early morning maximum over the oceans. The model has been further used to investigate the bases for the oceanic diurnal-precipitation cycle; the results thus obtained indicate that such an oceanic cycle occurs even in the absence of neighboring continents, and tends to have a morning maximum, although the observed phenomenon is generally stronger than the results indicate.

  19. LES modeling of a diurnal cycle driven by WRF

    NASA Astrophysics Data System (ADS)

    Rizza, U.; Anabor, V.; Degrazia, G. A.; Miglietta, M. M.

    2010-09-01

    This study investigates LES in meteorological applications that involve realistic background atmospheric environment. This is accomplished by coupling the mesoscale meteorological model WRF with the LES code by Sullivan et al (1994). In this context, the diurnally varying atmospheric boundary layer is simulated using the above mentioned LES code. Initial data of wind, temperature, humidity, TKE vertical profiles and the surface forcing (heat/humidity fluxes) are taken from a WRF simulation in two different sites in flat regions. The geostrophic forcing is computed at given isobaric levels by calculating the horizontal gradients of the geopotential height in 9 squared grid points along the WRF grid. In particular in this work the various ways the geostrophic forcing can be calculated will be explored and results compared with those obtained with the LES code.

  20. Changes in diurnal cycle of precipitation over Korea associated with large-scale variability

    NASA Astrophysics Data System (ADS)

    Jin, E. K.

    2016-12-01

    The diurnal variation of summer precipitation over Korea for the period of 1977-2013 is characterized by strong early morning peak and weak late afternoon peak. The early morning peak is resulted from some factors associated with the precipitation mechanism such as geographical location, land-sea breeze, surface convergence, and the afternoon peak is caused by the convection related to the solar radiation. The diurnal variation of precipitation is fundamentally dominated by the frequency of occurrence of precipitation rather than precipitation intensity. However, the amplitude of diurnal cycle increases as precipitation intensity increases, and the timing of the intense precipitation become earlier for the morning peak while later for the afternoon peak. For recent years, overall precipitation rate is increased and both morning peak and afternoon peak are intensified. The morning peak occurs earlier because the occurrence of heavy rainfall increases in the early morning and the afternoon peak becomes delayed in same manner. The relative contribution of precipitation intensity to the change of diurnal variation of precipitation amount is dominant than that of frequency. The regime change in the diurnal variations of precipitation for recent years is associated with the changes in relationship with large-scale variabilities. The interannual and interdecadal variations of most dominant mode of diurnal cycle are well matched with those of daily precipitation, which show the reversed thermodynamic and dynamics structures associated with tropical remote forcing and tropics-extratropics interaction. The changes in the semi-diurnal cycle of precipitation are also related with changes in the Asian summer monsoon circulations for recent years.

  1. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, K. F.; Taylor, P. C.; Dodson, J. B.

    2016-12-01

    Atmospheric model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon. This shortcoming contributes to climatological biases in the simulated water cycle and energy budget in atmospheric reanalysis, especially in the Amazon. To understand the impacts of and to identify the physical processes that drive these biases, we analyze and evaluate the sensitivity of the convective diurnal cycle in the Amazon to variations in atmosphere state variables relevant to convection (including humidity, atmospheric stability, and other convective diagnostics) using satellite observations and 3 reanalysis products (MERRA, MERRA-2, ERA-Interim). The analysis first separates the convective diurnal cycle into 5 regimes by convective intensity using minimum 3-hourly averaged outgoing longwave radiation from Clouds and the Earth's Radiant Energy System; this step is taken to account for the physical process difference between deep, shallow, and non-convective conditions. The composite convective diurnal cycle (including radiative fluxes, cloud properties, and precipitation) and its sensitivity to atmospheric state is evaluated for each reanalysis product within each convective regime. Additionally, a compositing technique is used to identify important climatological spatial and temporal features of convection across the Amazon. The results indicate that all reanalysis products fail to represent extreme convective events and underestimate the diurnal amplitude of TOA fluxes, clouds and precipitation. MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation amplitude and phase. Models initiate convection 2-4 hours too early on average, which contributes to larger than observed shortwave cloud forcing because simulated convection is in phase with solar insolation. It seems that the influence of atmospheric state has a larger

  2. Numerical Modelling of the Observed Diurnal Cycle of Indian Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Sahany, S.; Vuruputur, V.; Nanjundiah, R. S.

    2009-12-01

    We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of

  3. The Diurnal Temperature Cycle and Its Relation to Boundary-Layer Structure During the Morning Transition

    NASA Astrophysics Data System (ADS)

    Ketzler, G.

    2014-05-01

    The morning portion of the near-surface diurnal temperature cycle is analyzed in combination with heat-flux and vertical temperature-gradient data. During summer, mean diurnal cycles of temperature rates-of-change show periods that can be related to defined points of the morning transition (MT). The start of the MT is clearly marked with a temperature discontinuity, apparent even on individual days, while the end of the transition is apparent only when using averages over many days. The findings concerning the timing of the MT using temperature cycle analysis correspond well with studies using heat-flux measurements. Mean diurnal cycles of temperature rates-of-change for stations in different urban and valley positions show differences that can partly be explained by apparent effects of the surroundings. For the valley situation, the timing differences and their relation to station position in the valley are generally plausible, while urban effects on the diurnal cycle are apparent but less distinct, which may be due to the small number of stations used. The results indicate that warming already begins before heat-flux crossover, which is the current definition of the beginning of the MT. This definition should be extended to include the phase between the temperature rate-of-change crossover and heat-flux crossover, which represents the early part of the MT before warming reaches instrument level.

  4. Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Rouault, Mathieu; Roy, Shouraseni Sen

    2014-10-01

    The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998-2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.

  5. Diurnal cycling of urban aerosols under different weather regimes

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (< 25 nm, NUM), Aitken (25 - 90 nm, AIM) and accumulation mode (90 - 800 nm, ACM), as well as BC mass concentration were evaluated separately for sunny, cloudy and rainy days, taking into account modelled values of PBL height. Higher particle number and black carbon concentrations were observed at the urban background (KIS) than at the suburban background location (Brezovica). Significant diurnal pattern of total particle concentration and black carbon concentration was observed at both

  6. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    PubMed Central

    Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-01-01

    Abstract Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3‐hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1–3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2–3 h earlier and the duration lasts 3–5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE‐based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity. PMID:27867784

  7. On the sensitivity of the diurnal cycle in the Amazon to convective intensity.

    PubMed

    Itterly, Kyle F; Taylor, Patrick C; Dodson, Jason B; Tawfik, Ahmed B

    2016-07-27

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection-the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  8. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-07-01

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  9. LES of large wind farm during a diurnal cycle: Analysis of Energy and Scalar flux budgets

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2014-12-01

    With an expanding role of wind energy in satisfying energy demands around the world, wind farms are covering increasingly larger surfaces to the point where interaction between wind farms and the atmospheric boundary layer (ABL) might have significant implications. Furthermore, many wind farm sites lie over existing farmland for which water is a precious resource. In this context, a relevant question yet to be fully understood, is whether large wind farms alter near surface temperatures and evaporation rates and if so, by how much. In the present study, Large Eddy Simulation (LES) of a geostrophic wind driven ABL with two active scalars, temperature and specific humidity, in the presence of Coriolis forces with an embedded wind farm are performed. Multiple 'synthetic' diurnal cycles are simulated by imposing a time-varying surface temperature and specific humidity. Wind turbines are modeled using the "actuator disk" approach along with the flexibility to reorient according to varying flow directions. LES is performed using the "pseudo-spectral" approach implying that an infinitely large wind farm is simulated. Comparison of simulations with and without wind farms show clear differences in vertical profiles of horizontal velocity magnitude and direction, turbulent kinetic energy and scalar fluxes. To better understand these differences, a detailed analysis of the constituent terms of budget equations of mean and turbulent kinetic energy and sensible and latent heat fluxes has been performed for different stratification regimes as the ABL evolves during the diurnal cycle. The analyses help explain the effect of wind farms on the characteristics of the low-level jet, depth of the stable boundary layer, formation and growth of the convective boundary layer (CBL) and scalar fluxes at the surface.

  10. On the solar cycle dependence of the amplitude modulation characterizing the mid-latitude sporadic E layer diurnal periodicity

    NASA Astrophysics Data System (ADS)

    Pezzopane, M.; Pignalberi, A.; Pietrella, M.

    2016-01-01

    Spectral analyses are employed to investigate how the diurnal periodicity of the critical frequency of the sporadic E (Es) layer varies with solar activity. The study is based on ionograms recorded at the ionospheric station of Rome (41.8°N, 12.5°E), Italy, from 1976 to 2009, a period of time covering three solar cycles. It was confirmed that the diurnal periodicity is always affected by an amplitude modulation with periods of several days, which is the proof that Es layers are affected indirectly by planetary waves through their nonlinear interaction with atmospheric tides at lower altitudes. The most striking features coming out from this study is however that this amplitude modulation is greater for high-solar activity than for low-solar activity.

  11. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    SciTech Connect

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles; Williams, Dean N.; Dai, Aiguo; Fasullo, John; Trenberth, Kevin; Berg, Alexis

    2016-06-08

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typical climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.

  12. Diurnal cycles of NOx over the United States: Comprehensive evaluations and implications for NOx emissions

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Y.; Smeltzer, C. D.; Zhang, Y.; Zhang, R.; Weinheimer, A. J.; Celarier, E. A.; Herman, J. R.

    2016-12-01

    Reactive nitrogen (NOx=NO+NO2) plays a crucial role in the formation of ozone and has significant impacts on the production of secondary organic and inorganic aerosols, thus affecting global radiation budget and climate. The diurnal cycle of NOx is a function of emissions and photochemistry. Its observations therefore provide useful constraints in our understanding of these factors. We employ a regional chemical transport model (REAM) to simulate the observed diurnal cycles of NO2 concentrations over the United States. The simulated diurnal cycles are evaluated by using the 2011 DISCOVER-AQ campaign (Maryland) measurements, EPA Air Quality System (AQS) observations, and OMI and GOME-2 column measurements. The model simulations are in reasonably good agreement with the observations except that PANDORA measured column NO2 showed much less variation in early morning and late afternoon than simulated in the model. High resolution (4 km in the horizontal) model simulations are also performed to examine the effects of emission distribution. By analyzing model simulations with the observations, we show that the diurnal emission profiles of NOx is different over the weekend from the weekdays and that weekend emissions are about 1/3 lower than weekdays.

  13. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    NASA Astrophysics Data System (ADS)

    Itterly, K. F.; Taylor, P. C.

    2015-12-01

    The sensitivity of the diurnal cycle to convective intensity is investigated for the wet season (DJF) and dry season (JJA) in the Amazon region. Model output reveals large water and energy budget errors in tropical rainforests, arising from a misrepresentation of the diurnal cycle of the complex processes inherent to diurnally forced moist convection. Daily, 3-hourly satellite observations of CERES Ed3a SYN1DEG TOA fluxes and 3-hourly TRMM 3B42 precipitation rate from 2002-2012 are split into regimes of convective intensity using percentile definitions for both daily minimum OLR and daily maximum precipitation rate to define regimes. These satellite-defined regimes are then co-located with convective parameters calculated from radiosonde observations. Diurnal statistics from satellite include: phase, amplitude, precipitation onset, precipitation duration and diurnal mean. The diurnal phase of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) occurs several hours earlier on convective days compared to stable days, however, climatological precipitation phase is less sensitive to convective intensity, occurring between 1-4PM local time for all regimes and 1-2 hours later on very convective days, which is related to longer duration precipitation events from increased humidity. Diurnal convection in the Amazon is strongly related to 8AM values of both dynamic and thermodynamic variables, most of which are related to: the background moisture content of the troposphere, the stability of the lower troposphere, convective inhibition (CIN) and wind speed and direction in the column. Morning values of CIN, lifted condensation level (LCL), level of free convection (LFC) and equilibrium level (EL) are lower in DJF than JJA, and lower on very convective days than stable days for all stations. Higher background humidity is related to longer duration precipitation events (r-values between 0.4-0.6, depending on station and season), earlier phases and onset times

  14. Analysis of the Diurnal Cycle of Precipitation and its Relation to Cloud Radiative Forcing Using TRMM Products

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Fowler, Laura D.; Lin, Xin

    1998-01-01

    In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.

  15. Acute and chronic psychostimulant treatment modulates the diurnal rhythm activity pattern of WKY female adolescent rats.

    PubMed

    Jones, Cathleen G; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Dafny, Nachum

    2014-05-01

    The psychostimulants considered the gold standard in the treatment of attention deficit hyperactivity disorder, one of the most common childhood disorders, are also finding their way into the hands of healthy young adults as brain augmentation to improve cognitive performance. The possible long-term effects of psychostimulant exposure in adolescence are considered controversial, and thus, the objective of this study was to investigate whether the chronic exposure to the psychostimulant amphetamine affects the behavioral diurnal rhythm activity patterns of female adolescent Wistar-Kyoto (WKY) rat. The hypothesis of this study is that change in diurnal rhythm activity pattern is an indicator for the long-term effect of the treatment. Twenty-four rats were divided into two groups, control (N = 12) and experimental (N = 12), and kept in a 12:12-h light/dark cycle in an open-field cage. After 5-7 days of acclimation, 11 days of consecutive non-stop behavioral recordings began. On experimental day 1 (ED1), all groups were given an injection of saline. On ED2 to ED7, the experimental group was injected with 0.6 mg/kg amphetamine followed by 3 days of washout from ED8 to ED10, and amphetamine re-challenge on ED11 similar to ED2. The locomotor movements were counted by the computerized animal activity monitoring system, and the cosinor statistical test analysis was used to fit a 24-h curve of the control recording to the activity pattern after treatment. The horizontal activity, total distance, number of stereotypy, vertical activity, and stereotypical movements were analyzed to find out whether the diurnal rhythm activity patterns were altered. Data obtained using these locomotor indices of diurnal rhythm activity pattern suggest that amphetamine treatment significantly modulates the locomotor diurnal rhythm activity pattern of female WKY adolescent rats.

  16. The impact of the diurnal insolation cycle on the tropical cyclone heat engine

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Perez-Betancourt, Diamilet; Wing, Allison A.

    A hurricane, or tropical cyclone, is understood as a heat engine that moves heat from the warm sea surface to the cold tropopause. The efficiency of this engine depends in part on the strength and duration of solar heating. Over land, peak rainfall associated with individual thunderstorms occurs in the late afternoon. Over ocean, with its markedly higher surface heat capacity, deep convection responds more to radiational cooling than daytime surface heating. However, the role of daily varying solar forcing on the dynamics of tropical cyclones is poorly understood. Recently, Dunion et al. (2014) reported significant, repeating diurnal behavior propagating outward from tropical cyclone centers, using infrared imagery from nine years of North Atlantic tropical cyclones. We study the impact of the diurnal cycle on tropical cyclones using a high resolution 3D numerical model, the System for Atmospheric Modeling (Khairoutdinov and Randall 2003). Simulations are run with and without variable sunlight. We are able to reproduce the observational finding of Dunion et al. (2014), and further identify a diurnally-varying residual circulation in the tropical cyclone at midlevels. The impact of the diurnal cycle on the equilibrium dynamics of tropical cyclones is also discussed.

  17. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles

    NASA Astrophysics Data System (ADS)

    Wang, George; Dillon, Michael E.

    2014-11-01

    Warming mean temperatures over the past century have probably shifted distributions, altered phenologies, increased extinction risks, and impacted agriculture and human health. However, knowledge of mean temperatures alone does not provide a complete understanding either of changes in the climate itself or of how changing climate will affect organisms. Temporal temperature variation, primarily driven by daily and annual temperature cycles, has profound effects on organism physiology and ecology, yet changes in temperature cycling over the past 40 years are still poorly understood. Here we estimate global changes in the magnitudes of diurnal and annual temperature cycles from 1975 to 2013 from an analysis of over 1.4 billion hourly temperature measurements from 7,906 weather stations. Increases in daily temperature variation since 1975 in polar (1.4 °C), temperate (1.0 °C) and tropical (0.3 °C) regions parallel increases in mean temperature. Concurrently, magnitudes of annual temperature cycles decreased by 0.6 °C in polar regions, increased by 0.4 °C in temperate regions, and remained largely unchanged in tropical regions. Stronger increases in daily temperature cycling relative to changes in annual temperature cycling in temperate and polar regions mean that, with respect to diurnal and annual cycling, the world is flattening as temperate and polar regions converge on tropical temperature cycling profiles.

  18. Simulation of the Diurnal Cycle of Integrated Precipitable Water in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Ochoa, C. A.; Quintanar, A.; Adams, D. K.; Martinez-lopez, B.

    2015-12-01

    Organized deep convection over the North American monsoon region (NAM) is a salient climatic feature that has been the subject of several experimental campaigns and modeling efforts. Recently, however, in Mexico and the Caribbean, there has been mounting interest towards implementing low-cost, low-maintenance GPS-meteorological networks (TLALOCNet and COCOnet) that provide near real-time Integrated Precipitable Water data (IPW) into the assimilation cycle of regional models. A wealth of interesting new observational results concerning the link between the diurnal cycle of deep convection and the processes that could alter it at the surface and aloft has open up opportunities of model verification and improvements to the physics that are specific to subtropical deep convection. In this work, the diurnal cycle of IPW is studied using observational data collected during the North American Monsoon GPS Transect Experiment 2013 experiment and numerical simulations with the Weather Research and Forecasting model (WRF). WRF was run in climate mode to generate a simulation for the entire experiment using ECMWF ERA-Interim analysis data for initial and boundary conditions and spectral nudging. We classified the days during the experiment, according to type of mesoscale phenomena present each day and averaged days with same weather types in both data sets (observed and simulated). Preliminary results show that the simulated diurnal cycle of IPW is very sensitive to Land Use/Land Cover data and to initial and the boundary conditions. Preliminary results show that the simulated amplitude and phase of the diurnal cycle of IPW is well represented only when a more up-to-date LULC is used (MODIS v.s. 99 USGS LULC) and the Thompson mycrophysics scheme is used. In agreement with the previous results, modeled precipitation time series agree better with observed GPS-meterological station reports during the NAM 2013 experiment.

  19. Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001-2014

    NASA Astrophysics Data System (ADS)

    Tezari, A.; Mavromichalaki, H.

    2016-07-01

    The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis. From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.

  20. Effects of active warm-up and diurnal increase in temperature on muscular power.

    PubMed

    Racinais, Sébastien; Blonc, Stephen; Hue, Olivier

    2005-12-01

    To investigate the effects of both an active warm-up (AWU) and the diurnal increase in body temperature on muscular power. Eight male subjects performed maximal cycling sprints in the morning (7:00-9:00 a.m.) and afternoon (5:00-7:00 p.m.) either after an AWU or in a control condition. The AWU consisted of 12 min of pedaling at 50% of & OV0312;O2 max inter-spersed with three brief accelerations of 5 s. Rectal temperature, maximal force developed during the cycling sprint, and muscular power were higher in the afternoon than in the morning (P<0.05). Rectal temperature, calculated muscular temperature, and muscular power were higher after AWU than in control condition (P<0.05). The beneficial effect of an AWU can be combined with that of the diurnal increase in central temperature to improve muscular power.

  1. Climatology of Martian water ice clouds from Mars Express/OMEGA: derivation of the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Szantai, A.; Audouard, J.; Madeleine, J.-B.; Forget, F.; Pottier, A.; Gondet, B.; Langevin, Y.; Bibring, J.-P.

    2015-10-01

    Images derived from the slope of the water ice absorption band between 3.4 and 3.525 μm from the OMEGA spectrometer onboard Mars Express have been used to detect clouds. From a series of OMEGA images covering 4 Martian years (between 2004 and 2011), the pixels are used to construct a cloud coverage database over a regular 4D grid in longitude,latitude, solar longitude and Martian local time. It can be used to observe the evolution of clouds over specific regions, and their diurnal and annual cycle. As an example, the diurnal cloud life cycle in the tropics (-25°S to 25°N) during the Northern summer shows the presence of thick clouds in the early morning (possibly haze), which dissipate before noon (local time). In the afternoon, the cloud cover grows again, possibly due to convection generated by the increased solar heating.

  2. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B.

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  3. Removing Diurnal Cycle Contamination in Satellite-Derived Tropospheric Temperatures: Understanding Tropical Tropospheric Trend Discrepancies

    NASA Astrophysics Data System (ADS)

    Po-Chedley, S.; Thorsen, T. J.; Fu, Q.

    2014-12-01

    Tropical mid-tropospheric temperature (TMT) time series have been constructed by several independent research teams using satellite microwave sounding unit (MSU) measurements beginning in 1978 and advanced MSU (AMSU) measurements since 1998. Despite careful efforts to homogenize the MSU/AMSU measurements, tropical TMT trends disagree by a factor of three even though each analysis uses the same basic data. Previous studies suggest that the discrepancy in tropical TMT temperature trends is largely caused by differences in both the NOAA-9 warm target factor and diurnal drift corrections used by various teams to homogenize the MSU/AMSU measurements. This work introduces a new observationally-based method for removing biases related to satellite diurnal drift. The method relies on minimizing inter-satellite and inter-node drifts by subtracting out a common diurnal cycle determined via linear regression. It is demonstrated that this method is effective at removing intersatellite biases and biases between the ascending (PM) and descending (AM) node of individual satellites in the TMT time series. After TMT bias correction, the ratio of tropical tropospheric temperature trends relative to surface temperature trends is in accord with the ratio from global climate models. It is shown that bias corrections for diurnal drift based on a climate model produce tropical trends very similar to those from the observationally-based correction, with a trend differences smaller than 0.02 K decade-1. Differences among various TMT datasets are explored further. Tropical trends from this work are comparable to those from the Remote Sensing System (RSS) and NOAA datasets despite small differences. Larger differences between this work and UAH are attributed to differences in the treatment of the NOAA-9 target factor and the UAH diurnal cycle correction.

  4. Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Li, Yue; Jourdain, Nicolas C.; Taschetto, Andréa S.; Gupta, Alex Sen; Argüeso, Daniel; Masson, Sébastien; Cai, Wenju

    2017-06-01

    The Maritime Continent is a region of intense rainfall characterised by a strong diurnal cycle. This study investigates the sensitivity of rainfall characteristics to resolution in a coupled regional climate model configuration, in particular focusing on processes that modulate the diurnal cycle. Model biases are resolution dependent. Increasing resolution from 3/4° to 1/4° improves the mean state sea surface temperature and precipitation biases. However, at higher resolutions (1/12°) rainfall becomes too strong in most areas. Daily maximum rainfall is simulated about 2-4 h earlier than in observations over both the land and the ocean, with only small improvements over high topography at higher resolution. We develop a technique to examine cross-coastal processes associated with the rainfall diurnal cycle along all coastlines. This is used to investigate the sensitivity of the diurnal cycle to resolution and to the direction of the prevailing wind. During offshore prevailing winds, most land rainfall is confined near the coastline and associated with a shallow land-sea breeze circulation at all resolution (though rainfall partly develops directly inland at 1/12°). During onshore prevailing winds, rainfall propagates from the coastline to the island interior at 1/4° and 1/12°, whereas it appears directly over the island interior at 3/4°, and this is associated with a deep convective cell across the coastline for all resolutions. Oceanic rainfall propagates far offshore during offshore prevailing winds at all resolutions, whereas it tends to remain confined near the coastline under onshore prevailing winds condition, particularly at higher resolution.

  5. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Dolman, A. J.; Waterloo, M. J.; Raspor, K.

    2007-02-01

    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in

  6. The Diurnal Cycle of the Ocean Surface Boundary Layer: New Observations and New Models

    NASA Astrophysics Data System (ADS)

    Belcher, S. E.; Grant, A. L.; Lucas, N. S.; Rippeth, T. P.; Pearson, B.; Polton, J.; Palmer, M.; Damerell, G. M.; Heywood, K. J.

    2016-02-01

    New observations of the turbulent dissipation rate in the upper ocean were made during the OSMOSIS cruise with a microstructure glider in the N.E. Atlantic in September 2012. During periods of relatively low wind the OSBL exhibits a strong diurnal cycle. At night the OSBL is deepened by a combination of cooling and wind-wave forcing. After sunrise, solar radiation warms the water column. In pure wind forcing, the layer would form a stably stratified shear layer with a strong temperature gradient near the surface. With wind and wave forcing the interaction between the Stokes drift of the surface waves and vorticity in the turbulence means that mixing continues to be driven via Langmuir turbulence, leading to a shallow well-mixed layer overlying a diurnal thermocline. This is the structure observed in the cruise data (and also seen by Kukulka et al, 2013). We perform Large Eddy Simulations forced by the observed surface fluxes, which quantitatively capture the diurnal cycle of the turbulence measured during the cruise when wave-driven Langmuir turbulence is modelled. We also develop a new prognostic model for the depth of the OSBL, as a first step towards developing a new OSBL parameterisation. It is based on conservation of heat, mean potential energy and turbulent kinetic energy in the layer, and includes wave-driven processes. The model agrees well with the OSMOSIS cruise measurements, including several pronounced diurnal cycles and a period of sustained deepening through wind-wave forcing. Early results demonstrate good comparison observations taken during OSMOSIS by gliders that extend through a whole annual cycle.

  7. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko.

    PubMed

    De Sanctis, M C; Capaccioni, F; Ciarniello, M; Filacchione, G; Formisano, M; Mottola, S; Raponi, A; Tosi, F; Bockelée-Morvan, D; Erard, S; Leyrat, C; Schmitt, B; Ammannito, E; Arnold, G; Barucci, M A; Combi, M; Capria, M T; Cerroni, P; Ip, W-H; Kuehrt, E; McCord, T B; Palomba, E; Beck, P; Quirico, E

    2015-09-24

    Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.

  8. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    PubMed Central

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic

  9. Diurnal Cycle of Convection in the East Pacific ITCZ during EPIC-2001

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cifelli, Robert; Rutledge, Steven A.; Arnold, James O. (Technical Monitor)

    2002-01-01

    During the last three weeks of September 2001, the EPIC-2001 intensive field campaign focused on studies of deep convection in the ITCZ over the Mexican warm pool region (10N, 95W) of the East Pacific. This study focuses on the pronounced observed diurnal cycle of environmental and convective parameters within the experiment domain. Data from three primary sources are examined: the R/V Ronald H. Brown C-band weather radar, 4-hourly soundings from the Brown and the Global Atmospherics, Inc. National Lightning Detection Network (long range product). Satellite data from TRMM, GOES and OV-1 are also used. The domain boundary layer shows a robust daily evolution of moist enthalpy (as reflect by equivalent potential temperature, theta-e, or wet bulb potential temperature, theta-w), with contributions from changes in both dry and moist entropy. Peak theta-w is found after local nightfall; the average diurnal range of theta-w is approximately 1 deg C. A composite diurnal cycle of convective properties was derived from the C-band volume scans, sampled continuously through the experiment at 10 minute updates. Products derived from the volumetric data include a surface PPI, 15 and 30 dBZ echo top height, vertically integrated liquid, and 6 km (mixed phase region) reflectivity CAPPIs. For almost all products, the parameter means showed virtually no diurnal cycle. However, for the upper-level products, the parameter spectra showed a clear peak in the occurrence of deep/vigorous convection (the "tail end of the distribution") between 7-9 UTC (1-3 AM local), while overall frequency of occurrence peaked later, from 12-15 UTC (6-9 AM local). This represents a daily "outbreak" of isolated deep cells a couple of hours after sunset and subsequent growth, organization and decay through the nighttime hours. The coherence of the diurnal cycle of the convective spectrum is impressive given the wide variety of convective organization observed during the experiment, and given the modulation

  10. Diurnal Cycle of Convection in the East Pacific ITCZ during EPIC-2001

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cifelli, Robert; Rutledge, Steven A.; Arnold, James O. (Technical Monitor)

    2002-01-01

    During the last three weeks of September 2001, the EPIC-2001 intensive field campaign focused on studies of deep convection in the ITCZ over the Mexican warm pool region (10N, 95W) of the East Pacific. This study focuses on the pronounced observed diurnal cycle of environmental and convective parameters within the experiment domain. Data from three primary sources are examined: the R/V Ronald H. Brown C-band weather radar, 4-hourly soundings from the Brown and the Global Atmospherics, Inc. National Lightning Detection Network (long range product). Satellite data from TRMM, GOES and OV-1 are also used. The domain boundary layer shows a robust daily evolution of moist enthalpy (as reflect by equivalent potential temperature, theta-e, or wet bulb potential temperature, theta-w), with contributions from changes in both dry and moist entropy. Peak theta-w is found after local nightfall; the average diurnal range of theta-w is approximately 1 deg C. A composite diurnal cycle of convective properties was derived from the C-band volume scans, sampled continuously through the experiment at 10 minute updates. Products derived from the volumetric data include a surface PPI, 15 and 30 dBZ echo top height, vertically integrated liquid, and 6 km (mixed phase region) reflectivity CAPPIs. For almost all products, the parameter means showed virtually no diurnal cycle. However, for the upper-level products, the parameter spectra showed a clear peak in the occurrence of deep/vigorous convection (the "tail end of the distribution") between 7-9 UTC (1-3 AM local), while overall frequency of occurrence peaked later, from 12-15 UTC (6-9 AM local). This represents a daily "outbreak" of isolated deep cells a couple of hours after sunset and subsequent growth, organization and decay through the nighttime hours. The coherence of the diurnal cycle of the convective spectrum is impressive given the wide variety of convective organization observed during the experiment, and given the modulation

  11. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor

    PubMed Central

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-01-01

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073

  12. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.

    PubMed

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-12-29

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.

  13. Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus

    SciTech Connect

    Caldwell, P; Bretherton, C

    2008-03-03

    This paper describes a series of 6 day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At other times of the day, entrainment is found to be proportional to the vertically-integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated cloud albedo. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.

  14. Diurnal Cycles of Trace Gas Transfer through Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Ho, D. T.; Jaffe, P. R.

    2010-12-01

    Natural and constructed wetlands are major sources of biogeochemical trace gases, and have recently gained attention as tools for passive remediation of discharging groundwater contaminated with volatile organic compounds (VOCs). Wetland plants act as conduits for the volatilization of dissolved compounds from the interstitial pore waters of aquatic sediments to the atmosphere, so clarifying the mechanisms of this vegetation-mediated gas transport is essential to understanding the emissions of compounds including methane and VOCs. The conservative gas tracer sulfur hexafluoride (SF6) was used to examine mechanisms of gas transport through the wetland macrophytes Scirpus acutus and Typha latifolia in greenhouse mesocosm experiments. The results provide novel experimental evidence for the enhancement by light of plant-mediated gas fluxes through S. acutus, a species with no previously documented light-activated gas transport mechanism. A nonlinear saturation model was fit to the tracer flux data using least-squares regression. The mechanism for this light-enhanced flux was investigated in additional experiments in which atmospheric humidity was deliberately manipulated. These results will be discussed with respect to the role of transpiration in enhancing plant-mediated gas transport. The SF6 flux data also quantify inter-species and seasonal variability in gas transfer rates, and capture the dynamics of pressurized gas flows in T. latifolia. A numerical model of gas transport mechanisms in the root and rhizosphere system was calibrated with experimental data and used to further examine mechanisms of gas exchange between saturated wetland sediments, vegetation, and the atmosphere.

  15. Satellite-based investigation of the boundary layer diurnal cycle over the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Painemal, D.; Minnis, P.

    2012-12-01

    Retrievals from the Geostationary Operational Environmental Satellite GOES-10, produced at NASA Langley Research Center, are used to investigate the diurnal and semidiurnal cycle in the Southeast Pacific boundary layer during October-November of 2008. The GOES-10 cloud top height (Ht) is estimated by applying a linear regression to the difference between GOES-10 cloud top temperature and TRMM microwave Imager (TMI) sea surface temperature. A high linear correlation (0.86) and a negligible bias (5 m) between GOES-10 Ht and its in situ counterpart during VOCALS Regional Experiment, give confidence on the linear method used to retrieve Ht. Moreover, the good quality of GOES retrievals is further confirmed with independent measurements from Moderate Resolution Imaging Spectroradiometer MODIS on board NASA's Aqua and Terra satellites. Daily mean GOES Ht shows a typical zonal gradient, with values between 600-1200 m along the coast and heights near 1700 m 15 degrees offshore. In terms of the diurnal cycle, we find amplitudes that fluctuate between 40-160 m, with the largest magnitudes far offshore. A 12 hour cycle is also evident in coastal regions, with a maximum magnitude of 80 m at 20S. The semidiurnal cycle is consistent with a NE-SW propagating wave pattern in Ht with a phase speed of 23-25 m/s, in agreement with modeling studies that show a subsidence wave that propagates away from the South American coast. The evolution of the boundary layer depth is closely linked to the liquid water path (LWP) cycle derived from a satellite microwave dataset. Both Ht and LWP yield their diurnal maxima near 2-5 LST, whereas the afternoon semidiurnal harmonic is a maximum at 16-19 LST and midnight over coastal and offshore regions respectively. The modulation of the subsidence wave over the cloud cover cycle is also apparent, and its consequences are further discussed in this presentation.

  16. Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Marchand, R.; Fu, Q.

    2016-12-01

    Millimeter Wavelength Cloud Radar (MMCR) data from Dec. 1996 to Dec. 2010, collected at the U. S. Department of Energy Atmospheric Radiation Measurement (ARM) program site in the U.S. Southern Great Plains (SGP), are categorized into clouds (-40dBZe≤reflectivity<-10dBZe), drizzle and light precipitation (-10dBZe≤reflectivity<10dBZe), and heavy precipitation (reflectivity≥10dBZe), and are used to examine the diurnal cycle of hydrometeors occurrence. The same criteria are implemented for the observation-equivalent reflectivity calculated by feeding outputs from a Multiscale Modeling Framework (MMF) climate model simulation into a radar simulator. The MMF model consists of the NCAR Community Atmosphere Model (CAM) with conventional cloud parameterizations replaced by a cloud resolved model (CRM). Observational and simulated radar reflectivity are compared and further sorted into different atmospheric states identified by Evans (2014). Evans used a neutral network to take ERA-Interim state variables (i.e. horizontal winds, relative humidity, temperature at seven predetermined pressure level and surface pressure) on an 8×8 grid with 1.5º×1.5º spatial resolution centered on the SGP site and found twenty-one atmospheric states which represent specific synoptic conditions. We use these states to study the differences in the diurnal cycle between observations and simulations. Differences in the (mean) annual diurnal cycle between the observations and model are decomposed into errors in the daily mean, errors in the diurnal variation in each state, and errors due to difference in the frequency of occurrence of atmospheric states between ERA and the MMF. The magnitude of various error sources is assessed.

  17. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    DOE PAGES

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles; ...

    2016-06-08

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typicalmore » climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.« less

  18. The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Siebesma, Pier A.; Cheinet, Sylvain; Irons, Sarah; Jones, G. Colin; Marquet, Pascal; Müller, Frank; Olmeda, Dolores; Calvo, Javier; Sánchez, Enrique; Soares, M. M. Pedro

    2004-10-01

    An intercomparison study for single-column models (SCMs) of the diurnal cycle of shallow cumulus convection is reported. The case, based on measurements at the Atmospheric Radiation Measurement program Southern Great Plains site on 21 June 1997, has been used in a large-eddy simulation intercomparison study before. Results of the SCMs reveal the following general deficiencies: too large values of cloud cover and cloud liquid water, unrealistic thermodynamic profiles, and high amounts of numerical noise. Results are also strongly dependent on vertical resolution. These results are analysed in terms of the behaviour of the different parametrization schemes involved: the convection scheme, the turbulence scheme, and the cloud scheme. In general the behaviour of the SCMs can be grouped in two different classes: one class with too strong mixing by the turbulence scheme, the other class with too strong activity by the convection scheme. The coupling between (subcloud) turbulence and the convection scheme plays a crucial role. Finally, (in part) motivated by these results several models have been successfully updated with new parametrization schemes and/or their present schemes have been successfully modified.

  19. Characterizing Diurnal and Seasonal Cycles in Monsoon Systems from TRMM and CEOP Observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2007-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2 deg x 2.5 deg. latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  20. Characterizing diurnal and seasonal cycles in monsoon systems from TRMM and CEOP observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2deg x 2.5deg latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  1. Characterizing Diurnal and Seasonal Cycles in Monsoon Systems from TRMM and CEOP Observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2007-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2 deg x 2.5 deg. latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  2. Characterizing diurnal and seasonal cycles in monsoon systems from TRMM and CEOP observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2deg x 2.5deg latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  3. Diurnal Cycle Variability of Rainfall Over the Indian Region: Perspectives From the TRMM Satellite

    NASA Astrophysics Data System (ADS)

    Sahany, S.; Venugopal, V.; Nanjundiah, R. S.

    2008-12-01

    Using the TRMM 3-hourly, 0.25x0.25 degree 3B42 rainfall product for nine years (1999-2007), we characterise the summer season (JJAS) diurnal cycle of rainfall over the Indian land and its neighbouring oceans (10S to 35N, 60E to 100E). Most previous studies have provided an analysis of a single or few years of satellite- or station-based rainfall data (e.g., Basu, 2007; Yang and Smith, 2006; Nesbitt and Zipser, 2003) and, to our knowledge, this is one of the first studies that aims to exhaustively characterise the diurnal scale statistical characteristics of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract, at each grid point, every year, the signal corresponding to time periods smaller than 1 day, i.e., the signal that relates to diurnal and sub-diurnal variability. Subsequently, the time of rainfall peak for this filtered signal, referred to as the "peak hour," is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that the mode of the peak hour (of the diurnal-scale rainfall) over a significant part of Indian land is at 12 UTC (i.e. 5:30PM local time), a finding similar to that reported in previous studies (e.g., Liu and Zipser, 2008; Krishnamurti and Kishtawal, 2000). The Himalayan foothills were found to have a mode of peak hour at 21 UTC (i.e. 2:30AM local time), whereas over the Burmese mountains the rainfall peaks at 9 to 12 UTC (i.e. 3:30 PM to 6:30 PM local time). In addition, over the Bay of Bengal, there is a stratified spatial structure of mode of the peak hour of diurnal rainfall at 6, 9 and 12 UTC from North central to South Bay. This finding, not reported before, could be seen to be consistent with southward propagation of the diurnal rainfall pattern (e.g., Hoyos and Webster, 2007; Zuidema, 2003). We also find that the Arabian sea (to the east of 65E and north of the Equator, along a region where it rains for more than 50% of the time) shows a peak hour

  4. Ecotypic variability in the metabolic response of seeds to diurnal hydration-dehydration cycles and its relationship to seed vigor.

    PubMed

    Bai, Bing; Sikron, Noga; Gendler, Tanya; Kazachkova, Yana; Barak, Simon; Grafi, Gideon; Khozin-Goldberg, Inna; Fait, Aaron

    2012-01-01

    Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.

  5. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE PAGES

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; ...

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures (P = 0.031) were observed in themore » rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without

  6. Dependence of upper atmosphere photochemistry on the shape of the diurnal cycle of the photolysis rates

    NASA Astrophysics Data System (ADS)

    Montecinos, S.; Barrientos, P.

    2006-03-01

    A photochemical model of the atmosphere constitutes a non-linear, non-autonomous dynamical system, enforced by the Earth's rotation. Some studies have shown that the region of the mesopause tends towards non-linear responses such as period-doubling cascades and chaos. In these studies, simple go approximations for the diurnal variations of the photolysis rates are assumed. The goal of this article is to investigate what happens if the more realistic, calculated photolysis rates are introduced. It is found that, if the usual approximations-sinusoidal and step functions-are assumed, the responses of the system are similar: it converges to a 2-day periodic solution. If the more realistic, calculated diurnal cycle is introduced, a new 4-day subharmonic appear.

  7. Circadian Kinetics of Cell Cycle Progression in Adult Neurogenic Niches of a Diurnal Vertebrate

    PubMed Central

    Stankiewicz, Alexander J.; Kharchenko, Vasili; Yu, Lili; Kharchenko, Peter V.

    2017-01-01

    The circadian system may regulate adult neurogenesis via intracellular molecular clock mechanisms or by modifying the environment of neurogenic niches, with daily variation in growth factors or nutrients depending on the animal's diurnal or nocturnal lifestyle. In a diurnal vertebrate, zebrafish, we studied circadian distribution of immunohistochemical markers of the cell division cycle (CDC) in 5 of the 16 neurogenic niches of adult brain, the dorsal telencephalon, habenula, preoptic area, hypothalamus, and cerebellum. We find that common to all niches is the morning initiation of G1/S transition and daytime S-phase progression, overnight increase in G2/M, and cycle completion by late night. This is supported by the timing of gene expression for critical cell cycle regulators cyclins D, A2, and B2 and cyclin-dependent kinase inhibitor p20 in brain tissue. The early-night peak in p20, limiting G1/S transition, and its phase angle with the expression of core clock genes, Clock1 and Per1, are preserved in constant darkness, suggesting intrinsic circadian patterns of cell cycle progression. The statistical modeling of CDC kinetics reveals the significant circadian variation in cell proliferation rates across all of the examined niches, but interniche differences in the magnitude of circadian variation in CDC, S-phase length, phase angle of entrainment to light or clock, and its dispersion. We conclude that, in neurogenic niches of an adult diurnal vertebrate, the circadian modulation of cell cycle progression involves both systemic and niche-specific factors. SIGNIFICANCE STATEMENT This study establishes that in neurogenic niches of an adult diurnal vertebrate, the cell cycle progression displays a robust circadian pattern. Common to neurogenic niches located in diverse brain regions is daytime progression of DNA replication and nighttime mitosis, suggesting systemic regulation. Differences between neurogenic niches in the phase and degree of S-phase entrainment to

  8. Circadian Kinetics of Cell Cycle Progression in Adult Neurogenic Niches of a Diurnal Vertebrate.

    PubMed

    Akle, Veronica; Stankiewicz, Alexander J; Kharchenko, Vasili; Yu, Lili; Kharchenko, Peter V; Zhdanova, Irina V

    2017-02-15

    The circadian system may regulate adult neurogenesis via intracellular molecular clock mechanisms or by modifying the environment of neurogenic niches, with daily variation in growth factors or nutrients depending on the animal's diurnal or nocturnal lifestyle. In a diurnal vertebrate, zebrafish, we studied circadian distribution of immunohistochemical markers of the cell division cycle (CDC) in 5 of the 16 neurogenic niches of adult brain, the dorsal telencephalon, habenula, preoptic area, hypothalamus, and cerebellum. We find that common to all niches is the morning initiation of G1/S transition and daytime S-phase progression, overnight increase in G2/M, and cycle completion by late night. This is supported by the timing of gene expression for critical cell cycle regulators cyclins D, A2, and B2 and cyclin-dependent kinase inhibitor p20 in brain tissue. The early-night peak in p20, limiting G1/S transition, and its phase angle with the expression of core clock genes, Clock1 and Per1, are preserved in constant darkness, suggesting intrinsic circadian patterns of cell cycle progression. The statistical modeling of CDC kinetics reveals the significant circadian variation in cell proliferation rates across all of the examined niches, but interniche differences in the magnitude of circadian variation in CDC, S-phase length, phase angle of entrainment to light or clock, and its dispersion. We conclude that, in neurogenic niches of an adult diurnal vertebrate, the circadian modulation of cell cycle progression involves both systemic and niche-specific factors.SIGNIFICANCE STATEMENT This study establishes that in neurogenic niches of an adult diurnal vertebrate, the cell cycle progression displays a robust circadian pattern. Common to neurogenic niches located in diverse brain regions is daytime progression of DNA replication and nighttime mitosis, suggesting systemic regulation. Differences between neurogenic niches in the phase and degree of S-phase entrainment to the

  9. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  10. What the diurnal cycle of precipitation tells us about land-atmosphere coupling strength

    NASA Astrophysics Data System (ADS)

    Ferguson, Craig; Song, Hyojong; Roundy, Joshua

    2015-04-01

    The key attributes of a coupled forecast model are the coupling strengths between the land-atmosphere and ocean-atmosphere schemes. If a model cannot skillfully capture the diurnal cycle of clouds and precipitation, then it likely cannot be expected to yield accurate long-term climate projections. The seasonal drought forecast skill shortfalls of the U.S. NCEP Coupled Forecast System Version 2 (CFSv2) have been directly linked to its unrealistically strong land-atmosphere coupling strength. Most models can be similarly categorized, which is to say, sensitivity to the land physics (i.e., soil moisture constraints on evapotranspiration) is too strong. In nature, the land signal: noise ratio appears to be at a much lower value. Diagnosing land-atmosphere coupling strength requires at a minimum: surface soil moisture state, surface turbulent heat fluxes, and atmospheric moisture and instability. Full-on diagnosis would entail hacking into the code and inserting a number of tracers. This study addresses the question: What if, given the soil wetness anomaly, model biases in coupling sign and/or strength could be diagnosed from phase shifts in the diurnal precipitation frequency cycle? We use 34-years of output from the North American Regional Reanalysis (NARR) and North American Land Data Assimilation System Phase 2 (NLDAS-2) to investigate the variation in diurnal precipitation frequency cycle between so-called "wet-advantage" and "dry-advantage" coupling regimes over the U.S. southern Great Plains. Wet-advantage occurs when the atmospheric state is closer to the wet adiabatic rate and convection is triggered by a strong increase in the moist static energy from the surface. In contrast, dry-advantage occurs when the atmosphere is drier and the temperature profile is close to the dry adiabatic lapse rate, which favors convection over areas of large boundary layer growth due to high sensible heat fluxes at the surface. We find that there is a significant difference in the

  11. The Mars Diurnal CO2 Cycle as Observed in the Tharsis Region.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Cushing, G. E.

    2014-12-01

    The Mars atmosphere is composed of 95% CO2, 25% of which is cycled through the seasonal CO2 ice caps annually. During the polar night, surface temperatures drop to ~145 K and CO2 ice can begin to directly condense. Also, atmospheric temperatures can drop even lower, allowing for the formation of CO2 snow. During the spring, the CO2 ice sublimes thus completing the annual CO2 cycle. While significant study has been conducted to characterize and model the annual CO2 cycle, little has been done to investigate the possibility of a diurnal CO2 cycle.There are two general locations where the diurnal exchange of surface CO2 ice with the atmosphere can occur: (1) the higher elevations of the Tharsis region and (2) the edges of the seasonal polar caps. This presentation will focus on the Tharsis region. The low surface thermal inertia, due to a thick layer of dust, and the low atmospheric pressure of the Tharsis region allow for diurnal temperature ranges from at or near the CO2 frost temperature (~140 K at 2 mbar) during pre-dawn hours to temperatures above the triple point of water during mid-day. The Mars Global Surveyor Thermal Emission Spectrometer showed evidence of CO2 ice deposition near the summit of Olympus Mons at 2 am local time. Spectra from the coldest data observed are generally flat through the 25 μm region, suggesting slab or coarse grained CO2 ice. The 15 μm region of the spectra shows a warm atmosphere, suggesting that the formation of CO2 snow is unlikely. The Mars Odyssey Thermal Emission Imaging System showed consistently that much of the surface is at or near the frost point of CO2, suggesting the possible widespread presence of CO2 ice deposits during the pre-dawn hours.Simple energy balance considerations suggest that a nightly CO2 deposit that completely sublimes away shortly after dawn, could be as thick as 1.6 kg/m3 (~1 mm if deposit is slab ice with no porosity). Further constraints on the details of the Tharsis diurnal CO2 cycle will be

  12. Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations

    SciTech Connect

    Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang; Schlemmer, Linda; Schär, Christoph

    2015-08-31

    The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope. As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.

  13. Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations

    DOE PAGES

    Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang; ...

    2015-08-31

    The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope.more » As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.« less

  14. Wake flow variability in a wind farm throughout the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Sharifi, Ahmad; Porté-Agel, Fernando

    2015-04-01

    The atmospheric boundary layer (ABL) undergoes substantial changes in its structure and dynamics in the course of a day due to the transient nature of forcing factors such as the surface fluxes of heat and momentum. The non-stationary nature of the mean wind and turbulence in the ABL, associated with the diurnal cycle, can in turn affect the structure of wind turbine wakes and their effects on power losses within wind farms. In this research, large-eddy simulation (LES) is used to study the evolution of the turbine wakes and their effects on power losses inside an idealized finite-size wind farm in the course of two full diurnal cycles. In the LES, turbulent subgrid-scale stresses are modeled using tuning-free Lagrangian scale-dependent dynamic models, while the turbine-induced forces are parameterized using a dynamic actuator disk model with rotation. To minimize the effects of the initial conditions on the results, our analysis is focused on the second diurnal cycle. The simulation results show a strong effect of atmospheric stability on the wind farm wakes and associated power losses. During the night, the relatively low turbulence intensity of the ambient ABL flow results in a relatively slow rate of entrainment of momentum into the wake and, consequently, a slow wake recovery. In contrast, during the day the positive buoyancy flux and associated turbulence production lead to a relatively high turbulence level in the background ABL flow, which enhances turbulent mixing and wake recovery. As a result, the averaged power deficit in the wind farm is found to increase with increasing thermal stability. In particular for that day, the averaged power deficit increased from 28% under the most convective condition to about 66% under the most stable condition.

  15. Satellite sampling and the diurnal cycle statistics of Darwin rainfall data

    SciTech Connect

    Soman, V.V.; Valdes, J.B.; North, G.R.

    1995-11-01

    This paper presents an analysis of rainfall data based on the radar echoes collected in the vicinity of Darwin, Australia, during the special observation periods in 1988. The Darwin rainfall data are available in the form of hourly averaged grids of size 141 X 141 with an areal resolution of 2 km X 2 km. The data are available for approximately 19 days in the first subset and for 22 days in the second. Since the rainfall data were taken over both the land and the ocean, separate analyses were performed for land and ocean surfaces; thus, three univariate time series (for land, ocean, and combination) are presented for each set. Time series analysis was performed in both time and frequency domains, and both the correlogram and periodogram showed the presence of a strong diurnal cycle in all the time series. Considerable variations can be seen in the diurnal cycles of these time series. To analyze the effect of the diurnal cycle on the sampling errors, flush visits of idealized satellites were simulated. The root-mean-square (rms) errors were especially large for satellites with sampling intervals of 6 and 12 h (about 20% of the mean for the box size of 280 km X 280 km, for 20 days). The rms errors were very large ({approximately}65%) for a sampling interval of 24 h, which is a possibility for the Defense Military Satellite Program satellites. The sampling errors were only 5%-10% for non-sun-synchronous orbiters. This result should be considered for satellite mission planning purposes. 12 refs., 10 figs., 4 tabs.

  16. Diurnal Cycle of Convection and Interaction with the Large-Scale Circulation

    NASA Technical Reports Server (NTRS)

    Salby, Murry

    2002-01-01

    The science in this effort was scheduled in the project's 3rd and 4th years, after a long record of high-resolution Global Cloud Imagery (GCI) had been produced. Unfortunately, political disruptions that interfered with this project led to its funding being terminated after only two years of support. Nevertheless, the availability of intermediate data opened the door to a number of important scientific studies. Beyond considerations of the diurnal cycle addressed in this grant, the GCI wakes possible a wide range of studies surrounding convection, cloud and precipitation. Several are already underway with colleagues in the US and abroad, who have requested the GCI.

  17. Effect of programmed diurnal temperature cycles on plasma thyroxine level, body temperature, and feed intake of holstein dairy cows

    NASA Astrophysics Data System (ADS)

    Scott, I. M.; Johnson, H. D.; Hahn, G. L.

    1983-03-01

    Holstein cows exposed to simulated summer diurnal ambient temperature cycles of Phoenix, Arizona and Atlanta, Georgia and diurnal modifications of these climates displayed daily cycles fluctuations in plasma thyroxine (T4) and rectal temperatures (Tre). There were daily diurnal changes in T4 and Tre under all simulated climate conditions. Maximal values generally occurred in the evening hours and minimum values in the morning. Although the diurnal rhythm was influenced by the various simulated climates (diurnal modifications) a diurnal rhythm was very evident even under constant conditions at thermoneutral (Tnc) and at cyclic thermoneutral conditions (TN). The major significance of the study is that the initiation of night cooling of the animals at a time when their Tre was highest was most beneficial to maintenance of a TN plasma T4 level. There was a highly significant negative relationship of average T4 and average Tre. There was also a significant negative relationship of feed consumption and average temperature-humidity index (THI). These data suggest that night cooling may be a most effective method to alleviate thermoregulatory limitations of a hot climate on optimal animal performance. Decreasing the night time air temperature (Ta) or THI or increasing the diurnal range allows the cows to more easily dissipate excess body heat accumulated during the day and minimize the thermal inhibition on feed intake, and alterations in plasma T4 and Tre.

  18. Diurnal Weather Cycles at the Tropical Treeline in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2007-12-01

    High elevation atmospheric processes in the North American Monsoon region were investigated using half-hour weather data collected from May 22nd, 2001 to March 21st, 2007 at Nevado de Colima, Mexico (19° 35' N, 103° 37' W, 3760 m a.s.l.). After briefly expanding on temporal changes, which were first described by Biondi et al. 2005, I investigate diurnal weather cycles using the entire period of record. During the monsoon, precipitation falls mostly in the afternoon (from 12:00 to 20:00), with a peak around 17:00. Barometric pressure follows a regular wave pattern in all months, with a high at noon in between two lows, one around 5:30 and one between 17:00 and 19:00. Since barometric pressure is higher during the wet season, and the lows are found in all months, the afternoon low is not related to precipitation; rather it may help convective processes during the monsoon season. The diurnal pressure waves correspond to changes in wind speed, but it is unclear if turbulence drives the changes in pressure, as suggested by other authors. In particular, the amplitude of the atmospheric wave is greater in the dry season than in the wet season, in contrast to what was observed at high elevations in the Alps. The diurnal cycle of air temperature shows maxima during the spring, as the increased cloudiness during the summer wet season reduces incoming short wave radiation and its direct outcome, maximum air temperature. The dry season is characterized by greater excursions in air temperature, since the interval between maxima and minima is larger at all hours of the day. Soil temperature (especially the minima) is higher during the wet season, and shows an afternoon peak, most likely related to precipitation. Both minimum and maximum soil temperatures are at their lowest level around noon. Atmospheric vapor and vapor pressure deficit follow opposite patterns, as expected according to the season and the diurnal cycle of precipitation. These data provide a unique baseline for

  19. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, Sylvain; Kleinböhl, Armin; Hayne, Paul O.; Heavens, Nicholas G.; Kass, David M.; McCleese, Daniel J.; Schofield, John T.; Shirley, James H.

    2016-07-01

    While the detection of CO2 ice has only been reported outside the Martian polar regions at very high elevation (i.e., Elysium, Olympus Mons, and the Tharsis Montes), nighttime surface observations by the Mars Climate Sounder on board the Mars Reconnaissance Orbiter document the widespread occurrence of atmospherically corrected ground temperatures consistent with the presence of extensive carbon dioxide frost deposits in the dusty low thermal inertia units at middle/low latitudes. Thermal infrared emissivities, interpreted in conjunction with mass balance modeling, suggest micrometer size CO2 ice crystals forming optically thin layers never exceeding a few hundreds of microns in thickness (i.e., 10-2 kg m-2) locally, which is insufficient to generate a measurable diurnal pressure cycle (<<0.1% of the Martian atmosphere). Atmospheric temperatures at middle/low latitudes are not consistent with precipitation of CO2 ice, suggesting that condensation occurs on the surface. The recurring growth and sublimation of CO2 ice on Martian dusty terrains may be an important process preventing soil induration and promoting dynamic phenomena (soil avalanching and fluidization and regolith gardening), maintaining a reservoir of micrometer size dust particles that are mobile and available for lifting. The discovery of this diurnal CO2 cycle represents an important step forward in our understanding of the way the Martian atmosphere interacts with the surface.

  20. The diurnal cycle of the Urban Convective Boundary Layer over London

    NASA Astrophysics Data System (ADS)

    Halios, Christos; Barlow, Janet; Wood, Curtis

    2014-05-01

    The daily evolution of the Urban Convective Boundary Layer is of importance in terms of the dispersion of pollutants and for initializing models. In particular, morning and afternoon transition periods are of interest for initializing prognostic models and also for basic understanding of significant processes such as the nocturnal low level jet (LLJ) and the whole structure of the nocturnal atmospheric boundary layer. Moreover, significant differences in the diurnal cycle of fluxes and boundary layer depths of urban and rural sites are expected due to different surface energy balance observed in urban and rural areas. Yet, long term observations of fluxes and boundary layer depth at both urban and rural sites are rear. The aim of the present study is to examine the major phases (morning expansion, midday developed and afternoon decay) of the diurnal cycle of the Convective Boundary Layer. Towards this aim more than 1 year of measurements of a HALO Photonics Doppler Lidar and eddy covariance systems deployed in the frame of the ACTUAL (Advanced Climate Technology Urban Atmospheric Laboratory) project in central London, UK were analyzed. The urban lidar was operating in two modes: continuous stare mode (pointing vertically) and Doppler Beam Swinging (DBS) mode measuring the turbulence and the wind speed vertical profile respectively. The urban CBL is compared to the CBL over a nearby rural site (Chilbolton) and differences in urban and rural boundary layers are analyzed in terms of atmospheric stability and direction of the prevailing flow.

  1. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent

    DOE PAGES

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; ...

    2016-09-19

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value,more » the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.« less

  2. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; Burleyson, Casey D.; De Mott, Charlotte; Kerns, Brandon; Benedict, James J.; Martini, Matus N.

    2016-09-19

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.

  3. Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

    DOE PAGES

    Rodrigo, J. Sanz; Allaerts, D.; Avila, M.; ...

    2017-06-13

    We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less

  4. Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

    NASA Astrophysics Data System (ADS)

    Sanz Rodrigo, J.; Allaerts, D.; Avila, M.; Barcons, J.; Cavar, D.; Chávez Arroyo, RA; Churchfield, M.; Kosovic, B.; Lundquist, JK; Meyers, J.; Muñoz Esparza, D.; Palma, JMLM; Tomaszewski, JM; Troldborg, N.; van der Laan, MP; Veiga Rodrigues, C.

    2017-05-01

    We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ɛ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are used to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Overall, all the microscale simulations produce a consistent coupling with mesoscale forcings.

  5. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes

    NASA Astrophysics Data System (ADS)

    Junquas, C.; Takahashi, K.; Condom, T.; Espinoza, J.-C.; Chavez, S.; Sicart, J.-E.; Lebel, T.

    2017-08-01

    In the tropical Andes, the identification of the present synoptic mechanisms associated with the diurnal cycle of precipitation and its interaction with orography is a key step to understand how the atmospheric circulation influences the patterns of precipitation variability on longer time-scales. In particular we aim to better understand the combination of the local and regional mechanisms controlling the diurnal cycle of summertime (DJF) precipitation in the Northern Central Andes (NCA) region of Southern Peru. A climatology of the diurnal cycle is obtained from 15 wet seasons (2000-2014) of 3-hourly TRMM-3B42 data (0.25° × 0.25°) and swath data from the TRMM-2A25 precipitation radar product (5 km × 5 km). The main findings are: (1) in the NCA region, the diurnal cycle shows a maximum precipitation occurring during the day (night) in the western (eastern) side of the Andes highlands, (2) in the valleys of the Cuzco region and in the Amazon slope of the Andes the maximum (minimum) precipitation occurs during the night (day). The WRF (Weather Research and Forecasting) regional atmospheric model is used to simulate the mean diurnal cycle in the NCA region for the same period at 27 km and 9 km horizontal grid spacing and 3-hourly output, and at 3 km only for the month of January 2010 in the Cuzco valleys. Sensitivity experiments were also performed to investigate the effect of the topography on the observed rainfall patterns. The model reproduces the main diurnal precipitation features. The main atmospheric processes identified are: (1) the presence of a regional-scale cyclonic circulation strengthening during the afternoon, (2) diurnal thermally driven circulations at local scale, including upslope (downslope) wind and moisture transport during the day (night), (3) channelization of the upslope moisture transport from the Amazon along the Apurimac valleys toward the western part of the cordillera.

  6. The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.; Grabowski, W. W.

    2016-01-01

    In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore-propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea.

    In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore-propagating convection have more middle tropospheric moisture, larger convective available potential energy, and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation.

    The offshore-propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes reorganised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at ˜ 5 ms-1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of ˜ 15 ms-1) and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity

  7. The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.; Grabowski, W. W.

    2015-07-01

    In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea. In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore propagating convection have more middle tropospheric moisture, larger CAPE and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation. The offshore propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes re-organised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at ~5 m s-1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of ~15 m s-1), and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity wave does not appear to initiate the convection or control its propagation, it should contribute to its longevity and maintenance. The results highlight the importance of

  8. A One-Year Study of the Diurnal Cycle of Meteorology, Clouds, and Radiation in the West African Sahel Region

    SciTech Connect

    Marquardt-Collow, Allison; Ghate, Virendra P.; Miller, Mark A.; Trabachino, Lynne

    2016-01-09

    The diurnal cycles of meteorological and radiation variables are analyzed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) program’s Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Center for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapor and liquid water measurements, and cloud radar measurements of frequency and location. These meteorological measurements are complemented by 3-hour measurements of the diurnal cycles of the TOA and surface shortwave (SW) and longwave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the Lifting Condensation Level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10-30 Wm^(-2) depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 Wm^(-2). A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 Wm^(-2), and varies widely from day to day.

  9. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    DOE PAGES

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; ...

    2015-09-09

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m–2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m–2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m–2, and varies widely from day to day.« less

  10. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    SciTech Connect

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; Trabachino, Lynne C.

    2015-09-09

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurements of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m–2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m–2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m–2, and varies widely from day to day.

  11. Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Baranowski, Dariusz B.; Flatau, Maria K.; Flatau, Piotr J.; Matthews, Adrian J.

    2016-08-01

    Convectively coupled Kelvin waves (CCKWs) are a major component of the tropical atmospheric circulation, propagating eastward around the equatorial belt. Here we show that there are scale interactions between CCKWs and the diurnal cycle over the Maritime Continent. In particular, CCKW packets that pass a base point in the eastern Indian Ocean at 90°E between 0600 and 0900 UTC subsequently arrive over Sumatra in phase with the diurnal cycle of convection. As the distance between Sumatra and Borneo is equal to the distance traveled by a CCKW in 1 day, these waves are then also in phase with the diurnal cycle over Borneo. Consequently, this subset of CCKWs has a precipitation signal up to a factor of 3 larger than CCKWs that arrive at other times of the day and a 40% greater chance of successfully traversing the Maritime Continent.

  12. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Acero, Juan A.; Arrizabalaga, Jon

    2016-11-01

    Urban areas are known to modify meteorological variables producing important differences in small spatial scales (i.e. microscale). These affect human thermal comfort conditions and the dispersion of pollutants, especially those emitted inside the urban area, which finally influence quality of life and the use of public open spaces. In this study, the diurnal evolution of meteorological variables measured in four urban spaces is compared with the results provided by ENVI-met (v 4.0). Measurements were carried out during 3 days with different meteorological conditions in Bilbao in the north of the Iberian Peninsula. The evaluation of the model accuracy (i.e. the degree to which modelled values approach measured values) was carried out with several quantitative difference metrics. The results for air temperature and humidity show a good agreement of measured and modelled values independently of the regional meteorological conditions. However, in the case of mean radiant temperature and wind speed, relevant differences are encountered highlighting the limitation of the model to estimate these meteorological variables precisely during diurnal cycles, in the considered evaluation conditions (sites and weather).

  13. Studying the Diurnal Cycle of Convection Using a TRMM-Calibrated Infrared Rain Algorithm

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.

    2005-01-01

    The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics. The technique makes use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of nonraining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the last being important for the calculation of vertical profiles of latent heating. The diurnal cycle of rainfall, as well as the division between convective and Stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. Results from five years of PR data will show the global-tropical partitioning of convective and stratiform rainfall.

  14. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work

  15. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons

    NASA Astrophysics Data System (ADS)

    Simpson, John H.; Burchard, Hans; Fisher, Neil R.; Rippeth, Tom P.

    2002-07-01

    The Liverpool Bay Region of Freshwater Influence in the Irish Sea exhibits strong horizontal gradients which interact with the dominant tidal flow. A 25 h series of measurements of the cycle of turbulent dissipation with the FLY dissipation profiler shows a strong asymmetry between ebb and flood which is associated with a cycle of increasing stratification on the ebb and progressive mixing on the flood which results in vertical homogeneity as high water is approached. At this time strong dissipation extends throughout the water column in contrast to the ebb when there is a near shutdown of dissipation in the upper half of the column. The cycle of stratification and dissipation is closely consistent for the two semi-diurnal tidal cycles observed. We have attempted to simulate this situation, which involves a complex suite of processes including tidal straining and mixing, using a version of the k-ɛ closure scheme in a 1-d dynamical model which is forced by a combination of the observed tidal flow and horizontal temperature and salinity gradients. The latter were measured directly at the end of the observational series but, in order to focus on the cycle of dissipation, the correct reproduction of the temperature and salinity cycle can be assured by a nudging procedure which obliges the model temperature and salinity values to track the observations. With or without this procedure, the model gives a reasonable account of the dissipation and its asymmetric behaviour on ebb and flood although nudging improves the timing of peak dissipation in the upper part of the water column near highwater. The model has also been used to examine the ratio of shear production (P/ɛ) and buoyancy inputs to dissipation (B/ɛ). The variation of these quantities over the tidal cycle confirms the important role of convective motions forced by tidal straining near the end of the flood phase of the tide.

  16. Do biomass-burning aerosols significantly modulate the diurnal cycle of clouds and precipitation over Borneo?

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Duvel, Jean-Phillipe; Thompson, Greg; Saide, Pablo

    2017-04-01

    During boreal summer, biomass-burning aerosols over the Borneo Island are a potential source of perturbation for convective precipitation and clouds. Since the diurnal cycle of both biomass burning emission and convection are reproducible from day to day over Borneo, this is a suitable location to investigate interactions between aerosols, precipitation and clouds in a statistically meaningful way. We use the Research and Forecasting (WRF) model that includes a bulk microphysical parameterization of the cloudiness with explicit droplet nucleation and ice activation by aerosols. Five high-resolution simulations of 40 days with explicit convection are performed to study the sensitivity of precipitation and clouds to biomass-burning aerosols: one with observed fire emission; one with no fire emission; one with no direct radiative effect of aerosols; and two with highly absorbing or scattering aerosols. The models results will be analyzed in terms of shallow and convective clouds. Aerosol loading is maximal over the southeast Borneo, where the cloudiness is dominated by low-level cumulus that develop in the afternoon (maximum cloudiness at 15 LST). Over this region, we will discuss the compensating effects between the warming of the aerosol layer that tends to dissipate clouds in the afternoon, and the increase in CCN levels that tends to increase the low-level cloudiness. As observed, deep convection in WRF is initiated near the northwest coast at 14 LST. Rainfall rates drastically increase between 14 LST and 17 LST over the orography of northern Borneo and then tend to propagate south until 23 LST. During night, the convective area splits into two rainfall maxima over the ocean near the East and West coasts around 4°N. In early morning, only the West maximum remains and then dissipates. Over most convective regions, aerosols tend to decrease the daily maximum of convective precipitation (and high cloud cover). To the first order, this appears to be mostly due to the

  17. Cosmic ray solar diurnal anisotropy and transport coefficients for two Hale cycles

    NASA Astrophysics Data System (ADS)

    Modzelewska, Renata; Ygbuhay, R. C.; Ahluwalia, H. S.; Alania, Michael

    The data from the global network of several neutron monitors, ion chambers, and directional muon telescopes at Nagoya are used to compute the east-west, north-south, and radial components of the solar diurnal anisotropy of galactic cosmic rays for 1965-2011. The ratios of the mean free paths are derived parallel (K||) and perpendicular (K⊥) to the mean interplanetary magnetic field as well as the heliospheric radial gradient (Gr). The preliminary results for the timelines of α (= K⊥/ K||), Gr, their rigidity dependence are reported and their correlations with the solar activity for the positive and negative sectors of the solar polar magnetic field are discussed.

  18. Diurnal Cycle of Convection and Interaction with the Large-Scale Circulation

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    2002-01-01

    The science in this effort was scheduled in the project's third and fourth years, after a long record of high-resolution Global Cloud Imagery (GCI) had been produced. Unfortunately, political disruptions that interfered with this project led to its funding being terminated after only two years of support. Nevertheless, the availability of intermediate data opened the door to a number of important scientific studies. Beyond considerations of the diurnal cycle addressed in this grant, the GCI makes possible a wide range of studies surrounding convection, cloud, and precipitation. Several are already underway with colleagues in the US and abroad, including global cloud simulations, a global precipitation product, global precipitation simulations, upper tropospheric humidity, asynoptic sampling studies, convective organization studies, equatorial wave simulations, and the tropical tropopause.

  19. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle; Taylor, Patrick

    2015-01-01

    This presentation uses publicly available CERES and radiosonde data to investigate the sensitivity of thetropical convective diurnal cycle to atmosphere state. Averaging surface observations into regimes of convective intensitydefined by satellite shows great promise for physical understandingof convection.• Convective processes in the Amazon are highly variable seasonallyand locally.• Buoyancy/CIN more important JJA– Mesoscale/synoptic features easier to separate– Length/depth of buoyancy layer very important in DJF (EL).• Moisture more important DJF, esp. UTH– Humidity of lower atmosphere significantly impacts LTS, LCL and abilityfor parcels to reach LFC.• Lower level jet strength/direction important• Convective initiation correlated with LTS, LR, LTH, EL• Duration/Phase better correlated with humidity variables• Surface Flux amplitude well correlated with convection

  20. Productivity Estimation of Hypersaline Microbial Mat Communities - Diurnal Cycles of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Less, G.; Cohen, Y.; Luz, B.; Lazar, B.

    2002-05-01

    Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10

  1. Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41°N,105°W)

    NASA Astrophysics Data System (ADS)

    She, Chiao-Yao

    2004-04-01

    The Colorado State Sodium lidar has been upgraded to a two-beam system capable of simultaneous measurements of mesopause region temperature and winds, over full diurnal-cycles, weather permitting. Though our lidar is a modest system with a power-aperture product of only 0.06Wm2, good data quality is demonstrated by means of contour plots depicting a 80-h continuous observation between August 9th and 12th, showing the existence of atmospheric waves with different periods along with their coherence and interactions. The salient feature of data with full-diurnal-cycle coverage lies in its ability to describe the vertical profiles of dynamical fields (temperature, zonal and meridional winds) as a unique linear superposition of diurnal-mean and oscillations with different tidal periods, plus a residual term. In this manner, we investigate diurnal-means and oscillations with diurnal and semidiurnal periods. Using 6 data sets between July 17 and August 12, each covering a full-diurnal-cycle as a case study, we found considerable day-to-day variability, as much as 20K, 35 and 75m/s for diurnal-mean temperature, zonal wind and meridional wind, respectively, and as 15K, and 50m/s, for the diurnal and semidiurnal tidal temperature and wind amplitudes, respectively. While a minimum of 3 full diurnal cycles appears to be adequate in the case studied here, the 6-day composite yields diurnal-means and diurnal tides in agreement with model predictions very well. Since the resulting amplitudes and phases of the observed diurnal oscillations agree well with the global scale wave model, GSWM00 predictions, we conclude that the migrating diurnal tide contributes significantly to the observed oscillations with diurnal period over Fort Collins, CO (41°N, 105°W). Unlike the diurnal perturbations, the observed semidiurnal amplitudes and phases differ from the GSWM00 predictions with considerably smaller model amplitudes. The coherence of solar forcing is found to prevail over the

  2. Contemporary model fidelity over the Maritime Continent: Examination of the diurnal cycle, synoptic, intraseasonal and seasonal variability

    NASA Astrophysics Data System (ADS)

    Baranowski, Dariusz

    2017-04-01

    One of the key challenges in subseasonal weather forecasting is the fidelity in representing the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC). In reality both propagating and non-propagating MJO events are observed, but in numerical forecast the latter group largely dominates. The fact that models still struggle to realistically represent the MJO over MC is generally attributed to its complex terrain and associated vigorous diurnal cycle of convection, multi-scale interactions between local and propagating modes of convection and regional air-sea interactions. In this study, multi-model simulations from the GEWEX Atmospheric System Study (GASS) / Year of Tropical Convection (YOTC) MJO Project are analyzed to quantify contemporary model performance in representing the MC mean climate and its variability, including the diurnal cycle, synoptic, intraseasonal, and seasonal variability. This dataset has been shown to be useful in such multi-model evaluation studies over different regions and/or focusing on different physical processes (e.g. Jiang et al., JGR, 2015; Mani et al., Clim. Dyn, 2016) For this study, comprehensive model performances are evaluated using metrics that utilize the mean precipitation pattern and the amplitude and phase of the diurnal cycle, with a particular focus on the linkage between a model's local MC variability and its fidelity in representing propagation of the MJO and equatorial Kelvin waves across the MC. Subseasonal to seasonal variability of mean precipitation and its diurnal cycle in 20 year long climate simulations from over 20 general circulation models (GCMs) is examined to benchmark model performance. Furthermore, we utilize cross model differences to gain insight into which processes are most critical to realistically represent multi-scale interactions over the MC region. This includes distinguishing the behavior between a number of land (Sumatra, Borneo, New Guinea and Southeast Asia) and

  3. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    NASA Astrophysics Data System (ADS)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2017-05-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  4. A comparison of the fine-scale structure of the diurnal cycle of tropical rain and lightning

    NASA Astrophysics Data System (ADS)

    Venugopal, V.; Virts, K.; Sukhatme, J.; Wallace, J. M.; Chattopadhyay, B.

    2016-03-01

    In this study, the fine-scale structure of the diurnal variability of ground-based lightning is systematically compared with satellite-based rain. At the outset, it is shown that tropical variability of lightning exhibits a prominent diurnal mode, much like rain. A comparison of the geographical distribution of the timing of the diurnal maximum shows that there is very good agreement between the two observables over continental and coastal regions throughout the tropics. Following this global tropical comparison, we focus on two regions, Borneo and equatorial South America, both of which show the interplay between oceanward and landward propagations of the phase of the diurnal maximum. Over Borneo, both rain and lightning clearly show a climatological cycle of "breathing in" (afternoon to early morning) and "breathing out" (morning to early afternoon). Over the equatorial east coast of South America, landward propagation is noticed in rain and lightning from early afternoon to early morning. Along the Pacific coast of South America, both rain and lightning show oceanward propagation. Though qualitatively consistent, over both regions the propagation is seen to extend further in rainfall. Additionally, given that lightning highlights vigorous convection, the timing of its diurnal maximum often precedes that of rainfall in the convective life cycle.

  5. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Ling; Ting, Chien-Chung; Wang, Jia-Lin; Wingenter, Oliver W.; Chan, Chang-Chuan

    Hourly measurement of 56 ozone precursors was conducted by a monitoring station located in a metropolitan area in central Taiwan. After nearly a year of continuous operation at this urban site, both diurnal and seasonal cycles of non-methane hydrocarbons (NMHCs) were clearly observed, which were caused by the interplay between source, chemical loss, and meteorology. Selected species representing three different types of major sources, namely, the household fuel leakage, vehicular exhaust and gasoline evaporation, as well as biogenic emissions exhibit dramatic diurnal or seasonal cycles with each displaying its own unique characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases (LPG), showed concentrations elevating throughout the night and early morning, but began to decrease toward noon as the nocturnal temperature inversion elevated. Because of the lower chemical reactivity and somewhat more constant emissions than other measured target compounds, their diurnal cycles were presumably the direct reflection of the mixing height over the metropolitan area. For compounds originating from vehicular plus evaporative emissions such as benzene, which accounts for most of the monitored compounds, their diurnal cycles were also largely controlled by the variation in the height of temperature inversion. Of all the 56 species monitored, isoprene, an abundant biogenic species largely released by plants, showed distinct diurnal and seasonal cycles different from the other measured NMHCs. Its concentration usually peaked at noon in summer and fell when temperature and solar radiation reached their maximum levels, demonstrating the close relationship of isoprene with photosynthesis. Seasonal variation was also clearly observed for the other NMHCs quantified. With the exception of isoprene, most species show higher average concentration in winter and lower average concentration in summer with the fall values being the

  6. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Ling; Ting, Chien-Chung; Wang, Jia-Lin; Wingenter, Oliver W.; Chan, Chang-Chuan

    Hourly measurement of 56 ozone precursors was conducted by a monitoring station located in a metropolitan area in central Taiwan. After nearly a year of continuous operation at this urban site, both diurnal and seasonal cycles of nonmethane hydrocarbons (NMHCs) were clearly observed, which was caused by the interplay between source, chemical loss, and meteorology. Selected species representing three different types of major sources namely the household fuel leakage, vehicular exhaust and gasoline evaporation, as well as biogenic emissions exhibit dramatic diurnal or seasonal cycles with each displaying its own unique characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases (LPG), showed concentrations elevating throughout the night and early morning, but began to decrease towards noon as the nocturnal temperature inversion elevated. Because of the lower chemical reactivity and somewhat more constant emissions than other measured target compounds, their diurnal cycles were presumably the direct reflection of the mixing height over the metropolitan area. For compounds originating from vehicular plus evaporative emissions such as benzene, which accounts for most of the monitored compounds, their diurnal cycles were also largely controlled by the variation in the height of temperature inversion. Of all the 56 species monitored, isoprene, an abundant biogenic species largely released by plants, showed distinct diurnal and seasonal cycles different from the other measured NMHCs. Its concentration usually peaked at noon in summer and fall when temperature and solar radiation reached their maximum level, demonstrating the close relationship of isoprene with photosynthesis. Seasonal variation was also clearly observed for the other NMHCs quantified. With the exception of isoprene, most species show higher average concentration in winter and lower in summer with the fall values being the intermediate, which presumably

  7. Urban-Small Building Complex Environment: W07US Stability Analysis, Volume AS-3 (Urban Versus Rural Diurnal Stability Cycles)

    DTIC Science & Technology

    2009-09-01

    investigation is to develop an empirical Neutral Event Forecast Model for the urban environment. This quest stems from the success of a Neutral Event...Forecast Model which was created for an operational high energy laser test facility located in a rural desert environment. Neutral events represent...diurnal stability cycle anchors known as the “ neutral events.” 15. SUBJECT TERMS Urban, stability cycles, stable urban conditions, neutral events

  8. Diurnal cycles control the fate of contaminants at an Andean river confluence impacted by legacy mining

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Guerra, P. A.; Simonson, K.; Bonilla, C.; Pizarro, G. E.; Escauriaza, C. R.; González, C.

    2014-12-01

    The importance of hydrologic-geochemical interactions in arid environments is a controlling factor in quality and quantity of water available for human consumption and agriculture. When acid drainage affects these watersheds, water quality is gravely degraded. Despite its effect on watersheds, the relationship between time changes in hydrological variables and water quality in arid regions has not been studied thoroughly. Temporal variations in acid drainage can control when the transport of toxic elements is increased. We performed field work at the Azufre River (pH 2, E.C~10.9 mS/cm) and Caracarani River (pH 8.7, E.C~1.2 mS/cm) confluence, located in the Northern Chilean Altiplano (at 4000 m asl). We registered stream flowrates (total flowrate~430 L/s), temperature and electric conductivity (E.C) hourly using in-stream data loggers during one year. We also measured turbidity and pH during one field survey at different distances from the junction, as a proxy of the formation of iron-aluminum particles that cycle trace elements in these environments. We found turbidity-pH diurnal cycles were caused by upstream hourly changes in upstream flowrate: when the Caracarani River flowrate reached its daily peak, particle formation occurred, while the dissolution of particles occurred when the Azufre River reached its maximum value. This last process occurred due to upstream freeze-thaw cycles. This study shows how the dynamics of natural confluences determines chemical transport. The formation of particles enriched in toxic elements can promote settling as a natural attenuation process, while their dissolution will produce their release and transport long distances downstream. It is important to consider time as an important variable in water quality monitoring and in water management infrastructure where pulses of contamination can have potentially negative effects in its use. Acknowledgements: Funding was provided by "Proyecto Fondecyt 1130936" and "CONICYT

  9. New Seasonal Shift in In-Stream Diurnal Nitrate Cycles Identified by Mining High-Frequency Data

    PubMed Central

    2016-01-01

    The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations. PMID:27073838

  10. New Seasonal Shift in In-Stream Diurnal Nitrate Cycles Identified by Mining High-Frequency Data.

    PubMed

    Aubert, Alice H; Breuer, Lutz

    2016-01-01

    The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations.

  11. SOLAR CYCLE DEPENDENCE OF THE DIURNAL ANISOTROPY OF 0.6 TeV COSMIC-RAY INTENSITY OBSERVED WITH THE MATSUSHIRO UNDERGROUND MUON DETECTOR

    SciTech Connect

    Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S.; Takita, M.; Kota, J.

    2010-04-01

    We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at {approx}15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% +- 0.002%) and minimum ({approx}0.008% +- 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% +- 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the 'active' solar activity epoch is about twice the amplitude in the 'quiet' solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the 'single-band valley depth' (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro

  12. Applying ECOSTRESS Diurnal Cycle Land Surface Temperature and Evapotranspiration to Agricultural Soil and Water Management

    NASA Astrophysics Data System (ADS)

    Pestana, S. J.; Halverson, G. H.; Barker, M.; Cooley, S.

    2016-12-01

    Increased demand for agricultural products and limited water supplies in Guanacaste, Costa Rica have encouraged the improvement of water management practices to increase resource use efficiency. Remotely sensed evapotranspiration (ET) data can contribute by providing insights into variables like crop health and water loss, as well as better inform the use of various irrigation techniques. EARTH University currently collects data in the region that are limited to costly and time-intensive in situ observations and will greatly benefit from the expanded spatial and temporal resolution of remote sensing measurements from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In this project, Moderate Resolution Imaging Spectroradiometer (MODIS) Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) data, with a resolution of 5 km per pixel, was used to demonstrate to our partners at EARTH University the application of remotely sensed ET measurements. An experimental design was developed to provide a method of applying future ECOSTRESS data, at the higher resolution of 70 m per pixel, to research in managing and implementing sustainable farm practices. Our investigation of the diurnal cycle of land surface temperature, net radiation, and evapotranspiration will advance the model science for ECOSTRESS, which will be launched in 2018 and installed on the International Space Station.

  13. Examining diurnal cycle influences on convective intensity in idealized cloud resolving model simulations

    NASA Astrophysics Data System (ADS)

    Hansen, Z.; Back, L. E.

    2016-12-01

    There is a large observed contrast in the lightning flash rate per unit precipitation between land and ocean in the tropics. Higher lightning flash rates are associated with faster updraft velocities, and thus greater lightning flash rate per unit precipitation is associated with faster updrafts per unit precipitation, a clear measure of convective intensity. As it is the land regions exhibiting the greater lightning flash rate per unit precipitation, there is an expectation that tropical land areas exhibit greater convective intensity than tropical oceans. Using a cloud resolving model (CRM) we tested whether the application of a diurnal cycle in sea surface temperature (SST) over a portion of the domain would result in faster updrafts per unit precipitation over that domain. We applied a Bernoulli sampling technique to the area of oscillating SST to give it the same effective mean precipitation as the fixed SST area. Once the mean precipitation values were equal, it was found that there were no differences in high intensity updraft velocity that could be associated with lightning flash rate per unit precipitation variations in the real world.

  14. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    SciTech Connect

    Webster, P.J.; Clayson, C.A.; Curry, J.A.

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  15. The diurnal water cycle at Curiosity: Role of exchange with the regolith

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu; Harri, Ari-Matti; Kemppinen, Osku

    2016-02-01

    Hourly temperatures T, relative humidities RH and mass mixing ratios of moisture q at 1.6 m derived from the Mars Science Laboratory REMS-H and REMS-P measurements are shown for MSL sols 15-17 (Curiosity at Bradbury) and 80-82 (Curiosity at Rocknest). They are compared to column model simulations with and without adsorption to porous regolith. The observed mixing ratio is small at night (10-30 ppmm). It increases rapidly to 50-80 ppmm after sunrise and decreases slowly during the evening. The model gives a good account of the observed T and, with adsorption and realistic precipitable water content (PWC), reproduces the diurnal cycles of both RH and q relatively well. The suggested regolith thermal inertia is 300 tiu and porosity 35-40% for both sites. According to the simulations moisture is adsorbed and diffused to the cooling regolith in the evening from the lowest very stable air layer. It is then desorbed in the morning from the rapidly warming regolith and mixed throughout the growing convective boundary layer. Estimates of PWC based on night-time near-surface moistures (assuming an even distribution with height) might therefore be on the low side in areas of porous adsorbing regolith.

  16. Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case

    NASA Astrophysics Data System (ADS)

    Duynkerke, G. Peter; de Roode, R. Stephan; van Zanten Margreet, C.; Calvo, Javier; Cuxart, Joan; Cheinet, Sylvain; Chlond, Andreas; Grenier, Hervé; Jonker, Piet J.; Köhler, Martin; Lenderink, Geert; Lewellen, David; Lappen, Cara-Lyn; Lock, P. Adrian; Moeng, Chin-Hoh; Müller, Frank; Olmeda, Dolores; Piriou, Jean-Marcel; Sánchez, Enrique; Sednev, Igor

    2004-10-01

    As part of the European Project on Cloud Systems in Climate Models, the diurnal cycle of stratocumulus has been simulated with Large-Eddy Simulation (LES) models and Single Column Models (SCMs). The models were initialized and compared with observations collected in marine stratocumulus in July 1987 during the First International Satellite Cloud Climatology Project Regional Experiment. The results of the six LES models are found to be in a fair agreement with the observations. They all capture the distinct diurnal variation in the cloud liquid-water path, the turbulence profiles and clearly show a decoupled boundary layer during daytime and a vertically well-mixed boundary layer during the night. Entrainment of relatively dry and warm air from just above the inversion into the boundary layer is the major process modifying the thermodynamic structure of the boundary layer during the night. The differences that arise in the liquid-water path evolution can therefore be attributed mainly to differences in the entrainment rate. The mean entrainment rates computed from the LES model results are 0.58 ± 0.08 cm s-1 and 0.36 ± 0.03 cm s-1 for the night-time and daytime periods, respectively. If the horizontal domain size in a LES model is enlarged, mesoscale fluctuations develop. This leads to a broader liquid-water path distribution and a reduction of the cloud albedo. To assess the quality of the representation of stratocumulus in general-circulation models, results from ten SCMs are compared with observations and LES results. The SCM latent and sensible heat fluxes at the surface agree fairly well with the LES results. Many of the SCMs predict a liquid-water path which is much too low, a cloud cover smaller than unity, and cloud tops that are lower than the observations and the LES results. This results in a much larger amount of downwelling short-wave radiation absorbed at the sea surface. Improvement of entrainment parametrizations is needed for a better

  17. Inter-annual Variability of Biomass Burning Aerosol Optical Depth in Southern Amazonia, and the Impact of These Aerosols on the Diurnal Cycle of Solar Flux Reduction

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Schafer, J. S.; Artaxo, P.; Yamasoe, M. A.; Procopio, A. S.; Prins, E. M.; Feltz, J. M.; Smirnov, A.; Dubovik, O.; Reid, J. S.

    2002-12-01

    The inter-annual variability of the magnitude of biomass burning in southern Amazonia has been relatively large over the last decade. The extent of the burning in the latter half of a given dry season (July-October) depends largely on the rainfall amount and timing, with drought years exhibiting many more fires and smoke than average. Additionally, new regulations aimed at controlling burning may also affect inter-annual variability. We present measurements of aerosol optical depth (AOD) from biomass burning smoke as measured by AERONET sites in Rondonia and Mato Grosso from 1993-2002. These AOD measurements are shown to follow similar inter-annual variability as the fire counts determined by the multi-spectral radiance measurements obtained with GOES-8. However, the AOD at these sites exhibit relatively little diurnal variation despite a very large diurnal cycle in satellite detected fire counts. In order to quantify the changes in the diurnal cycle of solar flux reduction as a result of aerosol attenuation at the peak of the burning season, we model the diurnal cycle of total shortwave (SW; 300-4000 nm), photosynthetically active radiation (PAR; 400-700 nm), and Ultraviolet- A (UVA; 320-400 nm) fluxes in mid-September using the AERONET monthly average AOD measurements (AOD(550 nm) = 1.11). These average diurnal cycle flux reductions show significant temporal delays in the morning for equivalent flux levels in all three spectral bands, of ~50 min to 2 hr 15 min at mid-morning (midpoint between sunrise and solar noon). The largest time delays in flux occur in the UVA band and the smallest in the total SW broadband due to a rapid decrease in AOD as wavelength increases for the accumulation mode smoke aerosols. The time delays in solar flux have implications for possible delay of the onset of cumulus convection, the shortening of the photo-period when plants photosynthesize, and reduced time interval for UVA fluxes which may have implications for photochemical

  18. Diurnal variation in the effect of the weekend in global seismic activity

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu. Ya.; Chertoprud, V. E.; Ivanov-Kholodnyi, G. S.

    2016-09-01

    The influence of the earthquake probability diurnal variation on specific features in the weekend effect in global seismic activity is revealed. The dependence of the global earthquake number on the local time and its possible relation to a quiet solar diurnal variation ( Sq) in the geomagnetic field have been considered in detail. It has been indicated that a stable diurnal effect, which has a maximum near midnight and a minimum near local noon, exists in the global seismicity of the Earth. The diurnal variation amplitude changes insignificantly during days of week and substantially decreases (by a factor of almost 3) on Saturday and Sunday. The weekend effect is not revealed during "local nights." Since the daily effect of a quiet solar diurnal variation ( Sq) should not depend on days of week, we arrive at the conclusion that the diurnal variation in global seismicity evidently contains the anthropogenic activity product. The Sunday effect in the earthquake number decreases over the course of time and is most probably real but weak and not stationary since weekly variations occur against a background (or under the action) of stronger variations, i.e., an increase in the earthquake number and diurnal variations.

  19. On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    Xiang, Tiantian; Vivoni, Enrique R.; Gochis, David J.; Mascaro, Giuseppe

    2017-09-01

    The diurnal cycles of surface energy fluxes are important drivers of atmospheric boundary layer development and convective precipitation, particularly in regions with heterogeneous land surface conditions such as those under the influence of the North American monsoon (NAM). Characterization of diurnal surface fluxes and their controls has not been well constrained due to the paucity of observations in the NAM region. In this study, we evaluate the performance of the uncoupled WRF-Hydro modeling system in its ability to represent soil moisture, turbulent heat fluxes, and surface temperature observations and compare these to operational analyses from other commonly used land surface models (LSMs). After a rigorous model evaluation, we quantify how the diurnal cycles of surface energy fluxes vary during the warm season for the major ecosystems in a regional basin. We find that the diurnal cycle of latent heat flux is more sensitive to ecosystem type than sensible heat flux due to the response of plant transpiration to variations in soil water content. Furthermore, the peak timing of precipitation affects the shape and magnitude of the diurnal cycle of plant transpiration in water-stressed ecosystems, inducing mesoscale heterogeneity in land surface conditions between the major ecosystems within the basin. Comparisons to other LSMs indicate that ecosystem differences in the diurnal cycle of turbulent fluxes are underestimated in these products. While this study shows how land surface heterogeneity affects the simulated diurnal cycle of turbulent fluxes, additional coupled modeling efforts are needed to identify the potential impacts of these spatial differences on convective precipitation.

  20. Phase Locking between Atmospheric Convectively Coupled Equatorial Kelvin Waves and the Diurnal Cycle of Precipitation over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Flatau, M. K.; Baranowski, D. B.; Flatau, P. J.; Matthews, A. J.

    2016-12-01

    Although the importance of the Maritime Continent to the global atmospheric circulation has been long recognized, many researchers have argued that scale separation prevents local processes, such as the local diurnal cycle of precipitation, from directly influencing global scale phenomena such as the variability of atmospheric circulation associated with the equatorial waves. In our study we show that in fact multiscale interactions, which link processes in local and global scales, may play a crucial role for propagation of the CCKWs, which along with the Madden-Julian Oscillation (MJO) are the main eastward propagating component of intraseasonal variability. In our study, we show that not only do CCKWs bring excess amounts of precipitation to the Maritime Continent, but events which are phase locked with the local diurnal cycle of convection have a precipitation signal up to three times larger than average. That means that CCKWs are a primary candidate for extreme precipitation events over the densely populated areas of Indonesia and Malaysia. The complex terrain created by mixture of oceans and lands within the Maritime Continent is unique: the distance between the two main land masses at the equator (islands of Sumatra and Borneo) is approximately the same as the distance travelled by a CCKW in one day. Therefore a CCKW event that is synchronized with a local diurnal cycle over Sumatra is likely to be synchronized over Borneo as well. We find that CCKWs, which are in phase with the local diurnal cycle of precipitation over Sumatra, Borneo and surrounding seas, have a 40% larger chance to successfully cross the Maritime Continent than other CCKWs. That unique feature is a likely a clear example of a multiscale interaction within the region.

  1. Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.

    2006-01-01

    This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols

  2. Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.

    2006-01-01

    This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols

  3. Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model

    NASA Astrophysics Data System (ADS)

    Painemal, David; Xu, Kuan-Man; Palikonda, Rabindra; Minnis, Patrick

    2017-07-01

    The mean diurnal cycle of cloud entrainment rate (we) over the northeast Pacific region is for the first time computed by combining, in a mixed-layer model framework, the hourly composited GOES-15 satellite-based cloud top height (HT) tendency, advection, and large-scale vertical velocity (w) during May to September 2013, with horizontal winds and w taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The tendency term dominates the magnitude and phase of the we diurnal cycle, with a secondary role of w, and a modest advective contribution. The peak and minimum in we occur between 20:00-22:00 LT and 9:00-11:00 LT, respectively, in close agreement with the diurnal cycle of turbulence driven by cloud top longwave cooling. Uncertainties in HT and ECMWF fields are assessed with in situ observations and three meteorological reanalysis data sets. This study provides the basis for constructing nearly global climatologies of we by combining a suite of well-calibrated geostationary satellites.

  4. The Antarctic Krill Euphausia superba Shows Diurnal Cycles of Transcription under Natural Conditions

    PubMed Central

    Albiero, Alessandro; Sales, Gabriele; Millino, Caterina; Mazzotta, Gabriella M.; Bertolucci, Cristiano; Costa, Rodolfo

    2013-01-01

    Background Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba) has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. Methodology/Principal Findings The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour) rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. Conclusions Our work represents the first characterization of the krill diurnal transcriptome under natural conditions and provides a first

  5. The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions.

    PubMed

    De Pittà, Cristiano; Biscontin, Alberto; Albiero, Alessandro; Sales, Gabriele; Millino, Caterina; Mazzotta, Gabriella M; Bertolucci, Cristiano; Costa, Rodolfo

    2013-01-01

    Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba) has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour) rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. Our work represents the first characterization of the krill diurnal transcriptome under natural conditions and provides a first insight into the genetic regulation of physiological

  6. Interannual, seasonal and diurnal Mars surface environmental cycles observed from Viking to Curiosity

    NASA Astrophysics Data System (ADS)

    Martinez, German; Vicente-Retortillo, Álvaro; Kemppinen, Osku; Fischer, Erik; Fairen, Alberto G.; Guzewich, Scott David; Haberle, Robert; Lemmon, Mark T.; Newman, Claire E.; Renno, Nilton O.; Richardson, Mark I.; Smith, Michael D.; De la Torre, Manuel; Vasavada, Ashwin R.

    2016-10-01

    We analyze in-situ environmental data from the Viking landers to the Curiosity rover to estimate atmospheric pressure, near-surface air and ground temperature, relative humidity, wind speed and dust opacity with the highest confidence possible. We study the interannual, seasonal and diurnal variability of these quantities at the various landing sites over a span of more than twenty Martian years to characterize the climate on Mars and its variability. Additionally, we characterize the radiative environment at the various landing sites by estimating the daily UV irradiation (also called insolation and defined as the total amount of solar UV energy received on flat surface during one sol) and by analyzing its interannual and seasonal variability.In this study we use measurements conducted by the Viking Meteorology Instrument System (VMIS) and Viking lander camera onboard the Viking landers (VL); the Atmospheric Structure Instrument/Meteorology (ASIMET) package and the Imager for Mars Pathfinder (IMP) onboard the Mars Pathfinder (MPF) lander; the Miniature Thermal Emission Spectrometer (Mini-TES) and Pancam instruments onboard the Mars Exploration Rovers (MER); the Meteorological Station (MET), Thermal Electrical Conductivity Probe (TECP) and Phoenix Surface Stereo Imager (SSI) onboard the Phoenix (PHX) lander; and the Rover Environmental Monitoring Station (REMS) and Mastcam instrument onboard the Mars Science Laboratory (MSL) rover.A thorough analysis of in-situ environmental data from past and present missions is important to aid in the selection of the Mars 2020 landing site. We plan to extend our analysis of Mars surface environmental cycles by using upcoming data from the Temperature and Wind sensors (TWINS) instrument onboard the InSight mission and the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard the Mars 2020 mission.

  7. Measuring diurnal cycles of plant transpiration fluxes in the Arctic with an automated clear chamber

    NASA Astrophysics Data System (ADS)

    Cohen, L. R.; Raz Yaseef, N.; Curtis, J. B.; Rahn, T. A.; Young, J. M.; Newman, B. D.

    2013-12-01

    Evapotranspiration is an important greenhouse gas and a major component of the hydrological cycle, but methodological challenges still limit our knowledge of this flux. Measuring evapotranspiration is even more difficult when aiming to partition plant transpiration and soil evaporation. Information on this process for arctic systems is very limited. In order to decrease this gap, our objective was to directly measure plant transpiration in Barrow, Alaska (71.3°N 156.7°W). A commercial system allows measuring carbon soil respiration fluxes with an automated clear chamber connected to an infrared gas-analyzer (Licor 8100), and while it simultaneously measures water concentrations, it is not calibrated to measure vapor fluxes. We calibrated the clear chamber against a previously established method based on a Licor 6400 soil chamber, and we developed a code to calculate fluxes. We performed laboratory comparisons in New Mexico and field comparisons in the Arctic, suggesting that this is a valid tool for a large range of climates. In the field we found a strong correlation between the two instruments with R2 of 0.79. Even with 24 hours of daylight in the Arctic, the system captures a clear diurnal transpiration flux, peaking at 0.9 mmol m-2 s-1 and showing no flux at the lowest points. This new method should be a powerful approach for long term measurements of specific vegetation types or surface features. Such Data can also be used to help understand controls on larger scale eddy covariance tower measurements of evapotranspiration.

  8. Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize1[OA

    PubMed Central

    Yandeau-Nelson, Marna D.; Laurens, Lieve; Shi, Zi; Xia, Huan; Smith, Alison M.; Guiltinan, Mark J.

    2011-01-01

    Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes. PMID:21508184

  9. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize.

    PubMed

    Yandeau-Nelson, Marna D; Laurens, Lieve; Shi, Zi; Xia, Huan; Smith, Alison M; Guiltinan, Mark J

    2011-06-01

    Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes.

  10. (abstract) Variations in Polarimetric Backscatter of Saline Ice Grown Under Diurnal Thermal Cycling Condition

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Ding, K. H.

    1995-01-01

    An experiment was carried out in January 1994 at the Geophysical Research Facility in the Cold Regions Research and Engineering Laboratory. To investigate effects on polarimetric scattering signatures of sea ice growth under diurnal temperature variations, an ice sheet was grown for 2.5 days for the thickness of 10 cm and a polarimetric radar operating at C-band was used to obtain backscattering data in conjunction with ice-characterization measurements. The ice sheet was grown in the late morning of January 19, 1994. The initial growth rate was slow due to high insolation and temperature. As the air temperature dropped during the night, the growth rate increased significantly. The air temperature changed drastically from about -10(deg)C to -35(deg)C between day and night. The temperature cycle was repeated during the next day and the growth rate varied in the same manner. The surface of the ice was partially covered by frost flowers and the areal coverage increased as the ice became thicker. Throughout the ice growth duration of 2.5 days, polarimetric backscatter data were collected at roughly every centimeter of ice growth. For each set of radar measurements of saline ice, a set of calibration measurements was carried out with trihedrial corner reflectors and a metallic sphere. Measured polarimetric backscattering coefficients of the ice sheet reveal a strong correlation between radar data and temperature variations. As the temperature increased (decreased), the backscatter increased (decreased) correspondingly. From the ice-characterization data, temperatures of the air, at the ice-air interface, and in the ice layer had the same variation trend. Another interesting experimental observation is that the salinity measured as a function of ice depth from a sample of 10-cm thich ice indicated that the salinity variations had a similar cycle as the temperature; i.e., the salinity profile recorded the history of the temperature variations. Characterization data of the

  11. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2017-09-01

    Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface-atmosphere system to maintain turbulent fluxes over day and night, while the land surface-atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface-atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface-atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  12. Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Québec, Canada.

    PubMed

    Dommergue, Aurélien; Ferrari, Christophe P; Poissant, Laurier; Gauchard, Pierre-Alexis; Boutron, Claude F

    2003-08-01

    Mercury is a globally dispersed and toxic pollutant that can be transported far from its emission sources. In polar and subpolar regions, recent research activities have demonstrated its ability to be converted and deposited rapidly onto snow surfaces during the so-known Mercury Depletion Events (MDEs). The fate of mercury once deposited onto snow surfaces is still unclear: a part could be re-emitted to the atmosphere, the other part could contaminate water systems at the snowmelt. Its capacity to transform to more toxic form and to bioaccumulate in the food chain has consequently made mercury a threat for Arctic ecosystems. The snowpack is a medium that greatly interacts with a variety of atmospheric gases. Its role in the understanding of the fate of deposited mercury is crucial though it is poorly understood. In April 2002, we studied an environmental component of mercury, which is interstitial gaseous mercury (IGM) present in the air of the snowpack at Kuujjuarapik/Whapmagoostui (55 degrees N, 77 degrees W), Canada on the east shore of the Hudson Bay. We report here for the first time continuous IGM measurements at various depths inside a seasonal snowpack. IGM concentrations exhibit a well-marked diurnal cycle with uninterrupted events of Hg0 depletion and production within the snowpack. A possible explanation of Hg0 depletion within the snowpack may be Hg0 oxidation processes. Additionally, we assume that the notable production of Hg0 during the daytime may be the results of photoreduction and photoinitiated reduction of Hg(II) complexes. These new observations show that the snowpack plays undoubtedly a role in the global mercury cycle.

  13. Diurnal cycle of precipitation over the British Isles in a 0.44° WRF multiphysics regional climate ensemble over the period 1990-1995

    NASA Astrophysics Data System (ADS)

    Mooney, P. A.; Mulligan, F. J.; Broderick, C.

    2016-11-01

    The diurnal cycle of precipitation is an important and fundamental cycle in Earth's climate system, yet many aspects of this cycle remain poorly understood. As a result climate models have struggled to accurately simulate the timing of the peak and the amplitude of the cycle. This has led to a large number of modelling studies on the diurnal cycle of precipitation which have focussed mainly on the influence of grid spacing and/or convective parameterizations. Results from these investigations have shown that, while grid spacing and convective parameterizations are important factors in the diurnal cycle, it cannot be fully explained by these factors and it must also be subject to other factors. In this study, we use the weather research and forecasting (WRF) model to investigate four of these other factors, namely the land surface model (LSM), microphysics, longwave radiation and planetary boundary layer in the case of the diurnal cycle of precipitation over the British Isles. We also compare their impact with the effect of two different convective schemes. We find that all simulations have two main problems: (1) there is a large bias (too much precipitation) in both summer and winter (+19 and +38 % respectively for the ensemble averages), and (2) WRF summer precipitation is dominated by a diurnal (24-h) component ( 28 % of the mean precipitation) whereas the observations show a predominantly semidiurnal (12-h) component with a much smaller amplitude ( 10 % of mean precipitation). The choice of LSM has a large influence on the simulated diurnal cycle in summer with the remaining physics schemes showing very little effect. The magnitude of the LSM effect in summer is as large as 35 % on average and up to 50 % at the peak of the cycle. While neither of the two LSMs examined here capture the harmonic content of the diurnal cycle of precipitation very well, we find that use of the RUC LSM results in better agreement with the observations compared with Noah.

  14. Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico

    NASA Astrophysics Data System (ADS)

    Turrent, Cuauhtémoc; Zaitsev, Oleg

    2014-05-01

    The results of numerical simulations of the troposphere over the Bay of La Paz, calculated for the months of January, April, July and October during the period 2006-2010 with the Weather Research and Forecast (WRF v3.5) regional model, are used to describe the seasonal features of the diurnal cycle of planetary boundary-layer winds. Two distinct near-surface diurnal flows with strong seasonal variability were identified: (1) a nocturnal and matutinal breeze directed from the subtropical Pacific Ocean, over the Baja California peninsula and the Bay of La Paz, into the Gulf of California that is associated with the regional sea-surface temperature difference between those two major water bodies; and (2) a mid to late afternoon onshore sea-breeze related to the peninsula's daily cycle of insolation heating that evolves with counter-clockwise rotation over the Bay of La Paz. The model results reveal the interaction over Baja California of opposing afternoon sea-breeze fronts that originate from the subtropical Pacific Ocean and the Gulf of California, with a convergence line forming over the peaks of the peninsula's topography and the associated presence of a closed vertical circulation cell over the Bay of La Paz and the adjacent Gulf. The collision of the opposing sea-breeze fronts over the narrow peninsula drives convection that is relatively weak due to the reduced heat source and only appears to produce precipitation sporadically. The spatial structure of the sea-breeze fronts over the Bay of La Paz region is complex due to shoreline curvature and nearby topographic features. A comparison of the numerical results with available meteorological near-surface observations indicates that the modelling methodology adequately reproduced the observed features of the seasonal variability of the local planetary boundary-layer diurnal wind cycle and confirms that the low-level atmospheric circulation over the Bay of La Paz is dominated by kinetic energy in the diurnal band

  15. Sampling considerations for designing Aedes aegypti (Diptera:Culicidae) oviposition studies in Iquitos, Peru: substrate preference, diurnal periodicity, and gonotrophic cycle length.

    PubMed

    Wong, Jacklyn; Astete, Helvio; Morrison, Amy C; Scott, Thomas W

    2011-01-01

    When devising methods to sample Aedes aegypti (L.) eggs from naturally-occurring containers to investigate selective oviposition, failure to take into account certain aspects of Ae. aegypti behavior can bias study inferences. In Iquitos, Peru, we tested three assumptions related to designing Ae. aegypti oviposition field studies, as follows: 1) lining containers with paper as an oviposition substrate does not affect oviposition; 2) diurnal egg-laying activity peaks in the late afternoon or early evening, and there is little oviposition during midday; and 3) the gonotrophic cycle length of wild females averages from 3 to 4 d. When wild females were presented with containers lined and unlined with paper toweling, the presence of paper increased oviposition in plastic and metal containers, but had no effect in cement containers. Recording the number of eggs laid by Ae. aegypti every 2 h throughout the day delineated a bimodal diurnal oviposition pattern, with a small morning peak, decreased activity during midday, and a predominant peak in the late afternoon and evening from 16:00 to 20:00 h. Daily monitoring of captive individual Fo females revealed that the gonotrophic cycle length was typically 3-4 d for the Iquitos population. These findings will be used to adjust field study design to 1) account for sampling eggs using paper toweling, and 2) determine the time of day and number of days over which to sample Ae. aegypti eggs. We explored how failure to consider these behaviors could potentially bias field assessments of oviposition preferences.

  16. Did Adult Diurnal Activity Influence the Evolution of Wing Morphology in Opoptera Butterflies?

    PubMed

    Penz, C M; Heine, K B

    2016-02-01

    The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.

  17. Comparative morphological analysis of the diurnal rhythms in geomagnetic and seismic activity

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Sidorin, A. Ya.

    2016-12-01

    To verify the hypothesis of the possible influence of geomagnetic variations on seismicity, the structures of the diurnal rhythms of seismicity in Garm research area, Tajikistan, and geomagnetic activity are investigated in detail using the regional index of geomagnetic activity at the Tashkent Astronomical Observatory. We compare (1) the average shape of the diurnal variations and its seasonal changes; (2) temporal changes in special coefficients of the amplitude variations and the diurnal variation stability. It is revealed that the dynamics of the mentioned parameters differ considerably between the geomagnetic and seismic activities. We conclude that the results obtained on the basis of the used data and processing techniques do not confirm the hypothesis of possible influence of weak geomagnetic variations on background seismicity in the Garm region, Tajikistan.

  18. Diurnal opposite variation between angiotensinase activities in photo-neuro-endocrine tissues of rats.

    PubMed

    Domínguez-Vías, Germán; Aretxaga-Maza, Garbiñe; Prieto, Isabel; Luna, Juan de Dios; De Gasparo, Marc; Ramírez-Sánchez, Manuel

    2017-09-14

    Central and peripheral renin-angiotensin systems (RASs) act in a coordinated manner for the physiologic functions regulated by neuroendocrine events. However, whereas the diurnal rhythm of peripheral circulatory and tissue RASs is well known, the circadian behaviour of their components in central photo-neuro-endocrine structures, key elements for the control of circadian rhythms, has been barely studied. In the present study, we analysed the aspartyl- (AspAP) and glutamyl-aminopeptidase (GluAP) (aminopeptidase A) activities, the angiotensinases responsible for the metabolism of Ang I to Ang 2-10 and Ang II to Ang III, respectively, in the retina, anterior hypothalamus and pituitary at different light and dark time-points of a 12:12 h light:dark cycle (7-19 h light), using arylamide derivatives as substrates. The results demonstrated that while retina and pituitary exhibited their highest levels of AspAP activity in the light period and the lowest in the dark one, the contrary occurred in the hypothalamus - the lowest levels were observed in light conditions and the highest in darkness. The outcome for GluAP showed the highest levels in the light period and the lowest in the dark one in the three tissues analysed. In conclusion, changes in angiotensinase activities throughout the daytime may cause changes of their respective substrates and derived peptides and, consequently, in their functions. This observation may have implications for the treatment of hypertension.

  19. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  20. Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs.

    PubMed

    Kronfeld-Schor, N; Shargal, E; Haim, A; Dayan, T; Zisapel, N; Heldmaier, G

    2001-04-01

    Nocturnal Acomys cahirinus and diurnally active A. russatus coexist in hot rocky deserts. Diurnal and nocturnal activity exposes them to different climatic challenges. A doubly-labelled water field study revealed no significant differences in water turnover between the species at all seasons, reflecting the adaptations of A. russatus to water conservation. In summers the energy expenditure of A. russatus tended to be higher than that of A. cahirinus. Energy requirements of A. cahirinus in winter are double than that of A. russatus, and may reflect the cost of thermoregulating during cold nights.

  1. Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations

    NASA Astrophysics Data System (ADS)

    Da Rocha, Rosmeri P.; Morales, Carlos A.; Cuadra, Santiago V.; Ambrizzi, TéRcio

    2009-05-01

    Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5°S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the

  2. Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes

    NASA Technical Reports Server (NTRS)

    Andrioli, V. F.; Fritts, D. C.; Batista, P. P.; Clemesha, B. R.; Janches, Diego

    2013-01-01

    We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.

  3. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    SciTech Connect

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  4. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness.

    PubMed

    Henry, Clémence; Bledsoe, Samuel W; Siekman, Allison; Kollman, Alec; Waters, Brian M; Feil, Regina; Stitt, Mark; Lagrimini, L Mark

    2014-11-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness

    PubMed Central

    Henry, Clémence; Bledsoe, Samuel W.; Siekman, Allison; Kollman, Alec; Waters, Brian M.; Feil, Regina; Stitt, Mark; Lagrimini, L. Mark

    2014-01-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. PMID:25271261

  6. Sensor Measurements and Sediment Incubations Indicate Diurnal Redox Cycling Associate With Arsenic Mobilization at a Bangladeshi Rice Paddy

    NASA Astrophysics Data System (ADS)

    Lin, T.; Lin, C.; Ramanathan, N.; Neumann, R.; Harvey, C.; Jay, J.

    2007-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history; tens of millions of people in the Ganges Delta continue to drink groundwater that is dangerously contaminated with arsenic (As). Rice fields receive large loads of arsenic with irrigation water and provide recharge to the underlying aquifer. It is currently not known whether rice fields are a sink or source of arsenic in the hydrologic system. In the dry season, as As(III)-containing minerals are oxidized, As(V) is released and will adhere to Fe hydr(oxide) minerals. When sediments are inundated with water, reducing conditions will then drive reduction of Fe hydr(oxides) and release of As. We have been intensively studying a field site in Munshiganj, Bangladesh with extremely high levels of arsenic in groundwater (up to 1.2 mg/L). To better understand geochemical and microbial processes leading to As mobilization in surface sediment, we deployed sensors to take temporally dense measurements across our experimental rice paddy. Data collected in both 2006 and 2007 showed trends in geochemical parameters indicating that diurnal, possibly plant-induced, processes may be important. Over a two month period, nitrate concentrations decrease consistently each day as ammonium levels increase, presumably through temperature driven reductive processes. Nitrate concentrations in the subsurface then increase while ammonium levels decrease, possibly due to root oxygen leakage or rapid infiltration of oxygen rich surface water. Using sediment from the rice paddy and artificial irrigation water, laboratory microcosms were constructed to simulate the diurnal cycles observed at the field site. In carbon-ammended treatments, Fe and As cycling can occur on the order of days. Oscillations in redox conditions on diurnal as well as seasonal time scales may be important in the mobilization of arsenic into aquifers. By elucidating As mobilization mechanisms at an experimental rice paddy

  7. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli.

    PubMed

    Cunningham-Bussel, Amy C; Root, James C; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S; Pavony, Michelle; Silverman, Michael E; Goldstein, Martin S; Altemus, Margaret; Cloitre, Marylene; Ledoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David

    2009-06-01

    The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response.

  8. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Martínez, G. M.; Rennó, N. O.

    2016-12-01

    In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability.

  9. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site.

    PubMed

    Fischer, E; Martínez, G M; Rennó, N O

    2016-12-01

    In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability. Key Words: Mars-Ice-Perchlorates-Brine-Water-Raman spectroscopy. Astrobiology 16, 937-948.

  10. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site

    PubMed Central

    Martínez, G.M.; Rennó, N.O.

    2016-01-01

    Abstract In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability. Key Words: Mars—Ice—Perchlorates—Brine—Water—Raman spectroscopy. Astrobiology 16, 937–948. PMID:27912028

  11. Diurnal activities of the brown stink bug (Hemiptera: Pentatomidae) in and near tasseling corn fields

    USDA-ARS?s Scientific Manuscript database

    The demand for effective management of the brown stink bug, Euschistus servus, in corn and other crops has been increasing in recent years. To identify when and where the stink bugs are most likely to occur for targeted insecticide application, diurnal activities of stink bugs in and near the field...

  12. Understanding the diurnal cycle in fluvial dissolved organic carbon - The interplay of in-stream residence time, day length and organic matter turnover

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2015-04-01

    There is increasing interest in characterising the diurnal fluctuation of stream solute concentrations because observed data series derived from spot samples may be highly subjective if such diurnal fluctuations are large. This can therefore lead to large uncertainties, bias or systematic errors in calculation of fluvial solute fluxes, depending upon the particular sampling regime. A simplistic approach would be to assume diurnal fluctuations are constant throughout the water year, but this study proposes diurnal cycles in stream water quality can only be interpreted in the context of stream residence time and changing day length. Three years of hourly dissolved organic carbon (DOC) concentration and flow data from the River Dee catchment (1674 km2) were analysed, and statistical analysis of the entire record shows there is no consistent diurnal cycle in the record. From the 3-year record (1095 days) there were only 96 diurnal cycles could be analysed. Cycles were quantified in terms of their: relative and absolute amplitude; duration; time to maximum concentration; asymmetry; percentile flow and in-stream residence time. The median diurnal cycle showed an amplitude that was 9.2% of the starting concentration; it was not significantly asymmetric; and occurred at the 19th percentile flow. The median DOC removal rate was 0.07 mg C/l/hr with an inter-quartile range of 0.052-0.100 mg C/l/hr. Results were interpreted as controlled by two, separate, zero-order kinetic rate laws, one for the day and one for the night. There was no single diurnal cycle present across the record, rather a number of different cycles controlled by the combination of in-stream residence time and exposure to contrasting light conditions. Over the 3-year period the average in-stream loss of DOC was 32%. The diurnal cycles evident in high resolution DOC data are interpretable, but require contextual information for their influence on in-stream processes to be understood or for them to be utilised.

  13. Space-Time Characteristics of Rainfall Diurnal Variations

    NASA Technical Reports Server (NTRS)

    Yang, Song; Kummerow, Chris; Olson, Bill; Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The space-time features of rainfall diurnal variation of precipitation are systematically investigated by using the Tropical Rainfall Measuring Mission (TRMM) precipitation products retrieved from TRMM microwave imager (TMI), precipitation radar (PR) and TMI/PR combined algorithms. Results demonstrate that diurnal variability of precipitation is obvious over tropical regions. The dominant feature of rainfall diurnal cycle over, ocean is that there is consistent rainfall peak in early morning, while there is a consistent rainfall peak in mid-late afternoon over land. The seasonal variation on intensity of rainfall diurnal cycle is clearly evidenced. Horizontal distributions of rainfall diurnal variations indicate that there is a clearly early-morning peak with a secondary peak in the middle-late afternoon in ocean rainfall at latitudes dominated by large-scale convergence and deep convection. There is also an analogous early-morning peak in land rainfall along with a stronger afternoon peak forced by surface heating. Amplitude analysis shows that the patterns and its evolution of rainfall diurnal cycle are very close to rainfall distribution pattern and its evolution. These results indicate that rainfall diurnal variations are strongly associated with large-scale convective systems and climate weather systems. Phase studies clearly present the regional and seasonal features of rainfall diurnal activities. Further studies on convective and stratiform rainfall show different characteristics of diurnal cycles. Their spatial and temporal variations of convective and stratiform rainfall indicate that mechanisms for rainfall diurnal variations vary with time and space.

  14. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm–2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from

  15. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-01

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning-afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy

  16. Diurnal variation in Wingate test performances: influence of active warm-up.

    PubMed

    Souissi, Nizar; Driss, Tarak; Chamari, Karim; Vandewalle, Henry; Davenne, Damien; Gam, Abdelkader; Fillard, Jean-Robert; Jousselin, Eric

    2010-05-01

    The purpose of the present study was to examine the effects of active warm-up duration on the diurnal fluctuations in anaerobic performances. Twelve physical education students performed a medical stress test (progressive test up to exhaustion) and four Wingate tests (measurement of peak power [P(peak)], mean power [P(mean)], and fatigue index during an all-out 30 s cycling exercise). The tests were performed in separate sessions (minimum interval = 36 h) in a balanced and randomized design at 08:00 and 18:00 h, either after a 5 min (5-AWU) or a 15 min active warm-up (15-AWU). AWU consisted of pedaling at 50% of the power output at the last stage of the stress exhausting test. Rectal temperature was collected throughout the sessions. A two-way ANOVA (warm-up x time of day) revealed a significant interaction for P(peak) (F((1.11)) = 6.48, p < 0.05) and P(mean) (F((1.11)) = 5.84, p < 0.05): the time-of-day effect was significant (p < 0.001) in contrast with the effect of warm-up duration (p > 0.05). P(peak) and P(mean) improved significantly from morning to afternoon after both 5-AWU and 15-AWU, but the effect of warm-up duration was significant in the morning only. Indeed, the values of P(peak) or P(mean) were the same after both warm-up protocols in the afternoon. For rectal temperature, there was no interaction between time-of-day and warm-up duration. Rectal temperature before and after both the warm-up protocols was higher in the afternoon, and the effect of warm-up duration on temperature was similar at 08:00 and 18:00 h. In conclusion, the interpretation of the results of the anaerobic performance tests should take into account time-of-day and warm-up procedures. Longer warm-up protocols are recommended in the morning to minimize the diurnal fluctuations of anaerobic performances.

  17. Why is there a diurnal cycle of precipitation over the oceans?

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1989-01-01

    Using the Colorado State University general circulation model, simulated diurnal and semidiurnal variability of precipitation has been analyzed. At least four mechanisms have been proposed to account for the observed daily oscillations of precipitations over the ocean: direct radiation convection, radiation-dynamics-convection interactions, remote influence of the continents, and atmospheric tidal forces. Results indicate that neither land-sea contrasts nor cloudiness are necessary to produce daily variations of precipitations over the oceans. Clear-sky radiative effects, cloud-radiative effects, and the remote influence of the continents all turn out to play a role.

  18. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    PubMed Central

    2011-01-01

    Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142

  19. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  20. Observations and modeling of the diurnal SST cycle in the North and Baltic Seas

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2013-09-01

    This paper discusses the evaluation of three parameterizations for the diurnal variability of sea surface temperature (SST) during one year, from February 2009 to January 2010 (inclusive), using high resolution, regional atmospheric model outputs as input fields. Comparison of the spatial extent of diurnal warming in the Northern European Seas from the Spinning Enhanced Visible Infrared Imager (SEVIRI) and the models indicates the ability of the models to reproduce the general patterns seen from the observations. Mean absolute biases between the SEVIRI observed peak warming and the modeled results do not exceed 0.25 K, with a maximum standard deviation of 0.76 and a 0.45 correlation. When random noise is added to the models, their ability to reproduce the statistical properties of the SEVIRI observations improves. The correlation between the observed and modeled anomalies and different parameters highlights the importance of wind as a driving field. A positive correlation is found between hourly SEVIRI anomalies and the daily mean diffuse attenuation coefficient Kd(490).

  1. Aerosol dynamics in the equatorial Pacific Marine boundary layer: Microphysics, diurnal cycles and entertainment

    SciTech Connect

    Clarke, A D; Litchy, M; Li, Z

    1996-04-01

    During July-August of 1994 the authors measured the size resolved physiochemical properties of aerosol particles at Christmas Island in the equatorial Pacific. In spite of rapid diurnal conversion of dimethylsulfide (DMS) to sulfur dioxide (SO{sub 2}) the authors found no evidence for new particle production in the marine boundary layer (MBL) and more than 95% of all particles were consistently larger than 0.02{mu}m diameter, indicating an aged aerosol number (size-distribution) was bimodal with peaks near 0.05{mu}m and 0.2{mu}m particle diameter (D{sub p}) and had a cloud-processed intermode minimum at about 0.09{mu}m that varied in phase with diurnal changes in ozone concentration. This suggests that the number distribution for condensation nuclei (CN) and cloud condensation (CCN) was maintained by a quasiequilibrium between entrainment (estimated to be 0.6{+-}0.2 cm s{sup {minus}1}) from sources aloft and processes in the MBL. This implies a replenishment timescale for nuclei of about 2 and 4 days for this region. The stability of the distribution and the 0.09{mu}m cloud processed minima suggests trade winds cumulus supersaturations near 0.35% and updrafts near 1 m s{sup {minus}1}. 17 refs., 4 fig., 1 tab.

  2. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape

    PubMed Central

    Moreira-Arce, Dario; Vergara, Pablo M.; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants and

  3. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    PubMed

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  4. Diurnal changes in the synthesis of the neurosteroid 7alpha-hydroxypregnenolone stimulating locomotor activity in newts.

    PubMed

    Koyama, Teppei; Haraguchi, Shogo; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2009-04-01

    We recently identified 7alpha-hydroxypregnenolone as a novel amphibian neurosteroid stimulating locomotor activity in newts. Because male newts show marked diurnal changes in locomotor activity, we hypothesized that 7alpha-hydroxypregnenolone may be a key factor for the induction of diurnal changes in locomotor activity in male newts. In this study, we found diurnal changes in 7alpha-hydroxypregnenolone synthesis in the brain of male newts, which paralleled locomotor activity. Interestingly, the production of 7alpha-hydroxypregnenolone in the male newt brain increased during the dark phase when locomotor activity of males was high.

  5. Diurnal Patterns of Physical Activity in Relation to Activity Induced Energy Expenditure in 52 to 83 Years-Old Adults

    PubMed Central

    Bonomi, Alberto G.; Westerterp, Klaas R.

    2016-01-01

    Background Ageing is associated with a declining physical activity level (PAL) and changes in the diurnal activity pattern. Changes in the activity pattern might help explaining the age-associated reduction of physical activity. Objective The aims were to investigate diurnal activity patterns within groups of older adults classified by PAL, to investigate diurnal activity patterns within age-groups and to investigate the association between the drop in activity and aerobic fitness. Methods Thirty-one healthy subjects aged between 52 and 83y were recruited for the study. Subjects were divided in sedentary (PAL<1.75), moderately active (1.75active (1.90Diurnal activity patterns were based on activity counts from an accelerometer during wake time and then divided in four quarters of equal time length. Additionally, aerobic fitness was measured as maximal oxygen uptake. Results Subjects had a PAL between 1.43 and 2.34 and an aerobic fitness between 18 and 49 ml/kg/min. Overall, activity patterns showed a peak in the first quarter of wake time (around 10AM) followed by a gradual decline of, on average, 5% per hour. Active subjects reached their peak in the first quarter and remained active until after the third quarter (11% drop each quarter on average). Moderately active and sedentary subjects reached their peak during the second quarter with a decrease during the third quarter (respectively 29% and 17% drop each quarter on average). The drop in physical activity between the first and the second half of the wake time was negatively associated with aerobic fitness (r = -0.39, p<0.05). Conclusion Active older adults maintained a larger amount of body movement for longer during their wake time. Diurnal physical activity declined more in adults ≥66 years old with lower aerobic fitness. PMID:27936145

  6. High-resolution modelling of the potential impact of land-surface conditions on regional climate over the Southeast Asia monsoon region associated with the diurnal rainfall cycle

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi G.; Yoshikane, Takao; Hara, Masayuki; Takata, Kumiko; Yasunari, Tetsuzo

    2010-05-01

    This study examined the impact of changes in land-surface conditions on regional climate over Indochina using a high-resolution regional climate model. Anthropogenically-induced land-surface changes are ongoing in this part of tropical Southeast Asia. Because a previous study suggested that deforestation in this area affected September precipitation, we chose September as the study period. We performed a control simulation (CTL) driven by reanalysis data combined with current land use and predicted soil-moisture data. The CTL reproduced the spatial distribution of total precipitation well. In addition, it also simulated a distinct diurnal cycle of precipitation that was previously reported in observational studies. Two sensitivity experiments, assuming wetter and drier land-surface conditions over the Khorat Plateau (northeast Thailand) compared with the current land-surface condition, were conducted and examined the impact of land-surface changes on precipitation. The results indicated that drier land-surface conditions increased precipitation over the disturbed region. A pronounced increase in precipitation was found only during nighttime, which coincided with the peak in the climatological diurnal precipitation cycle. Climatologically, the diurnal peak in precipitation occurs from evening to early morning over the Khorat Plateau. Drier conditions intensified the diurnal variation of precipitable water associated with the thermally-induced local circulation responsible for a horizontal gradient of near-surface temperature. The effects of land-use and land-cover changes in the tropics are shown to be strongly related to the diurnal precipitation cycle.

  7. Alcohol Usage and Abrupt Cessation Modulate Diurnal Activity

    PubMed Central

    Norrell, Stacy; Reyes-Vasquez, Cruz; Burau, Keith; Dafny, Nachum

    2010-01-01

    Alcohol has many effects throughout the body. The effect on circadian rhythms and the correlation of these effects to withdrawal effects of alcohol present interesting findings. By measuring 3 planes of activity of female Sprague-Dawley rats during alcohol usage and continuing study through the first two days following withdrawal of alcohol allow for the observation of a drastic modulation of the circadian pattern of activity. PMID:20615456

  8. Sampling Considerations for Designing Aedes aegypti (Diptera: Culicidae) Oviposition Studies in Iquitos, Peru: Substrate Preference, Diurnal Periodicity, and Gonotrophic Cycle Length

    PubMed Central

    WONG, JACKLYN; ASTETE, HELVIO; MORRISON, AMY C.; SCOTT, THOMAS W.

    2011-01-01

    When devising methods to sample Aedes aegypti (L.) eggs from naturally-occurring containers to investigate selective oviposition, failure to take into account certain aspects of Ae. aegypti behavior can bias study inferences. In Iquitos, Peru, we tested three assumptions related to designing Ae. aegypti oviposition field studies, as follows: 1) lining containers with paper as an oviposition substrate does not affect oviposition; 2) diurnal egg-laying activity peaks in the late afternoon or early evening, and there is little oviposition during midday; and 3) the gonotrophic cycle length of wild females averages from 3 to 4 d. When wild females were presented with containers lined and unlined with paper toweling, the presence of paper increased oviposition in plastic and metal containers, but had no effect in cement containers. Recording the number of eggs laid by Ae. aegypti every 2 h throughout the day delineated a bimodal diurnal oviposition pattern, with a small morning peak, decreased activity during midday, and a predominant peak in the late afternoon and evening from 16:00 to 20:00 h. Daily monitoring of captive individual F0 females revealed that the gonotrophic cycle length was typically 3– 4 d for the Iquitos population. These findings will be used to adjust field study design to 1) account for sampling eggs using paper toweling, and 2) determine the time of day and number of days over which to sample Ae. aegypti eggs. We explored how failure to consider these behaviors could potentially bias field assessments of oviposition preferences. PMID:21337947

  9. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models

    NASA Astrophysics Data System (ADS)

    Guichard, F.; Petch, J. C.; Redelsperger, J. L.; Bechtold, P.; Chaboureau, J. P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C. G.; Köhler, M.; Piriou, J. M.; Tailleux, R.; Tomasini, M.

    2004-10-01

    An idealized case-study has been designed to investigate the modelling of the diurnal cycle of deep precipitating convection over land. A simulation of this case was performed by seven single-column models (SCMs) and three cloud-resolving models (CRMs). Within this framework, a quick onset of convective rainfall is found in most SCMs, consistent with the results from general-circulation models. In contrast, CRMs do not predict rainfall before noon. A joint analysis of the results provided by both types of model indicates that convection occurs too early in most SCMs, due to crude triggering criteria and quick onsets of convective precipitation. In the CRMs, the first clouds appear before noon, but surface rainfall is delayed by a few hours to several hours. This intermediate stage, missing in all SCMs except for one, is characterized by a gradual moistening of the free troposphere and an increase of cloud-top height. Later on, convective downdraughts efficiently cool and dry the boundary layer (BL) in the CRMs. This feature is also absent in most SCMs, which tend to adjust towards more unstable states, with moister (and often more cloudy) low levels and a drier free atmosphere. This common behaviour of most SCMs with respect to deep moist convective processes occurs even though each SCM simulates a different diurnal cycle of the BL and atmospheric stability. The scatter among the SCMs results from the wide variety of representations of BL turbulence and moist convection in these models. Greater consistency is found among the CRMs, despite some differences in their representation of the daytime BL growth, which are linked to their parametrizations of BL turbulence and/or resolution.

  10. The Impact of Planetary-Scale Thermal Forcing and Small-Scale Topography on the Diurnal Cycle of Martian Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wilson, R. J.; Murphy, J. R.

    2015-12-01

    The ongoing acquisition of high-precision surface pressure data in Gale crater by the MSL meteorology package motivates our investigation of how to interpret the observed diurnal variations in surface pressure in terms of seasonal changes in planetary-scale thermal forcing. We utilize a very high resolution Mars global circulation model (15 and 7.5 km resolution) that simulates diurnal variabilty at scales ranging from the crater scale to the planetary scale to address the issue of distinguishing the pressure signature of small-scale topographically-driven circulations from the global tide field. We define the latter as that resulting from a resynthesis of surface pressure using a compact set of tide modes derived from a space-time analysis of suitably normalized simulated surface pressure. This field includes the migrating tides, resonantly enhanced Kelvin waves and a small set of additional nonmigrating tides. The resulting residual pressure field is found to be highly localized and clearly influenced by topography. In particular, there are enhancements in the diurnal period tide amplitude of ~ 8-15 Pa in the majority of "small" scale craters. The enhancement in Gale crater is very similar to that found in a mesoscale model study by Tyler and Barnes [2013]. The phasing of the peak residual diurnal tide amplitude is invariably 6-8 am local solar time (LST) and is due to nighttime downlope/daytime upslope circulations. Slope wind effects are not simply localized to craters, but impact larger basin-like regions as well, including Hellas, Argyre, Isidis, and Solis Planum. A notable feature of the MSL pressure record is the seasonally-evolving appearance of sharply peaked features at 0800 and 2000 LST that reflect the presence of four and six hour harmonics. We find that these modes correspond to migrating (sun-synchronous) tides and the observed seasonal cycle can be well matched by models with suitably evolving radiative forcing by aerosols. In short, these tide

  11. Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46° N

    NASA Astrophysics Data System (ADS)

    Franco, Bruno; Marais, Eloise A.; Bovy, Benoît; Bader, Whitney; Lejeune, Bernard; Roland, Ginette; Servais, Christian; Mahieu, Emmanuel

    2016-03-01

    Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term variability superimposed on seasonal and inter-annual variations that should be accounted for when comparing ground-based observations to, e.g., model results. In this study, we derive a multi-decadal time series (January 1988-June 2015) of HCHO total columns from ground-based high-resolution Fourier transform infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580 m a. s. l. ), allowing for the characterization of the mid-latitudinal atmosphere for background conditions. First we investigate the HCHO diurnal variation, peaking around noontime and mainly driven by the intra-day insolation modulation and methane (CH4) oxidation. We also characterize quantitatively the diurnal cycles by adjusting a parametric model to the observations, which links the daytime to the HCHO columns according to the monthly intra-day regimes. It is then employed to scale all the individual FTIR measurements on a given daytime in order to remove the effect of the intra-day modulation for improving the trend determination and the comparison with HCHO columns simulated by the state-of-the-art GEOS-Chem v9-02 chemical transport model. Such a parametric model will be useful to scale the Jungfraujoch HCHO columns on satellite overpass times in the framework of future calibration/validation efforts of space-borne sensors. GEOS-Chem sensitivity tests suggest then that the seasonal and inter-annual HCHO column variations above Jungfraujoch are predominantly led by the atmospheric CH4 oxidation, with a maximum contribution of 25 % from the anthropogenic non-methane volatile organic compound precursors during wintertime. Finally, trend analysis of the so-scaled 27-year FTIR time series reveals a long-term evolution of the HCHO columns in the

  12. Repetitive ritalin treatment modulates the diurnal activity pattern of young SD male rats.

    PubMed

    Algahim, Mohame Fodhl; Yang, Pamela Boi; Burau, Keith Dean; Swann, Allan Craig; Dafny, Nachum

    2010-09-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a common behavioral disorder of children and is treated by psychostimulants. Psychostimulant exposure to children at the time of neuronal development can cause behavioral and physiological changes continuing during adulthood. Most of the studies on psychostimulants investigate the acute effects of the drug. The objective of this study was to investigate whether acute or chronic exposure to methylphenidate (MPD), the drug most often used to treat ADHD in children, will modulate the diurnal activity pattern of young rats. Maintaining the diurnal activity pattern is a physiological process that regulates the internal homeostasis. Dose response protocol was used to study the effect of acute and chronic MPD in four young post natal day 40 (P 40) rat groups, (each N=8), as follows: saline (control) group, and 0.6, 2.5, or 10.0 mg/kg i.p. MPD groups, respectively. The experiment was performed over 11 consecutive days of continuous locomotor activity recording using the open field assay. The data evaluation was divided into four phases as follows: acute, induction, washout and expression phases. There was a dose-dependent increase in the average locomotor activity in the first few hours post-injection. Analysis of the diurnal rhythmic pattern of locomotion in the three dose groups compared to control demonstrated that only the 10.0 mg/kg MPD elicited significant changes in diurnal pattern activity in the washout and the expression phase. In addition, this study indicated that chronic MPD treatment elicits dose dependent anticipation and/or withdrawal and behavioral sensitization.

  13. Diurnal locomotor activity and oxidative metabolism of the suprachiasmatic nucleus in two models of hepatic insufficiency.

    PubMed

    Lopez, Laudino; Cimadevilla, Jose M; Aller, Maria A; Arias, Jaime; Nava, M Paz; Arias, Jorge L

    2003-08-15

    Subjects with hepatic cirrhosis develop alterations of several rhythmic behavioural and biochemical patterns. Since most cirrhotic patients combine portal hypertension and hepatic impairment, our work aims to assess the extent to which rhythmical changes can be due to hepatic insufficiency or portal hypertension. This was done using two experimental models in rats, portacaval shunt model (PC) and portal hypertension by a triple stenosing ligature of the portal vein (PH). We assess diurnal locomotor activity and determine the oxidative metabolism of the suprachiasmatic nucleus (SCN) by histochemical determination of cytochrome oxidase (COX). The results show that animals with PC have altered diurnal locomotor rhythm compared to control and PH rats (p<0.001). They also present lower COX activity in the SCN (p<0.05). We conclude that rhythmic alterations are due to hepatic insufficiency and not to portal hypertension.

  14. Diurnal cycles of evaporation using a two-layer hydrological model

    NASA Astrophysics Data System (ADS)

    Lakshmi, Venkataraman; Wood, Eric F.

    1998-01-01

    The objective of this paper is to study the variation of evaporation in time and space. A two-layer model for solving energy and water balance is presented. The vertical soil column between the soil surface and the water table is divided into the root zone and the transmission zone. The variable infiltration capacity (VIC) concept is used to introduce a spatially varied distribution of soil moisture in the root zone layer. The soil moisture is distributed uniformly in space in the transmission zone layer. The model is used to simulate the fluxes for the King's Creek catchment in Manhattan, Kansas for a period between June through October 1987 (for the four intensive field campaigns), during which the first ISLSCP (International Satelite Land Surface Climatology Project) field experiment (FIFE) was conducted. The model is calibrated using the observed data during the first intensive field campaign (IFC) and validated over the next three IFCS. The energy and water balance equations are solved to vield the time series of fluxes which are compared to their observed counterparts. The model predicted diurnal variation of the evaporative fluxes and the variation of the fluxes after rainfall events is compared with the observations. The model computed fluxes match fairly well with the observed fluxes.

  15. Nested atmospheric simulations to study diurnal evaporation cycles over heterogeneous land surfaces

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Talbot, C.; Smith, J. A.

    2009-12-01

    Nested multiscale atmospheric simulations are performed using the Weather Research and Forecast (WRF) model, coupled with NOAH land surface model. The simulations resolve the mesoscale (~ 10km) dynamics in the coarser domains, then downscale these dynamics to the microscale (~ 10m) where the three-dimensional flow and moisture transport are simulated using turbulence-resolving large eddy simulations. We test the model sensitivity to the choice of mesoscale turbulence model and input data source (NAAR and GCIP); while the turbulence closure technique is found to have little effect on the results, the forcing input data results in significant differences that propagate to the smaller scales resolved by the model. The results of the nested Large Eddy Simulations are then analyzed and confronted to observations of a meteorological station measuring evaporation (using eddy covariance) as well surface sensible heat flux, air relative humidity, and soil moisture content. We are specifically investigating two distinctive summer-time study cases: a cloud-free day and four days of surface drying after a day of precipitation. The spatial and diurnal variabilities are analyzed for the lake, and the natural and built surfaces.

  16. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI.

    PubMed

    Jiang, Chunxiang; Yi, Li; Su, Shi; Shi, Caiyun; Long, Xiaojing; Xie, Guoxi; Zhang, Lijuan

    2016-01-01

    It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.

  17. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI

    PubMed Central

    Jiang, Chunxiang; Yi, Li; Su, Shi; Shi, Caiyun; Long, Xiaojing; Xie, Guoxi; Zhang, Lijuan

    2016-01-01

    It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions. PMID:28066207

  18. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-01

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning - afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind

  19. The diurnal cortisol cycle and cognitive performance in the healthy old.

    PubMed

    Evans, P D; Fredhoi, C; Loveday, C; Hucklebridge, F; Aitchison, E; Forte, D; Clow, A

    2011-03-01

    Associations between cognitive performance and cortisol have variously been reported for measures of both cortisol level and change, and for some domains of cognitive functioning more than others. In this study, associations between cortisol secretion measures and cognitive performance were examined in 50 healthy older people (mean age 74 years; 34 F /16 M). Participants provided 16 accurately timed saliva samples over 2 consecutive days to determine diurnal profiles of cortisol secretion. Overall cognitive performance (OCP) was measured as the principal component of a comprehensive battery of cognitive tests. Across a 30 year age range, there was a strong inverse correlation between age and OCP. Age and poorer OCP were also associated with an attenuated cortisol awakening response (CAR), defined as the rise from 0-30 min after awakening, and a subsequent less steep fall in cortisol level over the rest of the day. Partialling analyses, suggested that the correlation between fall in cortisol over the day and OCP was independent of age. Both older age and less cortisol change were particularly related to poorer performance on tests of declarative memory and executive functioning. Our conclusions are that during the short post-awakening period, an exception exists to the generally pertaining association between higher levels of cortisol and poorer cognitive performance. Consequentially dynamic measures reflecting the rise (CAR) and fall from the post-awakening peak may be particularly salient in helping to explain links between cortisol and cognitive performance. Finally our pattern of results across different cognitive tests suggests an association between cortisol and those domains of cognitive functioning which depend crucially on the integrity of the hippocampus and pre-frontal cortex.

  20. Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex

    NASA Astrophysics Data System (ADS)

    Zotter, Peter; El-Haddad, Imad; Zhang, Yanlin; Hayes, Patrick L.; Zhang, Xiaolu; Lin, Ying-Hsuan; Wacker, Lukas; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Zimmermann, Ralf; Surratt, Jason D.; Weber, Rodney; Jimenez, José L.; Szidat, Sönke; Baltensperger, Urs; Prévôt, André S. H.

    2014-06-01

    Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3-4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2-3 μgC m-3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m-3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2-3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.

  1. Role of Cumulus Parameterization Scheme on the Diurnal Cycle of Precipitation over Southeast Asia in RegCM4

    NASA Astrophysics Data System (ADS)

    Lui, Yuk Sing; Tam, Chi Yung Francis; Au-Yeung, Yee Man

    2017-04-01

    This study examines the sensitivity of precipitation simulations over the CORDEX-Southeast Asia (SEA) domain to the cumulus convection scheme used in the Regional Climate Model version 4 (RegCM4). With the ERA-interim reanalysis as lateral boundary conditions, model integrations using the MIT-Emanuel cumulus parameterization scheme, and those using a "mixed convection scheme" (namely with the MIT-Emanuel scheme over ocean and the Grell scheme with Arakawa Schubert-type closure over land), have been carried out for the 2001-2010 period. On the seasonal average, the use of the mixed convection scheme, in comparison to MIT-Emanuel scheme everywhere, improves rainfall simulations over the South China Sea (SCS) by reducing the summer-time wet bias there. On the other hand, runs with the mixed convection scheme under(over)-estimate rainfall over land in Southeastern China (western coastlines of Indochina and the Philippines). For the diurnal variation of precipitation, it is found that the RegCM4 can reproduce well the characteristics of the diurnal cycle (DC) in SEA. Compared with the mixed convection scheme, the MIT-Emanual scheme performs better in reproducing the amplitude and phase of DC over the landside coastal area of Indochina during summer. Empirical Orthogonal Function (EOF) analysis indicates that switching from the MIT-Emanuel scheme to the mixed convection scheme leads to a reduction in importance of the second EOF mode, which corresponds to rainfall peaked in the afternoon (local time). Further analyses reveal that such underestimation is related to increased cloud cover in RegCM4 using the mixed convection scheme; enhanced cloudiness in turn leads to reduced surface air temperature over land and thus reduced convective instability at 1200 and 1500 local time in the model simulations.

  2. Are rainforest owl monkeys cathemeral? Diurnal activity of black-headed owl monkeys, Aotus nigriceps, at Manu Biosphere Reserve, Peru.

    PubMed

    Khimji, Shenaz N; Donati, Giuseppe

    2014-01-01

    Members of the genus Aotus are traditionally considered strictly nocturnal, however, in recent years cathemeral habits have been described in a single species of owl monkey, Aotus azarai, which occur in the highly seasonal habitat of the Argentinean Chaco. This finding raises the question as to whether other species of Aotus exhibit cathemeral activity in less seasonal habitats. In this study, we observed the diurnal activity of one group of A. nigriceps living in the Manu Biosphere Reserve, Peru over 65 days. The data collected indicate that A. nigriceps has only sporadic diurnal bouts of activity. In addition, nocturnal luminosity of the previous night, rainfall, and temperature did not correlate with the minor diurnal activity exhibited. This suggests that for A. nigriceps the potential costs of shifting to diurnality may outweigh its prospective advantages in this rainforest environment.

  3. Diurnal and menstrual cycles in body temperature are regulated differently: a 28-day ambulatory study in healthy women with thermal discomfort of cold extremities and controls.

    PubMed

    Kräuchi, Kurt; Konieczka, Katarzyna; Roescheisen-Weich, Corina; Gompper, Britta; Hauenstein, Daniela; Schoetzau, Andreas; Fraenkl, Stephan; Flammer, Josef

    2014-02-01

    Diurnal cycle variations in body-heat loss and heat production, and their resulting core body temperature (CBT), are relatively well investigated; however, little is known about their variations across the menstrual cycle under ambulatory conditions. The main purpose of this study was to determine whether menstrual cycle variations in distal and proximal skin temperatures exhibit similar patterns to those of diurnal variations, with lower internal heat conductance when CBT is high, i.e. during the luteal phase. Furthermore, we tested these relationships in two groups of women, with and without thermal discomfort of cold extremities (TDCE). In total, 19 healthy eumenorrheic women with regular menstrual cycles (28-32 days), 9 with habitual TDCE (ages 29 ± 1.5 year; BMI 20.1 ± 0.4) and 10 controls without these symptoms (CON: aged 27 ± 0.8 year; BMI 22.7 ± 0.6; p < 0.004 different to TDCE) took part in the study. Twenty-eight days continuous ambulatory skin temperature measurements of distal (mean of hands and feet) and proximal (mean of sternum and infraclavicular regions) skin regions, thighs, and calves were carried out under real-life, ambulatory conditions (i-Buttons® skin probes, sampling rate: 2.5 min). The distal minus proximal skin temperature gradient (DPG) provided a valuable measure for heat redistribution from the core to the shell, and, hence, for internal heat conduction. Additionally, basal body temperature was measured sublingually directly after waking up in bed. Mean diurnal amplitudes in skin temperatures increased from proximal to distal skin regions and the 24-h mean values were inversely related. TDCE compared to CON showed significantly lower hand skin temperatures and DPG during daytime. However, menstrual cycle phase did not modify these diurnal patterns, indicating that menstrual and diurnal cycle variations in skin temperatures reveal additive effects. Most striking was the finding that all measured skin

  4. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality, and performance.

    PubMed

    Paolone, Giovanna; Lee, Theresa M; Sarter, Martin

    2012-08-29

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed-time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here, we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred regardless of whether the SAT was practiced during the light or dark phase or in constant-light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark phase but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed-time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed-time performance and, if practiced during the light phase, contributes to a diurnal activity pattern.

  5. Mg-banding in the non-spinose planktic foraminifer Neogloboquadrina dutertrei caused by diurnal light/dark cycle

    NASA Astrophysics Data System (ADS)

    Fehrenbacher, J. S.; Russell, A. D.; Davis, C. V.; Gagnon, A. C.; Spero, H. J.

    2016-12-01

    The Mg/Ca ratios of planktic foraminifera are commonly used for reconstructing past ocean temperatures. The intrashell Mg/Ca ratios in many species are highly variable, however, and mechanisms for understanding controls on Mg/Ca variability have not been fully explored. Recent laboratory culture experiments demonstrated that the Mg/Ca ratio is driven by a diurnal light/dark cycle in the planktic foraminifer Orbulina universa (Spero et al., 2015). Here we report results from laboratory culture experiments with the non-spinose planktic foraminifer, Neogloboquadrina dutertrei, which confirm that intrashell Mg variability in this species is also caused by a light/dark cycle. We present Laser Ablation-ICP-MS analyses and high-resolution NanoSIMS imaging that show low Mg/Ca ratio calcite forms during the day and high Mg/Ca ratio calcite (Mg bands) forms at night. Our results also clearly demonstrate that N. dutertrei adds a significant amount of calcite, as well as nearly all Mg-bands, after the final chamber forms. Chamber-to-chamber thickness differences are due to differential crust addition, rather than to calcite addition linked to chamber formation. These results have implications for chamber-formation processes in N. dutertrei, and possibly for other non-spinose species. That Mg-variability is driven by the same mechanism in two planktic species with different ecological niches (N. dutertrei and O. universa) suggests that Mg-banding is an intrinsic component of biomineralization in planktic foraminifers.

  6. Diurnal cycle of methane flux from a lake, with high emissions during nighttime caused by convection in the water

    NASA Astrophysics Data System (ADS)

    Podgrajsek, E.; Sahlee, E.; Rutgersson, A.

    2012-12-01

    Many studies have stressed the importance of lakes as major contributors of methane to the atmosphere (e.g. Bastviken et al 2011). However there is still a lack of continuous long time flux measurements over lakes as well as poor understanding of the magnitude of methane fluxes through ebullition and vegetation pathways. In this study the Eddy covariance method has been used for measuring methane fluxes from a lake in central Sweden. At several occasions during the long time measuring campaign (autumn 2010-autumn 2012), a diurnal cycle of methane, with high fluxes during night and low during day, has been captured. Some of the high flux events during nighttime were comparable in magnitude to what previously only been measured from vegetation regions in lakes at these latitudes (e.g. Kankaala et al 2004) and from tropical reservoirs (e.g. Bastviken 2009). During these occasions the difference between air and water temperature (ΔT=Ta-Tw) also displayed an diurnal cycle, with ΔT being positive during day and negative during night with the corresponding change in the sensible heat flux i.e. negative during daytime and positive during nighttime. The high nighttime methane fluxes could be explained with this difference in air and water temperature, which will cool the water surface during night, creating convective mixing in the lake, while during daytime the water will be stably stratified. Temperature measurements made at different vertical levels in the lake water confirm this water stratification. The nighttime convective mixing may act to disturb the bottom water, triggering methane ebullition events and bringing methane rich water up to the surface, which can be emitted to the atmosphere. With this study we want to emphasis the necessity of introducing also complex physical processes when estimating air-water exchange fluxes and also measure methane fluxes not only at few occasions during daytime but also during night and for longer measuring periods. References

  7. Nocturnal activity of a "diurnal" species, the northern chamois, in a predator-free Alpine area.

    PubMed

    Carnevali, Lucilla; Lovari, Sandro; Monaco, Andrea; Mori, Emiliano

    2016-05-01

    The reduction of predation risk is widely considered a major factor affecting the nocturnal activity of mammals. Furthermore, on precipitous mountain terrain, moving in very poor light conditions should be avoided by animals with no special eyesight adaptation to darkness. The Northern chamois Rupicapra rupicapra has been for long considered as a diurnal species, with occasional nocturnal movements. For the first time, we have quantified the nocturnal activity of 21 radiotagged female chamois from the Italian Eastern Alps (Paneveggio-Pale di San Martino Natural Park), continuously monitored for two years from sunset to sunrise, with 24h tracking sessions carried out for six months. Large predators were not present in the study site. Despite their mainly diurnal activity pattern, peaks of nocturnal movements were detected throughout the year. The least proportion of active night fixes occurred in January and in July, while the most were in April and in October. The greater nocturnal activity in the warm months compared to cold periods, was probably due to frozen snow cover reducing nocturnal movements. Movements were mainly concentrated in bright moonlight nights, possibly because of the absence of large predators, but more likely because of increased visibility. Changes in activity levels throughout the year may also reflect changes in energy requirements of Northern chamois.

  8. Evolutionary Maps: A new model for the analysis of conceptual development, with application to the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Navarro, Manuel

    2014-05-01

    This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology (evolutionary maps or emaps), whose implementation on certain domains unfolds the web of itineraries that children may follow in the construction of concrete conceptual knowledge and pinpoints, for each conception, the architecture of the conceptual change that leads to the scientific concept. Remarkably, the generative character of its syntax yields conceptions that, if unknown, amount to predictions that can be tested experimentally. Its application to the diurnal cycle (including the sun's trajectory in the sky) indicates that the model is correct and the methodology works (in some domains). Specifically, said emap predicts a number of exotic trajectories of the sun in the sky that, in the experimental work, were drawn spontaneously both on paper and a dome. Additionally, the application of the emaps theoretical framework in clinical interviews has provided new insight into other cognitive processes. The field of validity of the methodology and its possible applications to science education are discussed.

  9. Near-surface Observations of Temperature and Salinity from Profiling Floats: The Diurnal Cycle, Precipitation, and Mixing

    NASA Astrophysics Data System (ADS)

    Anderson, J. E.; Riser, S.

    2012-12-01

    Observations of near-surface temperature and salinity obtained from Argo-type profiling floats enhanced with an auxiliary Surface Temperature and Salinity (STS) CTD are presented. Using the STS unit, high vertical resolution (<10 cm) data in the near-surface layer were acquired nearly all the way to the sea surface. To date 35 STS floats have been deployed in the Pacific, Atlantic, and Indian Oceans. The vertical structure of temperature and salinity is examined in detail for each of these regions. While observations show the upper 5 meters to be well mixed the majority of the time, significant warming and freshening events are observed. Using NCEP, mooring, and satellite data, the boundary conditions required to produce the upper-ocean response and their relative importance are examined. The effects of heating and precipitation on the stability and mixing of the water column are also determined. Further, the details of mixing events and the diurnal cycle are investigated using the Price-Weller-Pinkel (PWP) one-dimensional mixed layer model. Additionally, the near-surface heat budget is examined.

  10. Effects of a Therapeutic Intervention for Foster Preschoolers on Diurnal Cortisol Activity

    PubMed Central

    Fisher, Philip A.; Stoolmiller, Mike; Gunnar, Megan R.; Burraston, Bert O.

    2007-01-01

    Atypical diurnal patterns of hypothalamic-pituitary-adrenal (HPA) axis activity have been observed samples of individuals following early life adversity. A characteristic pattern arising from disrupted caregiving is a low early morning cortisol level that changes little from morning to evening. Less well understood is the plasticity of the HPA axis in response to subsequent supportive caregiving environments. Monthly early morning and evening cortisol levels were assessed over 12 months in a sample of 3- to 6-year-old foster children enrolled in a randomized trial of a family-based therapeutic intervention (N = 117; intervention condition n = 57; regular foster care condition n = 60), and a community comparison group of same-aged, nonmaltreated children from low-income families (n = 60). Latent growth analyses revealed stable and typical diurnal (morning-to-evening) cortisol activity among community comparison children. Foster children in the intervention condition exhibited cortisol activity that became comparable to the comparison group children over the course of the study. In contrast, children in regular foster care condition exhibited increasingly flattened morning-to-evening cortisol activity over the course of the study. In sum, improvements in caregiving following early adversity appear to have the potential to reverse or prevent disruptions in HPA axis functioning. PMID:17656028

  11. A parameter study of the effect of the diurnal cycle on the atmospheric dynamics of slowly-rotating planets using a simple GCM

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, Fachreddin; Read, Peter L.

    2016-10-01

    The large set of discovered exoplanets provides a multitude of possible planetary characteristics that need to be understood. To analyse and compare the dominant contributions to their atmospheric circulation in the most general way, it is beneficial to study the properties of different circulation regimes with reference to non-dimensional parameter spaces. Our work is concerned with the nonlinear responses to the diurnal heating cycle and their impact on the broader circulation in order to understand the emergence and maintenance of equatorial super-rotation in atmospheres of bodies similar to Venus and Titan.We use a hierarchy of simple GCMs with increasing temporal resolution in thermal forcing (i.e. annually averaged, seasonal cycle, diurnal cycle) using a simple 2-band, semi-gray radiation scheme for a terrestrial-style planetary atmosphere. In our parameter space we vary key parameters such as the thermal Rossby number (planetary rotation rate), the Greenhouse parameter (the ratio between short- and long-wave optical thickness), the thermal inertia of the surface, and atmospheric equilibrium time-scale. The resulting circulations show an increased equatorial super-rotating wind due to the diurnal cycle when the atmosphere is heated at the top. We investigate and quantify the accelerating effect of the thermal tides.

  12. Air quality across a European hotspot: Spatial gradients, seasonality, diurnal cycles and trends in the Veneto region, NE Italy.

    PubMed

    Masiol, Mauro; Squizzato, Stefania; Formenton, Gianni; Harrison, Roy M; Agostinelli, Claudio

    2017-01-15

    The Veneto region (NE Italy) lies in the eastern part of the Po Valley, a European hotspot for air pollution. Data for key air pollutants (CO, NO, NO2, O3, SO2, PM10 and PM2.5) measured over 7years (2008/2014) across 43 sites in Veneto were processed to characterise their spatial and temporal patterns and assess the air quality. Nitrogen oxides, PM and ozone are critical pollutants frequently breaching the EC limit and target values. Intersite analysis demonstrates a widespread pollution across the region and shows that primary pollutants (nitrogen oxides, CO, PM) are significantly higher in cities and over the flat lands due to higher anthropogenic pressures. The spatial variation of air pollutants at rural sites was then mapped to depict the gradient of background pollution: nitrogen oxides are higher in the plain area due to the presence of strong diffuse anthropogenic sources, while ozone increases toward the mountains probably due to the higher levels of biogenic ozone-precursors and low NO emissions which are not sufficient to titrate out the photochemical O3. Data-depth classification analysis revealed a poor categorization among urban, traffic and industrial sites: weather and urban planning factors may cause a general homogeneity of air pollution within cities driving this poor classification. Seasonal and diurnal cycles were investigated: the effect of primary sources in populated areas is evident throughout the region and drives similar patterns for most pollutants: road traffic appears the predominant potential source shaping the daily cycles. Trend analysis of experimental data reveals a general decrease of air pollution across the region, which agrees well with changes assessed by emission inventories. This study provides key information on air quality across NE Italy and highlights future research needs and possible developments of the regional monitoring network. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations

    NASA Astrophysics Data System (ADS)

    Santarpia, Joshua L.; Gasparini, Roberto; Li, Runjun; Collins, Don R.

    2005-02-01

    During August and September of 2002, a relative humidity (RH) scanning tandem differential mobility analyzer system was used to measure the deliquescence/crystallization properties of ambient aerosol populations in southeast Texas. During August, sampling was conducted at a rural site on the Texas A&M campus in College Station, and in September, sampling was conducted at an urban site near the Houston ship channel. Measurements from both sites indicate that there are cyclical changes in the composition of the soluble fraction of the aerosol, which are not strongly linked to the local aerosol source. The observations show that as temperature increases and RH decreases, the hysteresis loop describing the RH dependence of aerosol hygroscopic growth collapses. On the basis of results from other studies that have shown the dominant ions present in aerosols in this region to be ammonium and sulfate, it is proposed that this collapse is due to a decrease in the ammonium to sulfate ratio in the aerosol particles, which coincides with increasing temperature and decreasing RH. This cyclical change in aerosol acidity may influence secondary organic aerosol production and may exaggerate the impact of the aerosol on human health. The compositional changes also result in a daily cycle in crystallization RH that is in phase with that of the ambient RH, which reduces the probability that hygroscopic particles will crystallize in the afternoon when the ambient RH is a minimum.

  14. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas)

    PubMed Central

    Zufferey, V.; Cochard, H.; Ameglio, T.; Spring, J.-L.; Viret, O.

    2011-01-01

    The impact of water deficit on stomatal conductance (gs), petiole hydraulic conductance (Kpetiole), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψx) of –0.95 MPa, and up to 90% loss of conductivity at a Ψx of –1.5 MPa. Kpetiole described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's Kpetiole levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70–90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a ‘hydraulic fuse’, thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in Kpetiole and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%. PMID:21447755

  15. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas).

    PubMed

    Zufferey, V; Cochard, H; Ameglio, T; Spring, J-L; Viret, O

    2011-07-01

    The impact of water deficit on stomatal conductance (g(s)), petiole hydraulic conductance (K(petiole)), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψ(x)) of -0.95 MPa, and up to 90% loss of conductivity at a Ψ(x) of -1.5 MPa. K(petiole) described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's K(petiole) levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70-90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a 'hydraulic fuse', thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in K(petiole) and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%.

  16. Diurnal-activity Patterns of the Small Bee-eater (Merops orientalis) in Southern India

    PubMed Central

    Ali, Abdul Hameed Mohamed Samsoor; Asokan, Subramanian

    2015-01-01

    The diurnal time-activity patterns of the Small Bee-eater (Merops orientalis) were studied between 2005 and 2006 in the Nagapattinam District of Southern India. Bee-eaters were observed to spend an average of 52.5% of their day time scanning, 21.3% feeding, 13.3% flying, 8.8% resting and 4.1% engaging in preening activities. The time spent on scanning varied among seasons in 2005 (p<0.05) and among time blocks (p<0.05), but it did not vary among years or habitats (p>0.05). The feeding patterns differed among years, seasons within years, time blocks and habitats (p<0.05). The flying habits varied among years, time blocks and habitats (p<0.05) but did not change between seasons within years (p>0.05). The resting habits differed among years and habitats (p<0.05) but did not differ among seasons within years or time blocks (p>0.05). Preening differed among years and time blocks (p<0.05) but did not vary among seasons within years or habitats (p>0.05). We conclude that several factors, such as food availability, environmental factors and predation threats, may affect the diurnal activity patterns of Bee-eaters between habitats and seasons; a further study could clarify this conclusion. PMID:26868589

  17. Diurnal-activity Patterns of the Small Bee-eater (Merops orientalis) in Southern India.

    PubMed

    Ali, Abdul Hameed Mohamed Samsoor; Asokan, Subramanian

    2015-04-01

    The diurnal time-activity patterns of the Small Bee-eater (Merops orientalis) were studied between 2005 and 2006 in the Nagapattinam District of Southern India. Bee-eaters were observed to spend an average of 52.5% of their day time scanning, 21.3% feeding, 13.3% flying, 8.8% resting and 4.1% engaging in preening activities. The time spent on scanning varied among seasons in 2005 (p<0.05) and among time blocks (p<0.05), but it did not vary among years or habitats (p>0.05). The feeding patterns differed among years, seasons within years, time blocks and habitats (p<0.05). The flying habits varied among years, time blocks and habitats (p<0.05) but did not change between seasons within years (p>0.05). The resting habits differed among years and habitats (p<0.05) but did not differ among seasons within years or time blocks (p>0.05). Preening differed among years and time blocks (p<0.05) but did not vary among seasons within years or habitats (p>0.05). We conclude that several factors, such as food availability, environmental factors and predation threats, may affect the diurnal activity patterns of Bee-eaters between habitats and seasons; a further study could clarify this conclusion.

  18. Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Chi; Pan, Hua-Lu; Hsu, Huang-Hsiung

    2015-10-01

    In this study, we investigated the impacts of the triggering function of the deep convection scheme on diurnal rainfall variation in the middle latitudes by using the single-column version of the Community Atmospheric Model (SCAM). Using the climate statistics of a long-term ensemble analysis of SCAM simulations, we quantified and validated the diurnal rainfall climatological regimes at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The results showed that the averaged diurnal rainfall cycle simulated using the default Zhang-Mcfarlane (ZM) scheme of the SCAM peaks near noon, which is far earlier than the observed nighttime peak phase. This bias was due to the ZM scheme, which produced spurious daytime rainfall, even during days in which only light rainfall was observed. By contrast, using a weather-focused scheme, the Simplified Arakawa-Schubert (SAS) scheme, we successfully simulated the nocturnal peak of the diurnal cycle. Experiments conducted on the ZM and SAS schemes featuring different triggering functions revealed that the relaxation of launching parcels above the planetary boundary layer (PBL) and the inclusion of convective inhibition (CIN) were crucial designs for the model to capture the nocturnal rainfall events of the SGP. The inclusion of CIN reduces spurious weak convective events, and the allowance of launching parcels being above the PBL better captures convective cloud base. The results of this study highlight the modulatory effect of low-level inhomogeneity on the diurnal variation of convection over midlatitudes and the importance of the triggering function of the deep convection scheme in capturing those variations.

  19. The diurnal, annual and sunspot-cycle variations of ESFm at Huancayo compared with similar variations of spread-F occurrence at other longitudes and latitudes

    NASA Astrophysics Data System (ADS)

    Bowman, G. G.; Mortimer, I. K.

    2009-02-01

    Using the tabulations of spread-F data from ionosonde recordings the diurnal, annual and sunspot-cycle variations of this spread-F occurrence have been investigated for the equatorial station, Huancayo. Both Rz max and Rz min periods have been considered. The analyses suggest that some explanation of these variations can be made by involving two regimes, which have been called Regime A and Regime B. The Regime A is present throughout the night but this distribution is more obvious after midnight. This is because in the post-sunset period Regime B, which is associated with significant height rises, is dominant. The Regime A is the same as for similar distributions in mid-latitudes and is inversely related to sunspot activity. It maximizes in December solstice months. The Regime B is directly related to sunspot activity and maximizes in equinoctial months. Changes associated with the upper atmosphere neutral particle density have been found to be important, particularly for Regime A where an inverse relationship exists. The Regime A Rz min annual distributions reported here for Huancayo have been compared with similar distributions at other longitudes and latitudes.

  20. Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch.

    PubMed

    Goldstein, Avi; Annor, George; Vamadevan, Varatharajan; Tetlow, Ian; Kirkensgaard, Jacob J K; Mortensen, Kell; Blennow, Andreas; Hebelstrup, Kim H; Bertoft, Eric

    2017-05-01

    This study investigated the influence of diurnal photosynthetic activity on the morphology, molecular composition, crystallinity, and gelatinization properties of normal barley starch (NBS) and waxy barley starch (WBS) granules from plants cultivated in a greenhouse under normal diurnal (16h light) or constant light photosynthetic conditions. Growth rings were observed in all starch samples regardless of lighting conditions. The size distribution of whole and debranched WBS analyzed by gel-permeation chromatography did not appear to be influenced by the different lighting regimes, however, a greater relative crystallinity measured by wide-angle X-ray scattering and greater crystalline quality as judged by differential scanning calorimetry was observed under the diurnal lighting regime. NBS cultivated under the diurnal photosynthetic lighting regime displayed lower amylose content (18.7%), and shorter amylose chains than its counterpart grown under constant light. Although the relative crystallinity of NBS was not influenced by lighting conditions, lower onset, peak, and completion gelatinization temperatures were observed in diurnally grown NBS compared to constant light conditions. It is concluded that normal barley starch is less influenced by the diurnal photosynthetic lighting regime than amylose-free barley starch suggesting a role of amylose to prevent structural disorder and increase starch granule robustness against environmental cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Diurnal Oscillation of MAP Kinase and Adenylyl Cyclase Activities in the Hippocampus Depends on the SCN

    PubMed Central

    Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.

    2011-01-01

    Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN two days after training for contextual fear memory reduced contextual memory measured two weeks after training indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus. PMID:21775607

  2. Diurnal Cycles of Meltwater Percolation, Refreezing, and Drainage in the Supraglacial Snowpack of Haig Glacier, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Samimi, Samira; Marshall, Shawn J.

    2017-02-01

    Meltwater refreezing and storage in the supraglacial snowpack can reduce and delay meltwater runoff from glaciers. These are well-established processes in polar environments, but the importance of meltwater refreezing and the efficiency of meltwater drainage are uncertain on temperate alpine glaciers. To examine these processes and quantify their importance on a mid-latitude mountain glacier, we measured the temperature and meltwater content in the upper 50 cm of the supraglacial snowpack of Haig Glacier in the Canadian Rocky Mountains. Thermistors and TDR probes were installed at 10-cm intervals at two sites in the glacier accumulation area from May to September, 2015. A Denoth meter was used to make point measurements for comparison with the TDR inferences of snowpack dielectric properties. These data are supplemented by automatic weather station data, used to calculate surface melt rates and drive a model of subsurface temperature, refreezing, and drainage. We observed a strong diurnal cycle in snow water content throughout the summer melt season, but subsurface refreezing was only significant in May; after this, overnight refreezing was restricted to a thin surface layer of the snowpack. Overnight decreases in water content after May are associated with meltwater percolation and drainage. There was negligible meltwater retention in the snow on a daily basis, but the refrozen water does represent an ‘energy sink’, with 10-15% of the available melt energy diverted to recycled rather than new meltwater. This reduces the total meltwater runoff from the site, even though no meltwater is retained in the system.

  3. [Diurnal fluctuations of heart rate and locomotive activity in the vole (Microtus arvalis)].

    PubMed

    Ishii, K; Kuwahara, M; Tsubone, H; Sugano, S

    1993-01-01

    Diurnal fluctuations of heart rate and locomotive activity were observed in the unanesthetized and unrestrained voles (Microtus arvalis) and mice, and the differences in these biological characters between voles and mice were also investigated. The mean heart rate of vole in whole day was lower than that of mice. In voles, there were no significant differences in the mean heart rate between in light period and in dark period. It was observed that most of voles were active in not only dark period but light period. On the other hand, in mice, the mean heart rate in dark period was significantly higher than that in light period, and the nocturnal habit was shown obviously in the locomotive activity. In voles, the ultradian rhythmicities of 95-210 min in the heart rate and those of 160-210 min in the locomotive activity were recognized, and the fluctuations of heart rate due to ultradian rhythmicity in voles exceeded the difference between the heart rate in light period and that in dark period. In mice, one of three animals showed the ultradian rhythmicity of 85 min in the fluctuation of heart rate. Diurnal fluctuation of the heart rate in voles consisted of the two patterns which the peaks of heart rate were coincident with the active period or the resting period. However, all the peaks of heart rate in mice were coincident with the active period. These results suggested that the fluctuations of heart rate in voles were dependent on ultradian rhythmicities in addition to the circadian rhythmicities.

  4. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-12-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). Stream stage fluctuations integrate these relationships over the altitude range of the catchment. The correlation with solar flux gradually shifts from positive to negative over several weeks, as the snow-covered area contracts higher and higher in the basin. The dates at which the snowmelt and ET signals in the stream cancel each other out occur systematically later at

  5. Seasonal and diurnal cycling of aerosol particles in and above the canopy in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Ditas, Florian; Pöhlker, Christopher; Barbosa, Henrique; Brito, Joel; Chi, Xuguang; Krüger, Mira L.; Moran, Daniel; Saturno, Jorge; Su, Hang; Ocimar Manzi, Antonio; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat O.

    2015-04-01

    The Amazonian rain forest is one of the few continental regions, providing the opportunity to study pristine aerosols approximating a pre-industrial atmosphere. During the wet season, the ambient aerosol is usually unaffected by anthropogenic emission and dominated by a biosphere-atmosphere exchange. In contrast, during the dry season, anthropogenic pollution events (e.g., biomass burning) of regional and/or global character are observed. We will present measurements carried out at a remote research facility in the Amazonian rain forest (ATTO site, S 2° 08' 45'' W 59° 00' 20") approximately 150 km northeast of Manaus. The ATTO site is equipped with a variety of instruments to characterize microphysical and optical particle properties (i.e., particle number size distribution, total particle number concentration, BC mass, scattering coefficients, and chemical composition), which can be operated at two different inlet lines to investigate particles below (5 m) and above canopy (60 m). Since June 2014 a continuous data set of simultaneous particle number size distribution measurements below and above canopy is being collected covering nucleation to coarse mode sizes. The observed particle number size distributions show a pronounced diurnal cycle throughout all size ranges. The number concentration of Aitken and accumulation mode particles exhibits distinct minima before sunrise and a 'growth-like' behavior during daytime, while coarse mode particles show a rather broad minimum and gradual increase during daytime with maximum concentration during nighttime. As already reported by earlier studies, textbook-like new particle formation and growth is not observed in the Amazonian rain forest. Nevertheless, short particle bursts in the nucleation mode size range are regularly observed and show highest abundance in the first half of the night as well as a minimum during daytime. Simultaneous measurements below and above canopy show generally similar results indicating well

  6. Analysis of Diurnal, Planetary and Mean Wind Activity using TIMED, MF and Meteor Radar Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Riggin, Dennis R.

    2003-01-01

    The goals of this research are: 1) To validate TIMED Doppler Interferometer (TIDI) winds using ground-based MF and meteor winds; and 2) To examine short-term (i. e., day-to-day and week-to-week) variability of the diurnal tide. This objective was to have originally been met using comparisons of short-term diurnal tidal determinations from ground-based (GB) winds with planetary-scale diurnal nonmigrating tidal definitions from TIDI winds.

  7. Influence of diurnal cycles on metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana

    USGS Publications Warehouse

    Gammons, Christopher H.; Milodragovich, Lica; Belanger-Woods, Jodi

    2007-01-01

    Diurnal water samples were collected simultaneously at four locations along High Ore Creek (Montana, USA), a small stream with near-neutral pH that contains elevated concentrations of Zn, Mn, Cd, and As from abandoned mines near its headwaters. During the same time period, two sets of synoptic samples were collected by workers moving in opposite directions along the stream. Large diurnal fluctuations in Zn concentration were found at three of the 24-h monitoring stations, but not at the outlet to a settling pond. Because the concentrations of Zn were dropping at most locations in the creek during the day (in response to the daily cycle of day-time attenuation and night-time release), the synoptic sampler who moved upstream obtained a data set that led to the conclusion that Zn load increased with distance downstream. The sampler who moved in a downstream direction obtained the opposite results. Thus, failure to take short-term diurnal cycling into account can lead to incorrect conclusions regarding spatial or temporal trends in water quality within a watershed.

  8. Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity

    PubMed Central

    Gompf, Heinrich S.; Aston-Jones, Gary

    2008-01-01

    Activation of noradrenergic locus coeruleus (LC) neurons promotes wakefulness and behavioral arousal. In rats, LC neurons receive circadian inputs via a circuit that originates in the suprachiasmatic nucleus (SCN) and relays through the dorsomedial hypothalamus (DMH) to LC; this circuit input increases LC activity during the active period. DMH neurons expressing the peptide neurotransmitter orexin / hypocretin are ideally situated to act as a relay between SCN and LC due to their synaptic inputs from SCN and innervation of LC. Here, we examined the hypothesis that orexin is involved in transmitting circadian signals to LC using single-unit recordings of LC neurons in anesthetized rats maintained in 12:12 light-dark housing. We replicated earlier findings from this lab that LC neurons fire significantly faster on average during the active compared to rest periods. Local microinjection of an orexin antagonist, SB-334867-A attenuated the impulse activities of the fastest firing population of LC neurons during the active period. We also found that DMH orexin neurons project preferentially to LC and express a diurnal rhythm of activation that correlates with LC neuronal firing frequency. Therefore, we propose that DMH orexin neurons play a role in modulating the day-night differences of LC impulse activity. PMID:18614159

  9. On the Diurnal Cycle of Deep Convection, High-Level Cloud, and Upper Troposphere Water Vapor in the Multiscale Modeling Framework

    SciTech Connect

    Zhang, Yunyan; Klein, Stephen A.; Liu, Chuntao; Tian, Baijun; Marchand, Roger T.; Haynes, J. M.; McCoy, Renata; Zhang, Yuying; Ackerman, Thomas P.

    2008-08-22

    The Multiscale Modeling Framework (MMF), also called ‘‘superparameterization’’, embeds a cloud-resolving model (CRM) at each grid column of a general circulation model to replace traditional parameterizations of moist convection and large-scale condensation. This study evaluates the diurnal cycle of deep convection, high-level clouds, and upper troposphere water vapor by applying an infrared (IR) brightness temperature (Tb) and a precipitation radar (PR) simulator to the CRM column data. Simulator results are then compared with IR radiances from geostationary satellites and PR reflectivities from the Tropical Rainfall Measuring Mission (TRMM). While the actual surface precipitation rate in the MMF has a reasonable diurnal phase and amplitude when compared with TRMM observations, the IR simulator results indicate an inconsistency in the diurnal anomalies of high-level clouds between the model and the geostationary satellite data. Primarily because of its excessive high-level clouds, the MMF overestimates the simulated precipitation index (PI) and fails to reproduce the observed diurnal cycle phase relationships among PI, high-level clouds, and upper troposphere relative humidity. The PR simulator results show that over the tropical oceans, the occurrence fraction of reflectivity in excess of 20 dBZ is almost 1 order of magnitude larger than the TRMM data especially at altitudes above 6 km. Both results suggest that the MMF oceanic convection is overactive and possible reasons for this bias are discussed. However, the joint distribution of simulated IR Tb and PR reflectivity indicates that the most intense deep convection is found more often over tropical land than ocean, in agreement with previous observational studies.

  10. Diurnal variation in serum alanine aminotransferase activity in the US population.

    PubMed

    Ruhl, Constance E; Everhart, James E

    2013-02-01

    Serum alanine aminotransferase (ALT) activity has been reported to be greater in the afternoon than the early morning, but data are scarce. We examined diurnal variation of ALT in a national population-based sample. Participants in the 1999 to 2008 US National Health and Nutrition Examination Survey were randomly assigned to morning (AM; n = 4474 adolescents, 11,235 adults) or afternoon/evening (PM; n = 4887 adolescents, 11,735 adults) examinations. We examined ALT distributions graphically and compared both geometric mean ALT and the prevalence of elevated ALT, defined as >31 IU/L for adolescent boys, >24 IU/L for adolescent girls, >43 IU/L for adult men, and >30 IU/L for adult women, between AM and PM examination groups. The examination groups were similar with the exception in the AM group of a longer fasting time and slightly higher prevalence of diabetes among adolescents and viral hepatitis B among adult women. ALT distributions were similar between examination sessions among the 4 groups. Among adolescents and men, neither mean ALT nor prevalence of abnormal ALT differed by examination group. Among women, mean ALT was statistically significant, but minimally higher in the PM group (19.6 IU/L) than the AM group (19.1 IU/L; P = 0.009). Among 1 subgroup, women with chronic viral hepatitis, there was a higher prevalence of abnormal ALT in the PM group (P = 0.018 in unadjusted analysis). Adjusting for liver injury risk factors had little effect on the difference in mean ALT. In general, clinically significant diurnal variation in ALT activity was not found in the US population.

  11. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

    PubMed Central

    Roach, Thomas; Miller, Ramona; Aigner, Siegfried; Kranner, Ilse

    2015-01-01

    Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in

  12. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.

    PubMed

    Roach, Thomas; Miller, Ramona; Aigner, Siegfried; Kranner, Ilse

    2015-09-01

    In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations

  13. Diurnal activity of Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) grazing a northeastern Oregon summer range

    USDA-ARS?s Scientific Manuscript database

    Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) exist in a complex social environment that is marked by diurnal activities such as periods of foraging, ruminating, resting, and sheltering. Elk unlike cattle, must be continually alert to potential predators. We hypothesize that elk...

  14. SEASONAL AND DIURNAL ACTIVITY PATTERNS IN ANT (HYMENOPTERA: FORMICIDAE) COMMUNITIES IN A VEGETATION TRANSITION REGION OF SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    The densities of active ant colonies were estimated in three habitats: creosotebush shrubland, grassland, and shinnery-oak mesquite dunes. Diurnal foraging patterns were studied at bait boards. Species richness of ant communities in this transitional region (8-12 species) was co...

  15. SEASONAL AND DIURNAL ACTIVITY PATTERNS IN ANT (HYMENOPTERA: FORMICIDAE) COMMUNITIES IN A VEGETATION TRANSITION REGION OF SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    The densities of active ant colonies were estimated in three habitats: creosotebush shrubland, grassland, and shinnery-oak mesquite dunes. Diurnal foraging patterns were studied at bait boards. Species richness of ant communities in this transitional region (8-12 species) was co...

  16. Evidence of a unique and common genetic etiology between the CAR and the remaining part of the diurnal cycle: A study of 14 year-old twins.

    PubMed

    Ouellet-Morin, Isabelle; Brendgen, Mara; Girard, Alain; Lupien, Sonia J; Dionne, Ginette; Vitaro, Frank; Boivin, Michel

    2016-04-01

    By and large, studies have reported moderate contributions of genetic factors to cortisol secreted in the early morning and even smaller estimates later in the day. In contrast, the cortisol awakening response (CAR) has shown much stronger heritability estimates, which prompted the hypothesis that the etiology of cortisol secretion may vary according to the time of day. A direct test of this possibility has, however, not yet been performed. To describe the specific and common etiology of the CAR, awakening level and cortisol change from morning to evening in an age-homogenous sample of twin adolescents. A total of 592 participants of the Québec Newborn Twin Study, a population-based 1995-1998 cohort of families with twins in Canada, have collected saliva at awakening, 30 min later, at the end of afternoon and in the evening over four collection days. Multivariate Cholesky models showed both specific and common sources of variance between the CAR, awakening and cortisol diurnal change. The CAR had the strongest heritability estimates, which, for the most part, did not overlap with the other indicators. Conversely, similar magnitudes of genetic and environmental contributions were detected at awakening and for diurnal change, which partially overlapped. Our study unraveled differences between the latent etiologies of the CAR and the rest of the diurnal cycle, which may contribute to identify regulatory genes and environments and detangle how these indicators each relate to physical and mental health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  18. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle

    PubMed Central

    Maatta, Sara; Scheu, Brad; Roth, Mary R.; Tamura, Pamela; Li, Maoyin; Williams, Todd D.; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark–light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing. PMID:22629276

  19. Tides in the Mesopause Region over Fort Collins, CO (41N, 105W) Based on Lidar Temperature Observations Covering Full Diurnal Cycles

    NASA Astrophysics Data System (ADS)

    She, C. Y.; Chen, S.; Hu, Z.; Williams, B. P.; Krueger, D. A.; Hagan, M. E.

    2001-05-01

    The sodium lidar at Colorado State Univeristy has obtained eighteen sets of 24-hr continuous temperature observations covering a full diurnal cycle distributed throughout the year for 82-102km altitude. These have been analyzed to reveal the seasonal mean amplitude and phase of oscillations with 24, 12, 8,and 6 hour periods. The diurnal and semidiurnal phases typically show clear downward phase propagation, while the ter-dirunal and quad-diurnal components exhibit small amplitudes and disorganized phases as a function of altitude. A comparison of the amplitudes and phases of the diurnal and semidiurnal components with the predictions of the Global-Scale Wave Model showed good general agreement, although better in some seasons than others, suggesting that global-scale migrating tides are the main cause of these oscillations. There is significant variability, however, in the 24 and 12 hr oscillations deduced from the individual 24-hr campaigns within each season. This is most notable in the amplitudes which vary by large factors (amplitudes range from 2K to 20K), even when the corresponding phases are stable to within a few hours, suggesting a modulation of the global migrating tide. This could be caused by time variation in a number of things: the local small-scale wave field, the source stength for global migrating or nonmigrating tide, or changes in the lower atmosphere winds that lead to filtering of any of these waves. It is hoped that future observations that add zonal and meridional wind measurements to the current temperaure measurements with the same durnal and altitude coverage will help clarify the causes of this intra-seasonal variability as well as help resolve the remaining seasonal-average differences between observations and models.

  20. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow

  1. Impacts of the land-lake breeze of the Volta reservoir on the diurnal cycle of cloudiness and precipitation

    NASA Astrophysics Data System (ADS)

    Buchholz, Marcel; Fink, Andreas H.; Knippertz, Peter; Yorke, Charles

    2017-04-01

    Lake Volta in Ghana is the artificial lake on Earth with the largest surface area (8502 km2). It has been constructed in the early 1960s, with the lake being filled around 1966. Land-lake breezes and their effects on the diurnal cycle of local wind systems, cloudiness, and precipitation have been studied for several tropical lakes, among which studies on the effects of Lake Victoria in East Africa are one of the most perceived ones. To date, no studies on the strengths and effects of the land-lake breeze of the Volta reservoir are known to the authors. Using surface station data, a variety of satellite data on clouds and precipitation, and a convection-resolving regional model, the land-lake breeze and its impacts were studied for Lake Volta between 1998 and 2015. The observational data sets confirm a significant land-lake circulation. The only manned weather station operated by the Ghana Meteorological Service that is situated at the lake is Kete Krachi. Hourly observations for 2006 and 2014 show on several days a clearing of skies in the afternoon associated with a shift in the surface winds from southwest to southeast, the latter potentially indicating a lake breeze effect. Cloud occurrence frequency derived from the CLARA-A2, MODIS, and CLAAS2 cloud masks and the cloud physical properties from CLAAS2 clearly show the development of clouds at the lake breeze front in the course of the morning and around mid-day. This effect is most pronounced in March when also the difference between the surface temperatures of the lake and the desiccated land surface is strongest. During the peak of the wet season in July, the lake breeze cloudiness is masked by a high background cloudiness and likely also weaker due to the strong southwesterly monsoon flow that tends to weaken the land-lake circulation. However, the precipitation signal was found to be strongest in July, most probably due to the fact that in boreal fall, winter and spring, the lake breeze cloudiness often

  2. Modeling cloud microphysics using a two-moments hybrid bulk/bin scheme for use in Titan’s climate models: Application to the annual and diurnal cycles

    NASA Astrophysics Data System (ADS)

    Burgalat, J.; Rannou, P.; Cours, T.; Rivière, E. D.

    2014-03-01

    Microphysical models describe the way aerosols and clouds behave in the atmosphere. Two approaches are generally used to model these processes. While the first approach discretizes processes and aerosols size distributions on a radius grid (bin scheme), the second uses bulk parameters of the size distribution law (its mathematical moments) to represent the evolution of the particle population (moment scheme). However, with the latter approach, one needs to have an a priori knowledge of the size distributions. Moments scheme for Cloud microphysics modeling have been used and enhanced since decades for climate studies of the Earth. Most of the tools are based on Log-Normal law which are suitable for Earth, Mars or Venus. On Titan, due to the fractal structure of the aerosols, the size distributions do not follow a log-normal law. Then using a moment scheme in that case implies to define the description of the size distribution and to review the equations that are widely published in the literature. Our objective is to enable the use of a fully described microphysical model using a moment scheme within a Titan's Global Climate Model. As a first step in this direction, we present here a moment scheme dedicated to clouds microphysics adapted for Titan's atmosphere conditions. We perform comparisons between the two kinds of schemes (bin and moments) using an annual and a diurnal cycle, to check the validity of our moment description. The various forcing produce a time-variable cloud layer in relation with the temperature cycle. We compare the column opacities and the temperature for the two schemes, for each cycles. We also compare more detailed quantities as the opacity distribution of the cloud events at different periods of these cycles. Results show that differences between the two approaches have a small impact on the temperature (less than 1 K) and range between 1% and 10% for haze and clouds opacities. Both models behave in similar way when forced by an annual and

  3. Diurnal and nocturnal activity budgets of zoo elephants in an outdoor facility.

    PubMed

    Horback, Kristina M; Miller, Lance J; Andrews, Jeff R M; Kuczaj, Stan A

    2014-01-01

    The present study examined the activity budgets of 15 African elephants (1 bull, 6 cows, 2 male juveniles, 2 female juveniles, and 4 male calves) living at the San Diego Zoo Safari Park during the summers of 2010 and 2011. Onsite behavioral data (n = 600 hr) were collected for approximately 12 weeks from 0400 to 0830 and 1100 to 2400 during the 2010 and 2011 summer season. Foraging was the most common behavior state during the day followed by resting, and walking. During the evening hours, the elephants spent majority of their time foraging, resting, and sleeping. The average rate of self-maintenance behavior events (dust, wallow, etc.) increased from 0600 to 0700, 1100 to 1500, and from 1700 to 1900. Positive social behavior events (touch other, play, etc.) remained high from 0500 to 2300, with peaks at 0600, 1300, 1500, and 1900. Negative social events occurred at low rates throughout the day and night, with peaks at 0600, 1900, and 2200. The majority of positive behavior events during the daylight and nighttime hours involved the mother-calf pairs. Furthermore, the calves and juveniles initiated approximately 60% of all social events during the daytime and 57% of all social interactions at night. The results of this study demonstrate the differences between diurnal and nocturnal activity budgets of a multi-age and sex elephant herd in a zoological facility, which highlights the importance of managing elephants to meet their 24 hr behavioral needs. © 2014 Wiley Periodicals, Inc.

  4. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    PubMed

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  5. Are diurnal changes in foot sole sensation dependent on gait activity?

    PubMed

    Alfuth, Martin; Rosenbaum, Dieter

    2011-10-31

    The foot sole is loaded during stance and gait and plantar cutaneous mechanoreceptors sense the local stress distribution. It is not clear whether the perception thresholds of these mechanoreceptors change during the day and how they respond to walking activities. The primary aim of the present study was to investigate diurnal changes of plantar sensitivity. Furthermore, the aim was to find out whether daily changes depend on the individual level of step activity. Twenty-six healthy subjects, 17 women and 9 men, aged 28.6±6.7 years participated in the study. Detection thresholds to light touch were measured in six plantar regions with Semmes-Weinstein monofilaments in the morning, noon and afternoon. Step activity was recorded with a StepWatch™ Activity Monitor and analyzed for three periods (8 a.m.-4 p.m., 8 a.m.-12 p.m., 12 p.m.-4 p.m.). The hallux, the 3rd metatarsal head and the heel showed significantly decreased detection thresholds from 8 a.m. to 4 p.m. (p≤0.05). A fair correlation between the decrease of detection threshold and the total number of steps was found for the 3rd metatarsal head and the heel (p≤0.05). Foot sole sensation appears to improve during the day and seems to be associated with the step activity. This may reflect an improving transfer of afferent information to the central nervous system during the day as well as an adaptation of receptors to gait activity.

  6. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    SciTech Connect

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.; Fast, Jerome; Machado, Luiz A. T.; Martin, Scot T.

    2016-07-01

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretation of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.

  7. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies

    DOE PAGES

    Munoz-Esparza, Domingo; Lundquist, Julie K.; Sauer, Jeremy A.; ...

    2017-04-25

    Multiscale modeling of a diurnal cycle of real-world conditions is presented for the first time, validated using data from the CWEX-13 field experiment. Dynamical downscaling from synoptic-scale down to resolved three-dimensional eddies in the atmospheric boundary layer (ABL) was performed, spanning 4 orders of magnitude in horizontal grid resolution: from 111 km down to 8.2 m (30 m) in stable (convective) conditions. Computationally efficient mesoscale-to-microscale transition was made possible by the generalized cell perturbation method with time-varying parameters derived from mesoscale forcing conditions, which substantially reduced the fetch to achieve fully developed turbulence. In addition, careful design of the simulationsmore » was made to inhibit the presence of under-resolved convection at convection-resolving mesoscale resolution and to ensure proper turbulence representation in stably-stratified conditions. Comparison to in situ wind-profiling lidar and near-surface sonic anemometer measurements demonstrated the ability to reproduce the ABL structure throughout the entire diurnal cycle with a high degree of fidelity. The multiscale simulations exhibit realistic atmospheric features such as convective rolls and global intermittency. Also, the diurnal evolution of turbulence was accurately simulated, with probability density functions of resolved turbulent velocity fluctuations nearly identical to the lidar measurements. Explicit representation of turbulence in the stably-stratified ABL was found to provide the right balance with larger scales, resulting in the development of intra-hour variability as observed by the wind lidar; this variability was not captured by the mesoscale model. Furthermore, multiscale simulations improved mean ABL characteristics such as horizontal velocity, vertical wind shear, and turbulence.« less

  8. Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Tai; Youn, Daeok; Liang, Xin-Zhong; Wuebbles, Donald J.

    Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (˜1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.

  9. Identification of Diurnal, Seasonal and Inter-Annual Variability Across SE Asian Field Observations of key Water Cycle Variables: Rainfall, net Radiation, Total Evaporation and River Discharge

    NASA Astrophysics Data System (ADS)

    Solera García, M. A.; Tych, W.; Chappell, N.

    2007-12-01

    The identification of periodic patterns in water cycle variables is critical to the understanding of land-atmosphere interactions, climate change and the evaluation of General Circulation Model (GCM) output. SE Asia in particular plays a very important role on the global climate because it is a large source of energy and water fluxes into the upper atmosphere. Cycle identification is carried out following the Data Based Mechanistic (DBM) philosophy, which focuses on the use of parsimonious, rigorous models which are characterised by lack of a priori assumptions, built in uncertainty analysis and final model acceptance dependent on the physical interpretation of the results. The DBM tool used here is the Unobserved Component - Dynamic Harmonic Regression (UC-DHR) model, which is a statistical method that allows the identification of variability in time series by introducing Time Variable Parameter (TVP) estimation of harmonic components. UC-DHR is not scale dependent and was thus applied to both hourly (to investigate diurnal variation) and fortnightly datasets (for intra- and inter-annual variability). The data used in the analysis has been gathered from existing catchment datasets for three regions of tropical SE Asia, namely Northern Thailand, Central Peninsular Malaysia and Northeast Borneo. These regions were chosen because they represent the hydro-climatic gradient (seasonal to equatorial) present within the tropics and because SE Asia has the most extensive set of catchment/plot studies within the humid tropics. Results show modeling tools were able to quantify the main patterns present in the observations throughout different time scales (diurnal, intra-annual and inter-annual) and the strength of the correlation pattern between the four hydro-climatic variables. The subsequent discussion focuses on the physical processes behind those patterns (e.g. diurnal variability caused by local convection due to solar heating; impact of El Niño Southern Oscillation

  10. Annual and diurnal cycles in plasma testosterone and thyroxine in the male green sea turtle Chelonia mydas.

    PubMed

    Licht, P; Wood, J F; Wood, F E

    1985-03-01

    Male plasma testosterone (T) and thyroxine (T4) were monitored over several annual cycles in a captive breeding colony of green sea turtles, Chelonia mydas. Daily and annual water temperatures varied by only approximately 1 and 3 degrees, respectively. A pronounced season cycle in plasma T was evident in the population as a whole and in individual animals: plasma T was at a nadir (approximately 3 ng/ml) in September-November and then increased progressively to a peak (27-39 ng/ml) in April; levels began declining immediately thereafter, coincident with the onset of copulatory behavior. By contrast, plasma T4 remained uniform (approximately 9 ng/ml) throughout the year and, thus, could not readily account for the decline in androgen levels. Plasma hormones were relatively stable over a 24-hr period at three times a year, and there was a correlation for individual plasma T levels sampled in April and May. Thus, limited sampling should allow identification of seasonal rhythms and individual variability in plasma T levels. Testis mass and spermatogenic activity were significantly greater in January than in September; i.e., spermatogenesis and androgen secretion were not "uncoupled." Copulatory activity began in April but did not peak until May-June, after plasma T had significantly declined. However, there was a significant (but weak) correlation between individual peak levels of plasma T (i.e., in April) and the quantitative level of mating activity (time spent mounting and number of mates) measured for the entire subsequent season. Thus, green turtles do not exhibit the "postnuptial" type of testis cycle typical of many temperate-zone turtles, and the levels of plasma androgen may be important for initiating and maintaining sex behavior, although they are not tightly linked during the mating season.

  11. Genome-wide survey of B-box proteins in potato (Solanum tuberosum)-Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation.

    PubMed

    Talar, Urszula; Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Rorat, Tadeusz

    2017-01-01

    Plant B-box domain proteins (BBX) mediate many light-influenced developmental processes including seedling photomorphogenesis, seed germination, shade avoidance and photoperiodic regulation of flowering. Despite the wide range of potential functions, the current knowledge regarding BBX proteins in major crop plants is scarce. In this study, we identify and characterize the StBBX gene family in potato, which is composed of 30 members, with regard to structural properties and expression profiles under diurnal cycle, etiolation and de-etiolations. Based on domain organization and phylogenetic relationships, StBBX genes have been classified into five groups. Using real-time quantitative PCR, we found that expression of most of them oscillates following a 24-h rhythm; however, large differences in expression profiles were observed between the genes regarding amplitude and position of the maximal and minimal expression levels in the day/night cycle. On the basis of the time-of-day/time-of-night, we distinguished three expression groups specifically expressed during the light and two during the dark phase. In addition, we showed that the expression of several StBBX genes is under the control of the circadian clock and that some others are specifically associated with the etiolation and de-etiolation conditions. Thus, we concluded that StBBX proteins are likely key players involved in the complex diurnal and circadian networks regulating plant development as a function of light conditions and day duration.

  12. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  13. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth.

    PubMed

    Bernardo-García, Stella; de Lucas, Miguel; Martínez, Cristina; Espinosa-Ruiz, Ana; Davière, Jean-Michel; Prat, Salomé

    2014-08-01

    Signaling by the hormones brassinosteroid (BR) and gibberellin (GA) is critical to normal plant growth and development and is required for hypocotyl elongation in response to dark and elevated temperatures. Active BR signaling is essential for GA promotion of hypocotyl growth and suppresses the dwarf phenotype of GA mutants. Cross-talk between these hormones occurs downstream from the DELLAs, as GA-induced destabilization of these GA signaling repressors is not affected by BRs. Here we show that the light-regulated PIF4 (phytochrome-interacting factor 4) factor is a phosphorylation target of the BR signaling kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2), which marks this transcriptional regulator for proteasome degradation. Expression of a mutated PIF41A protein lacking a conserved BIN2 phosphorylation consensus causes a severe elongated phenotype and strongly up-regulated expression of the gene targets. However, PIF41A is not able to suppress the dwarf phenotype of the bin2-1 mutant with constitutive activation of this kinase. PIFs were shown to be required for the constitutive BR response of bes1-D and bzr1-1D mutants, these factors acting in an interdependent manner to promote cell elongation. Here, we show that bes1-D seedlings are still repressed by the inhibitor BRZ in the light and that expression of the nonphosphorylatable PIF41A protein makes this mutant fully insensitive to brassinazole (BRZ). PIF41A is preferentially stabilized at dawn, coinciding with the diurnal time of maximal growth. These results uncover a main role of BRs in antagonizing light signaling by inhibiting BIN2-mediated destabilization of the PIF4 factor. This regulation plays a prevalent role in timing hypocotyl elongation to late night, before light activation of phytochrome B (PHYB) and accumulation of DELLAs restricts PIF4 transcriptional activity. © 2014 Bernardo-García et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Analysis of the Diurnal Cycle of Precipitation and its Relation to Cloud Radiative Forcing using TRMM Products

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Fowler, Laura D.

    2000-01-01

    By incorporating the Tropical Rain Measuring Mission (TRMM) satellite orbital information into the geodesic version of the Colorado State University General Circulation Model (CSU GCM), we are able to fly a satellite in the GCM, and sample the simulated atmosphere in the same way as the TRMM sensors sample the real atmosphere. The TRMM sampling statistics of precipitation and radiative fluxes at annual, intraseasonal, monthly-mean and composited diurnal time scales are evaluated by comparing the satellite-sampled against fully-sampled simulated atmospheres. This information provides a valuable guidance for efficient usage of TRMM data and future satellite mission planning.

  15. Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Pawlowski, D.; Bell, J. M.; Nelli, S.; McDunn, T.; Murphy, J. R.; Chizek, M.; Ridley, A.

    2015-02-01

    A new Mars Global Ionosphere-Thermosphere Model (M-GITM) is presented that combines the terrestrial GITM framework with Mars fundamental physical parameters, ion-neutral chemistry, and key radiative processes in order to capture the basic observed features of the thermal, compositional, and dynamical structure of the Mars atmosphere from the ground to the exosphere (0-250 km). Lower, middle, and upper atmosphere processes are included, based in part upon formulations used in previous lower and upper atmosphere Mars GCMs. This enables the M-GITM code to be run for various seasonal, solar cycle, and dust conditions. M-GITM validation studies have focused upon simulations for a range of solar and seasonal conditions. Key upper atmosphere measurements are selected for comparison to corresponding M-GITM neutral temperatures and neutral-ion densities. In addition, simulated lower atmosphere temperatures are compared with observations in order to provide a first-order confirmation of a realistic lower atmosphere. M-GITM captures solar cycle and seasonal trends in the upper atmosphere that are consistent with observations, yielding significant periodic changes in the temperature structure, the species density distributions, and the large-scale global wind system. For instance, mid afternoon temperatures near ˜200 km are predicted to vary from ˜210 to 350 K (equinox) and ˜190 to 390 k (aphelion to perihelion) over the solar cycle. These simulations will serve as a benchmark against which to compare episodic variations (e.g., due to solar flares and dust storms) in future M-GITM studies. Additionally, M-GITM will be used to support MAVEN mission activities (2014-2016).

  16. Day-night differences in neural activation in histaminergic and serotonergic areas with putative projections to the cerebrospinal fluid in a diurnal brain.

    PubMed

    Castillo-Ruiz, A; Gall, A J; Smale, L; Nunez, A A

    2013-10-10

    In nocturnal rodents, brain areas that promote wakefulness have a circadian pattern of neural activation that mirrors the sleep/wake cycle, with more neural activation during the active phase than during the rest phase. To investigate whether differences in temporal patterns of neural activity in wake-promoting regions contribute to differences in daily patterns of wakefulness between nocturnal and diurnal species, we assessed Fos expression patterns in the tuberomammillary (TMM), supramammillary (SUM), and raphe nuclei of male grass rats maintained in a 12:12 h light-dark cycle. Day-night profiles of Fos expression were observed in the ventral and dorsal TMM, in the SUM, and in specific subpopulations of the raphe, including serotonergic cells, with higher Fos expression during the day than during the night. Next, to explore whether the cerebrospinal fluid is an avenue used by the TMM and raphe in the regulation of target areas, we injected the retrograde tracer cholera toxin subunit beta (CTB) into the ventricular system of male grass rats. While CTB labeling was scarce in the TMM and other hypothalamic areas including the suprachiasmatic nucleus, which contains the main circadian pacemaker, a dense cluster of CTB-positive neurons was evident in the caudal dorsal raphe, and the majority of these neurons appeared to be serotonergic. Since these findings are in agreement with reports for nocturnal rodents, our results suggest that the evolution of diurnality did not involve a change in the overall distribution of neuronal connections between systems that support wakefulness and their target areas, but produced a complete temporal reversal in the functioning of those systems.

  17. Regulation of diurnal variation of cholesterol 7alpha-hydroxylase (CYP7A1) activity in healthy subjects.

    PubMed

    Kovár, J; Lenícek, M; Zimolová, M; Vítek, L; Jirsa, M; Pitha, J

    2010-01-01

    Cholesterol 7alpha-hydroxylase (CYP7A1), the key regulatory enzyme of bile acid synthesis, displays a pronounced diurnal variation. To better understand the regulation of CYP7A1 activity, three day-long examinations were carried out in 12 healthy men. The concentrations of 7alpha-hydroxycholest-4-en-3-one (C4), a surrogate marker of CYP7A1 activity, bile acids (BA), insulin, glucose, nonesterified fatty acids, triglycerides, and cholesterol were measured in serum in 90-min intervals from 7 AM till 10 PM. To lower and to increase BA concentration during the study, the subjects received cholestyramine and chenodeoxycholic acid (CDCA), respectively, in two examinations. No drug was used in the control examination. There was a pronounced diurnal variation of C4 concentration with a peak around 1 PM in most of the subjects. The area under the curve (AUC) of C4 concentration was five times higher and three times lower when subjects were treated with cholestyramine and CDCA, respectively. No relationship was found between AUC of C4 and AUC of BA concentration, but AUC of C4 correlated positively with that of insulin. Moreover, short-term treatment with cholestyramine resulted in about 10 % suppression of glycemia throughout the day. Our results suggest that insulin is involved in the regulation of diurnal variation of CYP7A1 activity in humans.

  18. Large-eddy simulation of the diurnal cycle of the atmospheric boundary layer and influence of the radiative forcing during the Wangara experiment.

    NASA Astrophysics Data System (ADS)

    Dall'Ozzo, Cédric; Carissimo, Bertrand; Milliez, Maya; Musson-Genon, Luc; Dupont, Eric

    2013-04-01

    The ability to simulate the whole diurnal cycle of the atmospheric boundary layer in order to study the complex turbulent structures remains a difficult topic. Consequently large-eddy simulations (LES) are performed with the open source CFD code Code_Saturne [Archambeau et al., 2004]. First the code is validated on an atmospheric convective case [Schmidt and Schumann, 1989] where different subgrid-scale (SGS) models are compared: two non-dynamical SGS models [Smagorinsky, 1963] [Nicoud and Ducros, 1999] and two dynamical SGS models [Germano et al., 1991 ; Lilly, 1992] [Wong and Lilly, 1994]. Then LES are performed to simulate the whole diurnal cycle of the Wangara experiment (Day 33-34). The results are compared to measurements , RANS "k-ɛ" model and other LES performed by [Basu et al., 2008] using a locally averaged scale-dependent dynamic (LASDD) SGS model. Thereafter the influence of the radiative forcing on the atmosphere is studied testing several SGS models. The results are especially discussed on nocturnal low level jet and potential temperature gradient in the stable boundary layer. References: [Archambeau et al., 2004] Archambeau F., Mehitoua N., Sakiz M. (2004). Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. International Journal on Finite Volumes 1(1). [Basu et al., 2008] Basu S., Vinuesa J. F., and Swift A. (2008). Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology, 47 :1156-1174. [Germano et al., 1991] Germano M., Piomelli U., Moin P., and Cabot W. H. (1991). A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids, A3 :1760-1765. [Lilly, 1992] Lilly D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, A 4 :633-635. [Schmidt and Schumann, 1989] Schmidt H. and Schumann U. (1989). Coherent structure of the convective boundary layer derived from lage-eddy simulation. Journal of Fluid Mechanics, 200 :511-562. [Smagorinsky

  19. Signature of tropical fires in the diurnal cycle of tropospheric CO as seen from Metop-A/IASI

    NASA Astrophysics Data System (ADS)

    Thonat, T.; Crevoisier, C.; Scott, N. A.; Chédin, A.; Armante, R.; Crépeau, L.

    2015-11-01

    Five years (July 2007 to June 2012) of CO tropospheric columns derived from the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A are used to study the impact of fires on the concentrations of CO in the troposphere. Following Chédin et al. (2005, 2008), who found a quantitative relation between the daily tropospheric excess of CO2 and fire emissions, we show that tropospheric CO also displays a diurnal signal with a seasonality that agrees well with the seasonal evolution of fires given by Global Fire Emission Database version 3 (GFED3.1) and Global Fire Assimilation System version 1 (GFAS1.0) emissions and Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 burned area product. Unlike day- or night-time CO fields, which mix local emissions with nearby emissions transported to the region of study, the day-night difference of CO allows to highlight the CO signal due to local fire emissions. A linear relationship between CO fire emissions from the GFED3.1 and GFAS1.0 inventories and the diurnal difference of IASI CO was found over various regions in the tropics, with a better agreement with GFAS1.0 (correlation coefficient of R2 ∼ 0.7) than GFED3.1 (R2 ∼ 0.6). Based on the specificity of the two main phases of the combustion (flaming vs. smoldering) and on the vertical sensitivity of the sounder to CO, the following mechanism is proposed to explain such a CO diurnal signal: at night, after the passing of IASI at 21:30 local time (LT), a large amount of CO emissions from the smoldering phase is trapped in the boundary layer before being uplifted the next morning by natural and pyroconvection up to the free troposphere, where it is seen by IASI at 09:30 LT. The results presented here highlight the need to take into account the specificity of both the flaming and smoldering phases of fire emissions in order to fully take advantage of CO observations.

  20. Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests

    NASA Astrophysics Data System (ADS)

    Konings, Alexandra G.; Yu, Yifan; Xu, Liang; Yang, Yan; Schimel, David S.; Saatchi, Sassan S.

    2017-03-01

    A higher frequency of severe droughts under warmer temperatures is expected to lead to large impacts on global water and carbon fluxes and on vegetation cover—including possible widespread mortality. Monitoring the hydraulic state of vegetation as represented by the canopy water content will allow rapid assessment of vegetation water stress. Here we show the potential of active microwave backscatter observations at Ku band for monitoring the diurnal and seasonal variations of top-of-canopy water content. We focus on the humid tropical forests of Central Africa and examine spatiotemporal variations of radar backscatter from QuikSCAT (2001-2009) and RapidScat (2014-2016). Diurnal variations in RapidScat backscatter demonstrate the occurrence of widespread midday stomatal closure in this region. Increases in backscatter during the dry seasons in humid forests could be explained by both dry season leaf flushing (as supported by canopy structure) and vapor pressure deficit-driven increases in evapotranspiration rates.

  1. Features of the Diurnal Variations of the Total Electron Content during the Abnormal Low Solar Activity Maximum (2012)

    NASA Astrophysics Data System (ADS)

    Mukasheva, Saule; Zhumabayev, Beibit; Toyshiev, Nursultan

    Based on the GIM (Global Ionospheric Maps) technology we studied the diurnal variations of the global distribution of the total electron content in the quiet helio-geomagnetic conditions during the period of abnormal low solar activity maximum (2012). It was shown that the global distribution of the total electron content reaches the maximum of daily values during spring (autumn) equinox: 60±5 TECU in equatorial latitudes; 35±5 TECU at middle latitudes; 10±5 TECU at high latitudes. There was carried out a comparison of the diurnal variations of the absolute values of the total electron content, which was calculated on the base of the IONEX maps under quiet geomagnetic conditions for different seasons, with variations of the median values of the electron concentration in the ionosphere according to the data from the vertical sounding ionosphere station Almaty. It was shown that in the diurnal variations of the electron concentration in the maximum of the F2 layer of the ionosphere there are observed the same features as in the variations of the total electron content. This paper was written as part of the Kazakhstan Republican program 002 "Applied scientific researches of space activities" under the theme "Develop methods for estimating the crust geomechanical crisis areas using mathematical modeling and satellite technologies".

  2. Four years of CO2 and meteorological measurements in Mataró (Catalonia, Spain). An example of the CO2 diurnal cycles in a Mediterranean coastal city.

    NASA Astrophysics Data System (ADS)

    Curcoll Masanes, Roger; Font, Anna; Comerma, Marta; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lidia; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2014-05-01

    Since November 2009, in collaboration with the science section of the Mataró Museum, IC3 is measuring CO2 concentration in the roof of this museum using a calibrated infrared (IR) analyzer (GMP343 Vaisala Carbocap®). The measurements began within the frame of the CarboSchools project (EU Science in Society programme). Meteorological variables (ambient temperature, relative humidity, precipitation, barometric pressure, wind direction and wind speed) are also measured with a Davis Vantage Pro2 Station. The Mataró Museum is located in the Mediterranean coastal city of Mataró (41.540174° N, 2.445486° E), 25 Km north-east of Barcelona. The in-situ meteorological data (pressure, temperature and humidity) is used to adjust the settings of the GMP343 every minute to calculate CO2 concentration. From late 2009 to 2012 CO2 data was calibrated using integrated discrete flask samples that were collected fortnightly and then measured using an optical analyzer (Licor-7000). From 2013 onwards CO2 GMP343 data has been calibrated by data inter-comparison with a Picarro G2301. Both the Picarro G2301 and the Licor-7000 analyzers were calibrated and referred to the International Scale using a scale strategy with seven NOAA reference cylinders. The dataset shows that CO2 signal in the coastal city of Mataró is regulated by the periodic land-sea breezes and the local emissions. The CO2 variability along the year (diurnal and seasonal CO2 signal) responds to the variability of the influence of the sea-land breezes, the contribution of the land and the sea ecosystems in the CO2 cycle and the variability of anthropogenic emissions Finally the CO2 data from Mataró is compared with the CO2 time series from other stations which have the same equipment but are located in different ecosystems. The other stations presented here are (1) DEC3: Located at the Ebre River Delta in a coastal and agricultural area. This station is also provided with GC and Picarro instrumentation and is part of

  3. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    NASA Astrophysics Data System (ADS)

    Sanz Rodrigo, J.; Churchfield, M.; Kosović, B.

    2016-09-01

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterization of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.

  4. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    SciTech Connect

    Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.

    2016-10-03

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterization of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.

  5. Diurnal variation in the fraction of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the active form in the mammary gland of the lactating rat.

    PubMed Central

    Smith, R A; Middleton, B; West, D W

    1986-01-01

    'Expressed' and 'total' activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) were measured in freeze-clamped samples of mammary glands from lactating rats at intervals throughout the 24 h light/dark cycle. 'Expressed' activities were measured in microsomal fractions isolated and assayed in the presence of 100 mM-KF. 'Total' activities were determined in microsomal preparations from the same homogenates but washed free of KF and incubated with exogenously added sheep liver phosphoprotein phosphatase before assay. Both 'expressed' and 'total' activities of HMG-CoA reductase underwent a diurnal cycle, which had a major peak 6 h into the light phase and a nadir 15 h later, i.e. 9 h into the dark period. Both activities showed a secondary peak of activity (around 68% of the maximum activity) at the time of changeover from dark to light, with a trough in the value of the 'expressed' activity that was close to the nadir value. 'Expressed' activity was lower than 'total' at all time points, indicating the presence of enzyme molecules inactivated by covalent phosphorylation. Nevertheless the 'expressed'/'total' activity ratio was comparatively constant and varied only between 43% and 75%. Immunotitration of enzyme activity, with antiserum raised in sheep against purified rat liver HMG-CoA reductase, confirmed the presence of both active and inactive forms of the enzyme and indicated that at the peak and nadir the variation in 'expressed' HMG-CoA reductase activity resulted from changes in the total number of enzyme molecules rather than from covalent modification. The sample obtained after 3 h of the light phase exhibited an anomalously low 'total' HMG-CoA reductase activity, which could be increased when Cl- replaced F- in the homogenization medium. The result suggests that at that time the activity of the enzyme could be regulated by mechanisms other than covalent phosphorylation or degradation. PMID:3814075

  6. Diurnal time-activity budgets of redheads (Aythya americana) wintering in seagrass beds and coastal ponds in Louisiana and Texas

    USGS Publications Warehouse

    Michot, T.C.; Woodin, M.C.; Adair, S.E.; Moser, E.B.

    2006-01-01

    Diurnal time-activity budgets were determined for wintering redheads (Aythya americana) from estuarine seagrass beds in Louisiana (Chandeleur Sound) and Texas (Laguna Madre) and from ponds adjacent to the Laguna Madre. Activities differed (p<0.0001) by location, month, and diurnal time period. Resting and feeding were the most frequent activities of redheads at the two estuarine sites, whereas drinking was almost nonexistent. Birds on ponds in Texas engaged most frequently in resting and drinking, but feeding was very infrequent. Redheads from the Louisiana estuarine site rested less than birds in Texas at either the Laguna Madre or freshwater ponds. Redheads in Louisiana fed more than birds in Texas; this was partially because of weather differences (colder temperatures in Louisiana), but the location effect was still significant even when we adjusted the model for weather effects. Redheads in Louisiana showed increased resting and decreased feeding as winter progressed, but redheads in Texas did not exhibit a seasonal pattern in either resting or feeding. In Louisiana, birds maintained a high level of feeding activity during the early morning throughout the winter, whereas afternoon feeding tapered off in mid- to late-winter. Texas birds showed a shift from morning feeding in early winter to afternoon feeding in late winter. Males and females at both Chandeleur Sound and Laguna Madre showed differences in their activities, but because the absolute difference seldom exceeded 2%, biological significance is questionable. Diurnal time-activity budgets of redheads on the wintering grounds are influenced by water salinities and the use of dietary fresh water, as well as by weather conditions, tides, and perhaps vegetation differences between sites. The opportunity to osmoregulate via dietary freshwater, vs. via nasal salt glands, may have a significant effect on behavioral allocations. ?? Springer 2006.

  7. The effect of sulfate concentration on (sub)millimeter-scale sulfide δ 34S in hypersaline cyanobacterial mats over the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Finke, Niko; Zha, Jessica; Blake, Garrett; Hoehler, Tori M.; Orphan, Victoria J.

    2009-10-01

    Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ 34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ 34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (˜100 μm-1 cm) δ 34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO 4) on the δ 34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ 34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ˜400-800 individual measurements covering a lateral distance of ˜1 mm and a vertical depth of ˜5-15 mm. There is a large isotopic enrichment (˜10-20‰) in the uppermost mm of sulfide in those mats where [SO 4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of

  8. Cycles and Anti-Cycles of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ryabov, M. I.

    Currently representation of solar cycles on average monthly data and smoothed values on various indexes from the full solar disk is generally accepted. Such representation creates an illusion of monotone change and perceptions of simultaneity of manifestations of solar activity for all solar disc. At the same time, daily monitoring data reveal the presence of discrete properties of manifestations of solar cycle. They are associated with absence of spots on the Sun in the northern and southern hemispheres at different intervals. This phenomenon is defined as anti-cycle of solar activity. Properties of discreteness of anti-cycles are presented in this paper on "spotless days' periods". On their basis the appropriate monthly and annual data was received. The basic characteristics of the manifestations of the discreteness of activity anti-cycles had been determined. It noted the "switch effect" of the existence of the solar dynamo. It manifests itself in the rapid transition from a regime of "spotless days" to the regime of continuous generation.

  9. Synchronized diurnal and circadian expressions of four subtypes of melatonin receptor genes in the diencephalon of a puffer fish with lunar-related spawning cycles.

    PubMed

    Ikegami, Taro; Motohashi, Eiji; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2009-10-02

    Multiple subtypes of melatonin receptors are expressed in neural and peripheral tissues to mediate melatonin actions on the regulation of circadian rhythms in vertebrates. To elucidate molecular basis of "circa" rhythms in the grass puffer Takifugu niphobles, which spawns synchronously with semilunar cycles, tissue distribution of four melatonin receptor subtype mRNAs (Mel(1a) 1.4, Mel(1a) 1.7, Mel(1b), and Mel(1c)) were examined, and diurnal and circadian changes in their absolute amounts were examined in the retina, diencephalon, and optic tectum. Mel(1a) 1.4, Mel(1a) 1.7, and Mel(1b) mRNAs were widely distributed in various brain regions, retina, pituitary, and peripheral tissues, whereas Mel(1c) mRNA was mainly detected in the nervous tissues and pituitary. All subtype genes showed diurnal expressions with one or two peaks during nighttime. When the fish were reared under constant darkness, the retinal expressions of Mel(1a) 1.7, Mel(1b), and Mel(1c) genes were markedly diminished but still showed circadian variations. In contrast, increased and synchronized expressions of the four subtype genes were noticeable with one peak at circadian time 18 in the diencephalon. The circadian expression profiles in the optic tectum were different among the subtypes. The present results suggest that melatonin receptor gene expression is regulated by circadian clock and light, but the effects of light are different among the tissues. The synchronized expressions of the four subtype genes in the diencephalon may be related to the exertion of reproductive rhythmicity in this puffer species.

  10. Influence of menarche on the relation between diurnal cortisol production and ventral striatum activity during reward anticipation

    PubMed Central

    LeMoult, Joelle; Colich, Natalie L.; Sherdell, Lindsey; Hamilton, J. Paul; Gotlib, Ian H.

    2015-01-01

    Adolescence is characterized by an increase in risk-taking and reward-seeking behaviors. In other populations, increased risk taking has been associated with tighter coupling between cortisol production and ventral striatum (VS) activation during reward anticipation; this relation has not yet been examined, however, as a function of adolescent development. This study examined the influence of pubertal development on the association between diurnal cortisol production and VS activity during reward anticipation. Pre- and post-menarcheal girls collected diurnal cortisol and completed an functional magnetic resonance imaging-based monetary incentive delay task, from which we extracted estimates of VS activity during the anticipation of reward, anticipation of loss and anticipation of non-incentive neutral trials. Post-menarcheal girls showed greater coupling between the cortisol awakening response and VS activation during anticipation of reward and loss than did their pre-menarcheal counterparts. Post-menarcheal girls did not differ from pre-menarcheal girls in their cortisol-VS coupling during anticipation of neutral trials, suggesting that puberty-related changes in cortisol-VS coupling are specific to affective stimuli. Interestingly, behavioral responses during the task indicate that post-menarcheal girls are faster to engage with affective stimuli than are pre-menarcheal girls. Thus, post-menarcheal girls exhibit neurobiological and behavioral patterns that have been associated with risk taking and that may underlie the dramatic increase in risk-taking behavior documented during adolescence. PMID:25678549

  11. Influence of menarche on the relation between diurnal cortisol production and ventral striatum activity during reward anticipation.

    PubMed

    LeMoult, Joelle; Colich, Natalie L; Sherdell, Lindsey; Hamilton, J Paul; Gotlib, Ian H

    2015-09-01

    Adolescence is characterized by an increase in risk-taking and reward-seeking behaviors. In other populations, increased risk taking has been associated with tighter coupling between cortisol production and ventral striatum (VS) activation during reward anticipation; this relation has not yet been examined, however, as a function of adolescent development. This study examined the influence of pubertal development on the association between diurnal cortisol production and VS activity during reward anticipation. Pre- and post-menarcheal girls collected diurnal cortisol and completed an functional magnetic resonance imaging-based monetary incentive delay task, from which we extracted estimates of VS activity during the anticipation of reward, anticipation of loss and anticipation of non-incentive neutral trials. Post-menarcheal girls showed greater coupling between the cortisol awakening response and VS activation during anticipation of reward and loss than did their pre-menarcheal counterparts. Post-menarcheal girls did not differ from pre-menarcheal girls in their cortisol-VS coupling during anticipation of neutral trials, suggesting that puberty-related changes in cortisol-VS coupling are specific to affective stimuli. Interestingly, behavioral responses during the task indicate that post-menarcheal girls are faster to engage with affective stimuli than are pre-menarcheal girls. Thus, post-menarcheal girls exhibit neurobiological and behavioral patterns that have been associated with risk taking and that may underlie the dramatic increase in risk-taking behavior documented during adolescence.

  12. The Hydrologic Cycle Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Hardin, Danny M.; Goodman, H. Michael

    1995-01-01

    The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.

  13. Adult Female Rats Altered Diurnal Locomotor Activity Pattern Following Chronic Methylphenidate Treatment

    PubMed Central

    Trinh, T.; Kohllepin, S; Yang, P.B.; Burau, K.D.; Dafny, N.

    2014-01-01

    Methylphenidate (MPD) is one of the most prescribed pharmacological agents and also used as cognitive enhancement and for recreational purposes. The objective of this study was to investigate the repetitive dose-response effects of MPD on rhythm locomotor activity pattern of female WKY rats and compare to prior study done on male. The hypothesis is that change in the circadian activity pattern indicates a long-lasting effect of the drug. Four animal groups (saline control, 0.6, 2.5, and 10.0 mg/kg MPD dose groups) were housed in a sound-controlled room at 12:12 light/dark cycle. All received saline injections on experimental day 1 (ED 1). On EDs 2-7, the control group received saline injection; the other groups received 0.6, 2.5, or 10.0 mg/kg MPD, respectively. On ED 8-10, injections were withheld. On ED 11, each group received the same dose as EDs 2-7. Hourly histograms and cosine statistical analyses calculating the acrophase (ϕ), amplitude (A), and MESOR (M) were applied to assess the 24-hour circadian activity pattern. The 0.6 and 2.5 mg/kg MPD groups exhibited significant (p<0.05) change in their circadian activity pattern on ED 11. The 10.0 mg/kg MPD group exhibited tolerance on ED 11 and also a significant change in activity pattern on ED 8 compared to ED 1, consistent with withdrawal behavior (p<0.007). In conclusion, chronic MPD administration alters circadian locomotor activity of adult female WKY rats and confirms that chronic MPD use elicits long lasting effects PMID:23893293

  14. The influence of enclosure design on diurnal activity and stereotypic behaviour in captive Malayan Sun bears (Helarctos malayanus).

    PubMed

    Tan, H M; Ong, S M; Langat, G; Bahaman, A R; Sharma, R S K; Sumita, S

    2013-04-01

    The effect of enclosure design on diurnal activity and stereotypic behaviour was assessed in 17 adult Malayan Sun bears (Helarctos malayanus), kept either in barren indoor enclosures or relatively enriched outdoor enclosures. Locomotion was the most frequent activity observed in the indoor bears, followed by resting. In contrast, conspecifics housed outdoors spent most of the time resting. Eleven forms of stereotypic behaviours were recorded in the bears, with pacing being the most common. The frequency and repertoire of stereotypies were significantly higher in the indoor bears irrespective of enclosure size. Novel forms of locomotor (forward-reverse pacing) and oral (allo-sucking) stereotypies were recorded. Oral stereotypies were predominant in the bears housed indoors, while patrolling was confined to the outdoor bears. Enclosure complexity significantly influences activity budget and occurrence of stereotypic behaviours, highlighting the importance of appropriate enclosure design and enrichment for the welfare of captive bears.

  15. [Seasonality and diurnal activity of Tabanidae (Diptera: Insecta) of canopy in the Adolpho Ducke Forested Reserve, Manaus, Amazonas State, Brazil].

    PubMed

    Oliveira, Aldenira F; Ferreira, Ruth L M; Rafael, José A

    2007-01-01

    The seasonality and diurnal flight activity of tabanids from canopy was studied at Ducke Reserve, in the county of Manaus, Amazonas State, Brazil, using a suspended trap installed at 20 m above the soil, connected to the carbon dioxide gas cylinder. During one day, twice monthly collects of Tabanidae were taken from April 2000 to June 2001. The material was collected from the trap in intervals of 2h and placed in plastic tubes. A total of 955 individuals, corresponding to thirty species were collected. Philipotabanus stigmaticalis (Kröber) (37.9%) was caught all over the year and showed higher flight activity between 12:00 p.m. and 4:00 p.m. Acanthocera marginalis Walker (16.3%) was more abundant in the less rainy months (July to November) with a higher activity period between 10:00 a.m. and 12:00 p.m. Acanthocera gorayebi Henriques Rafael (9.0%) was more abundant in July with more activity between 10:00 a.m. and 12:00 p.m. Dichelacera damicornis (Fabricius) (10.9%) was more abundant in the months of heavier rainfall (January, February and April) and showed higher diurnal activity between 10:00 a.m. and 2:00 p.m. Diachlorus podagricus (Fabricius) (6.6%) was caught throughout the year except in February and showed higher activity between 10:00 a.m. and 14:00 p.m. The climatic factors when correlated to the tabanids richness just showed significant correlation with precipitation, while the specimens abundance was correlated to humidity and precipitation.

  16. Growth Delay as an Index of Allostatic Load in Young Children: Predictions to Disinhibited Social Approach and Diurnal Cortisol Activity

    PubMed Central

    Johnson, Anna E.; Bruce, Jacqueline; Tarullo, Amanda R.; Gunnar, Megan R.

    2012-01-01

    The goal of this study was to examine whether growth delay can serve as an index of allostatic load during early development, as it is well known that the activity of stress-mediating systems inhibits growth. The participants were children adopted internationally from institutional care (n = 36), children adopted internationally from foster care (n = 6), and nonadopted children (n = 35). For the adopted children, height-for-age and weight-for-height were assessed at adoption; for all children, disinhibited social approach (DSA; termed elsewhere as “indiscriminate friendliness”) and diurnal cortisol were assessed at 6–8 years (M = 6.9 years). For internationally adopted children in general, and postinstitutionalized children specifically, linear growth delay assessed at the time of adoption was associated with more dysregulated behavior in response to an unfamiliar adult (i.e., greater DSA) and a more dysregulated diurnal cortisol rhythm (i.e., higher late-afternoon and evening values). Further, among the most growth-delayed children, higher cortisol levels later in the day were correlated with DSA. The potential for using growth delay as an allostatic load indicator and the possible problems and limitations in its use in child populations are discussed. PMID:21756437

  17. Diurnal variation in p42/44 mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Price, L; Chik, C L

    2003-10-31

    In this study, we investigated whether there was a diurnal difference in mitogen-activated protein kinase (p42/44(MAPK)) phosphorylation in the rat pineal gland. Under a lighting regimen with 12h of darkness, there was a two- to four-fold increase in phosphorylated levels of MAPK kinase 1/2 (MEK1/2) and p42/44(MAPK) 2h after onset of darkness, an increase that was sustained for 8h. The increases in phosphorylated levels of MEK1/2 and p42/44(MAPK) occurred without increases in MEK1/2 and p42/44(MAPK) proteins. When rats were treated with propranolol 1h before onset of darkness or subjected to continuous light exposure during the dark phase, the nocturnal increase in MEK1/2 and p42/44(MAPK) phosphorylation was reduced. Acute light exposure during darkness caused a decline in MEK1/2 and p42/44(MAPK) phosphorylation within 30 min of light exposure. These results indicate the presence of a diurnal difference in MEK1/2 and p42/44(MAPK) phosphorylation in the rat pineal gland that is under adrenergic control.

  18. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    DOE PAGES

    Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.

    2016-10-03

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less

  19. Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation-rehydration cycles despite unlimited water supply.

    PubMed

    Pfautsch, Sebastian; Keitel, Claudia; Turnbull, Tarryn L; Braimbridge, Mike J; Wright, Thomas E; Simpson, Robert R; O'Brien, Jessica A; Adams, Mark A

    2011-10-01

    Knowledge about nocturnal transpiration (E(night)) of trees is increasing and its impact on regional water and carbon balance has been recognized. Most of this knowledge has been generated in temperate or equatorial regions. Yet, little is known about E(night) and tree water use (Q) in semi-arid regions. We investigated the influence of atmospheric conditions on daytime (Q(day)) and nighttime water transport (Q(night)) of Eucalyptus victrix L.A.S. Johnson & K.D. Hill growing over shallow groundwater (not >1.5 m in depth) in semi-arid tropical Australia. We recorded Q(day) and Q(night) at different tree heights in conjunction with measurements of stomatal conductance (g(s)) and partitioned E(night) from refilling processes. Q of average-sized trees (200-400 mm diameter) was 1000-3000 l month(-1), but increased exponentially with diameter such that large trees (>500 mm diameter) used up to 8000 l month(-1). Q was remarkably stable across seasons. Water flux densities (J(s)) varied significantly at different tree heights during day and night. We show that g(s) remained significantly different from zero and E(night) was always greater than zero due to vapor pressure deficits (D) that remained >1.5 kPa at night throughout the year. Q(night) reached a maximum of 50% of Q(day) and was >0.03 mm h(-1) averaged across seasons. Refilling began during afternoon hours and continued well into the night. Q(night) eventually stabilized and closely tracked D(night). Coupling of Q(night) and D(night) was particularly strong during the wet season (R2 = 0.95). We suggest that these trees have developed the capacity to withstand a pronounced desiccation-rehydration cycle in a semi-arid environment. Such a cycle has important implications for local and regional hydrological budgets of semi-arid landscapes, as large nighttime water fluxes must be included in any accounting.

  20. Cycles of activity in the Jovian atmosphere

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.

    2017-05-01

    Jupiter's banded appearance may appear unchanging to the casual observer, but closer inspection reveals a dynamic, ever-changing system of belts and zones with distinct cycles of activity. Identification of these long-term cycles requires access to data sets spanning multiple Jovian years, but explaining them requires multispectral characterization of the thermal, chemical, and aerosol changes associated with visible color variations. The Earth-based support campaign for Juno's exploration of Jupiter has already characterized two upheaval events in the equatorial and temperate belts that are part of long-term Jovian cycles, whose underlying sources could be revealed by Juno's exploration of Jupiter's deep atmosphere.

  1. The effects of knife cuts in the sub-paraventricular zone of the female rat hypothalamus on oestrogen-induced diurnal surges of plasma prolactin and LH, and circadian wheel-running activity.

    PubMed

    Watts, A G; Sheward, W J; Whale, D; Fink, G

    1989-08-01

    To investigate the role of suprachiasmatic efferent connections in the expression of diurnal hormone rhythms, the efferent pathway from the suprachiasmatic nucleus (the putative circadian generator in the rat) to the subparaventricular zone (the main terminal area of suprachiasmatic efferents) was disrupted using bilateral horizontal knife cuts in ovariectomized oestrogen-treated rats. The position of the knife cut was assessed by observing its effect on vasoactive intestinal polypeptide immunoreactivity (a marker for suprachiasmatic efferents into the sub-paraventricular zone). The size of both the diurnal plasma LH and prolactin surges was markedly and consistently reduced over the 3-week period following the lesion in animals with a total deafferentation of the subparaventricular zone, compared with sham-operated animals or lesioned animals with an intact subparaventricular zone. When lesioned animals were grouped according to the presence or absence of damage to the preoptic area, no significant differences were found in the sizes of the plasma hormone surges. When similar knife cuts were given to animals whose activity cycles were observed, no significant effects were noted in the ability of the animals to synchronize to a light/dark regime or to free-run in constant light conditions. These results suggest that the suprachiasmatic nucleus influences the diurnal surges of plasma LH and prolactin in oestrogen-treated ovariectomized rats, initially by an interaction with the subparaventricular zone and not by a direct influence on gonadotrophin-releasing hormone neurones or other more rostral structures.

  2. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  3. Prematurity, Birth Weight, and Socioeconomic Status Are Linked to Atypical Diurnal Hypothalamic-Pituitary-Adrenal Axis Activity in Young Adults.

    PubMed

    Winchester, Suzy Barcelos; Sullivan, Mary C; Roberts, Mary B; Granger, Douglas A

    2016-02-01

    In a prospective, case-controlled longitudinal design, 180 preterm and fullterm infants who had been enrolled at birth participated in a comprehensive assessment battery at age 23. Of these, 149 young adults, 34 formerly full-term and 115 formerly preterm (22 healthy preterm, 48 with medical complications, 21 with neurological complications, and 24 small for gestational age) donated five saliva samples from a single day that were assayed for cortisol to assess diurnal variation of the hypothalamic-pituitary-adrenal (HPA) axis. Analyses were conducted to determine whether prematurity category, birth weight, and socioeconomic status were associated with differences in HPA axis function. Pre- and perinatal circumstances associated with prematurity influenced the activity of this environmentally sensitive physiological system. Results are consistent with the theory of Developmental Origins of Health and Disease and highlight a possible mechanism for the link between prematurity and health disparities later in life.

  4. Solar activity cycle - History and predictions

    SciTech Connect

    Withbroe, G.L. )

    1989-12-01

    The solar output of short-wavelength radiation, solar wind, and energetic particles depends strongly on the solar cycle. These energy outputs from the sun control conditions in the interplanetary medium and in the terrestrial magnetosphere and upper atmosphere. Consequently, there is substantial interest in the behavior of the solar cycle and its effects. This review briefly discusses historical data on the solar cycle and methods for predicting its further behavior, particularly for the current cycle, which shows signs that it will have moderate to exceptionally high levels of activity. During the next few years, the solar flux of short-wavelength radiation and particles will be more intense than normal, and spacecraft in low earth orbit will reenter earlier than usual. 46 refs.

  5. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    NASA Astrophysics Data System (ADS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; Andriopoulou, Maria

    2016-11-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  6. Observations of Air Quality at the Edge of Kathmandu, Nepal, and the Diurnal Cycle of Air Pollution In and Around the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Prinn, R. G.; Regmi, R. P.

    2006-12-01

    The Kathmandu Valley is a bowl-shaped basin in the Nepal Himalaya, with a rapidly growing city surrounded by rice fields and steep terraced and forested mountain slopes. The valley's air quality is influenced by urban and rural emissions, nocturnal pooling of cold air, slope winds, and a daily exchange of air through mountain passes. To understand these processes and to inform air pollution policy in Nepal, we have carried out the most comprehensive study of air pollution in Nepal to date. During the 9-month dry season of 2004-2005, we carried out continuous measurements every minute of carbon monoxide, ozone, PM10, wind speed, wind direction, solar radiation, temperature, and humidity on the eastern edge of Kathmandu city, at a site that daily received air from both the city and rural areas. We recorded the diurnal cycle of the vertical temperature structure and stability with temperature loggers on towers and mountains. A sodar measured the mixed layer height and upper-level winds. 24-hour simultaneous bag sampling campaigns on mountain peaks, passes, the rural valley, and within the city provided glimpses of the spatial patterns of the diurnal cycle of CO -- a useful tracer of anthropogenic emissions. We measured winds on mountain passes and ozone on mountain peaks. At our main measurement site we found a daily-recurring pattern of CO and PM10, with an afternoon low showing rural background levels, even though the arriving air had traversed the city. This was followed by an evening peak starting at sunset, a second low late at night, and a morning peak enhanced by re-circulation. Pollutants emitted in the valley only traveled out of the valley between the late morning and sunset. During winter months, rush hour was outside of this period, enhancing the morning and evening peaks. Within the city, ozone dropped to zero at night. At mid-day we observed an ozone peak enhanced by photochemical production when the air mass that had been stagnant over the city swept

  7. A study of the combined impact of boundary layer height and near-surface meteorology on the CO diurnal cycle at a low mountaintop site using simultaneous lidar and in-situ observations

    NASA Astrophysics Data System (ADS)

    Pal, S.; Lee, T. R.; De Wekker, S. F. J.

    2017-09-01

    Evaluations of air pollutants and trace gas measurements over mountaintop sites and their application in inverse transport models to estimate regional scale fluxes are oftentimes challenging due to the influences associated with atmospheric transport at both local and regional scales. The objective of this study is to investigate the diurnal cycle pattern of CO mixing ratio over a low mountaintop influenced by: (1) two different convective boundary layer (CBL) regimes (shallow and deep) and associated growth rates over the mountaintop, (2) the combined effect of a deep CBL with and without diurnal wind shift, and (3) slope flows and associated air mass transport. For this purpose, we used simultaneous measurements of lidar-derived CBL heights, standard meteorological variables, and CO2 and CO mixing ratio from Pinnacles, a mountaintop monitoring site in the Appalachian Mountains. We used both water vapor and CO2 mixing ratio as tracers for upslope flow air masses. We used case studies to focus on two different scenarios of daytime CO mixing ratio variability: (1) a gradual increase in the morning with a maximum in the afternoon, and (2) a gradual decrease in the morning with a minimum in the late afternoon. The second scenario is similar to the CO variability observed atop tall towers in flat terrain. Using the lidar-derived CBL height evolution and in situ CO, CO2 and meteorological measurements over the mountaintop, we found that the CBL height dynamics, regional scale wind shift, and upslope flow air masses arriving at the mountaintop in the morning affect the CO mixing ratio variability during the remaining part of the diurnal cycle. These findings help introduce a conceptual framework that can explain and differentiate the opposite patterns (i.e. daytime increase versus daytime decrease) in the CO diurnal cycles over a mountaintop site affected by upslope flows and provide new roadmaps for monitoring and assimilating trace gas mixing ratios into applications

  8. Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO

    NASA Astrophysics Data System (ADS)

    van Stratum, B. J. H.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; van den Dries, K.; van Laar, T. W.; Martinez, M.; Lelieveld, J.; Diesch, J.-M.; Drewnick, F.; Fischer, H.; Hosaynali Beygi, Z.; Harder, H.; Regelin, E.; Sinha, V.; Adame, J. A.; Sörgel, M.; Sander, R.; Bozem, H.; Song, W.; Williams, J.; Yassaa, N.

    2012-06-01

    We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O3-NOx-VOC-HOx diurnal cycle during conditions characterized by a low NOx regime and small O3 tendencies (less than 1 ppb per hour). By focusing on the budget equations of chemical species in the mixed-layer model, we show that for species like O3, NO and NO2, the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the diel cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damköhler number to further determine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns.

  9. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2

    NASA Astrophysics Data System (ADS)

    Ganai, Malay; Krishna, R. Phani Murali; Mukhopadhyay, P.; Mahakur, M.

    2016-08-01

    The impact of revised simplified Arakawa-Schubert (RSAS) convective parameterization scheme in Climate Forecast System (CFS) version 2 (CFSv2) on the simulation of active and break phases of Indian summer monsoon (ISM) has been investigated. The results revealed that RSAS showed better fidelity in simulating monsoon features from diurnal to daily scales during active and break periods as compared to SAS simulation. Prominent improvement can be noted in simulating diurnal phase of precipitation in RSAS over central India (CI) and equatorial Indian Ocean (EIO) region during active periods. The spatial distribution of precipitation largely improved in RSAS simulation during active and break episodes. CFSv2 with SAS simulation has noticeable dry bias over CI and wet bias over EIO region which appeared to be largely reduced in RSAS simulation during both phases of the intraseasonal oscillation (ISO). During active periods, RSAS simulates more realistic probability distribution function (PDF) in good agreement with the observation. The relative improvement has been identified in outgoing longwave radiation, monsoon circulations, and vertical velocities in RSAS over SAS simulation. The improvement of rainfall distribution appears to be contributed by proper simulation of convective rainfall in RSAS. CFSv2 with RSAS simulation is able to simulate observed diurnal cycle of rainfall over CI. It correctly reproduces the time of maximum rainfall over CI. It is found that the improved feedback between moisture and convective processes in RSAS may be attributed to its improved simulation. Besides improvement, RSAS could not reproduce proper tropospheric temperature, cloud hydrometeors over ISM domain which shows the scope for future development.

  10. POSSIBLE CHROMOSPHERIC ACTIVITY CYCLES IN AD LEO

    SciTech Connect

    Buccino, Andrea P.; Petrucci, Romina; Mauas, Pablo J. D.; Jofré, Emiliano

    2014-01-20

    AD Leo (GJ 388) is an active dM3 flare star that has been extensively observed both in the quiescent and flaring states. Since this active star is near the fully convective boundary, studying its long-term chromospheric activity in detail could be an appreciable contribution to dynamo theory. Here, using the Lomb-Scargle periodogram, we analyze the Ca II K line-core fluxes derived from CASLEO spectra obtained between 2001 and 2013 and the V magnitude from the ASAS database between 2004 and 2010. From both of these totally independent time series, we obtain a possible activity cycle with a period of approximately seven years and a less significant shorter cycle of approximately two years. A tentative interpretation is that a dynamo operating near the surface could be generating the longer cycle, while a second dynamo operating in the deep convection zone could be responsible for the shorter one. Based on the long duration of our observing program at CASLEO and the fact that we observe different spectral features simultaneously, we also analyze the relation between simultaneous measurements of the Na I index (R{sub D}{sup ′}), Hα, and Ca II K fluxes at different activity levels of AD Leo, including flares.

  11. Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulase-bisphosphate carboxylase activity

    SciTech Connect

    Berry, J.A.; Lorimer, G.H.; Pierce, J.; Seemann, J.R.; Meek, J.; Freas, S.

    1987-02-01

    The diurnal change in activity of ribulose 1,5-bisphosphate (Rbu-1,5-P/sub 2/) carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing); EC 4.1.1.39) of leaves of Phaseolus vulgaris is regulated (in part) by mechanisms that control the level of an endogenous inhibitor that binds tightly to the activated (carbamoylated) form of Rbu-1,5-P/sub 2/ carboxylase. This inhibitor was extracted from leaves and copurified with the Rbu-1,5-P/sub 2/ carboxylase of the leaves. Further purification by ion-exchange chromatography, adsorption to purified Rbu-1,5-P/sub 2/ carboxylase, barium precipitation, and HPLC separation yielded a phosphorylated compound that was a strong inhibitor of Rbu-1,5-P/sub 2/ carboxylase. The compound was analyzed by GC/MS, /sup 13/C NMR, and /sup 1/H NMR and shown to be 2-carboxyarabinitol 1-phosphate ((2-C-phosphohydroxymethyl)-D-ribonic acid). The structure of the isolated compound differs from the Rbu-1,5-P/sub 2/ carboxylase transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate only by the lack of the C-5 phosphate group. This difference results in a higher binding constant for the monophosphate compared with the bisphosphate. The less tightly bound compound acts in a light-dependent, reversible regulation of Rbu-1,5-P/sub 2/ carboxylase activity in vivo.

  12. Diurnal feeding rhythms in north sea copepods measured by Gut fluorescence, digestive enzyme activity and grazing on labelled food

    NASA Astrophysics Data System (ADS)

    Baars, M. A.; Oosterhuis, S. S.

    Results obtained with three methods for measuring feeding rhythms of copepods were different. Gut fluorescence showed clear day-night variation during 2 out of 3 cruises at the Oyster Ground in the North Sea. The species studied ( Pseudocalanus, Temora, Centropages, Calanus) had highest gut fluorescence during the night in May and September, the larger species demonstrating the largest difference. Gut fluorescence was positively correlated with ambient chlorophyll concentrations. Gut clearance rate was not dependent on temperature but on gut fullness. Gut passage times at high gut fluorescence levels were ˜25 minutes, at low levels 2 hours. In grazing experiments with 14C labelled food, filtering rates declined after 5 to 15 minutes, presumably before the first defecation of radioactive material. Filtering rates in Temora were higher at night than by day during May and July, but not in Pseudocalanus and Calanus during September. No diurnal pattern of amylase and tryptic activity was found, except in July for amylase but then probably due to vertical migration. The activity of these digestive enzymes appeared to be least and gut fluorescence most suitable for the detection of grazing rhythms. The occurrence of high fluorescence levels at night in all species studied suggests that intermittent feeding by copepods on phytoplankton is a general phenomenon from spring to autumn. The increase in foraging activity appeared to start well before complete darkness, during May and July even one hour or more before sunset.

  13. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism

    PubMed Central

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  14. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    PubMed

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  15. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  16. Forecasting Solar Activity and Cycle 23 Outlook

    NASA Astrophysics Data System (ADS)

    Schatten, K.; Sofia, S.

    1996-12-01

    "Precursor Techniques" have, in general, been fairly successful at predicting solar activity for a few solar cycles. These early precursors were based upon examining geomagnetic fluctuations features near solar minimum to ascertain the level of the next cycle's solar activity. In the 70's, the case was made that for these techniques to work, there would need to be a "connection" to the solar dynamo, and it was suggested that the precursors were "measuring" the Sun's polar field. Using proxies for the Sun's polar field, and the polar field itself, this "dynamo precursor method" successfully predicted the last two solar cycles. We will discuss the physical bases for these methods. We also shall present a generalization to a "SODA" (SOlar Dynamo Amplitude) index, which is used to estimate the amount of magnetism below the Sun's surface. This SODA index provides a measure of the amount of "magnetic fizz" below the Sun's surface, and also the state of the Sun's dynamo. Using these methods we predict cycle 23 will peak near 180 +/- 30 in smoothed F10.7 Radio Flux, and near 130 +/- 30 in smoothed Sunspot number in the year 2000.

  17. Diurnality of soil nitrous oxide (N2O) emissions

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Moyer, R.; Poe, A.; Pan, D.; Abraha, M.; Chen, J.; Zondlo, M. A.; Robertson, P.

    2015-12-01

    Soil emissions of nitrous oxide (N2O) are important contributors to the greenhouse gas balance of the atmosphere. Agricultural soils contribute ~65% of anthropogenic N2O emissions. Understanding temporal and spatial variability of N2O emissions from agricultural soils is vital for closure of the global N2O budget and the development of mitigation opportunities. Recent studies have observed higher N2O fluxes during the day and lower at night. Understanding the mechanisms of such diurnality may have important consequences for our understanding of the N cycle. We tested the hypothesis that diurnal cycles are driven by root carbon exudes that stimulate denitrification and therefore N2O production. Alternatively, we considered that the cycle could result from higher afternoon temperatures that accelerate soil microbial activity. We removed all plants from a corn field plot and left another plot untouched. We measured soil N2O emissions in each plot using a standard static chamber technique throughout the corn growing season. And also compared static chamber results to ecosystem level N2O emissions as measured by eddy covariance tower equipped with an open-path N2O sensor. We also measured soil and air temperatures and soil water and inorganic N contents. Soil N2O emissions followed soil inorganic N concentrations and in control plot chambers ranged from 10 μg N m-2 hr-1 before fertilization to 13×103 after fertilization. We found strong diurnal cycles measured by both techniques with emissions low during night and morning hours and high during the afternoon. Corn removal had no effect on diurnality, but had a strong effect on the magnitude of soil N2O emissions. Soil temperature exhibited a weak correlation with soil N2O emissions and could not explain diurnal patterns. Further studies are underway to explore additional mechanisms that might contribute to this potentially important phenomena.

  18. Diurnal and Nocturnal Flight Activity of Blow Flies (Diptera: Calliphoridae) in a Rainforest Fragment in Brazil: Implications for the Colonization of Homicide Victims.

    PubMed

    Soares, Thiago F; Vasconcelos, Simao D

    2016-11-01

    Nocturnal flight of blow flies (Diptera: Calliphoridae) is a controversial issue in forensic entomology. We performed two field experiments to investigate the diurnal and nocturnal activity of six blow fly species in a rainforest fragment in Brazil. Initially, nocturnal (17:30-05:30) versus diurnal (05:30-17:30) flight activity was investigated. Only 3.9% of adults were collected at night, mostly the native species Mesembrinella bicolor, and nocturnal oviposition did not occur. In the second experiment, collection of adults took place at the following intervals: 05:30-08:30, 08:30-11:30, 11:30-14:30, and 14:30-17:30. The proportions of adults did not differ significantly among the four diurnal intervals, except for Hemilucilia segmentaria, which was captured more frequently in the early morning. Calliphoridae has predominantly diurnal behavior, not laying eggs in darkness. The association of the native species M. bicolor, Hemilucilia semidiaphana, and H. segmentaria to forested areas reinforces the forensic relevance of data on their flight pattern.

  19. Diurnal blood pressure variability and physical activity measured electronically and by diary.

    PubMed

    Gretler, D D; Carlson, G F; Montano, A V; Murphy, M B

    1993-02-01

    In order for 24 h ambulatory blood pressure monitoring (ABPM) to be useful in clinical decision making, it is necessary to quantify ambient physical activity and to develop appropriate norms of ambulatory pressure for different levels of activity. The present study has compared the predictive value of physical activity determined by an electronic activity monitor or a written diary, for concomitantly recorded blood pressure during ABPM in healthy normotensive subjects. Each subject wore four activity monitors, on the right and left wrists, on the left ankle and at the waist, respectively. Linear regression analysis was performed for each subject to determine the correlation between ABPM data (systolic and diastolic blood pressure and heart rate) and activity data (obtained from diaries and the four monitors). Significant differences in the degree of correlation were found for both the location of the activity monitor and the time (1/2, 2, 5, 10, 15, and 30 min preceding blood pressure measurement) over which activity was averaged (P < .05 by two-way analysis of variance). The best correlation was obtained with the activity monitor worn on the dominant wrist, and when activity was averaged over 2 to 10 min preceding blood pressure determination, accounting for 18 to 69% (mean 36 +/- 5%) of systolic blood pressure variation. Diaries performed similarly in these well-motivated subjects. It is concluded that because of the significant interaction between activity and blood pressure, ABPM data should be interpreted only in the light of concomitant activity data.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Breast-Milk Cortisol and Cortisone Concentrations Follow the Diurnal Rhythm of Maternal Hypothalamus-Pituitary-Adrenal Axis Activity.

    PubMed

    van der Voorn, Bibian; de Waard, Marita; van Goudoever, Johannes B; Rotteveel, Joost; Heijboer, Annemieke C; Finken, Martijn Jj

    2016-11-01

    Very preterm infants often receive donor milk from mothers who deliver at term, but its composition differs from that of their own mother's milk. Because breast-milk glucocorticoids can support developing neonates, we explored concentration variability within and between mothers. We hypothesized that breast-milk glucocorticoid concentrations would be higher after very preterm delivery [gestational age (GA) <32 wk; study 1] and would follow the diurnal rhythm of maternal adrenocortical activity (study 2). Study 1 assessed differences in milk cortisol, cortisone, and the cortisone-to-(cortisol+cortisone) ratio of mothers who delivered at (median) GA: 28.6 wk or at term weekly during the first month postpartum. Study 2 assessed variations in milk cortisol, cortisone, and the cortisone-to-(cortisol+cortisone) ratio over 24 h, and tested Pearson correlations between milk and salivary concentrations in mothers who delivered at term (median GA: 38.9 wk) during week 4 postpartum. In these studies, foremilk glucocorticoids were measured by liquid chromatography-tandem mass spectrometry. Associations of milk cortisol, milk cortisone, and the milk cortisone-to-(cortisol+cortisone) ratio with prematurity (study 1) or collection time (study 2) were studied with longitudinal data analyses. In study 1, giving birth to a very preterm infant was associated with reductions in milk cortisol and cortisone concentrations of 50% (β: 0.50; 95% CI: 0.26, 0.99; P = 0.05) and 53% (β: 0.53; 95% CI: 0.30, 0.93; P = 0.03), respectively, when adjusted for collection time. In study 2, concentrations of milk cortisol and cortisone were associated with collection time (both P < 0.01), peaking at ∼0700. Milk and salivary concentrations of cortisol (r = 0.92, P < 0.01) and cortisone (r = 0.93, P < 0.01) as well as the cortisone-to-(cortisol+cortisone) ratio (r = 0.64, P < 0.01) were correlated with one another. Breast-milk glucocorticoid concentrations follow the diurnal rhythm of maternal

  1. (Un-)expected nocturnal activity in "Diurnal" Lemur catta supports cathemerality as one of the key adaptations of the lemurid radiation.

    PubMed

    Donati, Giuseppe; Santini, Luca; Razafindramanana, Josia; Boitani, Luigi; Borgognini-Tarli, Silvana

    2013-01-01

    The ability to operate during the day and at night (i.e., cathemerality) is common among mammals but has rarely been identified in primates. Adaptive hypotheses assume that cathemerality represents a stable adaptation in primates, while nonadaptive hypotheses propose that it is the result of an evolutionary disequilibrium arising from human impacts on natural habitats. Madagascar offers a unique opportunity to study the evolution of activity patterns as there we find a monophyletic primate radiation that shows nocturnal, diurnal, and cathemeral patterns. However, when and why cathemeral activity evolved in lemurs is the subject of intense debate. Thus far, this activity pattern has been regularly observed in only three lemurid genera but the actual number of lemur species exhibiting this activity is as yet unknown. Here we show that the ring-tailed lemur, Lemur catta, a species previously considered to be diurnal, can in fact be cathemeral in the wild. In neighboring but distinct forest areas these lemurs exhibited either mainly diurnal or cathemeral activity. We found that, as in other cathemeral lemurs, activity was entrained by photoperiod and masked by nocturnal luminosity. Our results confirm the relationship between transitional eye anatomy and physiology and 24-h activity, thus supporting the adaptive scenario. Also, on the basis of the most recent strepsirrhine phylogenetic reconstruction, using parsimony criterion, our findings suggest pushing back the emergence of cathemerality to stem lemurids. Flexible activity over 24-h could thus have been one of the key adaptations of the early lemurid radiation possibly driven by Madagascar's island ecology.

  2. Temporal, Spatial, and Diurnal Patterns in Avian Activity at the Shuttle Landing Facility, John F. Kennedy Space Center, Florida, USA

    NASA Technical Reports Server (NTRS)

    Larson, Vickie L.; Rowe, Sean P.; Breininger, David R.

    1997-01-01

    Spatial and temporal patterns in bird abundance within the five-mile airspace at the Shuttle Landing Facility (SLF) on John F. Kennedy Space Center (KSC), Florida, USA were investigated for purposes of quantifying Bird Aircraft Strike Hazards (BASH). The airspace is surrounded by the Merritt Island National Wildlife Refuge (MINWR) which provides habitat for approximately 331 resident and migratory bird species. Potential bird strike hazards were greatest around sunrise and sunset for most avian taxonomic groups, including wading birds, most raptors, pelicans, gulls/terns, shorebirds, and passerines. Turkey Vultures and Black Vultures were identified as a primary threat to aircraft operations and were represented in 33% of the samples. Diurnal vulture activity varied seasonally with the development of air thermals in the airspace surrounding the SLF. Variation in the presence and abundance of migratory species was shown for American Robins, swallows, and several species of shorebirds. Analyses of bird activities provides for planning of avionics operations during periods of low-dsk and allows for risk minimization measures during periods of high-risk.

  3. Nocturnal and diurnal activity of armored suckermouth catfish (Loricariidae: Pterygoplichthys) associated with wintering Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Nico, Leo G.

    2010-01-01

    Several Pterygoplichthys species, members of the Neotropical catfish family Loricariidae, have been widely introduced outside their native ranges. In this paper, I present observations on the diel activity pattern of non-native Pterygoplichthys, tentatively identified as P. disjunctivus, with respect to their attachment and grazing on endangered Florida manatees, Trichechus manatus latirostris. The study was conducted in December 2009 at Volusia Blue Spring, an artesianal spring system in the St. Johns River basin, Florida (USA). Supplemented by information gathered during previous visits to the spring site, this study revealed that adult Pterygoplichthys are active throughout the diel period (day, twilight and night). However, juvenile Pterygoplichthys were largely nocturnal and only at night did they consistently join adults in attaching to manatees. The juveniles generally remain hidden during the day, probably responding to presence of diurnal predators, mainly birds. Differences in diel behaviors among different Pterygoplichthys size classes in Florida are consistent with published observations on loricariids inhabiting clearwater streams within their native ranges.

  4. The Impact of the Diurnal Cycle of Clouds and Precipitation over the Maritime Continent on the Propagation of the MJO into the Western Pacific

    NASA Astrophysics Data System (ADS)

    Burleyson, C. D.; Hagos, S. M.; Feng, Z.

    2016-12-01

    The processes that determine the interaction between the islands of the maritime continent (MC) and the eastward propagation of the Madden-Julian Oscillation (MJO) are poorly understood. We are undertaking a series of observational and modeling analyses aimed at understanding how clouds and precipitation over the islands of the MC lead to changes in the intensity of the MJO (inferred by the amplitude of the Real-time Multivariate MJO index [RMM] and other metrics) as it crosses the MC. One component of our analysis uses the long-term measurements from the DOE Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) to examine cloud radiative effects as the MJO crosses the MC. Using the multi-year ARM dataset and a cloud resolving model (CRM), we show that the MJO interacts with the diurnal cycle of surface heating, clouds, and precipitation over the islands of the MC in a way that weakens it. Additionally, using a satellite climatology based on the TRMM 3B42 dataset we found that MJO episodes that weaken as they cross the MC are characterized by more frequent precipitation and warmer sea surface temperatures (SSTs) south of the equator and less frequent precipitation north of the equator compared to cases where the MJO intensifies. The north-south polarity in SSTs suggests a seasonal dependence in the ability of the MJO to cross the MC. This seasonality was confirmed by looking the seasonal distribution of changes in MJO amplitude as it crosses the MC. Consistent with the SST result, we found that MJO episodes that intensify as they cross the MC are more likely to occur during the northern hemisphere summer and less likely to occur during the northern hemisphere winter (Fig. 1). A regional CRM and satellite observations are used jointly to explore the processes responsible for this seasonality and to examine the impact of interannual oscillations such as ENSO and monsoons on the ability of the MJO to cross the MC. Fig. 1. The annual

  5. Semi-annual Sq-variation in solar activity cycle

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  6. Transcriptome Phase Distribution Analysis Reveals Diurnal Regulated Biological Processes and Key Pathways in Rice Flag Leaves and Seedling Leaves

    PubMed Central

    Li, Meina; Xing, Zhuo; Yang, Wenqiang; Chen, Guang; Guo, Han; Gong, Xiaojie; Du, Zhou; Zhang, Zhenhai; Hu, Xingming; Wang, Dong; Qian, Qian; Wang, Tai; Su, Zhen; Xue, Yongbiao

    2011-01-01

    Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological

  7. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

    PubMed

    Xu, Wenying; Yang, Rendong; Li, Meina; Xing, Zhuo; Yang, Wenqiang; Chen, Guang; Guo, Han; Gong, Xiaojie; Du, Zhou; Zhang, Zhenhai; Hu, Xingming; Wang, Dong; Qian, Qian; Wang, Tai; Su, Zhen; Xue, Yongbiao

    2011-03-02

    Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological

  8. Diurnal pituitary-adrenal activity during schedule-induced polydipsia of water and ethanol in cynomolgus monkeys (Macaca fascicularis)

    PubMed Central

    Helms, Christa M.; Gonzales, Steven W.; Green, Heather L.; Szeliga, Kendall T.; Rogers, Laura S.M.; Grant, Kathleen A.

    2013-01-01

    Rationale Intermittent delivery of an important commodity (e.g., food pellets) generates excessive behaviors as an adjunct to the schedule of reinforcement (adjunctive behaviors) that are hypothesized to be due to conflict between engaging and escaping a situation where reinforcement is delivered, but at sub-optimal rates. Objectives This study characterized the endocrine correlates during schedule-induced polydipsia (SIP) of water and ethanol using a longitudinal approach in non-human primates. Methods Plasma adrenocorticotropic hormone (ACTH) and cortisol were measured in samples from awake cynomolgus monkeys (Macaca fascicularis, 11 adult males) obtained at the onset, midday and offset of their 12-h light cycle. The monkeys were induced to drink water and ethanol (4% w/v, in water) using a fixed time (FT) 300-s interval schedule of pellet delivery. The induction fluid changed every 30 sessions in the following order: water, 0.5 g/kg ethanol, 1.0 g/kg ethanol, and 1.5 g/kg ethanol. Following induction, ethanol and water were concurrently available for 22 h/d. Results The FT300-s schedule gradually increased ACTH, but not cortisol, during water induction to a plateau sustained throughout ethanol induction in every monkey. Upon termination of the schedule, ACTH decreased to baseline and cortisol below baseline. Diurnal ACTH and cortisol were unrelated to the dose of ethanol, but ACTH rhythm flattened at 0.5 g/kg/d and remained flattened. Conclusions The coincidence of elevated ACTH with the initial experience of drinking to intoxication may have altered the mechanisms involved in the transition to heavy drinking. PMID:23508555

  9. Development of solar activity in 24th cycle: scenario of 15th cycle?

    NASA Astrophysics Data System (ADS)

    Lozytsky, V.; Efimenko, V.

    2012-12-01

    For more precise definition of prognosis of 24th cycle, the peculiarities of growth of solar activity was studied in previous 23 cycles. The interest was focused on a phase of sharp increasing of activity, beginning from 20th month of cycles. The sufficiently close correlation was found between smoothed Wolf's number in the cycle maximum Wmax and increment of sunspot's number on phase of activity increasing. From this analysis follows that for 24th cycle the following parameters are expected: Wmax = 105±11, аnd time of maximum - middle 2013. If this prognosis will be come true, the 24th cycle will be similar to cycle No. 15.

  10. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  11. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  12. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S A; Huang, Yongmei

    2016-01-11

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.

  13. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22–25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24–26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166

  14. Characteristics of high energy cosmic ray diurnal anisotropy on day-to-day basis

    NASA Astrophysics Data System (ADS)

    Tiwari, C. M.; Tiwari, D. P.

    2008-10-01

    Diurnal variation of cosmic ray intensity for the period of 1989 to 2000 at Kiel, Haleakakla, Rome, Hermanus, Calgary, and Goose Bay neutron monitors has been studied. Frequency histograms are generated for each year by using the daily values of amplitudes and phases. In the present analysis we have derived the yearly mean amplitude and phase of the diurnal variation of cosmic ray intensity. It has been concluded from the analysis that the diurnal amplitude is mostly concentrated in between the amplitude values of 0.1% and 0.4%, whereas the phase of diurnal anisotropy is concentrated in the belt of 100 to 225 degrees. As such, the various characteristics of long-term diurnal variation of cosmic ray intensity for the maxima of solar activity cycle 22 to the next maxima of solar activity cycle 23 have been studied. The minimum amplitudes are apparent for the minimum solar activity periods starting from 1995 and up to 1997 at Kiel, Haleakakla, Rome, Hermanus, Calgary and Goose Bay stations. The diurnal amplitude has been found to have almost recovered to its values observed during 1989 to 1990. It is also seen that the diurnal amplitudes are much larger by a factor of two at high/middle latitude stations as compared to that for low latitude stations, where the amplitudes are even ˜01% or less during 1996. The phase is significantly earlier during 1996 and 1997 with some significant change starting in 1995. As such, competitive is a continuous decreasing trend in the diurnal phase with smaller change at high/middle latitude and significantly much larger change at low latitudes.

  15. [Diurnal biting activity and seasonal density of Lutzomyia (C) orestes (Diptera: Psychodidae)].

    PubMed

    Lugo Mendoza, J; Aldecoa Gilí, T; Miqueli Negrín, E; Luis Pelegrino, J

    1991-01-01

    Daily bite activity and season density of Lutzomyia (C) orestes were recorded by means of the human bait technique in the Don Martin Cave, west of Havana Province, during one year. A correlation matrix test was carried out between density, temperature, relative humidity and rainfall.

  16. Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Chakraborty, A.; Venugopal, V.

    2016-11-01

    In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol-cloud interaction during the active-break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.

  17. Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Chakraborty, A.; Venugopal, V.

    2017-09-01

    In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol-cloud interaction during the active-break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration ( ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation ( VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.

  18. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity.

    PubMed Central

    Ciceri, P; Gianazza, E; Lazzari, B; Lippoli, G; Genga, A; Hoscheck, G; Schmidt, R J; Viotti, A

    1997-01-01

    In the maize endosperm, the Opaque2 (O2) basic leucine zipper transcriptional activator regulates the expression of a subset of the zein seed storage protein gene family. Immunodetection of wild-type or mutant O2 polypeptides fractionated by SDS-PAGE resolved a closely spaced doublet migrating in the 68- to 72-kD range, whereas by using isoelectric focusing, seven to nine isoforms were detected for each allele. Phosphatase treatment simplified the protein patterns to a single band corresponding to the nonphosphorylated component. In vivo and in vitro labeling confirmed that O2 can be phosphorylated. In protein gel blots probed with DNA, only the nonphosphorylated and hypophosphorylated O2 polypeptides were able to bind an oligonucleotide containing the O2 binding sequence. Upon in situ dephosphorylation of the focused isoforms by phosphatase treatment of the isoelectric focusing filter, the hyperphosphorylated forms acquired DNA binding activity. The ratio among the various isoforms remained constant throughout the developmental stages of endosperm growth but changed from daytime to nighttime, with a significant increase of the hyperphosphorylated forms during the night period. These results indicate that O2 exists in vivo as a pool of differently phosphorylated polypeptides and demonstrate that O2 DNA binding activity is modulated by a phosphorylation/dephosphorylation mechanism that appears to be influenced by environmental conditions. PMID:9014367

  19. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.

    PubMed

    López-Olmeda, Jose Fernando; Sánchez-Vázquez, Francisco Javier

    2009-02-01

    In addition to light cycles, temperature cycles are among the most important synchronizers in nature. Indeed, both clock gene expression and circadian activity rhythms entrain to thermocycles. This study aimed to extend our knowledge of the relative strength of light and temperature as zeitgebers for zebrafish locomotor activity rhythms. When the capacity of a 24:20 degrees C (thermophase:cryophase, referred to as TC) thermocycle to synchronize activity rhythms under LL was evaluated, it was found that most groups (78%) synchronized to these conditions. Under LD, when zebrafish were allowed to select the water temperature (24 degrees C vs. 20 degrees C), most fish selected the higher temperature and showed diurnal activity, while a small (25%) percentage of fish that preferred the lower temperature displayed nocturnal activity. Under conflicting LD and TC cycles, fish showed diurnal activity when the zeitgebers were in phase or in antiphase, with a high percentage of activity displayed around dawn and dusk (22% and 34% of the total activity for LD/TC and LD/CT, respectively). Finally, to test the relative strength of each zeitgeber, fish were subjected to ahemeral cycles of light (T=25 h) and temperature (T=23 h). Zebrafish synchronized mostly to the light cycle, although they displayed relative coordination, as their locomotor activity increased when light and thermophase coincided. These findings show that although light is a stronger synchronizer than temperature, TC cycles alone can entrain circadian rhythms and interfere in their light synchronization, suggesting the existence of both light- and temperature-entrainable oscillators that are weakly coupled.

  20. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  1. Power spectral analysis of heart rate variability for assessment of diurnal variation of autonomic nervous activity in guinea pigs.

    PubMed

    Akita, Megumi; Ishii, Keiji; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2002-01-01

    We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.

  2. Features of the Solar Active Cycles

    NASA Astrophysics Data System (ADS)

    Li, Kejun

    Characteristics of the sunspot cycle described by the international sunspot numbers are investigated based on the results obtained by Hathaway, Wilson, and Reichmann (1994). A long period of about 90 years is found to possibly exist for the sunspot number time series. Cycles that take less time to rise from minimum to maximum of cycle amplitude tend to have large amplitude, and those that have small maximum amplitude tend to run a long time to get ended. The sum of the sunspot numbers during the rising time of a solar cycle is almost equal to the total of the rest part of the solar cycle in spite of that the rising time of the solar cycle, or the cycle length is long or short. It is also found in this paper that the more recent cycles are larger in amplitude and shorter both in cycle length and the rising time of solar cycle than the earlier ones.

  3. Reproducibility of summertime diurnal precipitation over northern Eurasia simulated by CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Hirota, N.; Takayabu, Y. N.

    2015-12-01

    Reproducibility of diurnal precipitation over northern Eurasia simulated by CMIP5 climate models in their historical runs were evaluated, in comparison with station data (NCDC-9813) and satellite data (GSMaP-V5). We first calculated diurnal cycles by averaging precipitation at each local solar time (LST) in June-July-August during 1981-2000 over the continent of northern Eurasia (0-180E, 45-90N). Then we examined occurrence time of maximum precipitation and a contribution of diurnally varying precipitation to the total precipitation.The contribution of diurnal precipitation was about 21% in both NCDC-9813 and GSMaP-V5. The maximum precipitation occurred at 18LST in NCDC-9813 but 16LST in GSMaP-V5, indicating some uncertainties even in the observational datasets. The diurnal contribution of the CMIP5 models varied largely from 11% to 62%, and their timing of the precipitation maximum ranged from 11LST to 20LST. Interestingly, the contribution and the timing had strong negative correlation of -0.65. The models with larger diurnal precipitation showed precipitation maximum earlier around noon. Next, we compared sensitivity of precipitation to surface temperature and tropospheric humidity between 5 models with large diurnal precipitation (LDMs) and 5 models with small diurnal precipitation (SDMs). Precipitation in LDMs showed high sensitivity to surface temperature, indicating its close relationship with local instability. On the other hand, synoptic disturbances were more active in SDMs with a dominant role of the large scale condensation, and precipitation in SDMs was more related with tropospheric moisture. Therefore, the relative importance of the local instability and the synoptic disturbances was suggested to be an important factor in determining the contribution and timing of the diurnal precipitation. Acknowledgment: This study is supported by Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology

  4. Features of the solar active cycles.

    NASA Astrophysics Data System (ADS)

    Li, Kejun

    1999-12-01

    Characteristics of the sunspot cycle described by the international sunspot numbers are investigated based on the results obtained by Hathaway, Wilson, and Reichmann (1994). A long period of about 90 years is found to possibly exist for the sunspot number time series. Cycles that take less time to rise from minimum to maximum of cycle amplitude tend to have large amplitude, and those that have small maximum amplitude tend to run a long time to get ended. It is also found that the more recent cycles are larger in amplitude and shorter both in cycle length and the rising time of solar cycle than the earlier ones.

  5. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila.

    PubMed

    Cusumano, Paola; Klarsfeld, André; Chélot, Elisabeth; Picot, Marie; Richier, Benjamin; Rouyer, François

    2009-11-01

    Morning and evening circadian oscillators control the bimodal activity of Drosophila in light-dark cycles. The lateral neurons evening oscillator (LN-EO) is important for promoting diurnal activity at dusk. We found that the LN-EO autonomously synchronized to light-dark cycles through either the cryptochrome (CRY) that it expressed or the visual system. In conditions in which CRY was not activated, flies depleted for pigment-dispersing factor (PDF) or its receptor lost the evening activity and displayed reversed PER oscillations in the LN-EO. Rescue experiments indicated that normal PER cycling and the presence of evening activity relied on PDF secretion from the large ventral lateral neurons and PDF receptor function in the LN-EO. The LN-EO thus integrates light inputs and PDF signaling to control Drosophila diurnal behavior, revealing a new clock-independent function for PDF.

  6. Too hot to die? The effects of vegetation shading on past, present, and future activity budgets of two diurnal skinks from arid Australia.

    PubMed

    Grimm-Seyfarth, Annegret; Mihoub, Jean-Baptiste; Henle, Klaus

    2017-09-01

    Behavioral thermoregulation is an important mechanism allowing ectotherms to respond to thermal variations. Its efficiency might become imperative for securing activity budgets under future climate change. For diurnal lizards, thermal microhabitat variability appears to be of high importance, especially in hot deserts where vegetation is highly scattered and sensitive to climatic fluctuations. We investigated the effects of a shading gradient from vegetation on body temperatures and activity timing for two diurnal, terrestrial desert lizards, Ctenotus regius, and Morethia boulengeri, and analyzed their changes under past, present, and future climatic conditions. Both species' body temperatures and activity timing strongly depended on the shading gradient provided by vegetation heterogeneity. At high temperatures, shaded locations provided cooling temperatures and increased diurnal activity. Conversely, bushes also buffered cold temperature by saving heat. According to future climate change scenarios, cooler microhabitats might become beneficial to warm-adapted species, such as C. regius, by increasing the duration of daily activity. Contrarily, warmer microhabitats might become unsuitable for less warm-adapted species such as M. boulengeri for which midsummers might result in a complete restriction of activity irrespective of vegetation. However, total annual activity would still increase provided that individuals would be able to shift their seasonal timing towards spring and autumn. Overall, we highlight the critical importance of thermoregulatory behavior to buffer temperatures and its dependence on vegetation heterogeneity. Whereas studies often neglect ecological processes when anticipating species' responses to future climate change the strongest impact of a changing climate on terrestrial ectotherms in hot deserts is likely to be the loss of shaded microhabitats rather than the rise in temperature itself. We argue that conservation strategies aiming at

  7. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin.

    PubMed

    Solarewicz, Julia Z; Angoa-Perez, Mariana; Kuhn, Donald M; Mateika, Jason H

    2015-01-01

    We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2(+/+)) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2(-/-)). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2(+/+) and Tph2(-/-) mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2(+/+) compared with the Tph2(-/-) mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2(+/+) compared with the Tph2(-/-) mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature.

  8. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin

    PubMed Central

    Solarewicz, Julia Z.; Angoa-Perez, Mariana; Kuhn, Donald M.; Mateika, Jason H.

    2016-01-01

    We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2+/+) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2−/−). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2+/+ and Tph2−/− mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2+/+ compared with the Tph2−/− mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2+/+ compared with the Tph2−/− mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature. PMID:25394829

  9. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Sano, Toshio; Kondo, Noriaki; Hasezawa, Seiichiro

    2010-01-01

    Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.

  10. Diurnally-Varying Lunar Hydration

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hurley, D.; Retherford, K. D.; Mandt, K.; Greathouse, T. K.; Farrell, W. M.; Vilas, F.

    2016-12-01

    Dayside, non-polar lunar hydration signatures have been observed by a handful of instruments and present insights into the lunar water cycle. In this study, we utilize the unique measurements from the current Lunar Reconnaissance Orbiter (LRO) mission to study the phenomenon of diurnally-varying dayside lunar hydration. The Lyman Alpha Mapping Project (LAMP) onboard LRO senses a strong far-ultraviolet water absorption edge indicating hydration in small abundances in the permanently shadowed regions as well as on the lunar dayside. We report on diurnal variability in hydration in different terrain types. We investigate the importance of different sources of hydration, including solar wind bombardment and meteoroid bombardment, by observing trends during magnetotail and meteor stream crossings.

  11. Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation.

    PubMed

    Wang, Weibo; Wang, Yingcai; Shu, Xiao; Zhang, Quanfa

    2013-01-01

    The optimum growth of soil crust-forming cyanobacterial species occurs between 21 and 30 °C. When the temperature decreases below -5 °C, the liquid water in the cyanobacterial cells may freeze. In the natural environment, the temperature gradually decreases from autumn to winter, and the diurnal temperatures fluctuate enormously. It was hypothesized that the physiology of cyanobacterial cells changes in later autumn to acclimatize the cells to the upcoming freezing temperatures. In the present study, an incubation experiment in growth chambers was designed to stimulate the responses of cyanobacterial cells to diurnal temperature variations before freezing in late autumn. The results showed that "light" cyanobacterial soil crusts are more tolerant to diurnal temperature fluctuations than "dark" cyanobacterial soil crusts. After the first diurnal temperature cycle between 24 and -4 °C, the malondialdehyde (MDA) contents increased and the photosynthetic activity decreased. The superoxide dismutase activity increased, more extracellular polysaccharides (EPS) were secreted and the ratios of the light-harvesting and light-screening pigments decreased. With increasing numbers of diurnal temperature cycles, the MDA contents and photosynthetic activity gradually returned to their initial levels. Our results suggest that there are at least three pathways by which crust-forming cyanobacteria acclimate to the diurnal temperature cycles in the late autumn in the Hopq Desert, Northwest China. These three pathways include increased secretion of EPS, regulation of the ratios of light-harvesting and light-screening pigments, and activation of the antioxidant system. The results also indicate that late autumn is a critical period for the protection and restoration of the cyanobacterial soil crusts in the Hopq Desert.

  12. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  13. Gender differences in associations of diurnal blood pressure variation, awake physical activity, and sleep quality with negative affect: the work site blood pressure study.

    PubMed

    Kario, K; Schwartz, J E; Davidson, K W; Pickering, T G

    2001-11-01

    This study reports on the associations among depression, anxiety, awake physical activity, sleep quality (assessed by nocturnal physical activity), and diurnal blood pressure (BP) variation in a nonpsychiatric sample (The Work Site Blood Pressure Study). We conducted ambulatory BP (ABP) monitoring and actigraphy in 231 working men and women. Depression and anxiety were measured by the Brief Symptom Inventory. There were gender-specific associations between depression or anxiety and ABP parameters. In men, depression was associated positively with the sleep/awake systolic BP (SBP) ratio (r=0.24, P=0.006). After controlling for age, body mass index, and awake and sleep activity, depression remained significantly associated with the sleep/awake SBP ratio (r=0.25, P=0.005) and was also significantly related to sleep SBP (r=0.21, P=0.02). Anxiety, which was related to depression (r=0.73, P<0.0001), had a similar but slightly weaker pattern of associations with ABP and activity. These associations were not found in women, but there were associations of anxiety with awake SBP (r=0.24, P=0.01) and pulse rate (r=0.27, P=0.006). In conclusion, depression is associated with disrupted diurnal BP variation independent of ambulatory physical activity in working men, whereas anxiety is associated with awake SBP and pulse rate in women.

  14. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  15. Diurnal timescale feedbacks in the tropical cumulus regime

    NASA Astrophysics Data System (ADS)

    Ruppert, James H.

    2016-09-01

    Although the importance of the diurnal cycle in modulating clouds and precipitation has long been recognized, its impact on the climate system at longer timescales has remained elusive. Mounting evidence indicates that the diurnal cycle may substantially affect leading climate modes through nonlinear rectification. In this study, an idealized cloud-resolving model experiment is executed to isolate a diurnal timescale feedback in the shallow cumulus regime over the tropical warm pool. This feedback is isolated by modifying the period of the diurnal cycle (or removing it), which proportionally scales (or removes) the diurnal thermodynamic forcing that clouds respond to. This diurnal forcing is identified as covarying cycles of static stability and humidity in the lower troposphere, wherein the most unstable conditions coincide with greatest humidity each afternoon. This diurnal forcing yields deeper clouds and greater daily-mean cumulus heating than would otherwise occur, in turn reducing large-scale subsidence from day to day according to the "weak temperature gradient" approximation. This diurnal forcing therefore manifests as a timescale feedback by accelerating the onset of deep convection. The longwave cloud-radiation effect is found to amplify this timescale feedback, since the resulting invigoration of clouds (increased upper-cloud radiative cooling, with suppressed cooling below) scales with cloud depth (i.e., optical thickness), and hence with the magnitude of diurnal forcing. These findings highlight the pressing need to remedy longstanding problems related to the diurnal cycle in many climate models. Given the evident sensitivity of climate variability to diurnal processes, doing so may yield advances in climate prediction at longer timescales.

  16. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus.

    PubMed

    Shuboni, Dorela D; Agha, Amna A; Groves, Thomas K H; Gall, Andrew J

    2016-07-01

    Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways.

  17. Diurnal variations from muon data at Takeyama underground station

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Imai, K.; Imai, T.; Kudo, S.; Wada, M.

    1985-01-01

    An underground station, Takeyama, is introduced, and some results of the solar diurnal and semi-diurnal variations for the period between 1967 and 1984 are presented. There are clear tendencies of double and single solar cycle variations in the daily variations which are in good accord with those detected by other underground and neutron monitor observations.

  18. Cold and hunger induce diurnality in a nocturnal mammal.

    PubMed

    van der Vinne, Vincent; Riede, Sjaak J; Gorter, Jenke A; Eijer, Willem G; Sellix, Michael T; Menaker, Michael; Daan, Serge; Pilorz, Violetta; Hut, Roelof A

    2014-10-21

    The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light-dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep-wake patterns and metabolic phenotypes in humans.

  19. Properties and Surprises of Solar Activity XXIII Cycle

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2010-12-01

    The main properties of the 23rd cycle match almost completely those of average-magnitude solar cycles, and some of the features of the cycle may indicate a change in the generation mode of magnetic fields in the solar convection zone. If this is the case, the Sun enters a period of intermediate and weak cycles of solar activity (SA) in terms of the Wolf number, which may last for 3 to 6 solar cycles. The main development stages of solar cycle 23 are the following: minimum of solar cycle 22: April 1996 (W* = 8.0); maximum of the smoothed relative sunspot number: April 2000; global polarity reversal of the general solar magnetic field: July to December 2000; secondary maximum of the relative sunspot number: November 2001; maximum of the 10.7-cm radio flux: February 2002; phase of the cycle maximum: October 1999 to June 2002; beginning of the decrease phase: July 2002; the point of minimum of the current SA cycle: December 2008. Solar cycle 23 has presented two powerful flare-active sunspot groups, in September 2005 and December 2006 (+5.5 and +6.6 years from the maximum) which by flare potential occupy 4th and 20th place among the most flare-active regions for the last four solar cycles. The unprecedented duration of the relative sunspot numbers fall that has led to already record duration of the last solar cycle among authentic cycles (since 1849) became the next surprise of development of solar activity during the last cycle. The phase of the minimum began in May 2005 and lasted for 4.5 years. Thus, the new solar cycle 24 has begun in January 2009.

  20. The roles of negative affect and goal adjustment capacities in breast cancer survivors: Associations with physical activity and diurnal cortisol secretion.

    PubMed

    Castonguay, Andree L; Wrosch, Carsten; Sabiston, Catherine M

    2017-04-01

    This study examined whether within-person changes of breast cancer survivors' high-arousal negative affect (e.g., feeling scared, upset, anxious, or guilty) could predict high levels of diurnal cortisol secretion and moderate-to-vigorous physical activity (MVPA). In addition, goal adjustment capacities (goal disengagement and goal reengagement) were expected to buffer the effect of negative affect on cortisol and to increase its effect on MVPA. High-arousal negative affect, self-reported MVPA, area-under-the-curve of diurnal cortisol secretion, and goal adjustment capacities were assessed in a longitudinal sample of 145 female breast cancer survivors. Based on hierarchical linear modeling, breast cancer survivors reported increased levels of both MVPA and cortisol secretion if they experienced higher (as compared with lower) levels of high-arousal negative affect than their personal average. Furthermore, within-person negative affect was associated with: (a) higher MVPA among participants with high (but not low) goal reengagement capacities; and (b) elevated cortisol secretion among participants with low (but not high) goal reengagement capacities. High-arousal negative affect may exert differing functions among breast cancer survivors in that it can trigger adaptive health behaviors, yet simultaneously elevate diurnal cortisol secretion. In addition, being able to engage in new goals may be a necessary condition for breast cancer survivors to experience the beneficial behavioral effects of high-arousal negative affect, and it may prevent the adverse effect of negative affect on enhanced cortisol output. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    PubMed

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  2. Wheel Running Improves REM Sleep and Attenuates Stress-induced Flattening of Diurnal Rhythms in F344 Rats

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika

    2016-01-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542

  3. Rest-Activity Cycles in Childhood and Adolescent Depression.

    ERIC Educational Resources Information Center

    Armitage, Roseanne; Hoffmann, Robert; Emslie, Graham; Rintelman, Jeanne; Moore, Jarrette; Lewis, Kelly

    2004-01-01

    Objective: To quantify circadian rhythms in rest-activity cycles in depressed children and adolescents. Method: Restactivity cycles were evaluated by actigraphy over five consecutive 24-hour periods in 100 children and adolescents, including 59 outpatients with major depressive disorder (MDD) and 41 healthy normal controls. Total activity, total…

  4. Rest-Activity Cycles in Childhood and Adolescent Depression.

    ERIC Educational Resources Information Center

    Armitage, Roseanne; Hoffmann, Robert; Emslie, Graham; Rintelman, Jeanne; Moore, Jarrette; Lewis, Kelly

    2004-01-01

    Objective: To quantify circadian rhythms in rest-activity cycles in depressed children and adolescents. Method: Restactivity cycles were evaluated by actigraphy over five consecutive 24-hour periods in 100 children and adolescents, including 59 outpatients with major depressive disorder (MDD) and 41 healthy normal controls. Total activity, total…

  5. The transition from day-to-night activity is a risk factor for the development of CNS oxygen toxicity in the diurnal fat sand rat (Psammomys obesus).

    PubMed

    Eynan, Mirit; Biram, Adi; Mullokandov, Michael; Kronfeld-Schor, Noga; Paz-Cohen, Rotem; Menajem, Dvir; Arieli, Yehuda

    2017-02-03

    Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light-dark schedule (6 a.m. to 6 p.m. at 500 lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3 weeks, 5 days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24 h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50 mg/kg) or its vehicle was administered to the animals in both groups 20 min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin

  6. Improving motor activity assessment in depression: which sensor placement, analytic strategy and diurnal time frame are most powerful in distinguishing patients from controls and monitoring treatment effects.

    PubMed

    Reichert, Markus; Lutz, Alexander; Deuschle, Michael; Gilles, Maria; Hill, Holger; Limberger, Matthias F; Ebner-Priemer, Ulrich W

    2015-01-01

    Abnormalities in motor activity represent a central feature in major depressive disorder. However, measurement issues are poorly understood, limiting the use of objective measurement of motor activity for diagnostics and treatment monitoring. To improve measurement issues, especially sensor placement, analytic strategies and diurnal effects, we assessed motor activity in depressed patients at the beginning (MD; n=27) and after anti-depressive treatment (MD-post; n=18) as well as in healthy controls (HC; n=16) using wrist- and chest-worn accelerometers. We performed multiple analyses regarding sensor placements, extracted features, diurnal variation, motion patterns and posture to clarify which parameters are most powerful in distinguishing patients from controls and monitoring treatment effects. Whereas most feature-placement combinations revealed significant differences between groups, acceleration (wrist) distinguished MD from HC (d=1.39) best. Frequency (vertical axis chest) additionally differentiated groups in a logistic regression model (R2=0.54). Accordingly, both amplitude (d=1.16) and frequency (d=1.04) showed alterations, indicating reduced and decelerated motor activity. Differences between MD and HC in gestures (d=0.97) and walking (d=1.53) were found by data analysis from the wrist sensor. Comparison of motor activity at the beginning and after MD-treatment largely confirms our findings. Sample size was small, but sufficient for the given effect sizes. Comparison of depressed in-patients with non-hospitalized controls might have limited motor activity differences between groups. Measurement of wrist-acceleration can be recommended as a basic technique to capture motor activity in depressed patients as it records whole body movement and gestures. Detailed analyses showed differences in amplitude and frequency denoting that depressed patients walked less and slower.

  7. Improving Motor Activity Assessment in Depression: Which Sensor Placement, Analytic Strategy and Diurnal Time Frame Are Most Powerful in Distinguishing Patients from Controls and Monitoring Treatment Effects

    PubMed Central

    Deuschle, Michael; Gilles, Maria; Hill, Holger; Limberger, Matthias F.; Ebner-Priemer, Ulrich W.

    2015-01-01

    Background Abnormalities in motor activity represent a central feature in major depressive disorder. However, measurement issues are poorly understood, limiting the use of objective measurement of motor activity for diagnostics and treatment monitoring. Methods To improve measurement issues, especially sensor placement, analytic strategies and diurnal effects, we assessed motor activity in depressed patients at the beginning (MD; n=27) and after anti-depressive treatment (MD-post; n=18) as well as in healthy controls (HC; n=16) using wrist- and chest-worn accelerometers. We performed multiple analyses regarding sensor placements, extracted features, diurnal variation, motion patterns and posture to clarify which parameters are most powerful in distinguishing patients from controls and monitoring treatment effects. Results Whereas most feature-placement combinations revealed significant differences between groups, acceleration (wrist) distinguished MD from HC (d=1.39) best. Frequency (vertical axis chest) additionally differentiated groups in a logistic regression model (R2=0.54). Accordingly, both amplitude (d=1.16) and frequency (d=1.04) showed alterations, indicating reduced and decelerated motor activity. Differences between MD and HC in gestures (d=0.97) and walking (d=1.53) were found by data analysis from the wrist sensor. Comparison of motor activity at the beginning and after MD-treatment largely confirms our findings. Limitations Sample size was small, but sufficient for the given effect sizes. Comparison of depressed in-patients with non-hospitalized controls might have limited motor activity differences between groups. Conclusions Measurement of wrist-acceleration can be recommended as a basic technique to capture motor activity in depressed patients as it records whole body movement and gestures. Detailed analyses showed differences in amplitude and frequency denoting that depressed patients walked less and slower. PMID:25885258

  8. Esterase activity during the life cycle of Blastocladiella emersonii.

    PubMed Central

    Barbieri, C L; Camargo, E P

    1975-01-01

    Total esterase activity was measured in extracts on Blastocladiella throughout its life cycle by the degradation of alpha-naphthyl acetate. A fivefold incease in activity, apparently due to the synthesis of new enzymes, was found during sporulation. PMID:1194246

  9. Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.; Wilson, R. M.

    2006-01-01

    The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22.

  10. Diurnal Lightning Distributions as Observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS)

    NASA Technical Reports Server (NTRS)

    Bailey, Jeff C.; Blakeslee, Richard J.; Buechler, Dennis E.; Christian, Hugh J.

    2007-01-01

    Data obtained from the Optical Transient Detector (April 1995 to March 2000) and the Lightning Imaging Sensor (December 1997 to December 2005) satellites (70 and 35 inclination low earth orbits, respectively) are used to statistically determine the number of flashes in the annual and seasonal diurnal cycle as a function of local and universal time. The data are further subdivided by season, land versus ocean, northern versus southern hemisphere, and other spatial (e.g., continents) and temporal (e.g., time of peak diurnal amplitude) categories. The data include corrections for detection efficiency and instrument view time. Continental results display strong diurnal variation, with a lightning peak in the late afternoon and a minimum in late morning. In regions of the world dominated by large mesoscale convective systems the peak in the diurnal curve shifts toward late evening or early morning hours. The maximum diurnal flash rate occurs in June-August, corresponding to the Northern Hemisphere summer, while the minimum occurs in December-February. Summer lightning dominates over winter activity and springtime lightning dominates over autumn activity at most continental locations. This latter behavior occurs especially strongly over the Amazon region in South America in September-November. Oceanic lightning activity in winter and autumn tends to exceed that in summer and spring. Global lightning is well correlated in phase but not in amplitude with the Carnegie curve. The diurnal flash rate varies about 4-35 percent about the mean, while the Carnegie curve varies around 4-15 percent.

  11. Diurnal modulation of visual motion prediction.

    PubMed

    Takao, Motoharu; Miyajima, Hiroaki; Shinagawa, Takanori

    2015-01-01

    Predicting the future position of moving objects is an essential cognitive function used for many daily activities, such as driving, walking and reaching. The experiments described in this paper show a marked diurnal modulation of motion prediction in inflating image perception. This motion prediction was shown to be more accurate in the afternoon than in the morning. In contrast, such modulation could not be found in deflating image perception. Such diurnal fluctuations may be mediated by circadian properties of retinal cone photoreceptors.

  12. Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway.

    PubMed

    Plósz, Benedek Gy; Leknes, Henriette; Liltved, Helge; Thomas, Kevin V

    2010-03-15

    We present an assessment of the dynamics in the influent concentration of hormones (estrone, estriol) and antibiotics (trimethoprim, sulfamethoxazole, tetracycline, ciprofloxacin) in the liquid phase including the efficiency of biological municipal wastewater treatment. The concentration of estradiol, 17-alpha-ethinylestradiol, doxycycline, oxytetracycline, demeclocycline, chlortetracycline, cefuroxime, cyclophosphamide, and ifosfamide were below the limit of detection in all of the sewage samples collected within this study. Two different types of diurnal variation pattern were identified in the influent mass loads of selected antibiotics and hormones that effectively correlate with daily drug administration patterns and with the expected maximum human hormone release, respectively. The occurrence of natural hormones and antimicrobials, administered every 12 hours, shows a daily trend of decreasing contaminant mass load, having the maximum values in the morning hours. The occurrence of antibiotics, typically administered every 8 hours, indicates a daily peak value in samples collected under the highest hydraulic loading. The efficiency of biological removal of both hormones and antibiotics is shown to be limited. Compared to the values obtained in the influent samples, increased concentrations are observed in the biologically treated effluent for trimethoprim, sulfamethoxazole and ciprofloxacin, mainly as a result of deconjugation processes. Ciprofloxacin is shown as the predominant antimicrobial compound in the effluent, and it is present at quantities approximately 10 fold greater than the total mass of the other of the compounds due to poor removal efficiency and alternating solid-liquid partitioning behaviour. Our results suggest that, to increase the micro-pollutant removal and the chemical dosing efficiency in enhanced tertiary treatment, significant benefits can be derived from the optimisation of reactor design and the development of control schemes that

  13. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis.

    PubMed

    Matt, P; Schurr, U; Klein, D; Krapp, A; Stitt, M

    1998-12-01

    Diurnal changes in carbohydrates and nitrate reductase (NR) activity were compared in tobacco (Nicotiana tabacum. L.cv. Gatersleben) plants growing in a long (18 h light/6 h dark) and a short (6 h light/18 h dark) day growth regime, or after short-term changes in the light regime. In long-day-grown plants, source leaves contained high levels of sugars throughout the light and dark periods. In short-day-grown plants, levels of sucrose and reducing sugars were very low at the end of the night and, although they rose during the light period, remained much lower than in long days and declined to very low levels again by the middle of the night. Starch accumulated more rapidly in short-day-than long-day-grown plants. Starch was completely remobilised during the night in short days, but not in long days. A single short day/long night cycle sufficed to stimulate starch accumulation during the following light period. In long-day-grown plants, the Nia transcript level was high at the end of the night, decreased during the day, and recovered gradually during the night. In short-day-grown plants, the Nia transcript level was relatively low at the end of the night, decreased to very low levels at the end of the light period, increased to a marked maximum in the middle of the night, and decreased during the last 5 h of the dark period. In long-day-grown plants, NR activity in source leaves rose by 2- to 3-fold in the first part of the light period and decreased in the second part of the light period. In short-day-grown plants, NR activity was low at the end of the night, and only increased slightly after illumination. Dark inactivation of source-leaf NR was partially reversed in long-day-grown plants, but not in short day-grown plants. In both growth regimes, mutants with one instead of four functional copies of the Nia gene had a 60% reduction in maximum NR activity in the source leaves, compared to wild-type plants. The diurnal changes in NR activity were almost completely

  14. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  15. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  16. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle

    SciTech Connect

    Welkie, David; Zhang, Xiaohui; Markillie, Meng; Taylor, Ronald; Orr, Galya; Jacobs, Jon; Bhide, Ketaki; Thimmapuram, Jyothi; Gritsenko, Marina; Mitchell, Hugh; Smith, Richard D; Sherman, Louis A

    2014-12-29

    Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we were able to quantify the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions.

  17. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle

    DOE PAGES

    Welkie, David; Zhang, Xiaohui; Markillie, Meng; ...

    2014-12-29

    Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we were able to quantify the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions.

  18. The connection between stellar activity cycles and magnetic field topology

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-11-01

    Zeeman-Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.

  19. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  20. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  1. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measure diurnal emissions: (1) Diurnal measurements are based on a representative temperature cycle. For marine fuel tanks, the temperature cycle specifies fuel temperatures rather than ambient temperatures. The applicable temperature cycle is indicated in the following table: Table 1 to §...

  2. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measure diurnal emissions: (1) Diurnal measurements are based on a representative temperature cycle. For marine fuel tanks, the temperature cycle specifies fuel temperatures rather than ambient temperatures. The applicable temperature cycle is indicated in the following table: Table 1 to §...

  3. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  4. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.; Upton, L.

    2013-07-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun’s polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described. Komm, Howard, and Harvey (1993) Solar Phys. 147, 207. Cameron and Schussler (2012) Astron. Astrophys. 548, A57.

  5. Statistical pecularities of 24th cycle of solar activity

    NASA Astrophysics Data System (ADS)

    Efimenko, V.; Lozitsky, V.

    2016-06-01

    Current 24th cycle of solar activity is anomalous if following aspects: 1) it had non-monotonous phase of grown, and on different times of this phase it demonstrated peculiarities of both middle and weak cycle, 2) peak of cycle was two-top, and second top was higher than first on about 15 units of averages Wolf's number (in old classification) that is maximum value for all previous cycles, and 3) temporal interval between first and second maximums of cycle was 26 months that is second value from all 24 cycles. As to index of integral distribution of sunspot diameters, it was found earlier that this index α, in the average, equals about 6.0 for 7 previous cycles, in diameter range 50–90 Mm. New statistical analysis based on data for 2010–2015 allows to conclude that for 24th cycle α ≈ 5.8. Thus, dispersion of diameters of sunspots in 24th cycle is typical for majority of solar cycles.

  6. Microhabitat use and diurnal time-activity budgets of White-headed Ducks (Oxyura leucocephala Scopoli, 1769) wintering at Burdur Lake, Turkey.

    PubMed

    Nergiz, Humeyra; Tabur, Mehmet Ali; Ayvaz, Yusuf

    2013-08-01

    Diurnal time-activity budgets of White-headed Ducks were investigated with respect to sex and temporal environmental variables to document behavioral responses to winter conditions and nutritional requirements at Burdur Lake where the largest winter concentrations occur. Behaviors of males and females were recorded separately in randomly selected focal flocks during 1140 sessions. For the entire population a large proportion of time was spent resting. During the day they spent 61% of time resting, 22% feeding, 12% comfort and 5% in locomotion. Resting peaked in the middle of day while feeding was observed frequently in evening and morning. Time use did not differ significantly between sexes. However, it was detected that more time was spent feeding during windy days as wave-height increased.

  7. Active Suppression Of Vibrations In Stirling-Cycle Coolers

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.

    1995-01-01

    Report presents results of early research directed toward development of active control systems for suppression of vibrations in spacecraft Stirling-cycle cryocoolers. Researchers developed dynamical models of cryocooler compressor.

  8. Active Suppression Of Vibrations In Stirling-Cycle Coolers

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.

    1995-01-01

    Report presents results of early research directed toward development of active control systems for suppression of vibrations in spacecraft Stirling-cycle cryocoolers. Researchers developed dynamical models of cryocooler compressor.

  9. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  10. Airway physiology, autogenic drainage, and active cycle of breathing.

    PubMed

    Lapin, Craig D

    2002-07-01

    Airway clearance techniques are used to aid in mucus clearance in a variety of disease states. Autogenic drainage and active-cycle-of-breathing technique are 2 such modalities that rely heavily on basic airway physiology to enhance clearance. In this review I discuss the equal pressure point, huffing, and asynchronous and collateral ventilation, and review the literature and theory regarding autogenic drainage and active cycle of breathing. Selection of airway clearance techniques is discussed in the light of evidence-based medicine.

  11. High-resolution mapping of Martian water ice clouds using Mars Express OMEGA observations - Derivation of the diurnal cloud life cycle

    NASA Astrophysics Data System (ADS)

    Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre

    2016-10-01

    The mapping in space and time of water ice clouds can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice cloud index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) covering 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the cloud cover is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of clouds obtained around local time 14:00 with collocated TES cloud observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a cloud life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.

  12. Diurnal behavior and activity budget of the golden-crowned flying fox (Acerodon jubatus) in the Subic bay forest reserve area, the Philippines.

    PubMed

    Hengjan, Yupadee; Iida, Keisuke; Doysabas, Karla Cristine C; Phichitrasilp, Thanmaporn; Ohmori, Yasushige; Hondo, Eiichi

    2017-10-07

    Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8-17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior.

  13. Developing and evaluating a synoptic and diurnally varying time series of global fire emissions

    NASA Astrophysics Data System (ADS)

    Mu, M.; Randerson, J. T.; Giglio, L.; van der Werf, G. R.; Hyer, E.; Prins, E.

    2008-12-01

    To assess how recent changes in fire activity and burned area influence climate and human health, we need to improve our understanding of fire emissions. Information on synoptic and diurnal time scales may be particularly relevant for capturing interactions between climate drivers of fire activity and atmospheric transport of particulate and trace gas emissions. Developing emissions time series at this high temporal resolution requires combining active fire products with burned area information that is typically available only at monthly or annual intervals. Here we used several different active fire products from MODIS and GOES to distribute monthly fire emissions from Global Fire Emissions Database version 2 (GFEDv2) at a 3-hour time step. This process required several steps. First, we used the 8-day overpass corrected climate modeling grid active fires from MODIS AQUA and TERRA to distribute emissions during 8-day intervals within a year. In a second step we distributed emissions day by day within each 8-day interval using raw active fire detections from MODIS. In a final step we used GOES active fire observations to construct mean diurnal cycles for different vegetation types and latitude zones. These mean cycles were then applied to the daily emissions. The results show reasonable agreement of daily fire activity as compared with GOES, VIRS, and ATSR active fire products. We constructed mean diurnal cycles from GOES observations for three different land types: forest, shrublands and savannas, and grasses and crops in different latitude zones. We found that maximum fire activity occurred in the early afternoon 12:00-3:00 PM and minimum fire activity occurred at night from 00:00 to 6:00 AM. The diurnal cycles varied substantially in different land cover types and regions with boreal forest fires, for example, showing substantially more burning in late afternoon and night than fires in grassland or cropland areas. Fires in shrublands and savannas and grasslands

  14. Development of Solar Activity Cycle 24: Some Comments

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    Our forecast for the development phase of the solar cycle 23 turned out to be right on the mark; one of the very few to have acquired this status out of nearly 40 forecasts made for cycle 23. This is the first time in the 400 year history of the sunspot observations that a forecast was made for a solar cycle, it was defended against a severe peer criticism and came out true. We review the details of our actual forcast and how they fared as the events unfolded during cycle 23. We then consider the present status of the solar wind, the geomagnetic planetary indices, and the recovery of the galactic cosmic rays from cycle 23 modulation. Next, we draw inferences as to what to expect for the development phase of solar cycle 24. We are aware that several forecasts have already been made for the development of solar cycle 24 activity. They cover all possible scenarios, ranging from the most active to the quietest ever cycle. Clearly, some of these forecasts are unlikely to materialize. We discuss emerging details of the physical link between the observations and the workings of the solar dynamo.

  15. Na lidar Investigation of gravity wave forcing and its effects on tidal variability in mesopause region by nocturnal zonal momentum flux measurement and full-diurnal cycle lidar observations at Logan, UT (42N, 118W)

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Zhao, Y.; Pautet, P.; Cai, X.; Fish, C. S.; Taylor, M. J.

    2012-12-01

    Gravity wave forcing (GWF) is induced by the momentum deposition during the wave breaking event. It is believed to be the major dynamic source in the mesosphere and lower thermosphere (MLT) that affects not only the global climatological features but also the mesoscale events in this region. The Utah State University (USU) Na Doppler Temperature/Wind lidar set up zonal co-planner beam in June 2011 to measure the zonal momentum flux through zonal wind variance calculations. Meanwhile, the lidar's multi-day continuous full diurnal cycle observations provide opportunity to investigate the GWF on the tidal wave variability and propagations within the mesopause region. In this paper, we are going to discuss the nocturnal GWF revealed by the lidar momentum flux measurements in one collaborative continuous 5-day campaign with Advance Mesospheric Temperature Mapper (AMTM) at USU and the Meteor Wind Radar at Bear Lake Observatory (BLO) in August 2011. The AMTM also captured one intensive mesospheric "Bore" event during one night with strong GWF, while TIMED/SABER data indicates that the temperature inversion layer (thermal duct region for "Bore" propagation) is well over 1000 km in horizontal scale, extending beyond west coast of North America. The correlation between zonal GWF and tidal wave will be investigated, along with planetary wave behavior through this campaign.

  16. Diurnal activity of four species of thrips (Thysanoptera: Thripidae) and efficiencies of three nondestructive sampling techniques for thrips in mango inflorescences.

    PubMed

    Aliakbarpour, H; Rawi, Che Salmah Md

    2010-06-01

    Thrips cause considerable economic loss to mango, Mangifera indica L., in Penang, Malaysia. Three nondestructive sampling techniques--shaking mango panicles over a moist plastic tray, washing the panicles with ethanol, and immobilization of thrips by using CO2--were evaluated for their precision to determine the most effective technique to capture mango flower thrips (Thysanoptera: Thripidae) in an orchard located at Balik Pulau, Penang, Malaysia, during two flowering seasons from December 2008 to February 2009 and from August to September 2009. The efficiency of each of the three sampling techniques was compared with absolute population counts on whole panicles as a reference. Diurnal flight activity of thrips species was assessed using yellow sticky traps. All three sampling methods and sticky traps were used at two hourly intervals from 0800 to 1800 hours to get insight into diurnal periodicity of thrips abundance in the orchard. Based on pooled data for the two seasons, the CO2 method was the most efficient procedure extracting 80.7% adults and 74.5% larvae. The CO2 method had the lowest relative variation and was the most accurate procedure compared with the absolute method as shown by regression analysis. All collection techniques showed that the numbers of all thrips species in mango panicles increased after 0800 hours, reaching a peak between 1200 and 1400 hours. Adults thrips captured on the sticky traps were the most abundant between 0800-1000 and 1400-1600 hours. According to results of this study, the CO2 method is recommended for sampling of thrips in the field. It is a nondestructive sampling procedure that neither damages flowers nor diminishes fruit production. Management of thrips populations in mango orchards with insecticides would be more effectively carried out during their peak population abundance on the flower panicles at midday to 1400 hours.

  17. Diurnally Entrained Anticipatory Behavior in Archaea

    PubMed Central

    Whitehead, Kenia; Pan, Min; Masumura, Ken-ichi; Bonneau, Richard; Baliga, Nitin S.

    2009-01-01

    By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime. PMID:19424498

  18. Swine uterus carnosinase activity in oestrous cycle and early pregnancy.

    PubMed

    Jabłonowska, C; Piechocki, D; Wołos, A

    1985-01-01

    Carnosinase activity was determined in uterus extracts of sexually immature sows, on particular days of the oestrous cycle, and on the 20th and 30th day of pregnancy. In mature sows carnosinase activity in the uterus was on the average 4.5 times higher than in immature sows. Activity of the enzyme in the oestrous cycle increased from the zero day (first day of the heat) until 13th day, followed by a rapid decrease, reaching the lowest levels on the 17th day of the cycle (3 times lower on the average than on the zero day). On the last days of the cycle (20-21st) activity of carnosinase reached again levels similar to those of the zero day. Carnosinase activity in a uterus corner of pregnant sows (20th day of pregnancy) was over 4 times higher than in the "peak" day of the oestrous cycle (13th day), and over 12 times higher than in immature sows. Activity of the enzyme increased along with progressing pregnancy. It was found that activity of carnosinase in uterus corner of swines was related to the level of progesterone determined by other authors in the blood plasma.

  19. Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among down-regulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms.

    PubMed

    Cruces, Edgardo; Rautenberger, Ralf; Rojas-Lillo, Yesenia; Cubillos, Victor Mauricio; Arancibia-Miranda, Nicolás; Ramírez-Kushel, Eduardo; Gómez, Iván

    2017-02-01

    Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central-southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation. Major findings were that F v/F m, photosynthetic parameters (ETRmax, alpha, E k) and pigments in L. spicata showed an inverse relationship to the diurnal changes in solar radiation. Phlorotannins levels and antioxidant activity showed their highest values in treatment that included UV radiation. There was an increase in SOD and APX in relation at light stress, with a peak in activity between 5.2 and 10.1 W m(-2) of biologically effective dose. The increase in peroxidative damage was proportional to light dose. These results indicated that different light doses can trigger a series of complementary mechanisms of acclimation in L. spicata based on: (i) down-regulation of photochemistry activity and decrease in concentration of photosynthetic pigments; (ii) induction of phenolic compounds with specific UV-screening functions; and (iii) reactive oxygen species (ROS) scavenging activity via complementary repair of the oxidative damage through increased activity of antioxidant enzymes and potentially increased amounts of phenolic compounds.

  20. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species.

  1. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciat