Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens
2009-10-01
Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.
Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1.
Sharma, Priyanka; Chopra, Adity; Cameotra, Swaranjit Singh; Suri, C Raman
2010-11-01
A Gram-positive, Micrococcus sp. strain PS-1 capable of utilizing phenylurea herbicide diuron as a sole carbon source at a high concentration (up to 250 ppm) was isolated from diuron storage site by selective enrichment study. The taxonomic characterization with 16S rRNA gene sequencing (1,477 bp) identified PS-1 as a member of Micrococcus sp. It was studied for the degradation of diuron and a range of its analogues (monuron, linuron, monolinuron, chlortoluron and fenuron). The shake flasks experiments demonstrated fast degradation of diuron (up to 96% at 250 ppm within 30 h incubation) with the addition of small quantity (0.01%) of non-ionic detergent. The relative degradation profile by the isolate was in the order of fenuron > monuron > diuron > linuron > monolinuron > chlortoluron. Further, the biochemical characterization of catabolic pathway by spectroscopic and chromatographic techniques demonstrated that the degradation proceeded via formation of dealkylated metabolites to form 3,4-dichloroaniline (3,4-DCA). It was the major metabolite formed, associated with profound increase in degradation kinetics in presence of appropriate additive.
Feng, Guojun; Du, Liangwei; Zeng, Dongqiang
2017-01-01
A diuron-degrading endophyte DP8-1 was isolated from sugarcane root grown in diuron-treated soil in the present study. The endophyte was identified as Neurospora intermedia based on the morphological characteristics and sequence analysis. The fermentation parameters including temperature, pH, inoculation size, carbon source, and initial diuron concentration were also investigated for the optimization of degradation efficiency. The results indicated that strain DP8-1 was capable of degrading up to 99% diuron within 3 days under the optimal degrading condition. The study of degradation spectrum indicated that strain DP8-1 could also degrade and utilize fenuron, monuron, metobromuron, isoproturon, chlorbromuron, linuron, and chlortoluron as substrate for strain growth. On basis of liquid chromatography-mass spectrometry analysis for the products of the degradation of diuron, strain DP8-1 metabolized diuron to produce N-(3,4-dichlorophenyl)-urea and N-(3,4-dichlorophenyl)-N-methylurea through sequential N-dealkylations. In a soil bioaugmentation experiment, the inoculation of strain DP8-1 into diuron-treated soil effectively enhanced the disappearance rate of diuron. PMID:28809955
Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José
2008-06-01
A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.
Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.
2003-01-01
The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture. PMID:12620840
Integrated Risk Information System (IRIS)
Integrated Risk Information System ( IRIS ) Chemical Assessment Summary U.S . Environmental Protection Agency National Center for Environmental Assessment This IRIS Summary has been removed from the IRIS database and is available for historical reference purposes . ( July 2016 ) Linuron ; CASRN 330
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Linuron; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide.... Time-limited tolerances are established for residues of the herbicide linuron [3-(3,4-dichlorophenyl)-1... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea), including its metabolites and degradates...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
Molins, C; Hogendoorn, E A; Dijkman, E; Heusinkveld, H A; Baumann, R A
2000-02-11
The combination of microwave-assisted solvent extraction (MASE) and reversed-phase liquid chromatography (RPLC) with UV detection has been investigated for the efficient determination of phenylurea herbicides in soils involving the single-residue method (SRM) approach (linuron) and the multi-residue method (MRM) approach (monuron, monolinuron, isoproturon, metobromuron, diuron and linuron). Critical parameters of MASE, viz, extraction temperature, water content and extraction solvent were varied in order to optimise recoveries of the analytes while simultaneously minimising co-extraction of soil interferences. The optimised extraction procedure was applied to different types of soil with an organic carbon content of 0.4-16.7%. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. A comparative study between the applicability of RPLC-UV without and with the use of column switching for the processing of uncleaned extracts, was carried out. For some of the tested analyte/matrix combinations the one-column approach (LC mode) is feasible. In comparison to LC, coupled-column LC (LC-LC mode) provides high selectivity in single-residue analysis (linuron) and, although less pronounced in multi-residue analysis (all six phenylurea herbicides), the clean-up performance of LC-LC improves both time of analysis and sample throughput. In the MRM approach the developed procedure involving MASE and LC-LC-UV provided acceptable recoveries (range, 80-120%) and RSDs (<12%) at levels of 10 microg/kg (n=9) and 50 microg/kg (n=7), respectively, for most analyte/matrix combinations. Recoveries from aged residue samples spiked at a level of 100 microg/kg (n=7) ranged, depending of the analyte/soil type combination, from 41-113% with RSDs ranging from 1-35%. In the SRM approach the developed LC-LC procedure was applied for the determination of linuron in 28 sandy soil samples collected in a field study. Linuron could be determined in
Nour, Eman H; Elsayed, Tarek R; Springael, Dirk; Smalla, Kornelia
2017-06-01
On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.
Sniegowski, Kristel; Bers, Karolien; Ryckeboer, Jaak; Jaeken, Peter; Spanoghe, Pieter; Springael, Dirk
2011-01-01
On-farm biopurification systems (BPS) treat pesticide-contaminated wastewater of farms through biodegradation. Adding pesticide-primed soil has been shown to be beneficial for the establishment of pesticide-degrading populations in BPS. However, no data exist on the response of pesticide-degrading microbiota, either endogenous or introduced with pesticide-primed soil, when BPS are exposed to expected less favorable environmental conditions like cold periods, drought periods, and periods without a pesticide supply. Therefore, the response of microbiota mineralizing the herbicide linuron in BPS microcosm setups inoculated either with a linuron-primed soil or a nonprimed soil to a sequence of such less favorable conditions was examined. A period without linuron supply or a drought period reduced the size of the linuron-mineralizing community in both setups. The most severe effect was recorded for the setup containing nonprimed soil, in which stopping the linuron supply decreased the linuron degradation capacity to nondetectable levels. In both systems, linuron mineralization rapidly reestablished after conventional operation conditions were restored. A cold period and feeding with a pesticide mixture did not affect linuron mineralization. The changes in the linuron-mineralizing capacity in microcosms containing primed soil were associated with the dynamics of a particular Variovorax phylotype that previously had been associated with linuron mineralization. This study suggests that the pesticide-mineralizing community in BPS is robust in stress situations imposed by changes in environmental conditions expected to occur on farms. Moreover, it suggests that, in cases where effects do occur, recovery is rapid after restoring conventional operation conditions. PMID:21803897
EFFECTS OF LINDANE AND LINURON ON CALCIUM METABOLISM, MORPHOMETRY, AND THE KIDNEY
The effects of lindane and linuron on calcium metabolism, bone morphometry and the kidney. xperiments were performed to investigate the effects of lindane and linuron on calcium metabolism, femur morphometry and nephrotoxicity. ong-Evans hooded rats were dosed daily for 10 weeks ...
Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)
Sughrue, K.M.; Brittingham, M.C.; French, J.B.
2008-01-01
Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.
Gatidou, Georgia; Stasinakis, Athanasios S; Iatrou, Evangelia I
2015-01-01
Single and joint toxicity of three substituted urea herbicides, namely monolinuron [3-(4-chlorophenyl)-1-methoxy-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and diuron [1-(3,4 dichlorophenyl)-3,3 dimethyl urea], were studied. The duckweed Lemna minor and the luminescent bacterium Vibrio fischeri were used for the toxicity assessment and they were exposed to various concentrations of the herbicides, individually and in binary mixtures. The exposure time was 7d for the duckweed and 30 min for the bacterium. Estimation of EC50 values was performed by frond counting and reduction in light output for Lemna minor and Vibrio fischeri, respectively. Lemna minor was found to be much more sensitive than Vibrio fischeri to target compounds. The toxicity of the three herbicides applied solely was estimated to be in decreasing order: diuron (EC50=28.3 μg L(-1))≈linuron (EC50=30.5 μg L(-1))>monolinuron (EC50=300 μg L(-1)) for the duckweed and linuron (EC50=8.2 mg L(-1))>diuron (EC50=9.2 mg L(-1))>monolinuron (EC50=11.2 mg L(-1)) for the bacterium. Based on the environmental concentrations reported in the literature and EC50 values obtained from Lemna minor experiments, Risk Quotients (RQ) much higher than 1 were calculated for diuron and linuron. In Lemna minor experiments, combination of target compounds resulted to additive effects due to their same mode of phenylurea action on photosynthetic organisms. Regarding Vibrio fischeri, synergistic, additive and antagonistic effects were observed, which varied according to the concentrations of target compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Engelhardt, G.; Wallnöfer, P. R.; Plapp, R.
1971-01-01
Linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] induces the formation of an enzyme (acylamidase) responsible for the degradation of a large variety of different herbicides and fungicides of the acylanilide and phenylurea type. The former type is degraded at a rate at least 10 times higher than the latter. PMID:5119200
Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian
2015-05-01
Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.
Spirhanzlova, Petra; De Groef, Bert; Nicholson, Freda E; Grommen, Sylvia V H; Marras, Giulia; Sébillot, Anthony; Demeneix, Barbara A; Pallud-Mothré, Sophie; Lemkine, Gregory F; Tindall, Andrew J; Du Pasquier, David
2017-10-01
Several short-term whole-organism bioassays based on transgenic aquatic models are now under validation by the OECD (Organization for Economic Co-operation and Development) to become standardized test guidelines for the evaluation of the endocrine activity of substances. Evaluation of the endocrine disrupting capacity of pesticides will be a domain of applicability of these future reference tests. The herbicide linuron and the insecticide fenoxycarb are two chemicals commonly used in agricultural practices. While numerous studies indicate that linuron is likely to be an endocrine disruptor, there is little information available on the effect of fenoxycarb on vertebrate endocrine systems. Using whole-organism bioassays based on transgenic Xenopus laevis tadpoles and medaka fry we assessed the potential of fenoxycarb and linuron to disrupt thyroid, androgen and estrogen signaling. In addition we used in silico approach to simulate the affinity of these two pesticides to human hormone receptors. Linuron elicited thyroid hormone-like activity in tadpoles at all concentrations tested and, showed an anti-estrogenic activity in medaka at concentrations 2.5mg/L and higher. Our experiments suggest that, in addition to its previously established anti-androgenic action, linuron exhibits thyroid hormone-like responses, as well as acting at the estrogen receptor level to inhibit estrogen signaling. Fenoxycarb on the other hand, did not cause any changes in thyroid, androgen or estrogen signaling at the concentrations tested. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrated Risk Information System (IRIS)
Diuron ; CASRN 330 - 54 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )
Rodríguez-Cruz, M S; Ordax, J M; Arienzo, M; Sánchez-Martín, M J
2011-03-01
A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 m Lmin(-1) (all pesticides) and 3 m Lmin(-1) (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r=0.77; p<0.05) or the total volume leached (r=-0.78; p<0.05). The results reveal the efficacy of reactive wood barriers to decrease the leaching of pesticides from point sources of pollution depends on the type of wood, the hydrophobicity of the pesticide and the adopted water flow rate. Pine was more effective than oak in decreasing the leaching of hydrophobic pesticide linuron or in decreasing the maximum peak concentration of the less hydrophobic pesticides in soils. Efficacy of these wood barriers was limited for the least hydrophobic pesticide metalaxyl. Copyright © 2010 Elsevier Ltd. All rights reserved.
Describing the environmental fate of diuron in a tropical river catchment.
Camenzuli, Louise; Scheringer, Martin; Gaus, Caroline; Ng, Carla A; Hungerbühler, Konrad
2012-12-01
The use of the herbicide diuron on sugarcane fields along the river catchments of the Great Barrier Reef (GBR) in Australia is an issue of concern due to high levels of diuron reported in the GBR lagoon, and has recently led to a restriction on the use of diuron during the 2011/12 wet season. An important question in this context is how much diuron is mobilised from the agricultural area by strong rainfall and floods in the wet season and transferred to the GBR lagoon. We have set up a multimedia chemical fate model for a tropical catchment to describe the fate of diuron within the Tully River catchment, Queensland, Australia. The model includes highly variable rainfall based on meteorological data from the Tully River catchment and a flood water compartment on top of the agricultural soil that is present during times for which floods were reported. The model is driven by diuron application data estimated for the Tully River catchment and is solved for time-dependent diuron concentrations in agricultural soil and seawater. Model results show that on average 25% of the diuron applied every year is transferred to the GBR lagoon with rainwater and flood water runoff. Diuron concentrations estimated for the seawater range from 0.1 ng/L to 12 ng/L and are in good agreement with concentrations measured in the GBR lagoon. The uncertainty of the diuron concentrations estimated for seawater is approximately a factor of two and mainly derives from uncertainty in the diuron degradation half-life in soil, properties of the soil compartment such as organic matter content, and the speed of the seawater current removing diuron dissolved in seawater from the seawater compartment of the model. Copyright © 2012 Elsevier B.V. All rights reserved.
Isolation and characterization of diuron-degrading bacteria from lotic surface water.
Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques
2007-11-01
The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.
Đorđević, Jelena; Papp, Zsigmond; Guzsvány, Valéria; Švancara, Ivan; Trtić-Petrović, Tatjana; Purenović, Milovan; Vytřas, Karel
2012-01-01
This paper summarises the results of voltammetric studies on the herbicide 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (Linuron), using a carbon paste electrode containing tricresyl phosphate (TCP-CPE) as liquid binder. The principal experimental conditions, such as the pH effect, investigated in Britton-Robinson buffer solutions (pH 2.0–7.0), the peak characteristics for the analyte of interest, or instrumental parameters for the differential pulse voltammetric mode were optimized for the method. As found out, the best electroanalytical performance of the TCP-CPE was achieved at pH 2.0, whereby the oxidation peak of Linuron appeared at ca. +1.3 V vs. SCE. The analytical procedure developed offers good linearity in the concentration range of 1.25–44.20 μg mL−1 (1.77 × 10−4–5.05 × 10−6 mol L−1), showing—for the first time—the applicability of the TCP-CPE for anodic oxidations in direct voltammetry (without accumulation). The method was then verified by determining Linuron in a spiked river water sample and a commercial formulation and the results obtained agreed well with those obtained by the reference HPLC/UV determination. PMID:22368461
Bioremediation of diuron contaminated soils by a novel degrading microbial consortium.
Villaverde, J; Rubio-Bellido, M; Merchán, F; Morillo, E
2017-03-01
Diuron is a biologically active pollutant present in soil, water and sediments. It is persistent in soil, water and groundwater and slightly toxic to mammals and birds as well as moderately toxic to aquatic invertebrates. Its principal product of biodegradation, 3,4-dichloroaniline, exhibits a higher toxicity than diuron and is also persistent in the environment. On this basis, the objective of the study was to determine the potential capacity of a proposed novel diuron-degrading microbial consortium (DMC) for achieving not only diuron degradation, but its mineralisation both in solution as well as in soils with different properties. The consortium was tested in a soil solution where diuron was the only carbon source, and more than 98.8% of the diuron initially added was mineralised after only a few days. The consortium was composed of three diuron-degrading strains, Arthrobacter sulfonivorans, Variovorax soli and Advenella sp. JRO, the latter had been isolated in our laboratory from a highly contaminated industrial site. This work shows for the first time the potential capacity of a member of the genus Advenella to remediate pesticide-contaminated soils. However, neither of the three strains separately achieved mineralisation (ring- 14 C) of diuron in a mineral medium (MSM) with a trace nutrient solution (NS); combined in pairs, they mineralised 40% of diuron in solution, but the most relevant result was obtained in the presence of the three-member consortium, where complete diuron mineralisation was achieved after only a few days. In the presence of the investigated soils in suspension, the capacity of the consortium to mineralise diuron was evaluated, achieving mineralisation of a wide range of herbicides from 22.9 to 69.0%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution.
Feng, Jingwei; Zheng, Zheng; Luan, Jingfei; Li, Kunquan; Wang, Lianhong; Feng, Jianfang
2009-05-30
Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.
El-Fantroussi, Said
2000-01-01
Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3,4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37°C, 3,4-dichloroaniline was transformed only at 28°C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates. PMID:11097876
NDMA formation during chlorination and chloramination of aqueous diuron solutions.
Chen, Wei-Hsiang; Young, Thomas M
2008-02-15
Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California's water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron solutions under varied chlorine and chloramine conditions. NDMA formation was consistently observed even in the absence of added ammonia, which has usually been the source of the nitroso-nitrogen during chloramination of other precursors. It appears that both nitrogen atoms in NDMA are donated by diuron during chlorination in the absence of added ammonia. For a given chlorine and diuron dose, NDMA formation increased in the order OCl- < NH2Cl < NHCl2, a result consistentwith previous NDMAformation studies. Significant quantities of NDMA (170 ng/L) were produced during dichloramination of diuron using a low dichloramine concentration and a diuron concentration at the upper end of typically detected concentrations in California (20 microg/L), suggesting a need for further investigation to accurately assess the human health risks posed by diuron with respect to NDMA formation potential. A reaction pathway is proposed to provide a possible explanation for NDMA formation from diuron during chlorination or chloramination. The findings in this study identify a specific potential precursor of NDMA formation, one that arises from nonpoint sources. This further highlights the difficulties associated with determining the environmental safety of chemicals and their associated byproducts.
Influence of Nitrogen Source on NDMA Formation during Chlorination of Diuron
Chen, Wei-Hsiang; Young, Thomas M.
2009-01-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N′-(3,4-dichlorophenyl)-N, N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite < nitrate < ammonium for a given chlorine, nitrogen, and diuron dose. Formation of dichloramine seemed to fully explain enhanced NDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface and groundwater in nitrogen forms and concentrations and disinfection approaches, suggest strategies to reduce NDMA formation should vary with drinking water source. PMID:19457535
Influence of nitrogen source on NDMA formation during chlorination of diuron.
Chen, Wei-Hsiang; Young, Thomas M
2009-07-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N'-(3,4-dichlorophenyl)-N,N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite
Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).
Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves
2016-03-01
Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. Copyright © 2015 Elsevier Ltd. All rights reserved.
Linuron, a urea-based herbicide, is a weak antagonist for the androgen receptor. Previous studies in our lab have shown that in utero exposureresults in malformations of androgen dependent tissues in adult male offspring. The pattern of malformations, however, differs somewha...
Ellegaard-Jensen, Lea; Aamand, Jens; Kragelund, Birthe B; Johnsen, Anders H; Rosendahl, Søren
2013-11-01
Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.
Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon
Pantos, Olga; Morgan, Thomas C.; Rich, Virginia; Tonin, Hemerson; Bourne, David G.; Mercurio, Philip; Negri, Andrew P.; Tyson, Gene W.
2016-01-01
Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611
Marín-Benito, Jesús M; Herrero-Hernández, Eliseo; Andrades, M Soledad; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia
2014-04-01
Dissipation kinetics of pesticides belonging to three chemical groups (linuron, diazinon and myclobutanil) was studied in an unamended agricultural soil and in this soil amended with three organic residues: sewage sludge (SS), grape marc (GM) and spent mushroom substrate (SMS). The soils were incubated with the residues outdoors for one and 12 months. Mineralized, extracted and non-extractable fractions were also studied for (14)C-linuron and (14)C-diazinon. The dissipation kinetics was fitted to single first-order or first-order multicompartment models. The dissipation rate (k) decreased in the order diazinon>linuron>myclobutanil, and DT50 values decreased for linuron (1.6-4.8 times) or increased for myclobutanil (1.7-2.6 times) and diazinon (1.8-2.3 times) in the amended soils relative to the unamended soil. The lowest DT50 values for the three pesticides were recorded in GM-amended soil, and the highest values in SMS-amended soil. After 12 months of soil incubation, DT50 values decreased in both the unamended and amended soils for linuron, but increased for the unamended and SMS-amended soil for diazinon and myclobutanil. A certain relationship was observed between the sorption of pesticides by the soils and DT50 values, although it was significant only for myclobutanil (p<0.05). Dissipation mechanism recorded the lowest mineralization of (14)C-pesticides in the GM-soil despite the highest dissipation rate in this soil. The extracted (14)C-residues decreased with incubation time, with increased formation of non-extractable residues, higher in amended soils relative to the unamended soil. Soil dehydrogenase activity was, in general, stimulated by the addition of the organic amendments and pesticides to the soil after one month and 12 months of incubation. The results obtained revealed that the simultaneous use of amendments and pesticides in soils requires a previous study in order to check the environmental specific persistence of these compounds and their
Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa
2017-07-01
The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha -1 . The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y II , and F v /F m ) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action. Copyright © 2017 Elsevier Inc. All rights reserved.
In utero exposure to linuron, an urea-based herbicide, results in a pattern of malformations of androgen-dependent tissues in adult male rat offspring resembling that produced by some phthalate esters which are known to decrease fetal testosterone production. This study investiga...
Coelho-Moreira, Jaqueline da Silva; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina
2013-01-01
The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products. PMID:24490150
Williams, S.L.; Carranza, A.; Kunzelman, J.; Datta, S.; Kuivila, K.M.
2009-01-01
Early indicators of salt marsh plant stress are needed to detect stress before it is manifested as changes in biomass and coverage. We explored a variety of leaf-level spectral reflectance and fluorescence variables as indicators of stress in response to the herbicide diuron. Diuron, a Photosystem II inhibitor, is heavily used in areas adjacent to estuaries, but its ecological effects are just beginning to be recognized. In a greenhouse experiment, we exposed Spartina foliosa, the native cordgrass in California salt marshes, to two levels of diuron. After plant exposure to diuron for 28 days, all spectral reflectance indices and virtually all fluorescence parameters indicated reduced pigment and photosynthetic function, verified as reduced CO2 assimilation. Diuron exposure was not evident, however, in plant morphometry, indicating that reflectance and fluorescence were effective indicators of sub-lethal diuron exposure. Several indices (spectral reflectance index ARI and fluorescence parameters EQY, Fo, and maximum rETR) were sensitive to diuron concentration. In field trials, most of the indices as well as biomass, % cover, and canopy height varied predictably and significantly across a pesticide gradient. In the field, ARI and Fo regressed most significantly and strongly with pesticide levels. The responses of ARI and Fo in both the laboratory and the field make these indices promising as sensitive, rapid, non-destructive indicators of responses of S. foliosa to herbicides in the field. These techniques are employed in remote sensing and could potentially provide a link between landscapes of stressed vegetation and the causative stressor(s), which is crucial for effective regulation of pollution. ?? 2008 Coastal and Estuarine Research Federation.
Hladik, Michelle; Calhoun, Daniel L.
2012-01-01
A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.
Reactivity of organic micropollutants with ozone: A kinetic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, A.; Bolzacchini, E.; Meinardi, S.
1995-12-01
Studies about the chemical reactivity of compounds widely used in the environment are needed. The chemical reactivity of triazines (simazine, atrazine, terbutylazine) and phenylureas (linuron and diuron) was studied. The kinetics of the oxidation of the triazines and phenylureas with ozone at pH 3 and the kinetics of the saturation of the solution with ozone were evaluated. These data may be useful for the prediction of the persistency of these compuonds in the environment and for the treatment of wastewaters contaminated with these compounds. The solution was presaturated with ozone before the addition of the substrate, and the reaction constantsmore » for the pseudo first order kinetics -d[substrate]/dt = k{sub app} [substrate] at 298{degree}K were obtained, assuming a steady state concentration of ozone of 1.91 10{sup -4} mol L{sup -1} for the phenylureas and of 3.03 10{sup -4} and L{sup -1} for the triazines. The data obtained were: atrazine k = 6.86 (L mol{sup -1}s{sup -1}); simazine: 9.26; t-butylazine 7.26; linuron 11.00; diuron 43.90. The activation parameters for the reaction of simazine were {Delta}H{sup =} = 9.35 kcal mol{sup -1} and {Delta}S{sup =} = -22.3 cal mol{sup -1} {degree}K{sup -1} and for the reaction of diuron were {Delta}H{sup =} = 16.83 Kcal mol{sup -1}, {Delta}S{sup =} = 5.696 cal mol{sup -1} {degree}K{sup -1}.« less
Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils.
Kasozi, Gabriel N; Nkedi-Kizza, Peter; Agyin-Birikorang, Sampson; Zimmerman, Andrew R
2010-01-27
The adsorption and degradation of the pesticide diuron in carbonatic and noncarbonatic soils were investigated to better understand the fate and transport of diuron in the environment. Batch adsorption experiments yielded isotherms that were well-described by the linear model. Adsorption coefficients normalized to soil organic carbon content (K(oc)) were lowest for carbonatic soils, averaging 259 +/- 48 (95% CI), 558 +/- 109, 973 +/- 156, and 2090 +/- 1054 for carbonatic soils, Histosols, Oxisols, and Spodosols, respectively. In addition, marl-carbonatic soils had much lower K(oc) values (197 +/- 27) than nonmarl-carbonatic soils. Diuron degradation data fit a first-order reaction kinetics model, yielding half-lives in soils ranging from 40 to 267 days. There was no significant difference between the average diuron degradation rate coefficients of each of the soil groups studied. Given the low adsorption capacity of carbonatic soils, it may be advisable to lower herbicide application rates in agricultural regions with carbonatic soils such as southern Florida to protect aquatic ecosystems and water quality.
Phenylurea herbicide sorption to biochars and agricultural soil
WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.
2016-01-01
Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514
Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.
Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S
2018-03-01
Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tandon, Shishir; Pant, Ravi
2017-10-10
The phenylureas group includes persistent herbicides which are major pollutants to soil and water. Dissipation kinetics of diuron in different soils under sugarcane field conditions was investigated. Diuron was extracted with acetone and florisil solid phase extraction clean-up and characterized by high-performance liquid chromatography-UV. Diuron persisted for more than 100 days and dissipation followed monophasic first-order kinetics. Persistence was more in sandy loam compared to silty clay loam soil. Half-life of diuron in silty clay loam soil was 22.57 and 32.37 days and in sandy loam was 28.35 and 43.93 days at 2 and 4 kg ha-1applications, respectively. Average recovery in soil, bagasse, leaf-straw and juice ranged from 75.95% to 84.20%, 80.15% to 89.35%, 77.46% to 86.19% and 81.88% to 92.68%, respectively. The quantitation limits for soil, bagasse, leaf-straw and juice were 0.01, 0.03, 0.04 μg g -1 and 0.008 μg mL -1 , respectively. Application of diuron inhibited growth of soil microbes initially but they recovered later. At harvest, diuron residues were below maximum residue limits in all samples. The study revealed that under subtropical conditions, diuron is safe for use in weed management and would not pose any residual/environmental problem and that sugarcane crop could be used safe for human/animal consumption.
Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni
2016-12-14
Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.
Title: CELLULAR AND MOLECULAR MECHANISMS OF ACTION OF LINURON: AN ANTIANDROGENIC HERBICIDE THAT PRODUCES REPRODUCTIVE MALFORMATIONS IN MALE RATS. C Lambright1, J Ostby, K Bobseine, V Wilson, AK Hotchkiss2, PC Mann3 and LE Gray Jr1.
Antiandrogenic chemicals alter sex d...
Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass.
Negri, Andrew P; Flores, Florita; Mercurio, Phil; Mueller, Jochen F; Collier, Catherine J
2015-08-01
Photosystem II herbicides from agricultural sources have been detected throughout nearshore tropical habitats including seagrass meadows. While PSII herbicides have been shown to inhibit growth in microalgae at low concentrations, the potential impacts of chronic low concentration exposures to seagrass health and growth have not been investigated. Here we exposed two tropical seagrass species Halodule uninervis and Zostera muelleri to elevated diuron concentrations (from 0.3 to 7.2μgl(-1)) over a 79-day period followed by a 2-week recovery period in uncontaminated seawater. PAM fluorometry demonstrated rapid effect of diuron on photosystem II (PSII) in both seagrass species at 0.3μgl(-1). This effect included significant inhibition of photosynthetic efficiency (ΔF/Fm') and inactivation of PSII (Fv/Fm) over the 11 week exposure period. Significant mortality and reductions in growth was only observed at the highest exposure concentration of 7.2μgl(-1) diuron. However, biochemical indicators demonstrated that the health of seagrass after this prolonged exposure was significantly compromised at lower concentrations. For example, the drop in C:N ratios (0.6μgl(-1)) and reduced δ(13)C (1.7μgl(-1)) in seagrass leaves indicated reduced C-assimilation from photosynthesis. Critically, the energetic reserves of the plants (as measured by starch content in the root-rhizome complex) were approximately halved following diuron exposure at and above 1.7μgl(-1). During the 2-week recovery period, the photosynthetic capacity of the seagrass improved with only plants from the highest diuron treatment still exhibiting chronic damage to PSII. This study shows that, although seagrass may survive prolonged herbicide exposures, concentrations ≥0.6μgl(-1) diuron equivalents cause measureable impacts on energetic status that may leave the plants vulnerable to other simultaneous stressors. For example, tropical seagrasses have been heavily impacted by reduced light from coastal
Sorption kinetics of diuron on volcanic ash derived soils.
Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente
2013-10-15
Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Felício, Andréia Arantes; Freitas, Juliane Silberschmidt; Scarin, Jéssica Bolpeti; de Souza Ondei, Luciana; Teresa, Fabrício Barreto; Schlenk, Daniel; de Almeida, Eduardo Alves
2018-03-01
Diuron is one of the most used herbicide in the world, and its field application has been particularly increased in Brazil due to the expansion of sugarcane crops. Diuron has often been detected in freshwater ecosystems and it can be biodegraded into three main metabolites in the environment, the 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU). Negative effects under aquatic biota are still not well established for diuron, especially when considering its presence in mixture with its different metabolites. In this study, we evaluated the effects of diuron alone or in combination with its metabolites, DCPMU, DCPU and 3,4-DCA on biochemical stress responses and biotransformation activity of the fish Oreochromis niloticus. Results showed that diuron and its metabolites caused significant but dispersed alterations in oxidative stress markers and biotransformation enzymes, except for ethoxyresorufin-O-deethylase (EROD) activity, that presented a dose-dependent increase after exposure to either diuron or its metabolites. Glutathione S-transferase (GST) activity was significant lower in gills after exposure to diuron metabolites, but not diuron. Diuron, DCPMU and DCA also decreased the multixenobiotic resistance (MXR) activity. Lipid peroxidation levels were increased in gill after exposure to all compounds, indicating that the original compound and diuron metabolites can induce oxidative stress in fish. The integration of all biochemical responses by the Integrated Biomarker Response (IBR) model indicated that all compounds caused significant alterations in O. niloticus, but DCPMU caused the higher alterations in both liver and gill. Our findings imply that diuron and its metabolites may impair the physiological response related to biotransformation and antioxidant activity in fish at field concentrations. Such alterations could interfere with the ability of aquatic animals to adapt to environments contaminated by
Previous studies in our lab have shown that in utero exposure to Linuron, a urea-based herbicide, results in malformations of androgen dependent tissues in adult male offspring. The pattern of malformations, however, differs somewhat from that typically seen with a pure androgen...
Kaonga, Chikumbusko Chiziwa; Takeda, Kazuhiko; Sakugawa, Hiroshi
2015-06-15
A study was conducted on the pesticides Diuron, Irgarol 1051 and Fenitrothion in Kurose River water, Higashi Hiroshima, Japan for a period of one year to assess the contribution of agriculture and urban activities on pesticide pollution of the river. Samples were analysed by a reverse phase HPLC system. The maximum pesticide concentrations were; 4620 ng/L, 50 ng/L and 370 ng/L for Diuron, Irgarol 1051 and Fenitrothion, respectively. While Diuron and Fenitrothion were detected at all sites, Irgarol 1051 was only present at Izumi, a high density urban and industrial area which also registered the highest concentrations of the pesticides. The pattern showed by Diuron and Fenitrothion was linked to farming activities. Also, Diuron and Fenitrothion concentration correlated with pesticide utilization data for Hiroshima Prefecture. Irgarol 1051 showed a different pattern to that of Diuron and Fenitrothion and its source was attributed to paint. It was noted that 78% and 42% of water samples at Izumi sampling site exceeded the European Union (EU) guidelines for Diuron and Fenitrothion, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Interaction of Diuron and Related Substituted Phenylureas with the Ah Receptor Pathway
Zhao, Bin; Baston, David S.; Hammock, Bruce; Denison, Michael S.
2011-01-01
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects. PMID:16788953
Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) is the principal herbicide used in grass seed production. The occurrence and distribution of diuron was investigated at a poorly-drained field site located along an intermittent tributary of Lake Creek in the southern Willamette ...
Chesworth, J C; Donkin, M E; Brown, M T
2004-02-25
The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- microg/l and 10-day EC50 values of 1.1 and 3.2 microg/l, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 microg/l, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of
Saleh, Abolfazl; Molaei, Saeideh; Sheijooni Fumani, Neda; Abedi, Ehsan
2016-04-15
In the present study, antifouling paint booster biocides, Irgarol 1051 and diuron were measured in ports and marinas of Bushehr, Iran. Results showed that in seawater samples taken from ports and marinas, Irgarol was found at the range of less than LOD to 63.4ngL(-1) and diuron was found to be at the range of less than LOD to 29.1ngL(-1) (in Jalali marina). 3,4-dichloroaniline (3,4-DCA), as a degradation product of diuron, was also analyzed and its maximum concentration was 390ngL(-1). Results for analysis of Irgarol 1051 in sediments showed a maximum concentration of 35.4ngg(-1) dry weight in Bandargah marina. A comparison between the results of this study and those of other published works showed that Irgarol and diuron pollutions in ports and marinas of Bushehr located in the Persian Gulf were less than the average of reports from other parts of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mansano, Adrislaine S; Moreira, Raquel A; Pierozzi, Mayara; Oliveira, Thiessa M A; Vieira, Eny M; Rocha, Odete; Regali-Seleghim, Mirna H
2016-06-01
Toxic effects of diuron and carbofuran on Paramecium caudatum were evaluated. Acute and chronic tests were conducted with diuron and carbofuran active ingredients and their commercial formulations, Diuron Nortox(®) 500 SC and Furadan(®) 350 SC, respectively. The sensitivity range of P. caudatum to reference substance sodium chloride was established. A preliminary risk assessment of diuron and carbofuran for Brazilian water bodies was performed. The tests indicated that toxicity of pure diuron and its commercial formulation was similar, while the commercial product carbofuran was more toxic than its pure form. In acute tests, readings were carried out at 2, 3, 4 and 6 h and showed an increase of mortality with increasing exposure time. The sensitivity of P. caudatum to NaCl ranged from 3.31 to 4.44 g L(-1), averaging 3.88 g L(-1). For diuron, the 6 h LC50 was 64.6 ± 3.3 mg L(-1) for its pure form and 62.4 ± 2.5 mg L(-1) for its commercial formulation. Carbofuran active ingredient was less toxic than that of diuron, presenting a 6 h LC50 of 142.0 ± 2.4 mg L(-1) for its pure form and 70.4 ± 2.2 mg L(-1) for its commercial product. Chronic tests showed that these pesticides cause significant decrease on population growth, generation number and biomass of P. caudatum. The 24 h IC50 was 7.10 ± 0.58 mg L(-1) for pure diuron, 6.78 ± 0.92 mg L(-1) for commercial diuron, 22.95 ± 3.57 mg L(-1) for pure carbofuran and 4.98 ± 0.62 mg L(-1) for commercial carbofuran. Preliminary risk assessment indicated that diuron and carbofuran present potential ecological risks for Brazilian water bodies. P. caudatum was a suitable and sensitive test organism to evaluate diuron and carbofuran toxicity to freshwater protozooplankton and, taking into account the relevant role of protozoans in aquatic environments, we strongly recommend its inclusion in ecotoxicological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knauer, Katja; Sobek, Anna; Bucheli, Thomas D
2007-06-15
Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability.
Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F
2016-05-25
We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.
NASA Astrophysics Data System (ADS)
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Langlois, Lucas; Ralph, Peter J.; Negri, Andrew P.
2017-03-01
Tropical seagrasses are at their highest risk of exposure to photosystem II (PSII) herbicides when elevated rainfall and runoff from farms transports these toxicants into coastal habitats during summer, coinciding with periods of elevated temperature. PSII herbicides, such as diuron, can increase the sensitivity of corals to thermal stress, but little is known of the potential for herbicides to impact the thermal optima of tropical seagrass. Here we employed a well-plate approach to experimentally assess the effects of diuron on the photosynthetic performance of Halophila ovalis leaves across a 25 °C temperature range (36 combinations of these stressors across 15-40 °C). The thermal optimum for photosynthetic efficiency (▵) in H. ovalis was 31 °C while lower and higher temperatures reduced ▵ as did all elevated concentrations of diuron. There were significant interactions between the effects of temperature and diuron, with a majority of the combined stresses causing sub-additive (antagonistic) effects. However, both stressors caused negative responses and the sum of the responses was greater than that caused by temperature or diuron alone. These results indicate that improving water quality (reducing herbicide in runoff) is likely to maximise seagrass health during extreme temperature events that will become more common as the climate changes.
Although linuron has been reported to act as an androgen receptor (AR) antagonist, the suite of malformations observed in male rat offspring after in utero exposure differs from that of other AR antagonists and more closely resembles that produced by phthalate esters (PE) such as...
Pesce, Stéphane; Fajon, Céline; Bardot, Corinne; Bonnemoy, Frédérique; Portelli, Christophe; Bohatier, Jacques
2006-07-20
The effects of the phenylurea herbicide diuron (10 microgl(-1)) on natural riverine microbial communities were investigated using a three-week laboratory microcosm study. During the first six days, a latency period was observed both in the algal and the bacterial communities despite favorable abiotic conditions and independently of diuron exposure. From the second week, an intense algal bloom (chlorophyll a concentrations and cell abundances) was observed in the uncontaminated microcosms but not in the treated microcosms. The bloom stimulated the bacterial community and led to an increase in heterotrophic bacterial production ([3H]thymidine incorporation), activity (CTC reduction) and cell abundance. In parallel, shifts in bacterial community composition were recorded by polymerase chain reaction (PCR)-temporal temperature gradient gel electrophoresis (TTGE) analysis, whereas no major variation was detected using the fluorescent in situ hybridization (FISH) method. In the treated microcosms, the diuron acted not by damaging the initial communities but by inhibiting the algal bloom and indirectly maintaining constant bacterial conditions throughout the experiment. These inhibitory effects, which were recorded in terms of abundance, activity and diversity, suggest that exposure to diuron can decrease the recovery capacities of microbial communities and delay the resumption of an efficient microbial food web despite favorable environmental conditions.
Peraza-Vega, Ricardo I; Castañeda-Sortibrán, América N; Valverde, Mahara; Rojas, Emilio; Rodríguez-Arnaiz, Rosario
2017-05-01
The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.
Luna-Acosta, A; Renault, T; Thomas-Guyon, H; Faury, N; Saulnier, D; Budzinski, H; Le Menach, K; Pardon, P; Fruitier-Arnaudin, I; Bustamante, P
2012-06-01
In the context of massive summer mortality events of the Pacific oyster Crassostrea gigas, the aim of this study was to investigate the early effects on genes, enzymes and haemocyte parameters implicated in immune defence mechanisms in C. gigas oysters exposed to a potentially hostile environment, i.e. to an herbicide alone or within a mixture. Following 2 h of exposure to the herbicide diuron at 1 μg L(-1), the repression of different genes implicated in immune defence mechanisms in the haemocytes and the inhibition of enzyme activities, such as laccase-type phenoloxidase (PO) in the plasma, were observed. The inhibition of superoxide dismutase (SOD) activity in the plasma was also observed after 6 and 24 h of exposure. In the mixture with the herbicides diuron and isoproturon, and the pharmaceutical ibuprofen, catecholase-type PO activity in the plasma and the percentage of phagocytosis in the haemocytes were reduced after 6 h of exposure. Our results showed that early effects on molecular, biochemical and cellular parameters can be detected in the presence of diuron alone or within a mixture, giving an insight of its potential effect in situations that can be found in natural environments, i.e. relatively high concentrations for short periods of time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Langlois, Lucas; Ralph, Peter J.; Negri, Andrew P.
2017-01-01
Tropical seagrasses are at their highest risk of exposure to photosystem II (PSII) herbicides when elevated rainfall and runoff from farms transports these toxicants into coastal habitats during summer, coinciding with periods of elevated temperature. PSII herbicides, such as diuron, can increase the sensitivity of corals to thermal stress, but little is known of the potential for herbicides to impact the thermal optima of tropical seagrass. Here we employed a well-plate approach to experimentally assess the effects of diuron on the photosynthetic performance of Halophila ovalis leaves across a 25 °C temperature range (36 combinations of these stressors across 15–40 °C). The thermal optimum for photosynthetic efficiency (▵) in H. ovalis was 31 °C while lower and higher temperatures reduced ▵ as did all elevated concentrations of diuron. There were significant interactions between the effects of temperature and diuron, with a majority of the combined stresses causing sub-additive (antagonistic) effects. However, both stressors caused negative responses and the sum of the responses was greater than that caused by temperature or diuron alone. These results indicate that improving water quality (reducing herbicide in runoff) is likely to maximise seagrass health during extreme temperature events that will become more common as the climate changes. PMID:28358396
COMBINED ENDOCRINE EFFECTS OF IN UTERO EXPOSURE TO THE ANTIANDROGENS BUTYLBENZYL PHTHALATE (BBP) AND LINURON (Lin) ON FETAL TESTOSTERONE (T) SYNTHESIS AND REPRODUCTIVE TRACT DEVELOPMENT
Parks LG , Hotchkiss AK, Ostby J, Lambright C and Gray LE, Jr.
Lin and BBP are toxic...
Felício, Andréia A; Crago, Jordan; Maryoung, Lindley A; Almeida, Eduardo A; Schlenk, Daniel
2016-11-01
Previous studies using in vivo bioassay guided fractionation indicated that the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and alkylphenol (AP)-containing surfactants were detected in fractions of extracts that induced the estrogenic biomarker, vitellogenin in fish exposed to surface water extracts from the United States. However, when the compounds were evaluated individually using in vivo estrogenic assays or in vitro estrogen receptor assays, estrogenic activity was not observed. Since APs have been shown to alter activity and content of cytochrome P450s (CYP) which convert diuron to potential estrogenic metabolites, the hepatic biotransformation of diuron was measured with and without a 7day pretreatment of p-Octylphenol (OP) and p-Nonylphenol (NP) at low (OP 13ng/L+NP 91ng/L), and high concentrations (OP 65ng/L+NP 455ng/L) in juvenile male Nile tilapia (Oreochromus niloticus). Pre-treatment with the OP/NP (AP) mixture caused elevated levels of NADPH-catalyzed formation of 3,4-dichlorophenyl-N-methylurea (DCPMU) but not 3,4-dichlorophenylurea (DCPU). Fish were also treated with nominal concentrations of low (40ng/L) and high (200ng/L) diuron and each of its three degradates/metabolites: DCPMU, DCPU and 3,4-dichloroaniline (DCA). Additional treatments were conducted with APs and Diuron as a mixture at the low concentrations which mimicked concentrations observed in surface waters. Hepatic vitellogenin (Vtg) mRNA was induced by exposure to the high concentrations of Diuron, as well as DCPMU and DCPU in both concentrations. Brain cytochrome P450 aromatase activity was generally diminished by diuron, its metabolites, and the AP/diuron mixtures. 17β-Hydroxysteroid dehydrogenase (17βHSD) levels were also reduced by DCPMU and DCA in the lower concentrations, but not by higher concentrations. While the AP mixture reduced 17βHSD, the AP/diuron mixture induced testosterone (T) biosynthesis at the single concentration tested. Although CYP3A expression
Nayak, Shaila; Muniz, Juan; Sales, Christopher M; Tikekar, Rohan V
2016-02-01
The objective of this study was to identify reactive oxygen species (ROS) generated from the exposure of fructose solution to the 254 nm ultraviolet (UV) light and evaluate whether fructose can be used as a photosensitizer for accelerated photo-degradation of diuron and chlorpyrifos. We demonstrated that hydrogen peroxide, singlet oxygen ((1)O2) and acidic photolysis products were generated upon UV exposure of fructose. Consistent with these findings, UV induced degradation of chlorpyrifos and diuron was accelerated by the presence of 500 mM fructose. The average first order photo-degradation rate constants in the absence and presence of 500 mM fructose were 0.92 and 2.07 min(-1) respectively for diuron and 0.04 and 0.07 min(-1) for chlorpyrifos. The quantum yields (ɸ) for direct photo-degradation of diuron and chlorpyrifos were 0.003 and 0.001 respectively. In the presence of 500 mM fructose, these values increased to 0.006 and 0.002 respectively. Thus, fructose may be an effective photosensitizer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atrazine and Diuron partitioning within a soil-water-surfactant system
NASA Astrophysics Data System (ADS)
Wang, P.; Keller, A.
2006-12-01
The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar
Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms.
Knauert, Stefanie; Singer, Heinz; Hollender, Juliane; Knauer, Katja
2010-01-01
The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment.
Mattoo, A K; Pick, U; Hoffman-Falk, H; Edelman, M
1981-01-01
Mild trypsin treatment of Spirodela oligorrhiza thylakoid membranes leads to partial digestion of the rapidly metabolized, surface-exposed, 32,000-dalton protein. Under these conditions, photoreduction of ferricyanide becomes insensitive to diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], an inhibitor of photosystem II electron transport. Preincubation of thylakoids with diuron leads to a conformational change in the 32,000-dalton protein, modifying its trypsin digestion and preventing expression of diuron insensitivity. Finally, light affects the susceptibility of the 32,000-dalton protein to digestion by trypsin. In other experiments, thylakoids specifically depleted in the 32,000-dalton protein were found to be deficient in electron transport at the reducing side of photosystem II but not at the oxidizing side or in photosystem I activities. Thus, the rapidly metabolized 32,000-dalton thylakoid protein in Spirodela chloroplasts fulfills the requirements of the hypothesized "proteinaceous shield" [Renger, G. (1976) Biochim. Biophys. Acta 440, 287-300] regulating electron flow through photosystem II and mediating diuron sensitivity. Images PMID:6940173
Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria.
Ricart, Marta; Barceló, Damià; Geiszinger, Anita; Guasch, Helena; de Alda, Miren López; Romaní, Anna M; Vidal, Gemma; Villagrasa, Marta; Sabater, Sergi
2009-09-01
A system of recirculating channels was used in this study to examine the long-term effects (29d) of environmentally realistic concentrations of the herbicide diuron (from 0.07 to 7 microg L(-1)) on biofilm communities. The autotrophic activity of biofilms was affected by this herbicide, as reflected by a marked decrease in the photosynthetic efficiency. Diuron exposure also increased chlorophyll-a content and reduced the biovolume of diatom taxa at low concentrations. The effects on bacteria were also remarkable. Bacterial abundance was reduced after a week of exposure to the herbicide at a range of concentrations. Effects were on the number of live bacteria and on the increase in the leucine-aminopeptidase activity. It is suggested that inputs of herbicides to the river ecosystem at low concentrations may cause a chain of effects in the biofilm, which include inhibitory effects on algae but also indirect effects on the relationships between biofilm components.
Pla-Tolós, J; Serra-Mora, P; Hakobyan, L; Molins-Legua, C; Moliner-Martinez, Y; Campins-Falcó, P
2016-11-01
In this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported. Under the optimum conditions, the method presents good linearity over the range assayed, 0.05-10μg/L for irgarol-1051 and 0.7-10μg/L for diuron. The LODs were 0.015μg/L and 0.2μg/L for irgarol-1051 and diuron, respectively. Precision was also satisfactory (relative standard deviation, RSD<3.5%). The proposed methodology was applied to monitor water samples, taking into account the EQS standards for these compounds. The carbon footprint values for the proposed procedure consolidate the operational efficiency (analytical and environmental performance) of in-tube SPME-CapLC-DAD, in general, and in particular for determining irgarol-1051 and diuron in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Bezerra, Charleston de O; Cusioli, Luís F; Quesada, Heloise B; Nishi, Letícia; Mantovani, Daniel; Vieira, Marcelo F; Bergamasco, Rosangela
2018-06-22
Considering the need of new technologies for the removal of pesticides from the aqueous environment, the Moringa oleifera seed husks (h-MO) was investigated for the diuron adsorption from contaminated water at different temperatures and solute concentrations. The biosorbent used in this study was characterized by chemical, structural and textural analyzes. The best experimental condition for the biosorption was determined by evaluating the mass of the biosorbent and the pH solution. It was found a good adsorption capacity for the herbicide where the maximum adsorption capacity was 14.74 mg/g at pH 5 and 45°C. In addition, the adsorption process of diuron by the h-MO occurred spontaneously, in which, ΔG° values increased as the temperature increased meaning that the process tends to a more energetically favorable process at higher temperatures. Both Langmuir and Sips isotherm models presented satisfactory adjustment at all temperatures and the pseudo-second-order model presented the best fit for the experimental results. The application of the intra-particle diffusion model showed that the adsorption process started instantaneously through the boundary layer of the adsorbent and that the pore diffusion step was a limiting step in the process. Finally, the capacity of the h-MO was compared with others adsorbents that had been used to diuron removal from contaminated where it was found that the adsorption capacity of the h-MO is much higher than other natural adsorbents.
Kang, Il Hyun; Kim, Hyung Sik; Shin, Jae-Ho; Kim, Tae Sung; Moon, Hyun Ju; Kim, In Young; Choi, Kwang Sik; Kil, Kwang Sup; Park, Young In; Dong, Mi Sook; Han, Soon Young
2004-07-01
The rodent Hershberger assay proposed by the Organization for Economic Co-operation and Development (OECD) is in the process of the validating a test method to detecting the androgenic or anti-androgenic compounds. The aim of this study was to compare the anti-androgenic properties of flutamide, vinclozolin, procymidone, linuron, and p,p'-DDE in a 10-day Hershberger assay. In the present study, we used immature Sprague-Dawley male rats castrated at 6 weeks of age. Testosterone propionate (TP) was subcutaneously injected for 10 consecutive days at doses of 0.1, 0.2, 0.4, 0.8, or 1.6 mg/kg per day. To compare the anti-androgenic activity of test compounds, flutamide (1, 5, 10, or 20 mg/kg per day), a pure androgen antagonist was used as a positive control, and administered by oral gavage after TP (0.4 mg/kg per day) treatment. In addition, vinclozolin (25, 50, or 100 mg/kg per day), procymidone (25, 50, or 100 mg/kg per day), linuron (25, 50, or 100 mg/kg per day), and p,p '-DDE (25, 50, or 100 mg/kg per day) were also administered by oral gavage after TP (0.4 mg/kg per day) treatment. As expected, TP dose-dependently increased accessory sex organ weights, and statistically significant effects were observed at doses of 0.1 (only seminal vesicles) or 0.2mg/kg per day and above. Serum testosterone levels increased significantly at 0.4 mg/kg per day and above, while serum LH levels were decreased in a dose-dependent manner. Flutamide significantly inhibited the TP-induced re-growth of seminal vesicles, ventral prostate, and Levator ani plus bulbocavernosus muscles (LABC) at 1mg/kg per day and above, and Cowper's glands and glans penis at 5mg/kg per day and above. In contrast to accessory sex organ weights, flutamide did not affect the serum testosterone levels compared to the control at any concentration, but serum LH levels were significantly increased at doses of 10 and 20 mg/kg per day. Similar to flutamide, vinclozolin caused a statistically significant decrease in
Sumpono; Perotti, P; Belan, A; Forestier, C; Lavedrine, B; Bohatier, J
2003-01-01
Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-Dôme, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp.
Baudu, M; Raveau, D; Guibaud, G
2004-07-01
The study of natural organic matter (NOM) adsorption on an activated carbon showed that equilibrium cannot be described according to a simple model such as a Freundlich isotherm and confirms the need for a closer description of the organic matter to simulate the competitive adsorption with micropollutants. A representation of the organic matter in three fractions is chosen: non-adsorbable, weak and strong adsorbable. The Ideal Adsorbed Solution Theory (IAST) can, under restrictive conditions, be used to effectively predict the competition between the pesticides and the organic matter. Therefore, it was noted that the model simulated with good precision the competition between atrazine or diuron and natural organic matter in aqueous solution for two activated carbons (A and B). The same parameters for the modeling of organic matter adsorption (Freudlich constants for two absorbable fractions) are used with the two pesticides. However, IAST does not allow correct modeling of pesticide adsorption onto two other (C and D) activated carbons in solution in natural water to be described. IAS theory does not reveal competition between diuron and NOM and pore blockage mechanism by the NOM is proposed as the major effect for the adsorption capacity reduction. However, the difference observed between the two pesticides could be due to in addition to the pore blockage effect, a particular phenomenon with the diuron, especially with D activated carbon. We can suppose specific interactions between the diuron and the adsorbed organic matter and a competition between adsorption sites of NOM and activated carbon surface.
Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza
2015-01-01
Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.
The effects of the herbicide diuron on survival and growth of Pacific treefrog (Pseudacris regilla),bullfrog(Rana catesbeiana), red-legged frog(Rana aurora),and African clawed frog(Xenopus laevis)embryos and tadpoles were determined in static-renewal tests. P.regilla and X.laevis...
Vigna, Camila R M; Morais, Lais S R; Collins, Carol H; Jardim, Isabel C S F
2006-05-12
A laboratory-made sorbent for solid-phase extraction (SPE) was obtained by thermal immobilization of poly(methyloctylsiloxane) (PMOS) onto silica. Cartridges packed with the new sorbent were used for the simultaneous determination of imazethapyr, nicosulfuron, diuron, linuron and chlorimuron-ethyl in water. These pesticides were separated and quantified using high-performance liquid chromatography with diode array detection (HPLC-DAD). The recoveries achieved with the laboratory-made PMOS cartridges were compared with those of some commercially available silica-based and polymer-based cartridges having C18, C8 and NH(2) pendant groups. Method validation using the laboratory-made sorbent was performed for the five pesticides at three fortifications levels (1x, 2x and 10x the limit of quantification of each pesticide). The laboratory-made PMOS cartridge has low cost preparation and showed good recoveries (72-111%) for all pesticides. Repeatability and intermediate precision were lower than 15%. Its performance was similar or even better, in some cases, than those of the commercial cartridges.
Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric
2014-08-01
Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2
Before the curtain falls: endocrine-active pesticides--a German contamination legacy.
Schulte-Oehlmann, Ulrike; Oehlmann, Jörg; Keil, Florian
2011-01-01
The European Parliament recently approved a new EU regulation aimed at eliminating the use of pesticides that have unwanted endocrine-disrupting properties. The test criteria for these chemicals are slated to be finalized by 2013. For this reason, in this review, we have evaluated the meta data of lists and databanks that address pesticides with potentially endocrine-disrupting properties, and have checked which of the 250 active ingredients currently in use in Germany are affected. Azoles, dithio-carbamates/carbamates, and pyrethroids were most frequently rated as endocrine-active ingredients. In Germany, assessments have shown that total environmental pesticide emission is equivalent to approximately 0.1% of total pesticide use.Courtyard drainage and field runoff are regarded to constitute the most important sources of pesticide emission into the aquatic environment. In addition, in several investigations of drinking- and groundwater contamination, various pesticide-active ingredients and their metabolites were confirmed to be contaminants. Water suppliers recorded the following pesticides or their metabolites as being most frequently detected in drinking water: atrazine, desethylatrazine, diuron, simazine, isoproturon,and its dichlobenil metabolite 2,6-dichlorobenzamide. Surface water contamination results mainly from substances that are no longer approved by EU pesticide regulation. The most frequently detected pesticides in streaming waters that are still authorized were bentazone, diuron, glyphosate, isoproturon, MCPA, mecoprop,metamitron, pendimethalin, and tebuconazole. Pesticide residues in comestible goods of herbal origin are periodically detected in all EU member countries. The European Commission recently published results showing that 54% of all monitoring samples were devoid of positive findings. Of samples showing detectable residues, 42% were below, and 4.4% exceeded the EUMRLs. Monitoring data over a 10-year period revealed that the percentage of
Horemans, Benjamin; Vandermaesen, Johanna; Breugelmans, Philip; Hofkens, Johan; Smolders, Erik; Springael, Dirk
2014-01-01
Effects of environmental dissolved organic matter (eDOM) that consists of various low concentration carbonic compounds on pollutant biodegradation by bacteria are poorly understood, especially when it concerns synergistic xenobiotic-degrading consortia where degradation depends on interspecies metabolic interactions. This study examines the impact of the quality and quantity of eDOM, supplied as secondary C-source, on the structure, composition and pesticide-degrading activity of a triple-species bacterial consortium in which the members synergistically degrade the phenylurea herbicide linuron, when grown as biofilms. Biofilms developing on 10 mg L⁻¹ linuron showed a steady-state linuron degradation efficiency of approximately 85 %. The three bacterial strains co-localized in the biofilms indicating syntrophic interactions. Subsequent feeding with eDOM or citrate in addition to linuron resulted into changes in linuron-degrading activity. A decrease in linuron-degrading activity was especially recorded in case of co-feeding with citrate and eDOM of high quality and was always associated with accumulation of the primary metabolite 3,4-dichloroaniline. Improvement of linuron degradation was especially observed with more recalcitrant eDOM. Addition of eDOM/citrate formulations altered biofilm architecture and species composition but without loss of any of the strains and of co-localization. Compositional shifts correlated with linuron degradation efficiencies. When the feed was restored to only linuron, the linuron-degrading activity rapidly changed to the level before the mixed-substrate feed. Meanwhile only minor changes in biofilm composition and structure were recorded, indicating that observed eDOM/citrate effects had been primarily due to repression/stimulation of linuron catabolic activity rather than to biofilm characteristics.
Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja
2008-09-01
Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.
Bers, Karolien; Leroy, Baptiste; Breugelmans, Philip; Albers, Pieter; Lavigne, Rob; Sørensen, Sebastian R.; Aamand, Jens; De Mot, René; Wattiez, Ruddy; Springael, Dirk
2011-01-01
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a Km and a Vmax for linuron of 5.8 μM and 0.16 nmol min−1, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria. PMID:22003008
Ornostay, Anna; Cowie, Andrew M; Hindle, Matthew; Baker, Christopher J O; Martyniuk, Christopher J
2013-12-01
The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17β-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species. © 2013.
2006-01-01
038 prometon .010 imidacloprid .020 propachlor .025 linuron .014 propanil .011 MCPA .030 propargite .023 MCPB .010 propyzamide .004 metalaxyl .012...imaza- quin, imazethapyr, imidacloprid , linuron, MCPA, MCPB, metalaxyl, methiocarb, methomyl, metsulfuron-methyl, neburon, nicosulfuron, oxamyl...imazethapyr, imidacloprid , linuron, MCPA, MCPB, metalaxyl, methiocarb, methomyl, metsulfuron-methyl, neburon, nicosulfuron, oxamyl, picloram, propham
Caquet, Th; Roucaute, M; Mazzella, N; Delmas, F; Madigou, C; Farcy, E; Burgeot, Th; Allenou, J-P; Gabellec, R
2013-02-01
A 2-year study was implemented to characterize the contamination of estuarine continuums in the Bay of Vilaine area (NW Atlantic Coast, Southern Brittany, France) by 30 pesticide and biocide active substances and metabolites. Among these, 11 triazines (ametryn, atrazine, desethylatrazine, desethylterbuthylazine, desisopropyl atrazine, Irgarol 1051, prometryn, propazine, simazine, terbuthylazine, and terbutryn), 10 phenylureas (chlortoluron, diuron, 1-(3,4-dichlorophenyl)-3-methylurea, fenuron, isoproturon, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl)-urea, linuron, metoxuron, and monuron), and 4 chloroacetanilides (acetochlor, alachlor, metolachlor, and metazachlor) were detected at least once. The objectives were to assess the corresponding risk for aquatic primary producers and to provide exposure information for connected studies on the responses of biological parameters in invertebrate sentinel species. The risk associated with contaminants was assessed using risk quotients based on the comparison of measured concentrations with original species sensitivity distribution-derived hazardous concentration values. For EU Water Framework Directive priority substances, results of monitoring were also compared with regulatory Environmental Quality Standards. The highest residue concentrations and risks for primary producers were recorded for diuron and Irgarol 1051 in Arzal reservoir, close to a marina. Diuron was present during almost the all survey periods, whereas Irgarol 1051 exhibited a clear seasonal pattern, with highest concentrations recorded in June and July. These results suggest that the use of antifouling biocides is responsible for a major part of the contamination of the lower part of the Vilaine River course for Irgarol 1051. For diuron, agricultural sources may also be involved. The presence of isoproturon and chloroacetanilide herbicides on some dates indicated a significant contribution of the use of plant protection products in
Vanraes, Patrick; Wardenier, Niels; Surmont, Pieter; Lynen, Frederic; Nikiforov, Anton; Van Hulle, Stijn W H; Leys, Christophe; Bogaerts, Annemie
2018-07-15
A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Watermann, Burkard T; Albanis, Triantafyllos A; Galassi, Silvana; Gnass, Katarina; Kusk, Kresten O; Sakkas, Vasilios A; Wollenberger, Leah
2016-11-09
The study was performed to detect the effects of anti-androgenic compounds on the reproduction. In this paper alterations observed in the marine calanoid copepod Acartia tonsa exposed to environmental concentrations of cyproterone acetate (CPA), linuron (LIN), vinclozolin (VIN), and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) for 21 days covering a full life cycle are described. Histological alterations were studied with a focus on reproductive organs, gonad and accessory sexual glands. Exposure to ≥1.2 µg L(-1) CPA caused degeneration of spermatocytes and deformation of the spermatophore in males. In a single male exposed to 33 µg L(-1) CPA, an ovotestis was observed. In CPA exposed females, enhancement of oogenesis, increase in apoptosis and a decrease in proliferation occurred. Exposure of males to ≥12 µg L(-1) LIN caused degenerative effects in spermatogonia, spermatocytes and spermatids, and at 4.7 µg L(-1) LIN, the spermatophore wall displayed an irregular formation. In LIN exposed females, no such structural alterations were found; however, the proliferation index was reduced at 29 µg L(-1) LIN. At an exposure concentration of ≥100 µg L(-1) VIN, distinct areas in male gonad were stimulated, whereas others displayed a disturbed spermatogenesis and a deformed spermatophore wall. In VIN exposed female A. tonsa, no effects were observed. Male A. tonsa exposed to p,p'-DDE displayed an impairment of spermatogenesis in all stages with increased degrees of apoptosis. In p,p'-DDE-exposed females, a statistical significant increase of the proliferation index and an intensification of oogenesis were observed at 0.0088 µg L(-1).
Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron.
Burns, Mitchell; Hanson, Mark L; Prosser, Ryan S; Crossan, Angus N; Kennedy, Ivan R
2015-08-01
In agricultural catchments, aquatic ecosystems can experience a pulse exposure to pesticides. Following such exposure, non-target organisms that are not extirpated may recover. This paper investigates the potential of two duckweed species (Lemna minor and Lemna gibba) to recover from a 7-day exposure to different concentrations (0.4-208 µg L(-1)) of the herbicide diuron. There was significant inhibition in the growth and biomass after the initial 7-day exposure (e.g. frond number EC50=59.2 and 52.2 µg L(-1) for L. minor and L. gibba, respectively). Following transfer to clean media, recovery (the highest concentration yielding no significant difference in the effect endpoint from the control) was observed for all effects endpoints at concentrations ranging 60-111 µg L(-1) for L. minor and 60-208 µg L(-1) for L. gibba. These results suggest that recovery is possible for primary producers at environmentally relevant concentrations considered significant in ecological risk assessment.
Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens
2001-01-01
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885
Hussain, Sabir; Devers-Lamrani, Marion; El Azhari, Najoi; Martin-Laurent, Fabrice
2011-06-01
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.
Echeverry, Ghisliane; Zapata, Andrés Mauricio; Páez, Martha Isabel; Méndez, Fabián; Peña, Miguel
2015-08-01
Exposure to pollutants such as pesticides and heavy metals has been linked to health problems. Several studies have revealed the presence of these contaminants in Cali; however, there is no information available about the main routes of exposure and risk of these contaminants. To estimate the risk associated with the intake of cadmium, lead and mercury, and pesticides 2,4-D and diuron through the consumption of water and food in a population in Cali. Population and environmental data were obtained, and a risk assessment was performed using United States Environmental Protection Agency guidelines. The concentrations of the evaluated pollutants were below permissible levels as established by the Colombian Ministerio de Ambiente, Vivienda y Desarrollo Territorial (3 µg/L -1 of cadmium; 10 µg/L -1 of lead; 1 µg/L -1 of mercury; 1 µg/L -1 of 2,4 D; 1 µg/L -1 of diuron). Salema butterfish ( Peprilus snyderi ) samples contained levels of cadmium between 20 and 80 µg/kg -1 , which are below the permissible limit set by the World Health Organization (100 µg/kg -1 ). The results of the risk assessment indicated that the carcinogenic and non-carcinogenic attributable risk to population health from the intake of food contaminants was below the maximum level permitted by the United States Environmental Protection Agency. It is believed that the findings in previous studies on pollutants may have been due to specific contamination events; therefore, monitoring and early warning about water intake is recommended. Furthermore, the report of cadmium being found in fish consumed as food suggests the need for quality control by regulators.
Pesticide monitoring in surface water and groundwater using passive samplers
NASA Astrophysics Data System (ADS)
Kodes, V.; Grabic, R.
2009-04-01
Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.
Marín-Benito, J M; Herrero-Hernández, E; Rodríguez-Cruz, M S; Arienzo, M; Sánchez-Martín, M J
2017-05-01
Lignocellulosic wastes and by-products containing lignin are now available in large amounts from forestry and industrial activities, and could be promising organic materials for the biosorption of pesticides by soils in order to reduce point-source pollution. Adding these materials to soil requires understanding the process of pesticide sorption-desorption by wood-soils, as sorption capacity could increase, with changes in pesticide bioavailability and final fate. The objective of this work was to study the effect that pine and oak wood added to soils had on the sorption/desorption of the pesticides linuron, alachlor, and metalaxyl. Experiments were conducted with two sandy loam and sandy clay soils each amended with two wood doses (5% and 50%) after different incubation times (0, 5 and 12 months). A low wood dose (5%) had no significant impact on the sorption (K f ) of alachlor, but K f increased for linuron (up to 5.4-1.7 times) and metalaxyl (up to 4.4 and 8.6 times) in all wood-soil systems. The results were not significantly different after different incubation times. The desorption results indicated that wood decreases the sorption irreversibility of alachlor, and increases that of linuron and metalaxyl, with a varying effect of the wood-soil incubation time. The addition of a high wood dose to soil (50%) was more significant for increasing the sorption of all the pesticides, and the sorbed amounts remaining after desorption (>49% for linuron, >33% for alachlor and >6% for metalaxyl), although there was no apparent discrimination between the two types of woods. The role of the nature of the organic carbón (K oc values) for sorption was evidenced for alachlor and metalaxyl, but not for linuron. These outcomes are of interest for extending wood application to soil as a barrier for avoiding environmental risk by point-source pollution due to the use and management of pesticides in farming systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England.
Lapworth, D J; Gooddy, D C
2006-12-01
Pesticide contamination in groundwater is an increasing problem that poses a significant long-term threat to water quality. Following the detection of elevated concentrations of diuron in boreholes in a semi-confined chalk aquifer from southeast England, a sampling programme was undertaken. Between 2003 and 2004 diuron was observed in 90% of groundwaters analysed. In 60% of groundwater samples metabolites of diuron were more prevalent than the parent compound. Longer-term (1989-2005) monitoring shows that pollution of the aquifer by atrazine, simazine, and more recently diuron, shows a positive correlation with periods of high groundwater levels. Results from groundwater residence time indicators suggest that the highest diuron concentrations are associated with waters containing the greatest proportion of recent recharge. There is some evidence to indicate that diuron occurrence can be spatially related to areas of urban and industrial development and is probably correlated with amenity usage.
Dragone, Roberto; Cheng, Rachel; Grasso, Gerardo; Frazzoli, Chiara
2015-04-01
A study on the acute and chronic effects of the herbicide diuron was carried out. The test, basing on a yeast cell probe, investigated the interference with cellular catabolism and possible self-detoxification capacity of Saccharomyces cerevisiae. Aerobic respiration was taken as the toxicological end-point. Percentage interference (%r) with cellular respiration was measured in water by increased dissolved O2 concentration (ppm) after exposure to different doses. Interference was calculated through the comparison of respiratory activity of exposed and non-exposed cells. Short-term and long-term (6 and 24 h respectively) exposures were also considered. The test for short-term exposure gave positive %r values except that for 10-6 M (11.11%, 11.76%, 13.33% and 0% for 10-10 M, 10-8 M, 10-7 M and 10-6 M respectively). In the case of long-term exposure the test showed positive %r values, but less effect than short-term exposure until 10-8 M and much higher at 10-6 M (7.41%, 8.82%, 11.76% and 6.06% for 10-10 M, 10-8 M, 10-7 M and 10-6 M respectively). The findings of aerobic respiration as toxicological end-point were in agreement with known mechanisms of toxicity and intracellular detoxification for both the doses and exposure times employed.
Fu, Lei; Lu, Xianbo; Tan, Jun; Wang, Longxing; Chen, Jiping
2018-01-01
A simple method for determining 33 pesticides with a wide polarity range (logK ow 0.6-4.5) in aquatic products was developed based on LC-MS/MS. The target analytes included three types of widely used pesticides: insecticides, fungicides and herbicides. Based on the optimization of ultrasonic assisted extraction and GPC clean-up procedures, the matrix effect, extraction recoveries and LOD were improved distinctively. LOQ of this method was below 0.5ng/g for all pesticides, which is superior to values in the literature, and the matrix effect was reduced effectively (-14.7% to 7.5%). The method was successfully applied to investigate the pesticide residue levels of twenty-five samples including seven common kinds of fishes from Northeast China. The results showed that all targeted pesticides were present in the fish samples; however, their levels were low, except for atrazine, linuron, ethoprophos, tetrachlorvinphos, acetochlor and fenthion. Atrazine and linuron caught our attention because the concentrations of atrazine in fish samples from Liaoning province were in the range of 0.5-8ng/g (w/w) with mean concentration of 2.3ng/g, which were far above those of other pesticides. The levels of linuron were in the range of 0.6-6ng/g (mean concentration 2.8ng/g), which were the highest among all targeted pesticides in the Inner Mongolia. This is the first systematic investigation on the characteristics and levels of these pesticides in aquatic products from northeast China. Considering their toxicity and bioaccumulation, the potential risk of atrazine and linuron from consuming aquatic products should be paid more attention. Copyright © 2017. Published by Elsevier B.V.
Engelhardt, G.; Wallnöfer, P. R.
1975-01-01
The degradation of the phenylamide herbicides monolinuron, linuron, and solan by cultures of Bacillus sphaericus ATCC 12123 was inhibited by the methylcarbamate insecticides metmercapturon, aldicarb, propoxur, and carbaryl and by the organophosphorus insecticides fenthion and parathion. The extent of inhibition was largest with metmercapturon and smallest with parathion. Inhibition of hydrolysis of the two phenylurea herbicides was greater than of the acylanilide compound. Tests with crude enzyme preparations of aryl acylamidase derived from B. sphaericus showed that the inhibition of the hydrolysis of linuron with methylcarbamates is a competitive one. The insecticides tested did not induce the enzyme, nor could they serve as its substrate. PMID:1155931
Dragone, Roberto; Cheng, Rachel; Grasso, Gerardo; Frazzoli, Chiara
2015-01-01
A study on the acute and chronic effects of the herbicide diuron was carried out. The test, basing on a yeast cell probe, investigated the interference with cellular catabolism and possible self-detoxification capacity of Saccharomyces cerevisiae. Aerobic respiration was taken as the toxicological end-point. Percentage interference (%ρ) with cellular respiration was measured in water by increased dissolved O2 concentration (ppm) after exposure to different doses. Interference was calculated through the comparison of respiratory activity of exposed and non-exposed cells. Short-term and long-term (6 and 24 h respectively) exposures were also considered. The test for short-term exposure gave positive %ρ values except that for 10−6 M (11.11%, 11.76%, 13.33% and 0% for 10−10 M, 10−8 M, 10−7 M and 10−6 M respectively). In the case of long-term exposure the test showed positive %ρ values, but less effect than short-term exposure until 10−8 M and much higher at 10−6 M (7.41%, 8.82%, 11.76% and 6.06% for 10−10 M, 10−8 M, 10−7 M and 10−6 M respectively). The findings of aerobic respiration as toxicological end-point were in agreement with known mechanisms of toxicity and intracellular detoxification for both the doses and exposure times employed. PMID:25837349
Marín-Benito, J M; Brown, C D; Herrero-Hernández, E; Arienzo, M; Sánchez-Martín, M J; Rodríguez-Cruz, M S
2013-10-01
Soil amendment with organic wastes is becoming a widespread management practice since it can effectively solve the problems of uncontrolled waste accumulation and improve soil quality. However, when simultaneously applied with pesticides, organic wastes can significantly modify the environmental behaviour of these compounds. This study evaluated the effect of sewage sludges (SS), grape marc (GM) and spent mushroom substrates (SMS) on the leaching of linuron, diazinon and myclobutanil in packed columns of a sandy soil with low organic matter (OM) content (<1%). Soil plus amendments had been incubated for one month (1 m) or 12 months (12 m). Data from the experimental breakthrough curves (BTCs) were fitted to the one-dimensional transport model CXTFIT 2.1. All three amendments reduced leaching of linuron and myclobutanil relative to unamended soil. SMS was the most effective in reducing leaching of these two compounds independent of whether soil was incubated for 1 m or 12 m. Soil amendments increased retardation coefficients (Rexp) by factors of 3 to 5 for linuron, 2 to 4 for diazinon and 3 to 5 for myclobutanil relative to unamended soil. Leaching of diazinon was relatively little affected by soil amendment compared to the other two compounds and both SS and SMS amendment with 1m incubation resulted in enhanced leaching of diazinon. The leaching data for linuron and myclobutanil were well described by CXTFIT (mean square error, MSE<4.9·10(-7) and MSE<7.0·10(-7), respectively) whereas those of diazinon were less well fitted (MSE<2.1·10(-6)). The BTCs for pesticides were similar in soils incubated for one month or one year, indicating that the effect of amendment on leaching persists over relatively long periods of time. Copyright © 2013 Elsevier B.V. All rights reserved.
Villaverde, J; Rubio-Bellido, M; Lara-Moreno, A; Merchan, F; Morillo, E
2018-02-01
The phenylurea herbicide diuron is persistent in soil, water and groundwater and is considered to be a highly toxic molecule. The principal product of its biodegradation, 3,4-dichloroaniline, exhibits greater toxicity than diuron and is persistent in the environment. Five diuron degrading microbial consortia (C1C5), isolated from different agricultural soils, were investigated for diuron mineralization activity. The C2 consortium was able to mineralize 81.6% of the diuron in solution, while consortium C3 was only able to mineralize 22.9%. Isolated consortia were also tested in soil slurries and in all cases, except consortium C4, DT 50 (the time required for the diuron concentration to decline to half of its initial value) was drastically reduced, from 700 days (non-inoculated control) to 546, 351, and 171 days for the consortia C5, C2, and C1, respectively. In order to test the effectiveness of the isolated consortium C1 in a more realistic scenario, soil diuron mineralization assays were performed under static conditions (40% of the soil water-holding capacity). A significant enhancement of diuron mineralization was observed after C1 inoculation, with 23.2% of the herbicide being mineralized in comparison to 13.1% for the control experiment. Hydroxypropyl-β-cyclodextrin, a biodegradable organic enhancer of pollutant bioavailability, used in combination with C1 bioaugmentation in static conditions, resulted in a significant decrease in the DT 50 (214 days; 881 days, control experiment). To the best of our knowledge, this is the first report of the use of soil-isolated microbial consortia in combination with cyclodextrins proposed as a bioremediation technique for pesticide contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, L.M.; Kubovec, M.K.; Tryggestad, D.
1977-07-01
The effects of pollutants (pesticides, PCB and metals) were studied in the free-living amoeba, Acanthamoeba castellanii. Eight pesticides were used--the insecticides dieldrin, aldrin and sevin, and the herbicides linuron, stam F-34, IPC, atrazine and simazine. It was shown that the sensitivity of A. castellanii to pesticides varied greatly. The population growth was inhibited by linuron, stam F-34, IPC, sevin and atrazine at a level of 10 mg/l. The polychlorinated biphenyl, Arochor 1254, had no significant effect at a concentration of 0.01 mg/l (10 ppb). The studies with metal ions showed that A. castellanii was unaffected by moderately high levels ofmore » Cu and Zn, but was sensitive to the presence of Pb and mercuric ions.« less
Smernik, Ronald J; Kookana, Rai S
2015-01-01
Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sorption characteristics of pesticides on matrix substrates used in biopurification systems.
De Wilde, Tineke; Spanoghe, Pieter; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk
2009-03-01
On-farm biopurification systems were developed to remove pesticides from contaminated water generated at the farmyard. An important process in the system's efficiency is the sorption of pesticides to the substrates used in the biopurification systems. The composition and type of material present in the biobed are crucial for retention of chemicals. This study investigated the sorption of linuron, isoproturon, metalaxyl, isoxaben, bentazon and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, soil, coconut chips, garden waste compost, and peat mix. Linear, Freundlich, and Langmuir sorption isotherms were fitted to the obtained data. The best fit was obtained with the Freundlich model. More immobile pesticides (i.e. linuron and isoxaben) tended to associate with the organic substrate, while more mobile pesticides partition in the water (i.e. bentazon). According to sorption capacity, the substrates could be classified as peat mix > compost, coco chips, straw > cow manure, willow chopping > sandy loam soil. Sorption capacity was positively correlated with the organic carbon content, CaO and the cation exchange capacity. Furthermore, no significant differences in sorption could be found between technical and formulated isoproturon and bentazon. Moreover, the individual sorption coefficient K(d) was additive, which means that individual sorption coefficients can be used to calculate the sorption coefficients of a mixture of substrates. What concerns the mutual interaction of pesticides it could be observed that the sorption of linuron and metalaxyl was significantly lower in combination with isoproturon and bentazon, while the latter pesticides were not influenced by the presence of linuron and metalaxyl. As guidelines, firstly, it could be stated that using the most sorbing materials such as peat mix, might significantly increase the biopurification systems efficiency. Secondly, the treatment of very mobile
Loos, Robert; Tavazzi, Simona; Paracchini, Bruno; Canuti, Elisabetta; Weissteiner, Christof
2013-07-01
Water-soluble polar organic contaminants are discharged by rivers, cities, and ships into the oceans. Little is known on the fate, pollution effects, and thresholds of toxic chemical mixtures in the marine environment. A new trace analytical method was developed for the multi-compound analysis of polar organic chemical contaminants in marine waters. The method is based on automated solid-phase extraction (SPE) of one-liter water samples followed by ultrahigh-pressure liquid chromatography triple-quadrupole linear ion-trap mass spectrometry (UHPLC-QTRAP(®) MS). Marine water samples from the open Adriatic Sea taken 16 km offshore from Venice (Italy) were analyzed. Method limits of quantification (LOQs) in the low picogram per liter (pg/l) concentration range were achieved. Among the 67 target chemicals analyzed, 45 substances could be detected above the LOQ. The chemicals detected at the highest concentrations were caffeine (up to 367 ng/l), nitrophenol (36 ng/l), 2,4-dinitrophenol (34 ng/l), 5-methyl-1H-benzotriazole (18.5 ng/l), sucralose (11 ng/l), 1H-benzotriazole (9.2 ng/l), terbuthylazine (9 ng/l), alachlor (7.7 ng/l), atrazine-desisopropyl (6.6 ng/l), diethyltoluamide (DEET) (5.0 ng/l), terbuthylazine-desethyl (4.3 ng/l), metolachlor (2.8 ng/l), perfluorooctanoic acid (PFOA) (2.5 ng/l), perfluoropentanoic acid (PFPeA) (2.3 ng/l), linuron (2.3 ng/l), perfluorohexanoic acid (PFHxA) (2.2 ng/l), diuron (2.0 ng/l), perfluorohexane sulfonate (PFHxS) (1.6 ng/l), simazine (1.6 ng/l), atrazine (1.5 ng/l), and perfluorooctane sulfonate (PFOS) (1.3 ng/l). Higher concentrations were detected during summer due to increased levels of tourist activity during this period.
Sorption of Pharmaceuticals, Heavy Metals, and Herbicides to Biochar in the Presence of Biosolids.
Bair, Daniel A; Mukome, Fungai N D; Popova, Inna E; Ogunyoku, Temitope A; Jefferson, Allie; Wang, Daoyuan; Hafner, Sarah C; Young, Thomas M; Parikh, Sanjai J
2016-11-01
Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science
Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L
Pfister, Klaus; Radosevich, Steven R.; Arntzen, Charles J.
1979-01-01
The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts. We conclude that triazine resistance of both intact plants and isolated chloroplasts of Senecio vulgaris L. is based upon a minor modification of the protein in the photosystem II complex which is responsible for herbicide binding. This change results in a specific loss of atrazine (triazine)-binding capacity. PMID:16661120
2009-02-01
dimethenamid, diuron, EPTC, ethalfluralin, fonofos, hexazinone, isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen , pebulate...metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen , pebulate, pendimethalin, phorate, profluralin, prometon, prometryn, propachlor, propazine...dimethenamid, diuron, EPTC, ethalfluralin, fonofos, hexazinone, isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen
NASA Astrophysics Data System (ADS)
Maragou, Niki C.; Thomaidis, Nikolaos S.; Koupparis, Michael A.
2011-10-01
A systematic and detailed optimization strategy for the development of atmospheric pressure ionization (API) LC-MS/MS methods for the determination of Irgarol 1051, Diuron, and their degradation products (M1, DCPMU, DCPU, and DCA) in water, sediment, and mussel is described. Experimental design was applied for the optimization of the ion sources parameters. Comparison of ESI and APCI was performed in positive- and negative-ion mode, and the effect of the mobile phase on ionization was studied for both techniques. Special attention was drawn to the ionization of DCA, which presents particular difficulty in API techniques. Satisfactory ionization of this small molecule is achieved only with ESI positive-ion mode using acetonitrile in the mobile phase; the instrumental detection limit is 0.11 ng/mL. Signal suppression was qualitatively estimated by using purified and non-purified samples. The sample preparation for sediments and mussels is direct and simple, comprising only solvent extraction. Mean recoveries ranged from 71% to 110%, and the corresponding (%) RSDs ranged between 4.1 and 14%. The method limits of detection ranged between 0.6 and 3.5 ng/g for sediment and mussel and from 1.3 to 1.8 ng/L for sea water. The method was applied to sea water, marine sediment, and mussels, which were obtained from marinas in Attiki, Greece. Ion ratio confirmation was used for the identification of the compounds.
Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that induces rat urinary bladder urothelial tumors at high dietary levels (2500 ppm). The specific mode of action and molecular alterations triggered by diuron, however, have not been clarified. Th...
Herbicide Trials in Intensively Cultured Populus Plantations in Northern Wisconsin
Daniel A. Netzer; Nonan V. Noste
1978-01-01
Populus had good survival and growth when planting sites had been treated with linuron, a pre-emergent herbicide, alone or in combination with paraquat, a post-emergent herbicide. the herbicide treatments that are most effective in intensive culture are discussed.
Mimicking pestcide percolation dynamics in ditches bed by successive column infltration experiment
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Storck, Veronika; Negro, Sandrine; Huttel, Olivier; Voltz, Marc
2014-05-01
Soil layers underlying ditch beds acquire specific characteristics due to ii) hydrological and erosion/deposition processes occurring within the ditch and ii) management practices (burning, dredging, mowing, …). For example, organic matter contents of the ditch beds can be larger than those in neighboring fields, since ditches act as buffer zones. Besides, in Mediterranean catchments, farmed ditches are known to be zones of groundwater recharge and thereby may contribute to groundwater pollution. The role of farmed ditches in groundwater contamination needs therefore to be clarified. The purpose of this study was to determine the dynamic of pesticide percolation in infiltrating farmed ditches bed during a sequence of flood events. A complementary aim was to determine to which extent pesticide percolation from the ditches is correlated to surface flow water contamination. A succession of 9 flood simulations were performed on an undisturbed soil column sampled in the a ditch of the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The soil column was 15 cm long with a 15 cm inner-diameter. For the first 5 flood simulations, injected water was doped with 14C-diuron, an herbicide used in vineyards; uncontaminated water was injected for the last 4 simulations. Free drainage was imposed at the bottom of the column. Diuron concentration was kept constant during a simulated infiltration experiment, but it was progressively decreased from 1000 to 0 µg/L along the succession of the 9 events to mimic the observed seasonal variation of mean diuron concentration in surface flow at the study site (Louchart et al., 2001). Additionally, the first flood simulation was performed with tritium water to assess references on conservative transport within the soil column. For each simulation, the inflow and outflow hydrogram and chemogram were monitored. Extractable (water and solvent) and non
Application Date Affects Herbicide Tolerance of Hybrid Poplars
William Danfield; James Martishus; Edward Hansen
1983-01-01
Several herbicides -- glyphosate (Roundup), Linuron (Lorox), pronamide (Kerb), and dichlobenil (Casoron) -- controlled weeds in a 1-year-old Populus plantation and did not seriously injure the trees when applied in early spring or late fall. Casoron was most effective but is expensive.
Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana
2017-01-01
A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.
Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes
Arntzen, Charles J.; Ditto, Cathy L.; Brewer, Philip E.
1979-01-01
The effectiveness of diuron, atrazine, procyazine, and cyanazine were compared in controlling growth of redroot pigweed (Amaranthus retroflexus L.) in hydroponic culture. A very marked differential inhibition response was observed for atrazine between resistant and susceptible biotypes. Procyazine and cyanazine exhibited less dramatic differential responses, whereas diuron was equally effective in controlling growth in both biotypes. Photosystem II activity of chloroplasts from both triazine-resistant and triazine-susceptible biotypes was inhibited by diuron but only the chloroplasts from triazine-susceptible biotypes were inhibited significantly by atrazine. The photochemical activity of chloroplasts from triazine-resistant biotypes was partially resistant to procyazine or cyanazine inhibition. The parallel lack of diuron differential effects, partial procyazine and cyanazine differential response, and very marked atrazine differential response in both whole plant and chloroplast assays indicates that the chloroplast is the site of selective herbicide tolerance in these triazine-resistant redroot pigweed biotypes. Photosystem II photochemical properties were characterized by analysis of chlorophyll fluorescence transients in the presence or absence of herbicides. Data with susceptible chloroplasts indicated that both diuron and atrazine inhibit electron flow very near the primary electron acceptor of photosystem II. Only diuron altered the fluorescence transient in resistant chloroplasts. In untreated preparations there were marked differences in the fast phases of the fluorescence increase in resistant vs. susceptible chloroplasts; these data are interpreted as showing that the resistant plastids have an alteration in the rate of reoxidation of the primary photosystem II electron acceptor. Electrophoretic analysis of chloroplast membrane proteins of the two biotypes showed small changes in the electrophoretic mobilities of two polypeptide species. The data
Pereira, Igor; Rodrigues, Marcella Ferreira; Chaves, Andréa Rodrigues; Vaz, Boniek Gontijo
2018-02-01
Paper spray ionization (PSI) has some limitations such as low sensitivity and ionization suppression when complex samples are analyzed. The use of sample preparation devices directly coupled to MS can avoid these restrictions. Molecularly imprinted polymers (MIPs) are materials widely used as adsorbent in sample preparation methods such as solid-phase extraction and solid-phase microextraction, and they can provide specifics cavities with affinity to a target molecule. Here, we introduce a new MIP membrane spray ionization method combining MIP and PSI. MIP was synthesized directly on a cellulose membrane. Monuron and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used as template molecules in MIP synthesis for diuron and 2,4-D (2,4-dichlorophenoxyacetic acid) analyte sequesters, respectively. Apple, banana and grape methanolic extracts were used as matrices. The MIP membrane spray showed signal intensities of diuron and 2,4-D that were much higher compared to those obtained by non-imprinted polymers(NIP). Calibration curves exhibited R 2 > 0.99 for diuron and 2,4-D in all fruit extracts analyzed. LODs were found less than 0.60µgL -1 and LLOQs were found less than 2.00µgL -1 . The coefficients of variation and relative errors were less than 15% for almost all analyses. The apparent recovery test results ranged between 92,5% and 116.9%. Finally, the MIP membrane spray method was employed for the quantification of diuron and 2,4-D in real samples. Diuron contents were only found in three bananas (4.0, 6.5, and 9.9µgL -1 ). The proposed MIP membrane spray ionization method was straightforward, fast to carry out and provided satisfactory results for analyses of diuron and 2,4-D in apple, banana and grape samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan.
Harino, Hiroya; Mori, Yoshiaki; Yamaguchi, Yoshitaka; Shibata, Kiyoshi; Senda, Tetsuya
2005-04-01
Concentrations of booster antifouling compounds in the port of Osaka, Japan were assessed. Concentrations of Sea-Nine 211 (4,5-dichloro-2-n-octyl-3-isothiazolone), thiabendazole (2-(4-thiazolyl)-benzimidazole), IPBC (3-iodo-2-propynyl butylcarbamate), Diuron (3,4-dichlorophenyl-N, N-dimethylurea), Irgarol 1051 (2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine), and M1 (2-methylthio-4-t-butylamino-6-amino-s-triazine) in port water samples were in the range of <0.003-0.004 microg L(-1), <0.0008-0.020 microg L(-1), <0.0007-1.54 microg L(-1), <0.0008-0.267 microg L(-1), and <0.0019-0.167 microg L(-1), respectively. IPBC was not detected in the water samples, but the concentration of Diuron was higher than any previously reported. The concentrations of Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 in sediment samples were in the range of <0.04-2.4 microg kg(-1) dry, <0.08-1.2 microg kg(-1) dry, <0.64-1350 microg kg(-1) dry, <0.08-8.2 microg kg(-1) dry, and <0.18-2.9 microg kg(-1) dry, respectively. IPBC was again not detected. The levels of Sea-Nine 211, Diuron, and Irgarol 1051 in water and sediment samples were high in a poorly flushed mooring area for small and medium-hull vessels. Levels of Diuron and Irgarol 1051 were highest in summer. The concentration of Sea-Nine 211 in water increased between August and October 2002. Except for M1, increases in the levels of booster biocides in sediment were observed during the study period. The sediment-water partition (Kd) was calculated by dividing the concentrations in sediment by the concentrations in water. The Kd values for Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 were 690, 180, 2700, 300, and 870. The Kd value for these alternative compounds was lower than for TBT.
Vegetation management in Eucalyptus
Clyde L. Elmore
1983-01-01
Weeds and weed control are a major problem in the growth and management of Eucalyptus trees. Annual, biennial and perennial weed species are common in sites to be planted. These weeds should be controlled before planting. Preplant, preemergence and postemergence herbicides are discussed. Safe preemergence herbicides include oryzalin, napropamide, oxadiazon, linuron and...
Site Preparation For Intensively Cultured Hybrid Poplar Plantations
Edward Hansen; Daniel Netzer; W.J. Rietveld
1984-01-01
Five site preparation treatments consisting of combinations of tillage, contact herbicide (glyphosate), and pre-emergent herbicide (linuron) were tested for their effects on tree survival and growth. Treatments had little effect on tree survival, but effects on second-year-tree height were significant and additive -- i.e., tree height increased as the number of types...
Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens.
Rowen, David J; Templeman, Michelle A; Kingsford, Michael J
2017-09-01
Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC 50 for jellyfish growth was 0.35 μg L -1 for Diuron and 17.5 μg L -1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p < 0.05) in jellyfish growth at 0.1 μg L -1 , a level that is below the regional Great Barrier Reef guideline value. Jellyfish recovery was rapid with growth rates similar to control animals following removal from herbicide exposure. Both diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L -1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Werner, Deljana
2002-05-01
Umsatzgeschwindigkeit eine lineare Abhängigkeit festgestellt. Die thermodynamische Gleichtgewichtsdissoziationskonstante KD des Abzyms von 2,6 nM zeugt von einer sehr guten Affinität zum ÜZA. Hydrolytisch aktiv waren nur Antikörper, die gegen das Übergangszustandsanalogon Hei3 hergestellt worden waren. Es wird vermutet, dass die Hydrolyse der Benzylphenylcarbamate über einen Additions-Eliminierungsmechanismus unter Ausbildung eines tetraedrischen Übergangszustandes verläuft, dessen analoge Verbindung Hei3 ist. Im Rahmen der Generierung von Nachweisantikörpern zur Detektion der Substratabnahme bei der Hydrolyse wurden Anti-Diuron-Antikörper hergestellt. Einer der Antikörper (B91-CG5) ist spezifisch für das Herbizid Diuron und hat einen IC50-Wert von 0,19 µg/l und eine untere Nachweisgrenze von 0,04 µg/l. Ein anderer Antikörper (B91-KF5) reagiert kreuz mit einer Palette ähnlicher Herbizide. Mit diesen Antikörpern wurde ein empfindlicher Labortest, der ein Monitoring von Diuron auf Grundlage des durch die Trinkwasserverordnung festgeschriebenen Wertes für Pflanzenschutzmittel von 0,1 µg/l erlaubt, aufgebaut. Der Effekt der Anti-Diuron-Antikörper auf die Diuron-inhibierte Photosynthese wurde in vitro und in vivo untersucht. Es wurde nachgewiesen, dass sowohl in isolierten Thylakoiden, als auch in intakten Algen eine Vorinkubation der Anti-Diuron-Antikörper mit Diuron zur Inaktivierung seiner Photosynthese-hemmenden Wirkung führt. Wurde der Elektronentransport in den isolierten Thylakoiden oder in Algen durch Diuron unterbrochen, so führte die Zugabe der Anti-Diuron-Antikörper zur Reaktivierung der Elektronenübertragung. Attempts to produce catalytic antibodies for hydrolysis of arylcarbamates and arylureas: The aim of the investigations was to produce antibodies which are able to cleave herbicides resistant to naturally occuring enzymes. Structurally similar carbamate and urea derivatives were chosen for the experiments. Phosphonate derivatives were synthesized
Kim, Nam Sook; Hong, Sang Hee; An, Joon Geon; Shin, Kyung-Hoon; Shim, Won Joon
2015-06-15
The occurrence and distribution of tributyltin (TBT) and alternative biocides were investigated in sediment from semi-enclosed bays, fishing ports, and large commercial harbors in Korea. Extremely high concentration of TBT (55,264ngSn/g) was detected near a large shipyard, even after a total ban on its use in Korea. Diuron was the biocide with the highest detection frequency and concentration levels, followed by Irgarol 1051. Sea-Nine 211 was detected at 3 of 32 stations surveyed. Dichlofluanid, zinc and copper pyrithiones levels were below the detection limits at all the stations surveyed. The relatively high levels of Diuron (9-62.3ng/g) and Irgarol 1051 (1.5-11.5ng/g) were detected in harbor and shipyard areas. Diuron and Irgarol 1051 levels including TBT in sediments from hot spots in Korea exceeded global sediment quality guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Franco-Barrios, Alejandro; Torres-Padrón, María Esther; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2014-01-01
A method is presented for the extraction, preconcentration, and determination of two commonly used booster biocides, Irgarol 1051 and diuron, in samples of muscle and liver tissues from Mugil cephalus by microwave-assisted extraction (MAE) followed by SPE for the preconcentration and cleanup step, coupled with LC/MS/MS. The optimum conditions for MAE were established as power 200 W and irradiation time 4 min. Using these conditions, the LOD was 0.13 ng/g for diuron and 0.10 ng/g for Irgarol 1051. The recoveries calculated at three concentration levels (0.5, 5, and 50 ng/g) were greater than 74%. Repeatability was less than 7.5% and reproducibility less than 12.7%. The optimized method was used to monitor these compounds in M. cephalus from different harbors of Gran Canaria Island. The samples were collected bimonthly and processed following the optimized method. High levels of Irgarol 1051 (6.9 +/- 1.03 ng/g) were found in the liver, while diuron was undetected. However, diuron was found in the muscle (1.41 +/- 0.45 ng/g). The proposed sentinel organism could be used in tropical and subtropical regions to continuously biomonitor for booster biocides over long periods of time. This technique could be a useful tool for improving the management of ocean and coastal waters.
McMahon, Kathryn; Bengtson Nash, Susan; Eaglesham, Geoff; Müller, Jochen F; Duke, Norman C; Winderlich, Steve
2005-01-01
Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.
Turnbull, Gillian A.; Ousley, Margaret; Walker, Allan; Shaw, Eve; Morgan, J. Alun W.
2001-01-01
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene). PMID:11319111
Batista-Andrade, Jahir Antonio; Caldas, Sergiane Souza; de Oliveira Arias, Jean Lucas; Castro, Italo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2016-11-15
A baseline study for antifouling booster biocides in coastal waters of Panama is presented. Solid Phase Extraction (SPE) was used for extraction and Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS) was applied for the quantification of irgarol 1051, diuron, (2-thiocyanomethylthio)benzothiazole (TCMTB), 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) and dichlofluanid. TCMTB, DCOIT and dichlofluanid were not detected in any seawater sample, while irgarol 1051 and diuron were found in four out of thirteen areas (<0.3 to 5.0ngL -1 and <2.7 to 70ngL -1 , respectively). Although the hotspots were identified in areas influenced by marinas and in one of the ports, diuron and irgarol 1051 levels were all lower than the threshold levels set by the Environmental Quality Standard of United Kingdom. However, this is only a snapshot of the status of costal water contamination by antifouling booster biocides and a more comprehensive assessment is needed to assess risks associated to long term exposure. Copyright © 2016. Published by Elsevier Ltd.
40 CFR 372.65 - Chemicals and chemical categories to which this part applies.
Code of Federal Regulations, 2014 CFR
2014-07-01
...,3H)-pyrimidinedione) 314-40-9 1/1/95 Bromacil, lithium salt [2,4-(1H,3H)-Pyrimidinedione, 5-bromo-6-methyl-3-(1-methylpropyl), lithium salt] 53404-19-6 1/1/95 Bromine 7726-95-6 1/1/95 1-Bromo-1....alpha.,6.beta.)-] 58-89-9 1/1/87 Linuron 330-55-2 1/1/95 Lithium carbonate 554-13-2 1/1/95 Malathion 121...
40 CFR 372.65 - Chemicals and chemical categories to which this part applies.
Code of Federal Regulations, 2013 CFR
2013-07-01
...,3H)-pyrimidinedione) 314-40-9 1/1/95 Bromacil, lithium salt [2,4-(1H,3H)-Pyrimidinedione, 5-bromo-6-methyl-3-(1-methylpropyl), lithium salt] 53404-19-6 1/1/95 Bromine 7726-95-6 1/1/95 1-Bromo-1....alpha.,6.beta.)-] 58-89-9 1/1/87 Linuron 330-55-2 1/1/95 Lithium carbonate 554-13-2 1/1/95 Malathion 121...
40 CFR 372.65 - Chemicals and chemical categories to which this part applies.
Code of Federal Regulations, 2012 CFR
2012-07-01
...,3H)-pyrimidinedione) 314-40-9 1/1/95 Bromacil, lithium salt [2,4-(1H,3H)-Pyrimidinedione, 5-bromo-6-methyl-3-(1-methylpropyl), lithium salt] 53404-19-6 1/1/95 Bromine 7726-95-6 1/1/95 1-Bromo-1....alpha.,6.beta.)-] 58-89-9 1/1/87 Linuron 330-55-2 1/1/95 Lithium carbonate 554-13-2 1/1/95 Malathion 121...
Park, Jihae; Brown, Murray T; Depuydt, Stephen; Kim, Jang K; Won, Dam-Soo; Han, Taejun
2017-01-01
An ecological impact assessment of four herbicides (atrazine, diuron, paraquat and simazine) was assessed using the aquatic floating vascular plants, Lemna gibba, Lemna minor and Lemna paucicostata as test organisms. The sensitivity of several ecologically relevant parameters (increase in frond area, root length after regrowth, maximum and effective quantum yield of PSII and maximum electron transport rate (ETR max ), were compared after a 72 h exposure to herbicides. The present test methods require relatively small sample volume (3 mL), shorter exposure times (72 h), simple and quick analytical procedures as compared with standard Lemna assays. Sensitivity ranking of endpoints, based on EC 50 values, differed depending on the herbicide. The most toxic herbicides were diuron and paraquat and the most sensitive endpoints were root length (6.0-12.3 μg L -1 ) and ETR max (4.7-10.3 μg L -1 ) for paraquat and effective quantum yield (6.8-10.4 μg L -1 ) for diuron. Growth and chlorophyll a fluorescence parameters in all three Lemna species were sensitive enough to detect toxic levels of diuron and paraquat in water samples in excess of allowable concentrations set by international standards. CV values of all EC 50 s obtained from the Lemna tests were in the range of 2.8-24.33%, indicating a high level of repeatability comparable to the desirable level of <30% for adoption of toxicity test methods as international standards. Our new Lemna methods may provide useful information for the assessment of toxicity risk of residual herbicides in aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pretreatment of agriculture field water for improving membrane flux during pesticide removal
NASA Astrophysics Data System (ADS)
Mehta, Romil; Saha, N. K.; Bhattacharya, A.
2017-10-01
Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.
Strategies to evaluate biodegradability: application to chlorinated herbicides.
Sanchis, S; Polo, A M; Tobajas, M; Rodriguez, J J; Mohedano, A F
2014-01-01
The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20-30% for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L(-1) for diuron and atrazine and 50 mg L(-1) for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25-36% degradation of the nitrochlorinated herbicides and 53-77% of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.
Effects of three related amides on microecosystem stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flum, T.F.; Shannon, L.J.
1987-04-01
Three related amides (diuron, 2-(octyloxy) acetanilide, and salicylanilide) were evaluated for toxicity to aquatic microcosm communities. Effects were measured at the ecosystem level using changes in pH, Eh (redox potential), and dissolved oxygen as indicators of toxicity. These values were used to calculate the resistance, resilience, and relative instability of the microecosystems to each compound at comparable dose levels of approximately 2500 micrograms/liter. Such measures have often been used in a theoretical context, but have not received wide practical application. The systems showed low resistance and no resilience to diuron, high resistance and low resilience to 2-(octyloxy) acetanilide, and nomore » response to salicylanilide. At a higher exposure level (9800 micrograms/liter salicylanilide), the systems showed low resistance and high resilience. Both this approach and more traditional dose-response measures of toxicity indicated that diuron was clearly the most toxic compound, followed by 2-(octyloxy) acetanilide and salicylanilide. While microcosm toxicity tests were slightly less sensitive than some single species tests, they provided important additional information on the extent of perturbations and the rate of ecosystem recovery.« less
Loffredo, Elisabetta; Castellana, Giancarlo
2015-01-01
In this study, two widely available low-cost adsorbents, almond shells and a green compost, and two ligninolytic fungi, Pleurotus ostreatus and Stereum hirsutum, were used to remove organic contaminants from a landfill leachate (LLe) and abate its phytotoxicity. The methodology adopted was based on the occurrence of two simultaneous processes, such as adsorption and bioremoval. The leachate was artificially contaminated with a mixture of the xenoestrogens bisphenol A (BPA), ethynilestadiol (EE2) and 4-n-nonylphenol (NP), the herbicide linuron and the insecticide dimethoate at concentrations of 10, 1, 1, 10 and 10 mg L(-1), respectively. Three adsorption substrates were prepared: potato dextrose agar alone or the same incorporating each adsorbent. The substrates were either not inoculated or inoculated with each fungus, separately, before to be superimposed on LLe. After 2 months, the residual amount of each contaminant, the electrical conductivity, the pH and the content of total phenols were measured in treated LLe. Germination assays using lettuce, ryegrass and radish were performed to evaluate LLe phytotoxicity. The combination substrate+P. ostreatus showed the best results with average removals of 88, 96, 99, 58 and 46% for BPA, EE2, NP, linuron and dimethoate, respectively. The same treatment considerably reduced the phenol content in LLe compared to no treatment. The combination substrate+S. hirsutum produced average removals of 39, 71, 100, 61 and 32% for BPA, EE2, NP, linuron and dimethoate, respectively. Also uninoculated substrates showed relevant adsorption capacities towards the five contaminants. Most treatments significantly reduced LLe phytotoxicity, especially on lettuce. The best results were obtained with the treatment compost+S. hirsutum, which produced root and shoot lengths and seedling biomass of lettuce, respectively, 2.3, 3.3, and 1.9 times those measured in untreated LLe. In general, germination results were negatively correlated with LLe
A Miniature Bioassay for Testing the Acute Phytotoxicity of Photosystem II Herbicides on Seagrass
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Mercurio, Phil; O’Brien, Jake; Ralph, Peter J.; Negri, Andrew P.
2015-01-01
Photosystem II (PSII) herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/Fm’) was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/Fm’ by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes), indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m-2 s-1). High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future. PMID:25674791
Cederlund, H; Börjesson, E
2016-08-15
Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. Copyright © 2016 Elsevier B.V. All rights reserved.
Toxicity of herbicides in highway runoff.
Huang, Xinjiang; Fong, Stephanie; Deanovic, Linda; Young, Thomas M
2005-09-01
Previous field monitoring at two highway sites found highway-applied herbicides in storm water runoff at maximum concentrations ranging from 10 microg/L for glyphosate and diuron to as high as 200 microg/L for oryzalin. To determine whether these herbicides at these concentrations can cause any toxicity to aquatic organisms, a standard toxicity study was conducted. Storm water was collected along Highway 37, Sonoma County, California, USA, and the herbicides isoxaben, oryzalin, diuron, clopyralid, and glyphosate were spiked into the storm water at the highest concentrations observed during the five previous field-monitoring campaigns. Three different toxicity studies were conducted and the results showed the following: No significant reduction in reproduction or increase in mortality relative to the control for an 8-d Ceriodaphnia (water flea) toxicity test; no significant increase in mortality or decrease in biomass compared to the control during a 7-d Pimephales (fish) toxicity test; and, in a 96-h Selenastrum (algae) toxicity test, both the 10-microg/L diuron treatment and the combined 50-microg/L isoxaben plus 200-microg/L oryzalin treatment produced significant (p < 0.05) reductions in algal growth compared to the controls, although the 30-microg/L clopyralid or 10-microg/L glyphosate treatments did not exhibit any toxic effects.
Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P
2018-03-19
The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-01-01
This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Delgado-Moreno, L; Nogales, R; Romero, E
2017-12-15
Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grebel, Janel E; Charbonnet, Joseph A; Sedlak, David L
2016-01-01
To advance cost-effective strategies for removing trace organic contaminants from urban runoff, the feasibility of using manganese oxides as a geomedia amendment in engineered stormwater infiltration systems to oxidize organic contaminants was evaluated. Ten representative organic chemicals that have previously been detected in urban stormwater were evaluated for reactivity in batch experiments with birnessite. With respect to reactivity, contaminants could be classified as: highly reactive (e.g., bisphenol A), moderately reactive (e.g., diuron) and unreactive (e.g., tris(2-chloro-1-propyl)phosphate). Bisphenol A and diuron reacted with birnessite to produce a suite of products, including ring-cleavage products for bisphenol A and partially dechlorinated products for diuron. Columns packed with manganese oxide-coated sand were used evaluate design parameters for an engineered infiltration system, including necessary contact times for effective treatment, as well as the impacts of stormwater matrix variables, such as solution pH, concentration of natural organic matter and major anions and cations. The manganese oxide geomedia exhibited decreased reactivity when organic contaminants were oxidized, especially in the presence of divalent cations, bicarbonate, and natural organic matter. Under typical conditions, the manganese oxides are expected to retain their reactivity for 25 years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1
Ensminger, Michael P.; Hess, F. Dan
1985-01-01
Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206
Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.
Ensminger, M P; Hess, F D
1985-05-01
Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.
Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César
2015-01-01
This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
Belo, Cristóvão Ramiro; Cansado, Isabel Pestana da Paixão; Mourão, Paulo Alexandre Mira
2017-02-01
For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET-PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m 2 g -1 ) and pore volume (0.46, 0.56 and 0.50 cm 3 g -1 ), respectively, for PET, PAN and PET-PAN precursors. Selected ACs were successfully tested for 4-chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g -1 , respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET-PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.
Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle
2013-01-01
Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.
Lapertot, Milena; Ebrahimi, Sirous; Oller, Isabel; Maldonado, Manuel I; Gernjak, Wolfgang; Malato, Sixto; Pulgarín, César
2008-03-01
To shorten phototreatment time is of major concern for the cost and energy benefits of the xenobiotics degradation performed by photocatalytic processes. Using photo-Fenton and TiO(2) phototreatments, partially photodegraded solutions of 6 separate pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) were tested for biocompatibility, which was evaluated according to the Zahn-Wellens procedure. This study investigated if Microtox could be considered as a suitable global indicator capable of giving information on the evolution of biocompatibility of the water solution contaminated with organic pollutants during the phototreatment in order to promote biotreatment. The obtained results demonstrated that biodegradability increased significantly after short photo-Fenton treatment times for alachlor, diuron and pentachlorophenol. Uncertain results were obtained with atrazine and isoproturon. Microtox acute toxicity testing was shown to correctly represent dynamics and efficiency of phototreatment.
Colson, A M; Slonimski, P P
1979-01-02
Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous
Katsiadaki, Ioanna; Morris, Steven; Squires, Christopher; Hurst, Mark Richard; James, Jonathan David; Scott, Alexander Pickering
2006-01-01
We have previously shown that exposure to exogenous androgens causes female sticklebacks (Gasterosteus aculeatus) to produce the glue protein, spiggin, in their kidneys. This protein can be quantified by an enzyme-linked immunosorbent assay developed and validated at the Centre for Environment, Fisheries and Aquaculture Science. Here we report the development of an in vivo test for the detection of environmental antiandrogens. The system involves the simultaneous exposure of female sticklebacks to 17α-methyltestosterone (a model androgen) at 500 ng/L and suspected environmental antiandrogens over a period of 21 days. The spiggin content of the kidneys is then measured, and any antiandrogenic activity is evaluated by comparing the spiggin levels of female fish exposed to antiandrogens to those of female fish exposed solely to the model androgen. The assay detects the antiandrogenic activity of flutamide, vinclozolin (both used at 250 μg/L), linuron (at 150 μg/L), and fenitrothion (at 15 and 150 μg/L). These results provide the first evidence of in vivo antiandrogenic activity of both linuron and fenitrothion in teleosts. Although there are other suggested fish species that could be used for this purpose, the stickleback is the only widely available species in which it is now possible to study both estrogenic and antiandrogenic end points in the same individual. Furthermore, the species is endemic and ubiquitous in Europe, and it possesses many ecological traits that make it better suited than other potential species for field research into endocrine disruption. PMID:16818256
ORGANIC COSOLVENT EFFECTS ON THE SORPTION AND TRANSPORT OF NEUTRAL ORGANIC CHEMICALS
Soil column miscible displacement techniques were used to investigate the effects of an organic cosolvent (methanol) on the sorption and transport of three neutral organic chemicals; naphthalene, phenanthrene, and the herbicide diuron, through a sandy surface soil. A two-domain, ...
COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS
Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surfa...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios
This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.
Nthumbi, Richard M; Ngila, Jane C
2016-10-01
A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO 2 /Fe-Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2'azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron-palladium (Fe-Pd) and titania (TiO 2 ) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe-Pd and nitrogen-doped TiO 2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The
Schrader, Kevin K; Nanayakkara, N P Dhammika; Tucker, Craig S; Rimando, Agnes M; Ganzera, Markus; Schaneberg, Brian T
2003-09-01
Musty "off-flavor" in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least 30 million US dollars annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 micro M (125 micro g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1'-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 micro M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture.
Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.
2003-01-01
Musty “off-flavor” in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 μM (125 μg/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1′-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 μM concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919
Bermudagrass: Spring weed control programs and biotype research
USDA-ARS?s Scientific Manuscript database
Research conducted from 2008 through 2012 evaluated bermudagrass control with Sencor (metribuzin) and Command (clomazone) plus Direx (diuron). Averaged across experiments, bermudagrass was controlled 54, 41, and 43% four weeks after Sencor application at 3 lb/A in mid-February, early-March, and mid-...
Rodríguez-Cruz, M S; Sánchez-Martín, M J; Andrades, M S; Sánchez-Camazano, M
2007-01-10
In this work, the efficiency of reactive clay barriers in the immobilisation of organic pesticides in a sandy soil was studied. Reactive barriers were prepared by modification of montmorillonite, kaolinite and palygorskite clay minerals, and of a clayey soil with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Percolation curves of the pesticides linuron, atrazine and metalaxyl of different hydrophobic character, were obtained in columns packed with a natural sandy soil with these barriers intercalated under saturated flow conditions. The cumulative curves in the unmodified soil indicated a leaching of pesticides greater than 85% of the total amount of compound added. After barrier intercalation, the breakthrough curves (BTC) indicated a dramatic decrease in the amounts of linuron leached in all columns and a significant modification of the leaching kinetics of atrazine and metalaxyl. Retardation factors, R, of the pesticides in the columns were significantly correlated with the organic matter content (OM) derived from the ODTMA of the organo clay/soil barriers (r2>or=0.78). Significant correlations were also found between these R factors and the pore volume values corresponding to the maximum peaks of the BTCs (r2=0.83; p<0.01) or the total volumes leached (r2=0.44; p<0.05) for the pesticides atrazine and metalaxyl. The results obtained point to the interest in the use of reactive clay barriers for almost complete immobilisation of hydrophobic pesticides or for decreasing the leaching of moderately hydrophobic pesticides coming from point-like sources of pollution. These barriers would avoid the generation of elevated concentrations of these compounds in the soils due to their rapid washing.
Magnucka, Elżbieta G; Pietr, Stanisław J; Kozubek, Arkadiusz; Zarnowski, Robert
2014-11-01
The effect of three PSII-inhibiting herbicides, lenacil, linuron, and pyrazon, on the accumulation of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was studied. All used chemicals increased resorcinolic lipid content in both green and etiolated plants grown at 29 °C. At 22 °C pyrazon and lenacil decreased the content of alkylresorcinols in plants kept in the darkness and increased their amount in the light-grown seedlings. In turn, level of resorcinolic lipids was decreased by linuron in both etiolated and green plants. At the lowest tested temperature lenacil enhanced production of alkylresorcinols only in etiolated rye seedlings, whereas the light-independent stimulatory action of pyrazon on alkylresorcinol accumulation in rye grown at 15 °C was observed. Additionally, only the latter did not exert a negative effect on rye seedling growth under any of tested conditions. Compared with respective controls, the herbicides used also markedly modified the qualitative pattern of resorcinolic homologs. Interestingly, the observed changes generally favored the enhanced antifungal activity of these compounds. Our study provides novel information on the influence of PSII inhibitors on alkylresorcinol metabolism in rye seedlings. The unquestionable achievement of this work is the observation that low dose of pyrazon mainly stimulated both growth and alkylresorcinol synthesis in rye seedlings, a non-target plant. Moreover, our experimental work showed unambiguously that the observed pyrazon-driven accumulation and homolog pattern modification of alkylresorcinols dramatically improved the resistance of winter rye to infections caused by Rhizoctonia cerealis. Copyright © 2014 Elsevier Inc. All rights reserved.
Kennedy, Karen; Schroeder, Thomas; Shaw, Melanie; Haynes, David; Lewis, Stephen; Bentley, Christie; Paxman, Chris; Carter, Steve; Brando, Vittorio E; Bartkow, Michael; Hearn, Laurence; Mueller, Jochen F
2012-01-01
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing
Sharma, Priyanka; Tuteja, Satish K.; Bhalla, Vijayender; Shekhawat, G.; Dravid, Vinayak P.; Suri, C.Raman
2014-01-01
We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene–graphene oxide (fG–GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG–GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lam, Nguyen Hoang; Jeong, Hui-Ho; Kang, Su-Dong; Kim, Dae-Jin; Ju, Mi-Jo; Horiguchi, Toshihiro; Cho, Hyeon-Seo
2017-08-15
A simultaneous monitoring study on organotins (butyltins and phenyltins) and most frequently used alternative antifouling biocides (Irgarol 1051, Diuron, Sea-Nine 211 and M1) in water and sediments (n=44) collected from three Special Management Sea Areas operated by Korean government. The lower concentration of butyltins (BTs) than that of new antifouling biocides (NEW) was found in water but the significant greater concentration of BTs than that of NEW was still found in sediments. The tributyltin (TBT) levels in water exceeded the chronic criterion to protect seawater aquatic life at several sites. Even ten years after the ban of the use of TBT-based antifouling paint, the concentrations of TBT, Diuron and Irgarol 1051 in sediments from shipyards exceeded global sediment quality guidelines and potentially poses adverse risks on marine organisms and extremely high concentration of TBT up to 2304ng/g was found for a sediment collected at a shipyard. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Hong, Sang Hee; Ha, Sung Yong; Han, Gi Myung; Shin, Kyung-Hoon
2014-01-15
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35-1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aliferis, Konstantinos A; Chrysayi-Tokousbalides, Maria
2006-03-08
The biochemical mode of action of (5S,8R,13S,16R)-(-)-pyrenophorol isolated from a Drechslera avenae pathotype was investigated by using metabolic fingerprinting. (1)H NMR spectra of crude leaf extracts from untreated Avena sterilis seedlings and A. sterilis seedlings treated with pyrenophorol were compared with those obtained from treatments with the herbicides diuron, glyphosate, mesotrione, norflurazon, oxadiazon, and paraquat. Multivariate analysis was carried out to group treatments according to the mode of action of the phytotoxic substances applied. Analysis results revealed that none of the herbicide treatments fitted the pyrenophorol model and indicate that the effect of the phytotoxin on A. sterilis differs than those caused by glyphosate, mesotrione, norflurazon, oxadiazon, paraquat, and diuron, which inhibit 5-enolpyruvylshikimate-3-phosphate synthase, 4-hydroxyphenyl-pyruvate-dioxygenase, phytoene desaturase, protoporphyrinogen oxidase, photosystem I, and photosystem II, respectively. The method applied, combined with appropriate data preprocessing and analysis, was found to be rapid for the screening of phytotoxic substances for metabolic effects.
Bellas, Juan; Beiras, Ricardo; Mariño-Balsa, José Carlos; Fernández, Nuria
2005-04-01
This study investigated the toxic effects of the insecticides lindane and chlorpyrifos, the herbicide diuron, the organometallic antifoulant tributyltin (TBT), and the surfactant sodium dodecyl sulfate (SDS) on the early life stages of Paracentrotus lividus (Echinodermata, Euechinoidea), Ciona intestinalis (Chordata, Ascidiacea), Maja squinado and Palaemon serratus (Arthropoda, Crustacea) in laboratory acute toxicity tests. The assays studied embryogenesis success from fertilized egg to normal larvae in P. lividus (48 h incubation at 20 degrees C) and C. intestinalis (24 h incubation at 20 degrees C), and larval mortality at 24 and 48 h in M. squinado and P. serratus. For P. lividus, the median effective concentrations (EC50) reducing percentages of normal larvae by 50% were: 350 microg l(-1) for chlorpyrifos, 5500 microg l(-1) for diuron, 4277 microg l(-1) for SDS, and 0.309 microg l(-1) for TBT. For C. intestinalis, the EC50 values affecting embryogenesis success were 5666 microg l(-1) for chlorpyrifos, 24,397 microg (l-1) for diuron, 4412 microg l(-1) for lindane, 5145 microg I(-1) for SDS, and 7.1 microg l(-1) for TBT. The median lethal concentrations (LC50) for M. squinado larval survival were 0.84 microg l(-1) (24 h) and 0.79 microg l(-1) (48 h) for chlorpyrifos, 2.23 microg(l(-1) (24 h) and 2.18 microg l(-1) (48 h) for lindane, and 687 microg l(-1) (48 h) for SDS. For P. serratus the LC50 values obtained were 0.35 microg l(-1) (24 h) and 0.22 microg l(-1) (48 h) for chlorpyrifos, 3011 microg l(-1) (24 h) and 3044 microg l(-1) (48 h) for diuron, 5.20 microg l(-1) (24 h) and 5.59 microg l(-1) (48 h) for lindane, and 22.30 microg l(-1) (24 h) and 17.52 microg l(-1) (48 h) for TBT. Decapod larvae, as expected, were markedly more sensitive to the insecticides than sea urchins and ascidians, and SDS was the least toxic compound tested for these organisms. Lowest observed effect concentrations (LOEC) of TBT for sea urchin and ascidian embryos, chlorpyrifos and
Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle
2014-01-01
Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with
Harino, Hiroya; Yamamoto, Yoshikazu; Eguchi, Sayaka; Kawai, Shini'chiro; Kurokawa, Yuko; Arai, Takaomi; Ohji, Madoka; Okamura, Hideo; Miyazaki, Nobuyuki
2007-02-01
Organotin compounds (OTs) and representative booster biocides were measured in sediment and mussels from Otsuchi Bay, Japan. The mean amounts of tributyltin (TBT) and triphenyltin (TPT) compounds in sediment were 13 microg kg(-1) dry and 3 microg kg(-1) dry, respectively. Representative booster biocides (Sea-Nine 211, Diuron, Dichlofluanid, Irgarol 1501, M1, which is a degradation compound of Irgarol 1051, and Copper pyrithione) were also detected in sediment from Otsuchi Bay. OT concentrations were higher than those of the measured booster biocides. Otsuchi Bay was divided into four parts by cluster analysis based on OT concentrations in sediment sampled from the bay. These areas included the vicinity of a shipyard, a small fishing port, the closed inner area of the bay, and the mouth of the bay. Higher concentrations of TBT and TPT and a higher ratio of TBT to total BTs were observed in the vicinity of the shipyard. A higher concentration of TPT in comparison with TBT was detected in a small fishing port. Furthermore, OT concentrations in the mouth of the bay were higher than those in the closed-off section. OT concentrations in mussels decreased with distance from the shipyard. Otsuchi Bay was then divided into three parts by cluster analysis based on the concentrations of representative booster biocides found in the bay's sediment. These areas included the vicinity of a shipyard, a small fishing port, and other sites. Concentrations of Diuron and Irgarol 1051 in the vicinity of a shipyard and a small fishing port were dramatically high in comparison with the other sites. Copper pyrithione and Dichlofluanid in addition to Diuron and Irgarol 1051 were also detected in the area of a small fishing port. The concentrations of antifouling biocides were highest in the water in front of the shipyard and showed a marked decrease with distance from the shipyard.
Vieira, Augusto A; Caldas, Sergiane S; Escarrone, Ana Laura Venquiaruti; Arias, Jean Lucas de Oliveira; Primel, Ednei Gilberto
2018-03-01
Booster biocides have been widely applied to ships and other submerged structures. These compounds can be released into the marine environment as the result of vessel hull leaching and may remain in different environmental compartments. This study aimed at introducing an environmentally friendly procedure for the extraction of irgarol and diuron from fish samples by vortex-assisted matrix solid phase dispersion (VA-MSPD) with detection by liquid chromatography tandem mass spectrometry. Different types of solid supports and solvents were evaluated. The best results were found when 0.5g mussel shell, 0.5g sodium sulfate and 5mL ethanol were used. Analytical recoveries ranged from 81 to 110%, with RSD below 10%, whereas the matrix effect was between -17 and 1% (for all samples under study). LOQ values of irgarol and diuron were 5 and 50ngg -1 , respectively. The method under investigation proved to be a promising alternative to controlling contamination of fish by booster biocides, with low consumption of biodegradable reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice
Current-used pesticides commonly applied in Alsace region (Eastern France) on diverse crops (maize, vineyard, vegetables, etc.) were analysed, together with Lindane, in rainwater between January 2002 and June 2003 simultaneously on two sites situated in a typical rural (Erstein, France) and urban area (Strasbourg, France). Rainwater samples were collected on a weekly basis by using two automatic wet only collectors associated with an open collector for the measurement of rainwater height. Pesticides were analysed by GC-MSMS and extracted from rainwater by SPME. Two runs were performed. The first one was performed by using a PDMS (100 μm) fibre for pesticides where direct injection into GC is possible (alachlor, atrazine, azinphos-ethyl, azinphos-methyl, captan, chlorfenvinphos, dichlorvos, diflufenican, α- and β-endosulfan, iprodione, lindane, metolachlor, mevinphos, parathion-methyl, phosalone, phosmet, tebuconazole, triadimefon and trifluralin). The second run was performed by using PDMS/DVB fibre and this run concerns pesticides where a preliminary derivatisation step with pentafluorobenzylbromide (PFBBr) is required for very low volatiles (bromoxynil,2,4-MCPA, MCPP and 2,4-D) or thermo labiles (chlorotoluron, diuron and isoproturon) pesticides. Results showed that the more concentrated pesticides detected were those used as herbicides in large quantities in Alsace region for maize crops (alachlor, metolachlor and atrazine). Maximum concentrations for these herbicides have been measured during intensive applications periods on maize crops following by rapid decrease immediately after use. For Alachlor, most important peaks have been observed between 21 and 28 April 2003 (3327 ng L -1 at Erstein and 5590 ng L -1 at Strasbourg). This is also the case for Metolachlor where most important peak was observed during the same week. Concentrations of pesticides measured out of application periods were very low for many pesticides and some others where never detected
Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C
2007-01-01
A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.
Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains.
Arakaki, R L; Monteiro, D A; Boscolo, M; Dasilva, R; Gomes, E
2013-12-01
Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L(-1) of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.
Desorption of biocides from renders modified with acrylate and silicone.
Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai
2014-01-01
Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. Copyright © 2013 Elsevier Ltd. All rights reserved.
Changes in bacterial community after application of three different herbicides.
Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes
2017-07-06
The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bending, Gary D; Friloux, Maxime; Walker, Allan
2002-06-18
The capacity of nine species of white rot fungus from a variety of basidiomycete orders to degrade contrasting mono-aromatic pesticides was investigated. There was no relationship between degradation of the dye Poly R-478, a presumptive test for ligninolytic potential, and degradation of the highly available pesticides diuron, metalaxyl, atrazine or terbuthylazine in liquid culture. However, there were significant positive correlations between the rates of degradation of the different pesticides. Greatest degradation of all the pesticides was achieved by Coriolus versicolor, Hypholoma fasciculare and Stereum hirsutum. After 42 days, maximum degradation of diuron, atrazine and terbuthylazine was above 86%, but for metalaxyl less than 44%. When grown in the organic matrix of an on-farm "biobed" pesticide remediation system, relative degradation rates of the highly available pesticides by C. versicolor, H. fasciculare and S. hirsutum showed some differences to those in liquid culture. While H. fasciculare and C. versicolor were able to degrade about a third of the poorly available compound chlorpyrifos in biobed matrix after 42 days, S. hirsutum, which was the most effective degrader of the available pesticides, showed little capacity to degrade the compound.
From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama.
Batista-Andrade, Jahir Antonio; Caldas, Sergiane Souza; Batista, Rodrigo Moço; Castro, Italo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2018-03-01
Antifouling biocides in surface sediments and gastropod tissues were assessed for the first time along coastal areas of Panama under the influence of maritime activities, including one of the world's busiest shipping zones: the Panama Canal. Imposex incidence was also evaluated in five muricid species distributed along six coastal areas of Panama. This TBT-related biological alteration was detected in three species, including the first report in Purpura panama. Levels of organotins (TBT, DBT, and MBT) in gastropod tissues and surficial sediments ranged from <5 to 104 ng Sn g -1 and <1-149 ng Sn g -1 , respectively. In addition, fresh TBT inputs were observed in areas considered as moderate to highly contaminated mainly by inputs from fishing and leisure boats. Regarding booster biocides, TCMTB and dichlofluanid were not detected in any sample, while irgarol 1051, diuron and DCOIT levels ranged from <0.08 to 2.8 ng g -1 , <0.75-14.1 ng g -1 , and <0.38-81.6 ng g -1 , respectively. The highest level of TBT (149 ng Sn g -1 ) and irgarol 1051 (2.8 ng g -1 ), as well as relevant level of DCOIT (5.7 ng g -1 ), were detected in a marina used by recreational boats. Additionally, relatively high diuron values (14.1 ng g -1 ) were also detected in the Panama Canal associate to a commercial port. DCOIT concentrations were associated with the presence of antifouling paint particles in sediments obtained nearby shipyard or boat maintenance sites. The highest levels of TBT, irgarol 1051, and diuron exceeded international sediment quality guidelines indicating that toxic effects could be expected in coastal areas of Panama. Thus, the simultaneous impacts produced by new and old generations of antifouling paints highlight a serious environmental issue in Panamanian coastal areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 180.106 - Diuron; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., undelinted seed 0.2 Fish - freshwater finfish, farm raised 2.0 Fruit, citrus, group 10, except lemon 0.05..., meat byproducts 1 Horse, fat 1 Horse, meat 1 Horse, meat byproducts 1 Lemon 0.5 Nut, macadamia 0.05...
40 CFR 180.106 - Diuron; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., undelinted seed 0.2 Fish - freshwater finfish, farm raised 2.0 Fruit, citrus, group 10, except lemon 0.05..., meat byproducts 1 Horse, fat 1 Horse, meat 1 Horse, meat byproducts 1 Lemon 0.5 Nut, macadamia 0.05...
40 CFR 180.106 - Diuron; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., undelinted seed 0.2 Fish - freshwater finfish, farm raised 2.0 Fruit, citrus, group 10, except lemon 0.05..., meat byproducts 1 Horse, fat 1 Horse, meat 1 Horse, meat byproducts 1 Lemon 0.5 Nut, macadamia 0.05...
40 CFR 180.106 - Diuron; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Goat, fat 1 Goat, meat 1 Goat, meat byproducts 1 Grain, aspirated fractions 5.0 Grape 0.05 Grass, forage, except bermudagrass 2 Grass, hay, except bermudagrass 2 Hazelnut 0.1 Hog, fat 1 Hog, meat 1 Hog...
40 CFR 180.106 - Diuron; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Goat, fat 1 Goat, meat 1 Goat, meat byproducts 1 Grain, aspirated fractions 5.0 Grape 0.05 Grass, forage, except bermudagrass 2 Grass, hay, except bermudagrass 2 Hazelnut 0.1 Hog, fat 1 Hog, meat 1 Hog...
Biodegradation of pesticides using fungi species found in the aquatic environment.
Oliveira, B R; Penetra, A; Cardoso, V V; Benoliel, M J; Barreto Crespo, M T; Samson, R A; Pereira, V J
2015-08-01
Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.
Raeppel, Caroline; Nief, Marie; Fabritius, Marie; Racault, Lucie; Appenzeller, Brice M; Millet, Maurice
2011-11-04
This work presents a new method to analyse simultaneously by GC-MS 31 pesticides from different chemical classes (2,4 D, 2,4 MCPA, alphacypermethrin, bifenthrin, bromoxynil, buprofezin, carbaryl, carbofuran, clopyralid, cyprodinil, deltamethrin dicamba, dichlobenil, dichlorprop, diflufenican, diuron, fenoxaprop, flazasulfuron, fluroxypyr, ioxynil, isoxaben, mecoprop-P, myclobutanil, oryzalin, oxadiazon, picloram, tau-fluvalinate tebuconazole, triclopyr, trifluralin and trinexapac-p-ethyl). This GC-MS method will be applied to the analysis of passive samplers (Tenax(®) tubes and SPME fiber) used for the evaluation of the indoor and outdoor atmospheric contamination by non-agricultural pesticides. The method involves a derivatisation step for thermo-labile or polar pesticides. Different agents were tested and MtBSTFA (N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide), a sylilation agent producing very specific fragments [M-57], was retained. However, diuron could not be derivatised and the isocyanate product was used for identification and quantification. Pesticides which did not need a derivatisation step were not affected by the presence of the derivatisation agent and they could easily be analysed in mixture with derivatised pesticides. The method can be coupled to a thermal-desorption unit or to SPME extraction for a multiresidue analysis of various pesticides in atmospheric samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Herbicide mitigation in microcosms simulating stormwater basins subject to polluted water inputs.
Bois, P; Huguenot, D; Jézéquel, K; Lollier, M; Cornu, J Y; Lebeau, T
2013-03-01
Non-point source pollution as a result of wine-growing activity is of high concern. Stormwater basins (SWB) found downstream of vineyard watersheds could show a potential for the mitigation of runoff water containing herbicides. In this study, mitigation of vinery-used herbicides was studied in microcosms with a very similar functioning to that recorded in SWB. Mitigation efficiency of glyphosate, diuron and 3,4-dichloroaniline (3,4-DCA) was investigated by taking into account hydraulic flow rate, mitigation duration, bioaugmentation and plant addition. Mitigation efficiency measured in water ranged from 63.0% for diuron to 84.2% for 3,4-DCA and to 99.8% for glyphosate. Water-storage duration in the SWB and time between water supplies were shown to be the most influential factors on the mitigation efficiency. Six hours water-storage duration allowed an efficient sorption of herbicides and their degradation by indigenous microorganisms in 5 weeks. Neither bioaugmentation nor plant addition had a significant effect on herbicide mitigation. Our results show that this type of SWB are potentially relevant for the mitigation of these herbicides stemming from wine-growing activity, providing a long enough hydraulic retention time. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda
2017-04-01
Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears
Wood, Tamara M.
2001-05-07
Sulfometuron-methyl concentrations in runoff from the road shoulder ranged from 0.1 to 1 µg/L throughout the 3-month sampling period, and in the drainage ditch decreased from about 1 µg/L in October and November to about 0.2 µg/L in January. It was never detected in Bull Creek. Bromacil concentrations were similar to those of diuron. Glyphosate was never detected in fall samples from the road shoulder, the drainage ditch, or the stream.
Branchet, Perrine; Cadot, Emmanuelle; Fenet, Hélène; Sebag, David; Ngatcha, Benjamin Ngounou; Borrell-Estupina, Valérie; Ngoupayou, Jules Remy Ndam; Kengne, Ives; Braun, Jean-Jacques; Gonzalez, Catherine
2018-04-18
Urban agriculture is crucial to local populations, but the risk of it contaminating water has rarely been documented. The aim of this study was to assess pesticide contamination of surface waters from the Méfou watershed (Yaoundé, Cameroon) by 32 selected herbicides, fungicides, and insecticides (mainly polar) according to their local application, using both grab sampling and polar organic compounds integrative samplers (POCIS). Three sampling campaigns were conducted in the March/April and October/November 2015 and June/July 2016 rainy seasons in urban and peri-urban areas. The majority of the targeted compounds were detected. The quantification frequencies of eight pesticides were more than 20% with both POCIS and grab sampling, and that of diuron and atrazine reached 100%. Spatial differences in contamination were evidenced with higher contamination in urban than peri-urban rivers. In particular, diuron was identified as an urban contaminant of concern because its concentrations frequently exceeded the European water quality guideline of 0.200 μg/L in freshwater and may thus represent an ecological risk due to a risk quotient > 1 for algae observed in 94% of grab samples. This study raises concerns about the impacts of urban agriculture on the quality of water resources and to a larger extent on the health of the inhabitants of cities in developing countries. Graphical abstract ᅟ.
Pathiratne, Asoka; Kroon, Frederieke J
2016-02-01
To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.
Amory, A M; Vanlerberghe, G C; Turpin, D H
1991-01-01
Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH(4) (+) assimilation on exogenous CO(2). N-sufficient cells were only able to assimilate NH(4) (+) maximally in the presence of CO(2) and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH(4) (+) assimilation. These results indicate that NH(4) (+) assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO(2) fixation. N-limited cells assimilated NH(4) (+) both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO(2) fixation was not required for NH(4) (+) assimilation. Using CO(2) removal techniques reported previously in the literature, we were unable to demonstrate CO(2)-dependent NH(4) (+) assimilation in N-limited cells. However, employing more stringent CO(2) removal techniques we were able to show a CO(2) dependence of NH(4) (+) assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO(2) requirements for NH(4) (+) assimilation. The first is as a substrate for photosynthetic CO(2) fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase.
Amory, Alan M.; Vanlerberghe, Greg C.; Turpin, David H.
1991-01-01
Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH4+ assimilation on exogenous CO2. N-sufficient cells were only able to assimilate NH4+ maximally in the presence of CO2 and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH4+ assimilation. These results indicate that NH4+ assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO2 fixation. N-limited cells assimilated NH4+ both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO2 fixation was not required for NH4+ assimilation. Using CO2 removal techniques reported previously in the literature, we were unable to demonstrate CO2-dependent NH4+ assimilation in N-limited cells. However, employing more stringent CO2 removal techniques we were able to show a CO2 dependence of NH4+ assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO2 requirements for NH4+ assimilation. The first is as a substrate for photosynthetic CO2 fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase. PMID:16667950
Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas
2016-04-01
There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances-o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)-showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E
Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas
2015-01-01
Background: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. Objectives: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Methods: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. Results: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances—o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)—showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Conclusions: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action
Lin, Hsin-Hang; Sung, Yu-Hsiang; Huang, Shang-Da
2003-09-12
Solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the analysis of nine phenylurea herbicides (metoxuron, monuron, chlorotoluron, isoproturon, monolinuron, metobromuron, buturon, linuron, and chlorbromuron). Polydimethylsiloxane-divinylbenzene (PDMS-DVB, 60 microm) and Carbowax-templated resin (CW-TPR, 50 microm) fibers were selected from four commercial fibers for further study because of their better extraction efficiencies. The parameters of the desorption procedure were studied and optimized. The effects of the properties of analytes and fiber coatings, carryover, duration and temperature of absorption, pH, organic solvent and ionic strength of samples were also investigated. External calibration with an aqueous standard can be used for the analysis of environmental samples (lake water) using either PDMS-DVB or CW-TPR fibers. Good precisions (1.0-5.9%) are achieved for this method, and the detection limits are at the level of 0.5-5.1 ng/ml.
Choquette, Anne F.
2014-01-01
This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide
Tsopela, A; Laborde, A; Salvagnac, L; Ventalon, V; Bedel-Pereira, E; Séguy, I; Temple-Boyer, P; Juneau, P; Izquierdo, R; Launay, J
2016-05-15
The present work was dedicated to the development of a lab-on-chip device for water toxicity analysis and more particularly herbicide detection in water. It consists in a portable system for on-site detection composed of three-electrode electrochemical microcells, integrated on a fluidic platform constructed on a glass substrate. The final goal is to yield a system that gives the possibility of conducting double, complementary detection: electrochemical and optical and therefore all materials used for the fabrication of the lab-on-chip platform were selected in order to obtain a device compatible with optical technology. The basic detection principle consisted in electrochemically monitoring disturbances in metabolic photosynthetic activities of algae induced by the presence of Diuron herbicide. Algal response, evaluated through oxygen (O2) monitoring through photosynthesis was different for each herbicide concentration in the examined sample. A concentration-dependent inhibition effect of the herbicide on photosynthesis was demonstrated. Herbicide detection was achieved through a range (blank - 1 µM Diuron herbicide solution) covering the limit of maximum acceptable concentration imposed by Canadian government (0.64 µM), using a halogen white light source for the stimulation of algal photosynthetic apparatus. Superior sensitivity results (limit of detection of around 0.1 µM) were obtained with an organic light emitting diode (OLED), having an emission spectrum adapted to algal absorption spectrum and assembled on the final system. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis
2012-12-01
21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.
Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05
Carpenter, Kurt D.; McGhee, Gordon
2009-01-01
Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).
Park, Mi Seon; Kim, Young Dae; Kim, Bo-Mi; Kim, Youn-Jung; Kim, Jang Kyun; Rhee, Jae-Sung
2016-01-01
Antifouling biocides such as organotin compounds and their alternatives are potent toxicants in marine ecosystems. In this study, we employed several molecular and biochemical response systems of the Pacific oyster Crassostrea gigas to understand a potential mode of action of antifouling biocides (i.e. tributyltin (TBT), diuron and irgarol) after exposure to different concentrations (0.01, 0.1, and 1 μg L-1) for 96 h. As a result, all the three antifouling biocides strongly induced the antioxidant defense system. TBT reduced both enzymatic activity and mRNA expression of Na+/K+-ATPase and acetylcholinesterase (AChE). Lower levels of both Na+/K+-ATPase activity and AChE mRNA expression were observed in the diuron-exposed oysters compared to the control, while the irgarol treatment reduced only the transcriptional expression of AChE gene. We also analyzed transcript profile of heat shock protein (Hsp) superfamily in same experimental conditions. All antifouling biocides tested in this study significantly modulated mRNA expression of Hsp superfamily with strong induction of Hsp70 family. Taken together, overall results indicate that representative organotin TBT and alternatives have potential hazardous effects on the gill of C. gigas within relatively short time period. Our results also suggest that analyzing a series of molecular and biochemical parameters can be a way of understanding and uncovering the mode of action of emerging antifouling biocides. In particular, it was revealed that Pacific oysters have different sensitivities depend on the antifouling biocides.
Park, Mi Seon; Kim, Young Dae; Kim, Bo-Mi; Kim, Youn-Jung; Kim, Jang Kyun; Rhee, Jae-Sung
2016-01-01
Antifouling biocides such as organotin compounds and their alternatives are potent toxicants in marine ecosystems. In this study, we employed several molecular and biochemical response systems of the Pacific oyster Crassostrea gigas to understand a potential mode of action of antifouling biocides (i.e. tributyltin (TBT), diuron and irgarol) after exposure to different concentrations (0.01, 0.1, and 1 μg L-1) for 96 h. As a result, all the three antifouling biocides strongly induced the antioxidant defense system. TBT reduced both enzymatic activity and mRNA expression of Na+/K+-ATPase and acetylcholinesterase (AChE). Lower levels of both Na+/K+-ATPase activity and AChE mRNA expression were observed in the diuron-exposed oysters compared to the control, while the irgarol treatment reduced only the transcriptional expression of AChE gene. We also analyzed transcript profile of heat shock protein (Hsp) superfamily in same experimental conditions. All antifouling biocides tested in this study significantly modulated mRNA expression of Hsp superfamily with strong induction of Hsp70 family. Taken together, overall results indicate that representative organotin TBT and alternatives have potential hazardous effects on the gill of C. gigas within relatively short time period. Our results also suggest that analyzing a series of molecular and biochemical parameters can be a way of understanding and uncovering the mode of action of emerging antifouling biocides. In particular, it was revealed that Pacific oysters have different sensitivities depend on the antifouling biocides. PMID:28006823
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho
2015-01-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2013-12-01
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Modelling the effects of pulse exposure of several PSII inhibitors on two algae.
Copin, Pierre-Jean; Chèvre, Nathalie
2015-10-01
Subsequent to crop application and during precipitation events, herbicides can reach surface waters in pulses of high concentrations. These pulses can exceed the Annual Average Environmental Quality Standards (AA-EQS), defined in the EU Water Framework Directive, which aims to protect the aquatic environment. A model was developed in a previous study to evaluate the effects of pulse exposure for the herbicide isoproturon on the alga Scenedesmus vacuolatus. In this study, the model was extended to other substances acting as photosystem II inhibitors and to other algae. The measured and predicted effects were equivalent when pulse exposure of atrazine and diuron were tested on S. vacuolatus. The results were consistent for isoproturon on the alga Pseudokirchneriella subcapitata. The model is thus suitable for the effect prediction of phenylureas and triazines and for the algae used: S. vacuolatus and P. subcapitata. The toxicity classification obtained from the dose-response curves (diuron>atrazine>isoproturon) was conserved for the pulse exposure scenarios modelled for S. vacuolatus. Toxicity was identical for isoproturon on the two algae when the dose-response curves were compared and also for the pulse exposure scenarios. Modelling the effects of any pulse scenario of photosystem II inhibitors on algae is therefore feasible and only requires the determination of the dose-response curves of the substance and growth rate of unexposed algae. It is crucial to detect the longest pulses when measurements of herbicide concentrations are performed in streams because the model showed that they principally affect the cell density inhibition of algae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Peng; Keller, Arturo A
2008-06-01
The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.
Johansson, Per; Eriksson, Karl Martin; Axelsson, Lennart; Blanck, Hans
2012-10-01
Macroalgae depend on carbon-concentrating mechanisms (CCMs) to maintain a high photosynthetic activity under conditions of low carbon dioxide (CO(2)) availability. Because such conditions are prevalent in marine environments, CCMs are important for upholding the macroalgal primary productivity in coastal zones. This study evaluated the effects of seven antifouling compounds-chlorothalonil, DCOIT, dichlofluanid, diuron, irgarol, tolylfluanid, and zinc pyrithione (ZnTP)-on the photosynthesis and CCM of sugar kelp (Saccharina latissima (L.)). Concentration-response curves of these toxicants were established using inhibition of carbon incorporation, whereas their effects over time and their inhibition of the CCM were studied using inhibition of O(2) evolution. We demonstrate that exposure to all compounds except ZnTP (< 1000 nM) resulted in toxicity to photosynthesis of S. latissima. However, carbon incorporation and O(2) evolution differed in their ability to detect toxicity from some of the compounds. Diuron, irgarol, DCOIT, tolylfluanid, and, to some extent, dichlofluanid inhibited carbon incorporation. Chlorothalonil did not inhibit carbon incorporation but clearly inhibited oxygen (O(2)) evolution. Photosynthesis showed only little recovery during the 2-h postexposure period. Inhibition of photosynthesis even increased after the end of exposure to chlorothalonil and tolylfluanid. Through changes in pH of the medium, toxic effects on the CCM could be studied isolated from photosynthesis effects. The CCM of S. latissima was inhibited by chlorothalonil, DCOIT, dichlofluanid, and tolylfluanid. Such inhibition of the CCM, or the absence thereof, deepens the understanding the mechanism of action of the studied compounds.
Sriprakash, K S; Batum, C
1981-09-01
Using a protoplast fusion technique we have been able to locate to the mitochondrial genome of the asporogenous yeast Torulopsis glabrata mutations conferring resistance to oligomycin, antimycin and diuron. When two strains differing in the size of their mtDNAs were fused the mitochondrial markers from the parent with the larger mtDNA (71-91) were transmitted predominantly among the fusion products. Both genetical and physical evidence support the occurrence of recombination in T. glabrata mitochondrial genome. Segregation of the mitochondrial genome appears to take place before the separation of the first bud from the fusion product.
The impact of land use on estimates of pesticide leaching potential: Assessments and uncertainties
NASA Astrophysics Data System (ADS)
Loague, Keith
1991-11-01
This paper illustrates the magnitude of uncertainty which can exist for pesticide leaching assessments, due to data uncertainties, both between soil orders and within a single soil order. The current work differs from previous efforts because the impact of uncertainty in recharge estimates is considered. The examples are for diuron leaching in the Pearl Harbor Basin. The results clearly indicate that land use has a significant impact on both estimates of pesticide leaching potential and the uncertainties associated with those estimates. It appears that the regulation of agricultural chemicals in the future should include consideration for changing land use.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2009-07-01
An experiment was conducted under laboratory conditions to investigate the effect of increasing concentrations of fenitrothion (2, 10 and 200 mg a.i./kg soil), diuron (1.5, 7.5 and 150 mg a.i./kg soil) and thiram (3.5, 17.5 and 350 mg a.i./kg soil) on soil respiration, bacterial counts and changes in culturable fraction of soil bacteria. To ascertain these changes, the community structure, bacterial biodiversity and process of colony formation, based on the r/K strategy concept, EP- and CD-indices and the FOR model, respectively, were determined. The results showed that the measured parameters were generally unaffected by the lowest dosages of pesticides, corresponding to the recommended field rates. The highest dosages of fenitrothion and thiram suppressed the peak SIR by 15-70% and 20-80%, respectively, while diuron increased respiration rate by 17-25% during the 28-day experiment. Also, the total numbers of bacteria increased in pesticide-treated soils. However, the reverse effect on day 1 and, in addition, in case of the highest dosages of insecticide on days 14 and 28, was observed. Analysis of the community structure revealed that in all soil treatments bacterial communities were generally dominated by K-strategists. Moreover, differences in the distribution of individual bacteria classes and the gradual domination of bacteria populations belonging to r-strategists during the experiment, as compared to control, was observed. However, on day 1, at the highest pesticide dosages, fast growing bacteria constituted only 1-10% of the total colonies number during 48 h of plate incubation, whereas in remaining samples they reached from 20 to 40% of total cfu. This effect, in case of fenitrothion, lasted till the end of the experiment. At the highest dosages of fenitrothion, diuron and at all dosages of thiram the decrease of biodiversity, as indicated by EP- and CD-indices on day 1, was found. At the next sampling time, no significant retarding or stimulating effect
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho
2015-06-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides
Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene
1995-01-01
We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.
Effects of sorbents in sorption of agrochemical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasundera, T.; Jayasundera, S.
1996-10-01
Sorption to soil materials is a key process controlling the fate of agrochemicals in the environment. Batch experiments were performed to determine sorption coefficients of metolachlor, alachlor and linuron onto clays, natural organic matter (NOM) coated-clays, and organic sorbents. Our results indicate that the partition coefficient K{sub d} is a function of both sorbent and sorbate properties. The carbon referenced sorption coefficient (K{sub oc}) decreased with increasing polarity of the organic sorbent. Adsorption isotherms onto clays and NOM coated-clays conformed to a Freunlich equation. Studies indicate that at low NOM surface coverage, interactions between NOM and clay surfaces could reducemore » the surface affinity for agrochemical adsorption. Our results suggest that sorption cannot be simply defined as {open_quotes}adsorption{close_quotes} or {open_quotes}partitioning{close_quotes}, but rather there is a continuum of possible interactions. The more polar the solute, the more likely it is that interactions other than hydrophobic will contribute to sorption, causing the currently used K{sub oc}-K{sub ow} correlations to fail.« less
U.S. EPA, Pesticide Product Label, DIURON MUP, 06/20/2007
2011-04-21
... tl:J.~''' L'B )'\\:iri'.-:.I.lnE~!o"i~·'·· I'~'n',;,:t.!,~. uec 'i,;joc~lclru.Ao:., I co!. :;.y,.,..J':"Q ..... j L~:' tl'-~ pop,i:c~ J'o':.,istc?((: ~1!..c-+ ... l..h~~~".p.~-I'I2. I ...
Wang, Yufei; Roddick, Felicity A; Fan, Linhua
2017-10-01
The photodegradation of seven micropollutants commonly found in municipal wastewater, namely caffeine, carbamazepine, diuron, simazine, sulfamethoxazole, triclosan and 2,4-D, was investigated in pure water and secondary effluent to understand the direct and indirect photolysis of these compounds under natural sunlight irradiation. Sulfamethoxazole and triclosan were readily photodegraded with half-lives of 5.8 and 1.8 h, respectively, whilst the others were relatively resistant towards sunlight irradiation. Enhanced degradation was observed in secondary effluent compared with in the pure water matrix for all compounds, except for triclosan. It was confirmed that hydroxyl radicals played an important role in the photodegradation of the micropollutants while singlet oxygen may also play a role. The contribution of hydroxyl radical to the overall degradation of the five compounds that were resistant to direct sunlight accounted for 32%-70%. The impact of humic acid and nitrate, two known photosensitisers and wastewater components, on the photodegradation of the seven micropollutants in pure water was investigated under simulated solar radiation. The presence of nitrate promoted the photochemical loss of all seven micropollutants, however, humic acid caused promotion or inhibition, depending on the characteristics of the micropollutant. Humic acid enhanced the photolytic degradation of caffeine, sulfamethoxazole and diuron, while it hindered the photodegradation of the other four compounds by absorbing the available irradiation energy and/or reforming the parent compound. Furthermore, it was shown that there was only a small increase (up to 15%) in photodegradation of the compounds at 25 °C compared with that at 10 °C in the simulated system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià
2004-08-06
A multi-residue analytical method has been developed for the determination of various classes of selected endocrine disruptors. This method allows the simultaneous extraction and quantification of different estrogens (estradiol, estrone, estriol, estradiol-17-glucuronide, estradiol diacetate, estrone-3-sulfate, ethynyl estradiol and diethylstilbestrol), pesticides (atrazine, simazine, desethylatrazine, isoproturon and diuron), and bisphenol A in natural waters. In the method developed, 500 ml of water are preconcentrated on LiChrolut RP-18 cartridges. Further analysis is carried out by liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure chemical ionisation (APCI) in the positive ion mode for determination of pesticides and electrospray in the negative ionisation mode for determination of estrogens and bisphenol A. Recoveries for most compounds were between 90 and 119%, except for bisphenol A (81%) and diethylstilbestrol (70%), with relative standard deviations below 20%. Limits of detection ranged between 2 and 15 ng/l. The method was used to study the occurrence of the selected pollutants in surface and groundwater used for abstraction of drinking water in a waterworks and to evaluate the removal efficiency of the different water treatments applied. Water samples from the river, the aquifer, and after each treatment stage (sand filtration, ozonation, activated carbon filtration and post-chlorination) were taken monthly from February to August of 2002. The presence in river water of atrazine, simazine, diuron and bisphenol A were relatively frequent at concentrations usually below 0.1 microg/l. Lower levels, below 0.02 microg/l, were usual for isoproturon. Estrone-3-sulfate and estrone were detected occasionally in the river. Most of the compounds were completely removed during the water treatment, especially after activated carbon filtration.
Duke, Norman C; Bell, Alicia M; Pederson, Dan K; Roelfsema, Chris M; Bengtson Nash, Susan
2005-01-01
Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vierh. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect >30 km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence.
Arias-Andrés, M; Rämö, R; Mena Torres, F; Ugalde, R; Grandas, L; Ruepert, C; Castillo, L E; Van den Brink, P J; Gunnarsson, J S
2016-10-25
Costa Rica is a tropical country with one of the highest biodiversity on Earth. It also has an intensive agriculture, and pesticide runoff from banana and pineapple plantations may cause a high toxicity risk to non-target species in rivers downstream the plantations. We performed a first tier risk assessment of the maximum measured concentrations of 32 pesticides detected over 4 years in the River Madre de Dios (RMD) and its coastal lagoon on the Caribbean coast of Costa Rica. Species sensitivity distributions (SSDs) were plotted in order to derive HC 5 values for each pesticide, i.e., hazard concentrations for 5 % of the species, often used as environmental criteria values in other countries. We also carried out toxicity tests for selected pesticides with native Costa Rican species in order to calculate risk coefficients according to national guidelines in Costa Rica. The concentrations of herbicides diuron and ametryn and insecticides carbofuran, diazinon, and ethoprophos exceeded either the HC 5 value or the lower limit of its 90 % confidence interval suggesting toxic risks above accepted levels. Risk coefficients of diuron and carbofuran derived using local guidelines indicate toxicity risks as well. The assessed fungicides did not present acute toxic risks according to our analysis. Overall, these results show a possible toxicity of detected pesticides to aquatic organisms and provide a comparison of Costa Rican national guidelines with more refined methods for risk assessment based on SSDs. Further higher tier risk assessments of pesticides in this watershed are also necessary in order to consider pesticide water concentrations over time, toxicity from pesticide mixtures, and eventual effects on ecosystem functions.
Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters
NASA Astrophysics Data System (ADS)
Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick
2015-08-01
For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.
Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard
2012-01-01
Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981
Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L
2018-06-01
The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam
Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie
2014-03-01
Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were
NASA Astrophysics Data System (ADS)
Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie
2014-03-01
Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were
1H NMR study of inclusion compounds of phenylurea derivatives in β-cyclodextrin
NASA Astrophysics Data System (ADS)
Dupuy, N.; Barbry, D.; Bria, M.; Marquis, S.; Vrielynck, L.; Kister, J.
2005-04-01
Proton nuclear magnetic resonance spectroscopy ( 1H NMR), which has become an important tool for the study "in situ" of β-cyclodextrin (β-CD) complexes, was used to study and structurally characterize the inclusion complexes formed between β-CD and isoproturon, fenuron, monuron and diuron. The high variation of the chemical shifts from the proton located inside the cavity (H-3, H-5 and H-6) coupled with the non variation of the one located outer sphere of the β-CD (H-1, H-2 and H-4) provided clear evidence of the inclusion phenomena. Two-dimensional rotating frame Overhauser effect spectroscopy (ROESY) experiments were carried out to further support the proposed inclusion mode.
U.S. EPA, Pesticide Product Label, PROKIL DIURON 80W, 05/26/1971
2011-04-21
... itt' \\H'!.\\.h ,.1''':' dr,}livrJ intll t!;;· 'flttill~; pC'l'l,d hy \\,:l1ltlll,li pr.I\\.'ti\\.:I..: ,l}lp. ... U";,' ~ 11,::, P'.'! .tl.'l't'. 1'\\ \\;1· ly 1'1;1;'" .• In.1,. lit I,l:l:-r, Itt Ihv ;'.1' ... , ...
Herbicide Persistence in Seawater Simulation Experiments
Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.
2015-01-01
Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes
Herbicide Persistence in Seawater Simulation Experiments.
Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P
2015-01-01
Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes
pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.
Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng
2004-08-03
The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.
Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino
2016-05-01
Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several
Hakoun, Vivien; Orban, Philippe; Dassargues, Alain; Brouyère, Serge
2017-04-01
Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996-2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6-dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L -1 ) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide
Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox test.
Bonnemoy, F; Lavédrine, B; Boulkamh, A
2004-02-01
Halogenated phenylurea herbicides are not very toxic by themselves to animals, but their exposure to UV light may significantly increase the toxicity of their solutions. Absorption of light may indeed induce a phototransformation of the herbicide with a possible formation of more toxic intermediate photoproducts. Fortunately in environmental conditions photolysis is usually slow and photoproducts do not accumulate appreciably. Microtox was used for the evaluation of the toxicity of the crude irradiated solutions of some phenylurea herbicides. The sharp initial increase of toxicity shown by metobromuron solutions is mainly due to intermediate photoproducts which rapidly disappear. In the case of diuron and metoxuron toxicity is due to minor photoproducts and it does not disappear so rapidly. Hence the decrease of herbicide concentration is not necessarily associated to a lower toxicity of the solution.
Ruban, V; Larrarte, F; Berthier, M; Favreau, L; Sauvourel, Y; Letellier, L; Mosisni, M L; Raimbault, G
2005-01-01
A qualitative and quantitative budget at the outlet of the storm-water runoff system of a small suburban watershed is presented together with some data regarding waste-water. 445,000 m3 (34% of the rain-water volume) were drained by the storm-water runoff system and 40,879 m3 by the waste-water system from September 2002 to March 2004. Storm-water runoff is generally not heavily polluted with regard to trace metals but concentrations occasionally exceed the standards for surface water of good quality. On the contrary, pesticides (diuron and glyphosate) have very high concentrations especially in spring and autumn when their use is maximum. As the St Joseph storm-water runoff is finally discharged into the Erdre River, measures to reduce the use of these pollutants should be considered.
Karkanis, Anestis; Lykas, Christos; Liava, Vasiliki; Bezou, Anna; Petropoulos, Spyridon; Tsiropoulos, Nikolaos
2018-01-01
'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Spot Spraying Reduces Herbicide Concentrations in Runoff.
Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen
2016-05-25
Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.
Shaw, C M; Brodie, J; Mueller, J F
2012-01-01
To date there has been limited evidence anthropogenically sourced pollution from catchments reaching corals of the Great Barrier Reef (GBR). In this study, freshly isolated zooxanthellae were exposed to polar chemicals (chiefly herbicides) extracted from water samples collected in a flood plume in the GBR lagoon. Photosynthetic potential of the isolated zooxanthellae declined after exposure to concentrated extracts (10 times) from all but one of the sampling sites. Photosynthetic potential demonstrated a significant positive relationship with the concentration of diuron in the concentrated extracts and a significant inverse relationship with salinity measured at the sampling site. This study demonstrates that runoff from land based application of herbicides may reduce photosynthetic efficiency in corals of inshore reefs in the GBR. The ecological impacts of the chemicals in combination with other potential stressors on corals remain unclear. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.
1997-01-01
Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were
Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.
2006-01-01
Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and
Prenatal exposure to environmental chemicals that interfere with the androgen signaling pathway can cause permanent adverse effects on reproductive development in male rats. The objectives of this study were to 1) determine whether a documented antiandrogen butyl benzyl phthalate...
Garrido Frenich, Antonia; Martín Fernández, María del Mar; Díaz Moreno, Laura; Martínez Vidal, Jose Lúis; López-Gutiérrez, Noelia
2012-01-01
A simple, rapid, and reliable multiresidue method to determine 84 pesticides in potato and carrot samples by ultra-performance liquid chromatography coupled to MS/MS has been developed and fully validated for routine analysis according to ISO/IEC 17025:2005. The method makes use of a buffered Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) sample preparation procedure based on a single extraction with acidified acetonitrile, followed by partitioning with salts. Chromatographic conditions were optimized in order to achieve a rapid separation in the multiple reaction monitoring mode. Performance characteristics of the method, including an estimation of measurement uncertainty using validation data, are reported for both matrixes. Calibration curves were linear from 0.010 to 0.150 mg/kg for most compounds. The LOD and LOQ were 0.006 and 0.010 mg/kg, respectively, except for fluorocloridone, fluquinconazol, and hexitiazox, which were 0.030 and 0.050 mg/kg, respectively. Recoveries obtained were in the range 70-116%, with intraday precision values < or = 20% RSD and interday precision values < or = 25% RSD at two different concentration levels. The overall uncertainty of the method was estimated at two concentrations as being lower than 34% in all cases. The method has been applied to the analysis of 70 vegetable samples, and imidacloprid and linuron were the pesticides most frequently found in potato and carrot commodities, respectively.
Huete-Soto, Alejandra; Castillo-González, Humberto; Masís-Mora, Mario; Chin-Pampillo, Juan Salvador; Rodríguez-Rodríguez, Carlos E
2017-01-05
Biopurification systems (BPS) are design to remove pesticides from agricultural wastewater. This work assays for the first time the potential effect of an antibiotic of agricultural use (oxytetracycline, OTC) on the performance of a biomixture (biologically active core of BPS), considering that antibiotic-containing wastewaters are also produced in agricultural labors. The respiration of the biomixture was stimulated in the presence of increasing doses of OTC (≥100mgkg -1 ), and only slightly increased with lower doses (≤10mgkg -1 ). When co-applied during the removal of chlorpyrifos, OTC increased chlorpyrifos mineralization rates at low doses, resembling a hormetic effect. The biomixture was also able to remove three herbicides (atrazine, ametryn and linuron) with half-lives of 24.3 d, 43.9 d and 30.7 d; during co-application of OTC at a biomixture-relevant concentration, only the removal of ametryn was significantly inhibited, increasing its half-life to 92.4 d. Ecotoxicological assays revealed that detoxification takes place in the biomixture during the removal of herbicides in the presence of OTC. Overall results suggest that co-application of OTC in a biomixture does not negatively affect the performance of the matrix in every case; moreover, the co-application of this antibiotic could improve the mineralization of some pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte
2012-01-01
This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular
The significance of colloids in the transport of pesticides through Chalk.
Gooddy, D C; Mathias, S A; Harrison, I; Lapworth, D J; Kim, A W
2007-10-15
Agrochemical contamination in groundwater poses a significant long term threat to water quality and is of concern for legislators, water utilities and consumers alike. In the dual porosity, dual permeability aquifers such as the Chalk aquifer, movement of pesticides and their metabolites through the unsaturated zone to groundwater is generally considered to be through one of two pathways; a rapid by-pass flow and a slower 'piston-flow' route via the rock matrix. However, the dissolved form or 'colloidal species' in which pesticides move within the water body is poorly understood. Following heavy rainfall, very high peaks in pesticide concentration have been observed in shallow Chalk aquifers. These concentrations might be well explained by colloidal transport of pesticides. We have sampled a Chalk groundwater beneath a deep (30 m) unsaturated zone known to be contaminated with the pesticide diuron. Using a tangential flow filtration technique we have produced colloidal fractions from 0.45 microm to 1 kDa. In addition, we have applied agricultural grade diuron to a typical Chalk soil and created a soil water suspension which was also subsequently fractionated using the same filtration system. The deep groundwater sample showed no evidence of association between colloidal material and pesticide concentration. In comparison, despite some evidence of particle trapping or sorption to the filters, the soil water clearly showed an association between the <0.45 microm and <0.1 microm colloidal fractions which displayed significantly higher pesticide concentrations than the unfiltered sample. Degradation products were also observed and found to behave in a similar manner to the parent compound. Although relatively large colloids can be generated in the Chalk soil zone, it appears transport to depth in a colloidal-bound form does not occur. Comparison with other field and monitoring studies suggests that rapid by-pass flow is unlikely to occur beneath 4-5 m. Therefore
Pesticides in the Lower Clackamas River Basin, Oregon, 2000-01
Carpenter, Kurt D.
2004-01-01
In 2000-01, the U. S. Geological Survey sampled the Clackamas River and its major lower-basin tributaries during storm runoff conditions for 86 dissolved pesticides and selected breakdown products. Twenty-seven compounds, including 18 herbicides, 7 insecticides, and 2 pesticide breakdown products, were detected in 18 stream samples. The most commonly detected pesticides, in decreasing frequency, included atrazine, simazine, diazinon, metolachlor, and diuron, which variously occurred in 46-92% of samples collected from the tributaries. Of these, atrazine, simazine, and metolachlor, plus six other compounds, also were detected in the main-stem Clackamas River. Pesticides were detected more frequently and at higher concentrations in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks). In these streams, 12 to 18 pesticides were detected per stream in samples collected during spring and fall. Pesticides always occurred with at least one other pesticide, and about half of the samples, including one sample from the Clackamas River in October 2000, contained six or more pesticides. Nine pesticides, including the insecticide diazinon and the herbicides 2,4-D, atrazine, dichlobenil, diuron, imazaquin, metolachlor, simazine, and trifluralin, were detected in five water samples of Clackamas River water. No pesticides were detected in three samples of treated Clackamas River water used for drinking-water supply. Concentrations of six compounds--carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and the breakdown product of DDT (p,p'-DDE)--exceeded established or recommended criteria for the protection of aquatic life in some of the tributaries, sometimes for multiple pesticides in one sample. Identifying the sources of pesticides detected in the Clackamas River Basin is difficult because of the diverse land use in the basin and the multiple-use nature of many of the pesticides detected. Of the 25 parent compounds detected, 22 have agricultural uses
Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.
Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun
2015-10-15
Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria.
Chen, Ming; Li, Jihong; Zhang, Lei; Chang, Sandra; Liu, Chen; Wang, Jianlong; Li, Shizhong
2014-02-06
Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 production in heterocysts. The auto-floating process recovered 91.71% ± 1.22 of the accumulated microalgal biomass from the liquid media. Quantification analysis revealed that 0.72-1.10 μmol H2 per mg dry weight microalgal biomass was necessary to create this auto-floating system. Further bio-conversion by using anaerobic digestion converted the harvested microalgal biomass into biogas. Through this novel coupled system of photobiological H2 production and anaerobic digestion, a high level of light energy conversion efficiency from solar energy to bioenergy was attained with the values of 3.79% ± 0.76.
Kennedy, Karen; Devlin, Michelle; Bentley, Christie; Lee-Chue, Kristie; Paxman, Chris; Carter, Steve; Lewis, Stephen E; Brodie, Jon; Guy, Ellia; Vardy, Suzanne; Martin, Katherine C; Jones, Alison; Packett, Robert; Mueller, Jochen F
2012-07-01
The 2010-2011 wet season was one of extreme weather for the State of Queensland, Australia. Major rivers adjacent to the Great Barrier Reef (GBR) were discharging at rates 1.5 to >3 times higher than their long term median. Exposure to photosystem II herbicides has been routinely monitored over a period of up to 5 years at 12 inshore GBR sites. The influence of this wet season on exposure to photosystem II herbicides was examined in the context of this long-term monitoring record and during flood plume events in specific regions. Median exposures expressed as diuron equivalent concentration were an average factor of 2.3 times higher but mostly not significantly different (p<0.05) to the median for the long-term monitoring record. The herbicides metolachlor and tebuthiuron were frequently detected in flood plume waters at concentrations that reached or exceeded relevant water quality guidelines (by up to 4.5 times). Copyright © 2012 Elsevier Ltd. All rights reserved.
Bengtson Nash, S M; Schreiber, U; Ralph, P J; Müller, J F
2005-01-15
Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L(-1) diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.
Herbicide use on railway tracks for safety reasons in Germany?
Schweinsberg, F; Abke, W; Rieth, K; Rohmann, U; Zullei-Seibert, N
1999-06-30
A short overview on the occurrence of herbicides in groundwater and drinking water located in the vicinity of railway tracks in Germany is presented. The study has been conducted using the experience of various water supply companies and includes a literature research on the subject. It has been documented that in Germany only 1% of the total area treated with pesticides was under management of the former Deutsche Bundesbahn before 1990. The specific amount applied on the railway tracks was, however, a factor of 6 higher than that used in agriculture, although it must be borne in mind that the retaining capacity of railway tracks for pesticides is much lower. The herbicides applied ranged from 2,4-D and 2,4,5-T, triazine derivatives, e.g. atrazine and urea derivatives such as diuron. Traces of almost all of the herbicides applied could be detected in samples of groundwater and drinking water in the vicinity of railway tracks. Since 1997 only glyphosate has been used.
Sediments indicate the continued use of banned antifouling compounds.
Egardt, Jenny; Nilsson, Per; Dahllöf, Ingela
2017-12-15
Antifouling paints are widely used to avoid organisms settling on boat hulls. The active ingredients in the paints have differed over the years where lead, TBT, irgarol and diuron have been deemed too harmful to non-target organisms and subsequently been banned within the EU. Most of these compounds however are persistent in the environment and can cause problems long after they are deposited. We have examined if present-day and banned substances used in antifouling paints can be found in sediments in a national park on the Swedish west coast. Sampled locations include waterways, natural harbours and small marinas for leisure crafts to investigate if number of visiting boats affect the concentration of antifouling compounds in sediments. Few significant differences were found when comparing the different locations types, suggesting that overall boat presence is more important than specific mooring sites, however, several banned antifouling compounds were found in the surface sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection limits for real-time source water monitoring using indigenous freshwater microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez Jr, Miguel; Greenbaum, Elias
This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This ismore » true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.« less
Martins, Samantha Eslava; Fillmann, Gilberto; Lillicrap, Adam; Thomas, Kevin V
2018-01-01
Hazard assessments of Irgarol 1051, diuron, 2-(thiocyanomethylthio)benzothiazole (TCMTB), dichloro-octylisothiazolin (DCOIT), chlorothalonil, dichlofluanid, thiram, zinc pyrithione, copper pyrithione, triphenylborane pyridine (TPBP), capsaicin, nonivamide, tralopyril and medetomidine were performed to establish robust environmental quality standards (EQS), based on predicted no effect concentrations (PNECs). Microalgae, zooplankton, fish and amphibians were the most sensitive ecological groups to all the antifoulants evaluated, especially in the early life stages. No differences were identified between freshwater and seawater species. The use of toxicity tests with non-standard species is encouraged because they increase the datasets, allowing EQS to be derived from probabilistic-based PNECs whilst reducing uncertainties. The global ban of tributyltin (TBT) has been heralded as a major environmental success; however, substitute antifoulants may also pose risks to aquatic ecosystems. Environmental risk assessments (ERAs) have driven decision-makings for regulating antifouling products, but in many countries there is still a lack of regulation of antifouling biocides which should be addressed.
Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.
2015-01-01
Sampling results show concentrations of the gasoline oxygenate methyl tert-butyl ether in water and air samples declined after it was phased out by the State of California in January 2004. The largest concentrations of gasoline hydrocarbons benzene and toluene in water were detected at or near the surface of the SWR. Isophorone and phenol were the two most frequently detected BNA compounds in water. Diuron, prometon, and simazine were the most frequently detected pesticide compounds in water. Concentrations of benzene and toluene in air samples were highest during the cooler months and had a consistent seasonal pattern over time. Ten PAH compounds were detected frequently in air samples. Twelve pesticide compounds were also detected in air samples. Surficial bed-sediment samples were analyzed for 53 PAHs; 22 of the compounds had one or more detections. Surficial bed-sediment samples were analyzed for 22 organic compounds; only 6 compounds had one or more detections. Surficial bed-sediment samples were analyzed for 37 metals.
NASA Astrophysics Data System (ADS)
Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent
2014-10-01
This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.
Fraser, Thomas W K; Khezri, Abdolrahman; Lewandowska-Sabat, Anna M; Henry, Theodore; Ropstad, Erik
2017-12-01
Larval zebrafish (Danio rerio) are a tool for assessing endocrine disruption during early development. Here, we investigated the extent to which a simple light/dark behavioral test at five days post fertilization could compliment current methods within the field. We exposed fertilized embryos to hormones (17β-estradiol, testosterone, dihydrotestosterone, 11-ketotestosterone, thyroxine, triiodothyronine, progesterone, and hydrocortisone) and other relevant compounds (17α ethinylestradiol, bisphenol A, bisphenol S, nonylphenol, flutamide, nilutamide, linuron, drospirenone, potassium perchlorate, mifepristone, and fadrozole) to screen for behavioral effects between 96 and 118h post fertilization (hpf). With the exception of progesterone, all the hormones tested resulted in altered behaviors. However, some inconsistencies were observed regarding the age of the larvae at testing. For example, the xenoestrogens 17α- ethinylestradiol and nonylphenol had behavioral effects at 96hpf, but not at 118hpf. Furthermore, although thyroxine exposure had pronounced effects on behavior, the thyroid disruptor potassium perchlorate did not. Finally, we were unable to demonstrate a role of nuclear receptors following testosterone and 17α- ethinylestradiol exposure, as neither the androgen receptor antagonist flutamide nor the general estrogen receptor inhibitor fulvestrant (ICI) could rescue the observed behavioral effects, respectively. Similarly, molecular markers for androgen and estrogen disruption were upregulated at concentrations below which behavioral effects were observed. These results demonstrate hormones and endocrine disruptors can alter the behavior of larval zebrafish, but the mechanistic pathways remain unclear. Copyright © 2017 Elsevier B.V. All rights reserved.
Didierjean, Luc; Gondet, Laurence; Perkins, Roberta; Lau, Sze-Mei Cindy; Schaller, Hubert; O'Keefe, Daniel P.; Werck-Reichhart, Danièle
2002-01-01
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites. PMID:12226498
Ribeiro, Ana R; Nunes, Olga C; Pereira, Manuel F R; Silva, Adrián M T
2015-02-01
Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species
DOT National Transportation Integrated Search
2003-01-01
This study documents the testing of several common herbicides used by the Oregon Department of Transportation in vegetation management. The project assessed the short- and long-term effects of Roundup, Krovar and Oust on periphyton and rainbow trout....
NASA Astrophysics Data System (ADS)
Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda; Andreu, Vicente
2013-04-01
The re-use of sewage treatment plant (STP) effluents is currently one of the most employed strategies in several countries to deal with the water shortage problem. Some pesticides are bio-accumulative and due to their toxicity they can affect non-target organisms, especially in the aquatic ecosystems, threating their ecological status. Despite these facts, and to our knowledge, there are few peer-reviewed articles that report concentrations of pesticides in Spanish STPs. This work presents the results of an extensive survey that was carried out in October of 2010 in 15 of the STPs of Ebro, Guadalquivir, Jucar and Llobregat rivers in Spain. Forty-three currently used pesticides, belonging to anilide, neonicotinoid, thiocarbamate, acaricide, juvenile hormone mimic, insect growth regulator, urea, azole, carbamate, chloroacetanilide, triazine and organophosphorus, have been monitored. Integrated samples of influent and effluent, and dehydrated, lyophilized sludge from 15 STPs located along the rivers were analyzed for pesticide residues. With these data, removal efficiencies are also calculated. Extraction of water samples was performed through Solid Phase Extraction (SPE) and sludge samples were extracted using the QuEchERS method. Pesticide determination was carried out using Liquid Chromatograph - tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 48% to 70%, in water samples, and from 40 to 105 %, in sludge samples. The limits of quantification were 0.01-5 ng L-1 for the former, and 0.1-5.0 ng g-1 for the latter. In terms of frequency of detection, 31 analytes were detected in influent, 29 in effluent and 11 in sludge samples. Organophosphorus pesticides were the most frequently detected in all wastewater samples, but azole, urea, triazine, neonicotinoid and the insect growth regulator were also commonly found. Imazalil revealed the maximum concentration in wastewater samples from all rivers except the Guadalquivir, in which diuron presented the maximum
Freyberger, A; Witters, H; Weimer, M; Lofink, W; Berckmans, P; Ahr, H-J
2010-08-01
Despite more than a decade of research in the field of endocrine active compounds targeting the androgen receptor (AR), and although suitable cell lines can be obtained, no validated human stably transfected androgen sensitive transactivation assay is available. Bayer Schering Pharma (BSP) and the Flemish Institute for Technological Research (VITO), partners within the EU-sponsored 6th framework project ReProTect, made first steps towards such a validation. A standard operation protocol (SOP) developed at BSP based on the androgen sensitive PALM cell line was transferred to VITO and its performance and transferability were thoroughly studied. The investigation followed a generic protocol prepared for all reporter gene assays evaluated within ReProTect, and in both laboratories at least three independent experiments were performed. The highest concentration to be tested was limited to 10 microM, if needed. A few compounds, 17alpha-methyltestosterone (17alpha-MT), vinclozolin and linuron, were studied using a real world scenario, i.e., assuming that their interaction with the AR was not known: A prescreening for agonism and true, competitive antagonism was used to select conditions such as the appropriate mode of action, and the working range excluding cytotoxicity for the final screening. All other compounds were tested according to the generic protocol: Compounds screened for agonism were the reference androgen 17alpha-methyldihydrotestosterone (MDHT), levonorgestrel, norethynodrel, progesterone, o,p'-DDT, and dibutylphthalate (DBP), while compounds screened for antagonism were the reference anti-androgen flutamide, prochloraz, o,p'-DDT, progesterone, norethynodrel, and DBP. Cytotoxicity was assessed in parallel as lactate dehydrogenase release. The prescreen classified 17alpha-MT as androgenic, vinclozolin and linuron as anti-androgenic and compounds were tested accordingly. In the absence of cytotoxicity, appropriate androgenic properties of reference and test
Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria
Chen, Ming; Li, Jihong; Zhang, Lei; Chang, Sandra; Liu, Chen; Wang, Jianlong; Li, Shizhong
2014-01-01
Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 production in heterocysts. The auto-floating process recovered 91.71% ± 1.22 of the accumulated microalgal biomass from the liquid media. Quantification analysis revealed that 0.72–1.10 μmol H2 per mg dry weight microalgal biomass was necessary to create this auto-floating system. Further bio-conversion by using anaerobic digestion converted the harvested microalgal biomass into biogas. Through this novel coupled system of photobiological H2 production and anaerobic digestion, a high level of light energy conversion efficiency from solar energy to bioenergy was attained with the values of 3.79% ± 0.76. PMID:24499777
Del Carmen Salvatierra-Stamp, Vilma; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Ibarra-Galván, Valentin; Muñiz-Valencia, Roberto
2015-05-01
An analytical method using supercritical-fluid chromatography coupled with diode-array detection for the determination of seven emerging contaminants-two pharmaceuticals (carbamazepine and glyburide), three endocrine disruptors (17α-ethinyl estradiol, bisphenol A, and 17β-estradiol), one bactericide (triclosan), and one pesticide (diuron)-was developed and validated. These contaminants were chosen because of their frequency of use and their toxic effects on both humans and the environment. The optimized chromatographic separation on a Viridis BEH 2-EP column achieved baseline resolution for all compounds in less than 10 min. This separation was applied to environmental water samples after sample preparation. The optimized sample treatment involved a preconcentration step by means of solid-phase extraction using C18-OH cartridges. The proposed method was validated, finding recoveries higher than 94 % and limits of detection and limits of quantification in the range of 0.10-1.59 μg L(-1) and 0.31-4.83 μg L(-1), respectively. Method validation established the proposed method to be selective, linear, accurate, and precise. Finally, the method was successfully applied to environmental water samples.
Birch, G F; Drage, D S; Thompson, K; Eaglesham, G; Mueller, J F
2015-08-15
The current investigation of marine water from 30 sites adjacent to stormwater outlets across the entire Sydney estuary is the first such research in Australia. The number of analytes detected were: 8/59 pharmaceutical compounds (codeine, paracetamol, tramadol, venlafaxine, propranolol, fluoxetine, iopromide and carbamazepine), 7/38 of the pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), 3,4-dichloroaniline, carbaryl, diuron, 2-methyl-4-chlorophenoxyacetic acid (MCPA), mecoprop and simazine) and 0/3 of the personal care products (PCPs) analysed. An artificial sweetener (acesulfame) was detected, however none of the nine antibiotics analysed were identified. Sewage water is not discharged to this estuary, except infrequently as overflow during high-precipitation events. The presence of acesulfame (a recognised marker of domestic wastewater) and pharmaceuticals in water from all parts of the estuary after a dry period, suggests sewage water is leaking into the stormwater system in this catchment. The pesticides are applied to the environment and were discharged via stormwater to the estuary. Copyright © 2015 Elsevier Ltd. All rights reserved.
Melo, Lucio F C; Collins, Carol H; Jardim, Isabel C S F
2004-04-02
Sample preparation procedures which included the use of new aminopropyl (NH2) and octadecyl (C18) solid-phase extraction (SPE) sorbents are proposed for the simultaneous multiclass determination of the fungicide benomyl and of the herbicides tebuthiuron, diuron, simazine, atrazine, and ametryn in grapes, using single wavelength high-performance liquid chromatography. Sorbent preparation uses a fast, easy, and effective procedure to obtain silica-based materials, made by depositing polysiloxanes on a silica support followed by thermal immobilization. Recovery results of the compounds, after elution from the SPE cartridges, indicate that the most efficient system employed silica loaded with 40% of an aminofunctional polydimethylsiloxane as sorbent, using dichloromethane:methanol (95:5, v/v) as eluent. Method validation, carried out in agreement with International Conference on Harmonization directives, was performed at three fortification levels (100, 200, and 1000 microg kg(-1)). Limits of detection and quantification show that the method developed can be used to detect the pesticides at concentrations below the maximum residue levels established by Codex Alimentarius, the US Environmental Protection Agency, the European Union, and Brazilian legislation.
Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.
Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B
2017-11-01
Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.
Scheyer, Anne; Briand, Olivier; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice
2007-01-01
Solid-phase microextraction (SPME) was used for the analysis of some pesticides (bromoxynil, chlorotoluron, diuron, isoproturon, 2,4-MCPA, MCPP and 2,4-D) in rainwater after derivatisation with PFBBr and gas chromatography-ion trap mass spectrometry. The derivatisation procedure was optimized by testing different methods: direct derivatisation in the aqueous phase followed by SPME extraction, on-fibre derivatisation and derivatisation in the injector. The best result was obtained by headspace coating the PDMS/DVB fibre with PFBBr for 10 min followed by direct SPME extraction for 60 min at 68 degrees C (pH 2 and 75% NaCl). Good detection limits were obtained for all the compounds: these ranged between 10 and 1,000 ng L-1 with a relatively high uncertainty due to the combination of derivatisation and SPME extraction steps. The optimized procedure was applied to the analysis of pesticides in rainwater and results obtained shows that this method is a fast and simple technique to assess the spatial and temporal variations of concentrations of pesticides in rainwater.
Leaching of biocides used in façade coatings under laboratory test conditions.
Schoknecht, Ute; Gruycheva, Jana; Mathies, Helena; Bergmann, Hannelore; Burkhardt, Michael
2009-12-15
The European Biocidal Products Directive 98/8/EC requires a risk assessment concerning possible effects of active ingredients on the environment. Biocides can be leached from treated materials exposed to outdoor use. These emissions have to be estimated and evaluated during the authorization procedure. Different immersion and irrigation tests were performed to investigate leaching of biocides from façade coatings. Several marketed formulations of textured coatings and paints spiked with a mixture of commonly used active ingredients (OIT, DCOIT, IPBC, carbendazim, isoproturon, diuron, terbutryn, and Irgarol 1051) were investigated. The emission process can be described by time-dependent functions that depend on the test conditions. The results of all test procedures confirm that leachability is related to water solubility and n-octanol-water partition coefficient of the active ingredients and that leaching of biocides from façade coatings is mainly a diffusion controlled process. Other factors like the composition of the product, availability and transport of water, concentration of active ingredients in the coatings, as well as UV-exposure of the coatings influence biocide emissions.
Tsunemasa, Noritaka; Yamazaki, Hideo
2014-01-01
Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT) and triphenyltin (TPT)) were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn) levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation. PMID:24901529
Berton, André; Brugnera, Michelle F; Dores, Eliana F G C
2018-04-03
In this study, the quality of surface water in the headwaters of São Lourenço River in Mato Grosso, Brazil, was evaluated in relation to contamination by pesticides. For this purpose, samples were collected between December 2015 and June 2016 by grab sampling and by passive sampling using an integrative polar organic compound sampler installed in the field during four 14-day cycles between March and June 2016. The analyses were performed by gas chromatography (CG/MS) and by liquid chromatography (UPLC-MS/MS). The results showed the detection of two pesticides (atrazine and pyraclostrobin) of the five analyzed by passive sampling and eight active principles among the 20 analyzed (malathion, diuron, carbofuran, carbendazim, trifluralin, imidacloprid, metolachlor, and acetamiprid) by grab sampling. The detection of 10 pesticides, even almost a decade after the beginning of a recovery process of the ciliary forest, confirms the headwaters' vulnerability to these contaminants and passive sampling proved to be an important tool in capturing small concentrations of pesticides constituting an interesting complement to grab sampling.
Bayen, Stéphane; Segovia, Elvagris; Loh, Lay Leng; Burger, David F; Eikaas, Hans S; Kelly, Barry C
2014-06-01
Tools specifically validated for tropical environments are needed to accurately describe the behavior of chemical contaminants in tropical ecosystems. In the present study, sampling rates (Rs) were determined for the commercial pharmaceutical-type Polar Organic Chemical Integrative Sampler (POCIS) with a 45.8cm(2) exposure surface for 35 Pharmaceutically Active Compounds (PhACs) and Endocrine Disrupting Compounds (EDCs), of which eight compounds (albuterol, atorvastatin, diltiazem, dilantin, enalapril, norfluoxetine, risperidone and warfarin) were reported for the first time. These sampling rates were measured in an outdoor laboratory calibration setup to best capture diurnal tropical temperature variations (29±3°C). The effect of stirring and salinity was investigated. For all compounds, the sampling rates were higher under stirred conditions as compared to quiescent conditions. Calibration results in the presence of 30g sodium chloride support that the effects of salinity on POCIS sampling rates are compound-specific. Comparisons between Time-Weight Average (TWA) water concentrations using POCIS and spot sample levels in the field (2 lake and 1 mangrove estuary sites) are presented. Results showed that POCIS TWA concentrations were in agreement with spot sample concentrations for these aquatic systems. Results indicate that POCIS can be used to effectively measure the TWA concentration for a range of PhACs and EDCs in tropical waters. However, based on the results from mass balance and field deployments, POCIS did not appear suitable for compounds with a low mass balance recovery during calibration (e.g. triclosan and linuron in this study). Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...
Coquillé, Nathalie; Ménard, Dominique; Rouxel, Julien; Dupraz, Valentin; Éon, Mélissa; Pardon, Patrick; Budzinski, Hélène; Morin, Soizic; Parlanti, Édith; Stachowski-Haberkorn, Sabine
2018-05-01
Microalgae, which are the foundation of aquatic food webs, may be the indirect target of herbicides used for agricultural and urban applications. Microalgae also interact with other compounds from their environment, such as natural dissolved organic matter (DOM), which can itself interact with herbicides. This study aimed to evaluate the influence of natural DOM on the toxicity of three herbicides (diuron, irgarol and S-metolachlor), singly and in ternary mixtures, to two marine microalgae, Chaetoceros calcitrans and Tetraselmis suecica, in monospecific, non-axenic cultures. Effects on growth, photosynthetic efficiency (Ф' M ) and relative lipid content were evaluated. The chemical environment (herbicide and nutrient concentrations, dissolved organic carbon and DOM optical properties) was also monitored to assess any changes during the experiments. The results show that, without DOM, the highest irgarol concentration (I0.5: 0.5 mg.L -1 ) and the strongest mixture (M2: irgarol 0.5 μg.L -1 + diuron 0.5 μg.L -1 + S-metolachlor 5.0 μg.L -1 ) significantly decreased all parameters for both species. Similar impacts were induced by I0.5 and M2 in C. calcitrans (around -56% for growth, -50% for relative lipid content and -28% for Ф' M ), but a significantly higher toxicity of M2 was observed in T. suecica (-56% and -62% with I0.5 and M2 for growth, respectively), suggesting a possible interaction between molecules. With DOM added to the culture media, a significant inhibition of these three parameters was also observed with I0.5 and M2 for both species. Furthermore, DOM modulated herbicide toxicity, which was decreased for C. calcitrans (-51% growth at I0.5 and M2) and increased for T. suecica (-64% and -75% growth at I0.5 and M2, respectively). In addition to the direct and/or indirect (via their associated bacteria) use of molecules present in natural DOM, the characterization of the chemical environment showed that the toxic effects observed on
Fournier, María-Luisa; Echeverría-Sáenz, Silvia; Mena, Freylan; Arias-Andrés, María; de la Cruz, Elba; Ruepert, Clemens
2017-01-10
The Caño Negro Ramsar wetland is a conservation area of great natural and societal value, located in the lower part of the Frío River watershed in the north of Costa Rica. Its aquatic ecosystems may be considered vulnerable to pollution due to recent changes in land use toward agriculture. In 2011 and 2012, quarterly sampling was done at ten sites located in the middle and lower sections of the Frío River Basin that pass through crop areas and later drain into Caño Negro wetland. Pesticide residues, nitrates, sediment concentrations, and diversity of benthic macroinvertebrates and fish biomarkers were studied in the selected sites. Additionally, risk of toxicity was calculated in two different ways: (1) by using a ratio of MEC to hazard concentrations threshold for 5% of species (HC 5 ) to calculate a risk quotient (RQ), and (2) by using a ratio of MEC to available ecotoxicity data of native fish and cladocera for diazinon and ethoprophos, to obtain a risk quotient for native species (RQns). Results indicated that three out of the ten sites (rivers Thiales, Mónico, and Sabogal) showed variable levels of pollution including six different active ingredients (a.i.) of pesticide formulations (herbicides ametryn, bromacil, and diuron; insecticides cypermethrin, diazinon, and ethoprophos). Moreover, potential adverse effects on fishes in Thiales and Mónico rivers were indicated by cholinesterase (ChE) inhibition and glutathione S-transferase (GST) enhancement. Risk evaluations indicated pesticide residues of ametryn, bromacil, and ethoprophos to be exceeding the limits set by MTR, also RQ was high (>1) in 70% of the positive samples for diuron (most frequently found pesticide in water samples), cypermethrin, diazinon, and ethoprophos, and RQns was high for diazinon. Therefore, these substances might be of major concern for the ecological health of aquatic ecosystems in the middle basin of the Frío River. The most critical site was Mónico River, which had the
Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver; Axelstad, Marta; Boberg, Julie; Christiansen, Sofie; Rehrauer, Hubert; Georgijevic, Jelena Kühn; Hass, Ulla; Kortenkamp, Andreas; Schlumpf, Margret
2015-04-01
The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E-Mix (estrogenic mixture) with 4 estrogenic chemicals (bisphenol A, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, and butylparaben), a complex mixture, AEP-Mix, containing the components of A-Mix and E-Mix plus paracetamol, and paracetamol alone, were administered by oral gavage to rat dams from gestation day 7 until weaning. General developmental endpoints were not affected by EDC mixtures or paracetamol. Gene expression was analyzed on postnatal day 6, during sexual brain differentiation, by exon microarray in medial preoptic area in the high-dose group, and by real-time RT-PCR in medial preoptic area and ventromedial hypothalamus in all dose groups. Expression patterns were mixture, sex, and region specific. Effects of the analgesic drug paracetamol, which exhibits antiandrogenic activity in peripheral systems, differed from those of A-Mix. All mixtures had a strong, mixture-specific impact on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids also in hippocampus, this may represent a general target of ECD mixtures.
Huete-Soto, Alejandra; Masís-Mora, Mario; Lizano-Fallas, Verónica; Chin-Pampillo, Juan Salvador; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E
2017-02-01
The biopurification systems (BPS) used for the treatment of pesticide-containing wastewater must present a versatile degrading ability, in order to remove different active ingredients according to the crop protection programs. This work aimed to assay the simultaneous removal of several pesticides (combinations of herbicides/insecticides/fungicides, or insecticides/fungicides) in a biomixture used in a BPS over a period of 115 d, and in the presence of oxytetracycline (OTC), an antibiotic of agricultural use that could be present in wastewater from agricultural pesticide application practices. The biomixture was able to mostly remove the herbicides during the treatment (removal rates: atrazine ≈ linuron > ametryn), and suffered no inhibition by OTC (only slightly for ametryn). Two fungicides (carbendazim and metalaxyl) were removed, nonetheless, in the systems containing only fungicides and insecticides, a clear increase in their half-lives was obtained in the treatments containing OTC. The neonicotinoid insecticides (imidacloprid and thiamethoxam) and the triazole fungicides (tebuconazole and triadimenol) were not significantly eliminated in the biomixture. Globally, the total removal of active ingredients ranged from 40.9% to 61.2% depending on the system, following the pattern: herbicides > fungicides > insecticides. The ecotoxicological analysis of the process revealed no detoxification towards the microcrustacean Daphnia magna, but a significant decay in the phytotoxicity towards Lactuca sativa in some cases, according to seed germination tests; in this case, OTC proved to be partially responsible for the phytotoxicity. The patterns of pesticide removal and detoxification provide inputs for the improvement of BPS use and their relevance as devices for wastewater treatment according to specific pesticide application programs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.
2004-01-01
Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.
Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I
2015-06-15
An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.
Macías-Rubalcava, Martha Lydia; Ruiz-Velasco Sobrino, María Emma; Meléndez-González, Claudio; King-Díaz, Beatriz; Lotina-Hennsen, Blas
2014-09-05
In a search for natural herbicides, we investigated the action mechanism of the naphthoquinone spiroketals, isolated from the endophytic fungus Edenia gomezpompae: preussomerins EG1 (1) and EG4 (2), and palmarumycins CP17 (3), and CP2 (4) on the photosynthesis light reactions. The naphthoquinone spiroketals 1-4 inhibited the ATP synthesis in freshly lysed spinach thylakoids from water to MV, and they also inhibited the non-cyclic electron transport in the basal, phosphorylating and uncoupled conditions from water to MV. Therefore, they act as Hill reaction inhibitors. The results suggested that naphthoquinone spiroketals 1-4 have two interactions and inhibition site on the PSII electron transport chain. The first one involves the water splitting enzyme inhibition; and, the second on the acceptor site of PSII in a similar way that herbicide Diuron, studied by polaroghaphy and corroborated by fluorescence of the chlorophyll a of PSII. The culture medium and mycelium organic extracts from four morphological variants of E. gomezpompae were phytotoxic, and the culture medium extracts were more potent than mycelium extracts. They also act as Hill reaction inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.
Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K
2002-05-01
Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.
Gallo, Alessandra; Tosti, Elisabetta
2013-01-01
Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT) and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na+) currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i) the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii) the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed. PMID:24065165
NASA Astrophysics Data System (ADS)
Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana
2017-09-01
The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.
Impact of uncertainty in soil, climatic, and chemical information in a pesticide leaching assessment
NASA Astrophysics Data System (ADS)
Loague, Keith; Green, Richard E.; Giambelluca, Thomas W.; Liang, Tony C.; Yost, Russell S.
1990-01-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyul)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor ( AF); it requires soil, hydrogeologic, climatic and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices.
NASA Astrophysics Data System (ADS)
Loague, Keith; Green, Richard E.; Giambelluca, Thomas W.; Liang, Tony C.; Yost, Russell S.
2016-11-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor (AF); it requires soil, hydrogeologic, climatic, and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices.
Baraud, Laurent; Tessier, Didier; Aaron, Jean-Jacques; Quisefit, Jean-Paul; Pinart, Johann
2003-12-01
The extensive use of pesticides to protect agricultural crops can result in the transfer of these compounds into the atmosphere and their diffusion towards urban areas. Precise evaluation of the geographic impact of this type of pollution is important environmentally. In this paper, analytical methods for the sampling, characterization, and determination of agricultural pesticides in air were developed; the methods were then applied in the Paris and Champagne regions. Sixteen pesticides belonging to nine chemical families were monitored. Sampling was carried out in urban (Paris) and rural (Aube district) sites, utilizing either a high-volume pump (12.5 m3 h(-1)) (urban site) or a low-volume pump (2.3 m3 h(-1)) for the rural site. Quartz filters and polyurethane foams (PUF) were used for sampling in all cases. After extracting the samples and concentrating the recovered solutions, high-performance liquid chromatography (HPLC) analysis with UV detection was performed. Identification of the pesticides was confirmed by applying to the HPLC measurements a novel UV-detection procedure based on the normalized absorbance variation with wavelength (Noravawa procedure). The presence of metsulfuron methyl, isoproturon, linuron, deltamethrin (and/or malathion), and chlorophenoxy acids (2,4-D and MCPP) was found at the urban sampling site at levels ranging from about 1 to 1130 ng m(-3) of air, depending on the compound and sampling period. On the rural sampling site residues of isoproturon, deltamethrin (and/or malathion), MCPP, and 2,4-D were generally detected at higher levels (19-5130 ng m(-3)) than on the urban site, as expected. The effects of the weather conditions and agricultural activity on the atmospheric concentrations of pesticides are discussed, as are long-range atmospheric transfer processes for these pesticides.
Assessment of a recombinant androgen receptor binding assay: initial steps towards validation.
Freyberger, Alexius; Weimer, Marc; Tran, Hoai-Son; Ahr, Hans-Jürgen
2010-08-01
Despite more than a decade of research in the field of endocrine active compounds with affinity for the androgen receptor (AR), still no validated recombinant AR binding assay is available, although recombinant AR can be obtained from several sources. With funding from the European Union (EU)-sponsored 6th framework project, ReProTect, we developed a model protocol for such an assay based on a simple AR binding assay recently developed at our institution. Important features of the protocol were the use of a rat recombinant fusion protein to thioredoxin containing both the hinge region and ligand binding domain (LBD) of the rat AR (which is identical to the human AR-LBD) and performance in a 96-well plate format. Besides two reference compounds [dihydrotestosterone (DHT), androstenedione] ten test compounds with different affinities for the AR [levonorgestrel, progesterone, prochloraz, 17alpha-methyltestosterone, flutamide, norethynodrel, o,p'-DDT, dibutylphthalate, vinclozolin, linuron] were used to explore the performance of the assay. At least three independent experiments per compound were performed. The AR binding properties of reference and test compounds were well detected, in terms of the relative ranking of binding affinities, there was good agreement with published data obtained from experiments using recombinant AR preparations. Irrespective of the chemical nature of the compound, individual IC(50)-values for a given compound varied by not more than a factor of 2.6. Our data demonstrate that the assay reliably ranked compounds with strong, weak, and no/marginal affinity for the AR with high accuracy. It avoids the manipulation and use of animals, as a recombinant protein is used and thus contributes to the 3R concept. On the whole, this assay is a promising candidate for further validation. Copyright 2009 Elsevier Inc. All rights reserved.
Guo, Lei; Kelley, Kevin; Goh, Kean S
2007-11-01
A monitoring study was conducted in the tributaries and main stem of the Sacramento River, California, USA, during the storm event of January 26 to February 1, 2005. The purpose of the study was to evaluate the sources and loading of pesticides in the Sacramento River watershed during the winter storm season. A total of 26 pesticides or pesticide degradates were analyzed, among which five pesticides and one triazine degradate were detected. Diuron, diazinon, and simazine were found in all streams with a total load of 110.4, 15.4, and 15.7 kg, respectively, in the Sacramento River over the single storm event. Bromacil, hexazinone, and the triazine degradate diaminochlorotriazine were only detected in two smaller drainage canals with a load ranged from 0.25 to 7 kg. The major source of pesticides detected in the main stem Sacramento River was from the most upstream subbasin, the Sacramento River above Colusa, where detected pesticides either exceeded or were close to those at the main outlet of the Sacramento River at Alamar Marina. The higher precipitation in this subbasin was partly responsible for the greater contribution of pesticides observed. Diazinon was the only pesticide with concentrations above water quality criteria, indicating that additional mitigation measures may be needed to reduce its movement to surface water.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
NASA Astrophysics Data System (ADS)
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-11-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (ΔF/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ΔF/Fm‧.
Esteves, Sara M; Keck, François; Almeida, Salomé F P; Figueira, Etelvina; Bouchez, Agnès; Rimet, Frédéric
2017-10-01
Diatoms are used as indicators of freshwater ecosystems integrity. Developing diatom-based tools to assess impact of herbicide pollution is expected by water managers. But, defining sensitivities of all species to multiple herbicides would be unattainable. The existence of a phylogenetic signal of herbicide sensitivity was shown among diatoms and should enable prediction of new species sensitivity. However, diatoms present a cryptic diversity that may lead to variation in their sensitivity to herbicides that would need to be taken into account. Using bioassays, the sensitivity to four herbicides (Atrazine, Terbutryn, Diuron, Isoproturon) was evaluated for 11 freshwater diatom taxa and intraspecific variability was assessed for two of them (Nitzschia palea and Achnanthidium spp.). Intraspecific variability of herbicide sensitivity was always smaller than interspecific variability, but intraspecific variability was more important in N. palea than in Achnanthidium spp. Indeed, one species showed no intraspecific phylogenetic signal (N. palea) whereas the other did (Achnanthidium spp.). On one hand, species boundaries are not set properly for Achnanthidium spp. which encompass several taxa. On the other hand, there is a higher phenotypic plasticity for N. palea. Finally, a phylogenetic signal of herbicide sensitivity was measured at the interspecific level, opening up prospects for setting up reliable biomonitoring tools based on sensitivity prediction, insofar as species boundaries are correctly defined.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-01-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm′) by 50% at concentrations ranging from 3.5 μg l−1 (ametryn) to 132 μg l−1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm′. PMID:26616444
Subbaraj, Arvind K; Barrett, Brent A; Wakelin, Steve A; Fraser, Karl
2015-10-01
Forage seeds are a highly traded agricultural commodity, and therefore, quality control and assurance is high priority. In this study, we have used direct analysis in real time-mass spectrometry (DART-MS) as a tool to discriminate forage seeds based on their non-targeted chemical profiles. In the first experiment, two lots of perennial ryegrass (Lolium perenne L.) seed were discriminated based on exogenous residues of N-(3, 4-dichlorophenyl)-N,N-dimethylurea (Diuron(TM)), a herbicide. In a separate experiment, washed and unwashed seeds of the forage legumes white clover (Trifolium repens L.) and alfalfa (Medicago sativa L.) were discriminated based on the presence or absence of oxylipins, a class of endogenous antimicrobial compounds. Unwashed seeds confer toxicity towards symbiotic, nitrogen-fixing rhizobia which are routinely coated on legume seeds before planting, resulting in reduced rhizobial count. This is the first report of automatic introduction of intact seeds in the DART ion source and detecting oxylipins using DART-MS. Apart from providing scope to investigate legume-rhizobia symbiosis further in the context of oxylipins, the results presented here will enable future studies aimed at classification of seeds based on chemicals bound to the seed coat, thereby offering an efficient screening device for industry.
Perspectives on communicating risks of chemicals.
Armbrust, Kevin; Burns, Mitchell; Crossan, Angus N; Fischhoff, David A; Hammond, Larry E; Johnston, John J; Kennedy, Ivan; Rose, Michael T; Seiber, James N; Solomon, Keith
2013-05-22
The Agrochemicals Division symposium "Perfecting Communication of Chemical Risk", held at the 244th National Meeting and Exposition of the American Chemical Society in Philadelphia, PA, August 19-23, 2012, is summarized. The symposium, organized by James Seiber, Kevin Armbrust, John Johnston, Ivan Kennedy, Thomas Potter, and Keith Solomon, included discussion of better techniques for communicating risks, lessons from past experiences, and case studies, together with proposals to improve these techniques and their communication to the public as effective information. The case studies included risks of agricultural biotechnology, an organoarsenical (Roxarsone) in animal feed, petroleum spill-derived contamination of seafood, role of biomonitoring and other exposure assessment techniques, soil fumigants, implications of listing endosulfan as a persistant organic pollutant (POP), and diuron herbicide in runoff, including use of catchment basins to limit runoff to coastal ecozones and the Great Barrier Reef. The symposium attracted chemical risk managers including ecotoxicologists, environmental chemists, agrochemists, ecosystem managers, and regulators needing better techniques that could feed into better communication of chemical risks. Policy issues related to regulation of chemical safety as well as the role of international conventions were also presented. The symposium was broadcast via webinar to an audience outside the ACS Meeting venue.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass.
Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P
2015-11-30
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.
Adventures with Cyanobacteria: A Personal Perspective
Govindjee; Shevela, Dmitriy
2011-01-01
Cyanobacteria, or the blue-green algae as they used to be called until 1974, are the oldest oxygenic photosynthesizers. We summarize here adventures with them since the early 1960s. This includes studies on light absorption by cyanobacteria, excitation energy transfer at room temperature down to liquid helium temperature, fluorescence (kinetics as well as spectra) and its relationship to photosynthesis, and afterglow (or thermoluminescence) from them. Further, we summarize experiments on their two-light reaction – two-pigment system, as well as the unique role of bicarbonate (hydrogen carbonate) on the electron-acceptor side of their photosystem II, PSII. This review, in addition, includes a discussion on the regulation of changes in phycobilins (mostly in PSII) and chlorophyll a (Chl a; mostly in photosystem I, PSI) under oscillating light, on the relationship of the slow fluorescence increase (the so-called S to M rise, especially in the presence of diuron) in minute time scale with the so-called state-changes, and on the possibility of limited oxygen evolution in mixotrophic PSI (minus) mutants, up to 30 min, in the presence of glucose. We end this review with a brief discussion on the position of cyanobacteria in the evolution of photosynthetic systems. PMID:22645530
Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia
2013-03-01
The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.
Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R
2010-01-01
This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.
Kuster, Marina; Díaz-Cruz, Silvia; Rosell, Mònica; López de Alda, Miren; Barceló, Damià
2010-05-01
The artificial recharge of aquifers has become a valuable tool to increase water resources for drinking water production in many countries. In this work a total of 41 organic pollutants belonging to the classes of pesticides, estrogens, progestogens and volatile organic compounds (VOCs) have been monitored in the water from two artificial recharge plants located in Sweden and Denmark. The results from two sampling campaigns performed in each plant indicate good chemical status of the source water, as the contaminants detected were present at very low levels, far from those established in the legislation as maximum admissible concentrations (when existing) and far from those considered as a risk. Thus, of the 17 pesticides investigated, BAM (2,6-dichlorobenzamide), desethylatrazine, simazine, atrazine, terbuthylazine, diuron, metolachlor, and diazinon were the only compounds detected, and total pesticides levels were below 25ng L(-1), respectively. Estrone-3-sulfate was the only estrogen detected, at concentrations lower than 0.5ng L(-1). Progestogens were not found in any sample. Detected VOCs (benzene, toluene, ethylbenzene, and trichloroethylene) were below 0.04microg L(-1). The efficiency of elimination of these organic contaminants was poor as no significant decrease in their concentrations was observed through the recharge process.
Endocrine Activities of Pesticides During Ozonation of Waters.
Westlund, Paul; Isazadeh, Siavash; Therrien, Alexandre; Yargeau, Viviane
2018-01-01
Two yeast-based bioassays were used to assess the endocrine activity potential of transformation products formed during the ozonation of water containing a variety of pesticides (propiconazole, atrazine, 2,4-dichlorophenoxyacetic acid [2,4-D], tebuconazole, climbazole, myclobutanil, irgarol, terbutryn, dicamba, mecoprop and diuron). Ozone experiments were conducted first in reverse osmosis water to isolate the effects of the pesticides and then in synthetic wastewater and wastewater effluent to investigate whether the results translated to more complex matrices. The findings demonstrate the recalcitrant nature of most pesticides during ozonation, with removals below 50%, except for irgarol, terbutryn and climbazole with removals up to 70%. This study is the first one to investigate the removal of the fungicides myclobutanil and tebuconazole by ozonation and is one of the first studies to investigate the androgenic activity of ozonation transformation products of contaminants of emerging concern. These findings also demonstrated that during ozonation the initial anti-androgenic activity was removed while the estrogenic activity remained undetected and the androgenic activity increased to levels up to 60% of the anti-androgenic activity of the DHT control. These results indicate that bioactivity should be considered in the evaluation of treatment performance and risks assessment associated to wastewater discharges.
Leaching of biocides from façades under natural weather conditions.
Burkhardt, M; Zuleeg, S; Vonbank, R; Bester, K; Carmeliet, J; Boller, M; Wangler, T
2012-05-15
Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance.
Loague, Keith; Green, Richard E; Giambelluca, Thomas W; Liang, Tony C; Yost, Russell S
2016-11-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor (AF); it requires soil, hydrogeologic, climatic, and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices. Copyright © 2016. Published by Elsevier B.V.
Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae.
Couderchet, Michel; Vernet, Guy
2003-07-01
Weed control in Champagne vineyards has long relied on the use of diuron and substituted triazines; these compounds are now being replaced by flazasulfuron, a sulfonylurea that is used at a much lower dosage. The vineyards of Champagne are planted on steep slopes and runoff is important, and even though low doses of these herbicides are used, they may present some potential risk for freshwater ecosystems. Therefore, the effects of the sulfonylurea herbicide, flazasulfuron (formulated as Katana) was investigated on the unicellular green alga Scenedesmus obliquus. The pigment content of the algal suspensions was followed as a biomarker of exposure to the herbicide. The results demonstrate that flazasulfuron induced a reduction in chlorophyll content at concentrations of 10 microg/L, while the increase of pigment content in the culture was reduced with the lowest concentration tested (0.1 microg/L). Among the three pigments tested, chlorophyll a appeared to be the most sensitive biomarker. In the algal medium, flazasulfuron was slowly degraded (DT(50) approximately 8 days) in a compound that was tentatively identified. The toxicity of this herbicide for the algae was comparable to that of older herbicides which are used at a much higher rate. Therefore, we may speculate that even if flazasulfuron comes into contact with freshwater ecosystems, its effects on algae will be less deleterious than that of traditional herbicides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.
1997-02-01
Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysismore » time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.« less
Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J
2016-07-01
Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action. Copyright © 2016 Elsevier B.V. All rights reserved.
Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2018-03-01
This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.
Maldonado, M I; Malato, S; Pérez-Estrada, L A; Gernjak, W; Oller, I; Doménech, Xavier; Peral, José
2006-11-16
Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (alpha-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html] founded by the European Union that inquires into the potential coupling between chemical and biological oxidations for the removal of toxic or non-biodegradable contaminants from water. The evolution of pollutant concentration, TOC mineralization, generation of inorganic species and consumption of O3 have been followed in order to visualize the chemical treatment effectiveness. Although complete mineralization is hard to accomplish, and large amounts of the oxidant are required to lower the organic content of the solutions, the possibility of ozonation cannot be ruled out if partial degradation is the final goal wanted. In this sense, Zahn-Wellens biodegradability tests of the ozonated MPG solutions have been performed, and the possibility of a further coupling with a secondary biological treatment for complete organic removal is envisaged.
The environmental fate and effects of antifouling paint biocides.
Thomas, K V; Brooks, S
2010-01-01
Antifouling (AF) biocides are the active ingredients in AF paints that prevent the settlement, adhesion and growth of organisms to a painted surface. A wide range of chemicals are used as AF biocides, which have very different physico-chemical properties and therefore differing environmental fates, behaviour and effects. Copper has been used as an antifoulant for centuries and extensive research has been performed to understand how copper speciation influences bioavailability and toxicity. For biocides that have been widely used over a number of decades, for example Irgarol 1051 and diuron, there are a large amount of environmental data in the public domain, including for their respective metabolites, that allows their environmental safety and potential risk to the environment to be assessed. For other biocides such as dichlofluanid, DCOIT (SeaNine 211) and zinc/copper pyrithione, there is a good understanding of their fate and effects. However, few monitoring studies have been performed and not so much is known about the fate and effects of their metabolites. There are also new or candidate biocides such as triphenylborane pyridine, Econea, capsaicin and medetomidine for which there is very little information in the public domain. This review provides an overview of the environmental fate and occurrence data that are in the public domain for AF biocides and provides some insight into the effects of these compounds on non-target organisms.
Martin, Jeffrey D.; Gilliom, Robert J.; Schertz, Terry L.
1999-01-01
Field blanks did show evidence of contamination by some pesticides. Most of the pesticides detected in field blanks, however, were detected more frequently and at higher concentrations in environmental water samples. Two criteria were used to evaluate the need to consider contamination in water-quality assessments: (1) a ratio of the frequency of pesticide detection in environmental water samples to the frequency of detection in field blanks of 5.0 or less and (2) a ratio of the median concentration detected in environmental water samples to the maximum concentration detected in field blanks of 2.0 or less. These criteria indicate that contamination, for the majority of the pesticide data collected for the NAWQA Program, probably does not need to be considered in the analysis and interpretation of (1) the frequency of pesticide detection or (2) the median concentration of pesticides detected. Contamination must be considered, however, in detection frequency for cispermethrin, pronamide, p,p' -DDE, pebulate, propargite, ethalfluralin, and triallate in surface water and fenuron, benfluralin, pronamide, cis-permethrin, triallate, chlorpyrifos, trifluralin, propanil, p,p' -DDE, bromacil, dacthal, diazinon, and diuron in ground water. Contamination also must be considered in median concentrations detected for pronamide, p,p' -DDE, propargite, napropamide, and triallate in surface water and benfluralin, cis-permethrin, triallate, chlorpyrifos, trifluralin, p,p' -DDE, dacthal, and diazinon in ground water.
Domagalski, Joseph L.
2000-01-01
Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.
Juvenile corals can acquire more carbon from high-performance algal symbionts
NASA Astrophysics Data System (ADS)
Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.
2009-06-01
Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that 14C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora harbouring Symbiodinium C1 compared with juveniles from common parentage harbouring Symbiodinium D in a laboratory experiment. Rapid light curves performed on the same corals revealed that the relative electron transport rate of photosystem II (rETRMAX) was 87% greater in Symbiodinium C1 than in Symbiodinium D in hospite. The greater relative electron transport through photosystem II of Symbiodinium C1 is positively correlated with increased carbon delivery to the host under the applied experimental conditions ( r 2 = 0.91). This may translate into a competitive advantage for juveniles harbouring Symbiodinium C1 under certain field conditions, since rapid early growth typically limits mortality. Both symbiont types exhibited severe reductions in 14C incorporation during a 10-h exposure to the electron transport blocking herbicide diuron (DCMU), confirming the link between electron transport through PSII and photosynthate incorporation within the host tissue. These findings advance the current understanding of symbiotic relationships between corals and their symbionts, providing evidence that enhanced growth rates of juvenile corals may result from greater translocation of photosynthates from Symbiodinium C1.
Swancar, Amy
1996-01-01
ground water on seven of nine golf courses studied and in 52 percent of ground-water samples. Concentrations of pesticides in ground water at golf courses were generally low relative to gegulatory guidelines, with 45 percent of all occurrences at trace levels and 92 percent under the maximum contaminant level or guidance concentration. Two of the nine golf courses had not pesticides detectedc in ground water, and a third had only two occurrences, which were at trace levels. Theere were six occurrences of concentrations of arsenic, bentazon, or acephate in ground water above the maximum contaminant level or guidance concentration. Additionally, the following pesticides were detected in ground water from at least one site; atrazine, bromacil, diazinon, diuron, fenamiphos, metalaxyl, oxydiazon, and simazine. The fenamiphos metabolites, fenamiphos sulfoxide and fenamiphos sulfone, also were detected in ground water. Samples from wastewater treatment plants contained trace levels of atrazine, bromacil, and gamma-BHC (Lindane). Concentrations of pesticides in golf course ponds were generally low, with 60 percent of all occurrences at trace levels. All but one of the pond samples collected during the study contained at least one pesticide. The most commonly occurring pesticides in golf course ponds were: atrazine, fenamiphos and fenamiphos sulfoxide, and diuron.
Loffredo, Elisabetta; Castellana, Giancarlo; Senesi, Nicola
2014-02-01
Sorption and biodegradation are the main mechanisms for the removal of endocrine disruptor compounds (EDs) from both solid and liquid matrices. There are recent evidences about the capacity of white-rot fungi to decontaminate water systems from phenolic EDs by means of their ligninolytic enzymes. Most of the available studies report the removal of EDs by biodegradation or adsorption separately. This study assessed the simultaneous removal of five EDs—the xenoestrogens bisphenol A (BPA), ethynilestradiol (EE2), and 4-n-nonylphenol (NP), and the herbicide linuron and the insecticide dimethoate—from a municipal landfill leachate (MLL) using a combined sorption/bioremoval approach. The adsorption matrices used were potato dextrose agar alone or added with each of the following adsorbent materials: ground almond shells, a coffee compost, a coconut fiber, and a river sediment. These matrices were either not inoculated or inoculated with the fungus Pleurotus ostreatus and superimposed on the MLL. The residual amount of each ED in the MLL was quantified after 4, 7, 12, and 20 days by HPLC analysis and UV detection. Preliminary experiments showed that (1) all EDs did not degrade significantly in the untreatedMLL for at least 28 days, (2) the mycelial growth of P. ostreatus was largely stimulated by components of the MLL, and (3) the enrichment of potato dextrose agar with any adsorbent material favored the fungal growth for 8 days after inoculation. A prompt relevant disappearance of EDs in the MLL occurred both without and, especially, with fungal activity, with the only exception of the very water soluble dimethoate that was poorly adsorbed and possibly degraded only during the first few days of experiments. An almost complete removal of phenolic EDs, especially EE2 and NP, occurred after 20 days or much earlier and was generally enhanced by the adsorbent materials used. Data obtained indicated that both adsorption and biodegradation mechanisms contribute
Heidler, Jochen; Halden, Rolf U
2009-12-01
This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through US treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 US states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (+/-95% confidence interval) of quantifiable compounds in influent ranged from 4.2 +/- 0.8 microg L(-1) for triclocarban to 0.03 +/- 0.01 microg L(-1) for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 +/- 0.08 and 0.07 +/- 0.04 microg L(-1), respectively). Median aqueous-phase removal efficiencies (+/-95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 +/- 2%) > triclocarban (87 +/- 7%) > dichlorocarbanilide (55 +/- 20%) > fipronil (18 +/- 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27 600 +/- 9600 and 15 800 +/- 8200 microg kg(-1) for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 +/- 70%) to triclocarban (87 +/- 29%) to triclosan (28 +/- 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258 000 +/- 110 00 kg year(-1) (mean
Rider, Cynthia V.; Furr, Johnathan R.; Wilson, Vickie S.; Gray, L. Earl
2010-01-01
Although risk assessments are typically conducted on a chemical-by-chemical basis, the 1996 Food Quality Protection Act required the US Environmental Protection Agency to consider cumulative risk of chemicals that act via a common mechanism of toxicity. To this end, we are conducting studies with mixtures of chemicals to elucidate mechanisms of joint action at the systemic level with the end goal of providing a framework for assessing the cumulative effects of reproductive toxicants. Previous mixture studies conducted with antiandrogenic chemicals are reviewed briefly and two new studies are described in detail. In all binary mixture studies, rats were dosed during pregnancy with chemicals, singly or in pairs at dosage levels equivalent to approximately one half of the ED50 for hypospadias or epididymal agenesis. The binary mixtures included: androgen receptor (AR) antagonists (vinclozolin plus procymidone), phthalate esters (DBP plus BBP and DEHP plus DBP), a phthalate ester plus an AR antagonist (DBP plus procymidone), a mixed mechanism androgen signaling disruptor (linuron) plus BBP, and two chemicals which disrupt epididymal differentiation through entirely different toxicity pathways: DBP (AR pathway) plus 2,3,7,8 TCDD (AhR pathway). We also conducted multi-component mixture studies combining several “antiandrogens” together. In the first study, seven chemicals (four pesticides and three phthalates) that elicit antiandrogenic effects at two different sites in the androgen signaling pathway (i.e. AR antagonist or inhibition of androgen synthesis) were combined. In the second study, three additional phthalates were added to make a ten chemical mixture. In both the binary mixture studies and the multi-component mixture studies, chemicals that targeted male reproductive tract development displayed cumulative effects that exceeded predictions based upon a response addition model and most often were in accordance with predictions based upon dose addition models
Shipitalo, Martin J; Malone, Robert W; Owens, Lloyd B
2008-01-01
Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.
Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine
2017-03-01
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL -1 and 42μgL -1 ) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important
Cheloni, Giulia; Slaveykova, Vera I
2013-10-01
Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.
Leaching of additives from construction materials to urban storm water runoff.
Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M
2011-01-01
Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.
Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca
2009-12-01
The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.
NASA Astrophysics Data System (ADS)
Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique
2011-08-01
Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.
Hernández, F; Portolés, T; Ibáñez, M; Bustos-López, M C; Díaz, R; Botero-Coy, A M; Fuentes, C L; Peñuela, G
2012-11-15
The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others. Copyright © 2012 Elsevier B.V. All rights reserved.
Risks of Using Antifouling Biocides in Aquaculture
Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles
2012-01-01
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407
Risks of using antifouling biocides in aquaculture.
Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles
2012-01-01
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.
Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida
Choquette, Anne F.; Kroening, Sharon E.
2009-01-01
most frequently detected above the 0.06-ug/L level were aldicarb sulfoxide, diuron, simazine degradates hydroxysimazine and didealkylatrazine (DDA), bromacil, norflurazon, and demethyl norflurazon which occurred at detection rates ranging from 25 to 86 percent of samples, respectively. Typically, pesticide concentrations in the lake samples were less than 1 microgram per liter. The number of targeted pesticide compounds detected per lake in the citrus areas ranged from 9 to 14 compared to 3 compounds detected at trace levels in the undeveloped lake. Consistent detections of parents and degradates in quarterly samples indicated the presence of pesticide compounds in the lakes many months or years (for example, bromacil) after their application, signaling the persistence of some pesticide compounds in the lakes and/or ground-water systems. Pesticide degradate concentrations frequently exceeded parent concentrations in the lakes. This study was the first in the Ridge citrus region to analyze for glyphosate - widely used in citrus - and its degradate aminomethylphosphonic acid (AMPA), neither of which were detected, as well as a number of triazine degradates, including hydroxysimazine, which were detected. The lake pesticide concentrations did not exceed current Federal aquatic-life benchmarks, available for 10 of the 20 detected pesticide compounds. Limited occurrences of bromacil, diuron, or norflurazon concentrations were within about 10 to 90 percent of benchmark guidelines for acute effects on nonvascular aquatic plants in one or two of the lakes. The lake pesticide concentrations for several targeted pesticides were relatively high compared to corresponding national stream-water percentiles, which is consistent with this region's vulnerability for pesticide leaching into water resources. Several factors were evaluated to gain insight into the processes controlling pesticide transport and fate, and to assess their utility for estimating th
McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian
2003-01-01
across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti
Mottes, Charles; Lesueur Jannoyer, Magalie; Le Bail, Marianne; Guéné, Mathilde; Carles, Céline; Malézieux, Eric
2017-10-01
The understanding of factors affecting pesticide transfers to catchment outlet is still at a very early stage in tropical context, and especially on tropical volcanic context. We performed on-farm pesticide use surveys during 87 weeks and monitored pesticides in water weekly during 67 weeks at the outlet of a small catchment in Martinique. We identified three types of pollution. First, we showed long-term chronic pollution by chlordecone, diuron and metolachlor resulting from horticultural practices applied 5-20 years ago (quantification frequency higher than 80%). Second, we showed peak pollution. High amounts of propiconazole and fosthiazate applied at low frequencies caused river pollution peaks for weeks following a single application. Low amounts of diquat and diazinon applied at low frequencies also caused pollution peaks. The high amounts of glyphosate applied at high frequency resulted into pollution peaks by glyphosate and aminomethylphosphonic acid (AMPA) in 6 and 20% of the weeks. Any intensification of their uses will result in higher pollution levels. Third, relatively low amounts of glufosinate-ammonium, difenoconazol, spinosad and metaldehyde were applied at high frequencies. Unexpectedly, such pesticides remained barely detected (<1.5%) or undetected in water samples. We showed that AMPA, fosthiazate and propiconazole have serious leaching potential. They might result in future chronic pollution of shallow aquifers alimenting surface water. We prove that to avoid the past errors and decrease the risk of long-term pollution of water resources, it is urgent to reduce or stop the use of pesticides with leaching potential by changing agricultural practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrés-Costa, María Jesús; Andreu, Vicente; Picó, Yolanda
2016-08-26
Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of "legal" highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC-QqTOF-MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, pyrrolidinophenones, arylcyclohexylamines, cocainics, opioids and cannabinoids. Additionally, paracetamol, carbamazepine, ibersartan, valsartan, sulfamethoxazole, terbumeton, diuron, etc. (including degradation products as 3-hydroxy carbamazepine or deethylterbuthylazine) were detected. This method encompasses easy sample preparation and rapid identification of psychoactive drugs against a database that cover more than 2000 compounds that ionized in positive mode, and possibility to identify metabolites and degradation products as well as unknown compounds. The method for river water, influent and effluents samples was fully validated for the target psychoactive substances including assessment of matrix effects (-88-67.8%), recovery (42-115%), precision (<19%) and limits of quantification (1-100ngL(-1)). Method efficiency was thoroughly investigated for a wide range of waste and surface waters. Robust and repeatable functioning of this platform in the screening, identification and quantification of traditional and new psychoactive drugs biomarkers and other water contaminants is demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.
Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc
2017-04-01
The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.
Thrailkill, K M; Birky, C W
1980-09-01
We report evidence for random drift of mitochondrial allele frequencies in zygote clones of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Monofactorial and bifactorial crosses were done, using strains resistant or sensitive to erythromycin (alleles Er, Es), oligomycin (Or, Os), or diuron (Dr, Ds). The frequencies of resistant and sensitive cells (and thus the frequencies of the resistant and sensitive alleles) were determined for each of a number of clones of diploid cells arising from individual zygotes. Allele frequencies were extremely variable among these zygote clones; some clones were "uniparental," with mitochondrial alleles from only one parent present. These observations suggest random drift of the allele frequencies in the population of mitochondrial genes within an individual zygote and its diploid progeny. Drift would cease when all the cells in a clone become homoplasmic, due to segregation of the mitochondrial genomes during vegetative cell divisions. To test this, we delayed cell division (and hence segregation) for varying times by starving zygotes in order to give drift more time to operate. As predicted, delaying cell division resulted in an increase in the variance of allele frequencies among the zygote clones and an increase in the proportion of uniparental zygote clones. The changes in form of the allele frequency distributions resembled those seen during random drift in finite Mendelian populations. In bifactorial crosses, genotypes as well as individual alleles were fixed or lost in some zygote clones. However, the mean recombination frequency for a large number of clones did not increase when cell division was delayed. Several possible molecular mechanisms for intracellular random drift are discussed.
Modeling of facade leaching in urban catchments
NASA Astrophysics Data System (ADS)
Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.
2012-12-01
Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.
Spurlock, F.; Burow, K.; Dubrovsky, N.
2000-01-01
Simazine, diuron, and bromacil are the most frequently detected currently registered pesticides in California groundwater. These herbicides have been used for several decades in Fresno and Tulare counties, California; however, previous data are inadequate to determine whether the detections are a result of recent or historical applications (i.e., within the last decade, or 20-30 yr ago). Chlorofluorocarbon (CFC) groundwater age-dating was used in conjunction with one-dimensional transport modeling to address this question. The estimated times between herbicide application and subsequent detection in groundwater samples from 18 domestic wells ranged from 3 to 33 yr; the aggregate data indicate that more than half of the detections are associated with applications in the last decade. The data also suggest that changes in groundwater quality arising from modified management practices will probably not be discernible for at least a decade. A secondary objective of this study was to evaluate the contribution of simazine degradates deethylsimazine (DES; 2-amino-4-chloro-6-ethylamino-s-triazine) and diaminochlorotriazine (DACT; 2,4-diamino-6-chloro-s-triazine) to total triazine concentrations (defined here as simazine + DES + DACT) in 30 domestic wells. The N-dealkylated s- chlorotriazine degradates DES and DACT substantially contribute to total triazine concentrations in Fresno and Tulare County groundwater, composing 24 to 100% of the total triazines, with a median of 82%. If s-chlorotriazines display a common mode of toxicological action, the prevalence of triazine degradates in water samples found in this and other studies indicate that drinking water standards based on total s-chlorotriazine concentrations may be most appropriate.
NASA Astrophysics Data System (ADS)
Brumovský, Miroslav; Bečanová, Jitka; Kohoutek, Jiří; Thomas, Henrike; Petersen, Wilhelm; Sørensen, Kai; Sáňka, Ondřej; Nizzetto, Luca
2016-10-01
Chemical pollution is of concern for the marine environment. New European regulation demands exposure and impact assessment to be conducted in coastal environments in order to define and ensure fulfillment of environmental quality standards. A cost-effective approach for monitoring the over 100,000 km of European coasts is necessary. This proof-of-concept study focuses on the use of unmanned water sampling from a commercial ship of opportunity to implement monitoring of marine contaminants of emerging concern. Marine areas that are not directly affected by river plumes or other direct sources were covered in order to provide information on background pollution. 14 currently used pesticides, 11 pharmaceuticals and personal care products and 3 food additives were detected in water samples through targeted analysis at sub-ng to tenths of ng/L levels in both coastal and offshore areas of the North Sea. Among contaminants, 6 pesticides (dimethoate, fenpropimorph, pendimethalin, propiconazole, tebuconazole and temephos), 3 pharmaceuticals (acetaminophen, naproxen and ketoprofen) and 2 food additives (acesulfame and saccharine) have never been detected before in offshore areas. 4 pesticides (diuron, isoproturon, metazachlor and terbuthylazine), 4 pharmaceuticals (carbamazepine, atenolol, ibuprofen and ketoprofen) and 2 food additives (sucralose and acesulfame) were detected in over 90% of the samples. The antibiotic sulfamethoxazole was detected in 50% of the samples at tenths of pg/L levels, including some offshore areas. Our study highlights that the use of ships of opportunity can provide a key support for the development and cost-effective implementation of marine monitoring of chemical pollutants in Europe and elsewhere.
Heidler, Jochen; Halden, Rolf U.
2009-01-01
This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through U.S. treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 U.S. states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (± 95% confidence interval) of quantifiable compounds in influent ranged from 4.2 ± 0.8 µg L−1 for triclocarban to 0.03 ± 0.01 µg L−1 for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 ± 0.08 and 0.07 ± 0.04 µg L−1, respectively). Median aqueous-phase removal efficiencies (± 95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 ± 2%) > triclocarban (87 ± 7%) > dichlorocarbanilide (55 ± 20%) > fipronil (18 ± 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27,600 ± 9,600 and 15,800 ± 8,200 µg kg−1 for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 ± 70%) to triclocarban (87 ± 29%) to triclosan (28 ± 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258,000 ± 110,00 kg yr−1 (mean ± 95% confidence
Schiller, Viktoria; Zhang, Xiaowei; Hecker, Markus; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2014-10-01
A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative
Effects of flow regime and pesticides on periphytic communities: evolution and role of biodiversity.
Villeneuve, Aurélie; Montuelle, Bernard; Bouchez, Agnès
2011-04-01
The effects of chemical and physical factors on periphyton structure, diversity and functioning were investigated in an outdoor mesocosm experiment. Stream biofilms were subjected to a pesticide mix (diuron and azoxystrobin) under two different hydraulic regimes. The hydraulic regimes differed by spatial variations of flow conditions (turbulent with high variations vs. laminar with low variations). The effects of the hydraulic regime and pesticides were assessed at the level of the periphytic communities. We focused on the change in the biodiversity of these communities under the two hydraulic regimes, and on the role of these biodiversity changes in case of pesticide contamination. Changes in structural (biomass, cell density), diversity (community composition assessed by PCR-DGGE and microscopic analysis) and functional (bacterial and algal production, sensitivity to the herbicide) parameters were monitored throughout a 2-month experiment. The results showed that exposure to pesticides affected the phytobenthic community targeted by the herbicide, impacting on both its growth dynamics and its primary production. Conversely, the impact of the flow regime was greater than that of pesticides on the non-target bacterial community with higher bacterial density and production in laminar mesocosms (uniform regime). An interaction between flow and pollution effects was also observed. Communities that developed in turbulent mesocosms (heterogeneous regime) were more diversified, as a result of increased microhabitat heterogeneity due to high spatial variations. However, this higher biodiversity did not increase the ability of these biofilms to tolerate pesticides, as expected. On the contrary, the sensitivity of these communities to pesticide contamination was, in fact, increased. Copyright © 2011 Elsevier B.V. All rights reserved.
Human Arylamine N-Acetyltransferase 1 Is Inhibited by the Dithiocarbamate Pesticide Thiram.
Xu, Ximing; Mathieu, Cécile; Berthelet, Jérémy; Duval, Romain; Bui, Linh Chi; Busi, Florent; Dupret, Jean-Marie; Rodrigues-Lima, Fernando
2017-09-01
Thiram (tetramethylthiuram disulfide) is a representative dithiocarbamate (DTC) pesticide used in both the field and as a seed protectant. The widespread use of Thiram and other DTC pesticides has raised concerns for health, because these compounds can exert neuropathic, endocrine disruptive, and carcinogenic effects. These toxic effects are thought to rely, at least in part, on the reaction of Thiram (and certain of its metabolites) with cellular protein thiols with subsequent loss of protein function. So far, a limited number of molecular targets of Thiram have been reported, including few enzymes such as dopamine β -hydroxylase, 11 β -hydroxysteroid dehydrogenase, and brain glycogen phosphorylase. We provide evidence that Thiram is an inhibitor ( K I = 23 μ M; k inact = 0.085 second -1 ; k inact / K I = 3691 M -1 ⋅s -1 ) of human arylamine N -acetyltransferase 1 (NAT1), a phase II xenobiotic-metabolizing enzyme that plays a key role in the biotransformation of aromatic amine xenobiotics. Thiram was found to act as an irreversible inhibitor through the modification of NAT1 catalytic cysteine residue as also reported for other enzymes targeted by this pesticide. We also showed using purified NAT1 and human keratinocytes that Thiram impaired the N -acetylation of 3,4-dichloroaniline (3,4-DCA), a major toxic metabolite of aromatic amine pesticides (such as Diuron or Propanil). As coexposure to different classes of pesticides is common, our data suggest that pharmacokinetic drug-drug interactions between DTC pesticides such as Thiram and aromatic amine pesticides may occur through alteration of NAT1 enzymes functions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda
2015-11-01
The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A review: oxidative stress in fish induced by pesticides.
Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka
2009-01-01
The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.
Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.
DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D
2013-07-01
Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.
Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.
Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P
2016-01-01
Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.
Wofford, Pamela; Segawa, Randy; Schreider, Jay; Federighi, Veda; Neal, Rosemary; Brattesani, Madeline
2014-03-01
The CA Department of Pesticide Regulation (CDPR) and the CA Air Resources Board monitored 40 pesticides, including five degradation products, in Parlier, CA, to determine if its residents were exposed to any of these pesticides and, if so, in what amounts. They included 1,3-dichloropropene, acrolein, arsenic, azinphos-methyl, carbon disulfide, chlorpyrifos and its degradation product, chlorthalonil, copper, cypermethrin, diazinon and its degradation product, dichlorvos, dicofol, dimethoate and its degradation product, diuron, endosulfan and its degradation product, S-ethyl dipropylcarbamothioate (EPTC), formaldehyde, malathion and its degradation product, methyl isothiocyanate (MITC), methyl bromide, metolachlor, molinate, norflurazon, oryzalin, oxyfluorfen, permethrin, phosmet, propanil, propargite, simazine, SSS-tributylphosphorotrithioate, sulfur, thiobencarb, trifluralin, and xylene. Monitoring was conducted 3 days per week for a year. Twenty-three pesticides and degradation products were detected. Acrolein, arsenic, carbon disulfide, chlorpyrifos, copper, formaldehyde, methyl bromide, MITC, and sulfur were detected in more than half the samples. Since no regulatory ambient air standards exist for these pesticides, CDPR developed advisory, health-based non-cancer screening levels (SLs) to assess acute, subchronic, and chronic exposures. For carcinogenic pesticides, CDPR assessed risk using cancer potency values. Amongst non-carcinogenic agricultural use pesticides, only diazinon exceeded its SL. For carcinogens, 1,3-dichloropropene concentrations exceeded its cancer potency value. Based on these findings, CDPR has undertaken a more comprehensive evaluation of 1,3-dichloropropene, diazinon, and the closely related chlorpyrifos that was frequently detected. Four chemicals-acrolein, arsenic, carbon disulfide, and formaldehyde-sometimes used as pesticides were detected, although no pesticidal use was reported in the area during this study. Their presence was most
Durán, I; Beiras, R
2017-05-01
Probabilistic environmental quality criteria for Naphthalene (Nap), Phenanthrene (Phe), Fluoranthene (Flu), Pyrene (Pyr), Triclosan (TCS), Tributyltin (TBT), Chlorpyrifos (CPY), Diuron (DUR), γ-Hexaclorocyclohexane (γ-HCH), Bisphenol A (BPA) and 4-Nonylphenol (4-NP) were derived from acute toxicity data using saltwater species representative of marine ecosystems, including algae, mollusks, crustaceans, echinoderms and chordates. Preferably, data concerns sublethal endpoints and early life stages from bioassays conducted in our laboratory, but the data set was completed with a broad literature survey. The Water Quality Criteria (WQC) obtained for TBT (7.1·10 -3 μg L -1 ) and CPY (6.6· 10 -3 μg L -1 ) were orders of magnitude lower than those obtained for PAHs (ranging from 3.75 to 45.2 μg L -1 ), BPA (27.7 μg L -1 ), TCS (8.66 μg L -1 ) and 4-NP (1.52 μg L -1 ). Critical values for DUR and HCH were 0.1 and 0.057 μg L -1 respectively. Within this context, non-selective toxicants could be quantitatively defined as those showing a maximum variability in toxicity thresholds (TT) of 3 orders of magnitude across the whole range of marine diversity, and a cumulative distribution of the TT fitting to a single log-logistic curve, while for selective toxicants variability was consistently found to span 5 orders of magnitude and the TT distribution showed a bimodal pattern. For the latter, protective WQC must be derived taking into account the SSD of the sensitive taxa only. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ensminger, Michael P; Vasquez, Martice; Tsai, Hsing-Ju; Mohammed, Sarah; Van Scoy, A; Goodell, Korena; Cho, Gail; Goh, Kean S
2017-10-01
Monitoring of surface waters for organic contaminants is costly. Grab water sampling often results in non-detects for organic contaminants due to missing a pulse event or analytical instrumentation limitations with a small sample size. Continuous Low-Level Aquatic Monitoring (CLAM) samplers (C.I.Agent ® Solutions) continually extract and concentrate organic contaminants in surface water onto a solid phase extraction disk. Utilizing CLAM samplers, we developed a broad spectrum analytical screen for monitoring organic contaminants in urban runoff. An intermediate polarity solid phase, hydrophobic/lipophilic balance (HLB), was chosen as the sorbent for the CLAM to target a broad range of compounds. Eighteen urban-use pesticides and pesticide degradates were targeted for analysis by LC/MS/MS, with recoveries between 59 and 135% in laboratory studies. In field studies, CLAM samplers were deployed at discrete time points from February 2015 to March 2016. Half of the targeted chemicals were detected with reporting limits up to 90 times lower than routine 1-L grab samples with good precision between field replicates. In a final deployment, CLAM samplers were compared to 1-L water samples. In this side-by-side comparison, imidacloprid, fipronil, and three fipronil degradates were detected by the CLAM sampler but only imidacloprid and fipronil sulfone were detected in the water samples. However, concentrations of fipronil sulfone and imidacloprid were significantly lower with the CLAM and a transient spike of diuron was not detected. Although the CLAM sampler has limitations, it can be a powerful tool for development of more focused and informed monitoring efforts based on pre-identified targets in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.
2000-01-01
The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.
Ahmed, Imteaz; Panja, Tandra; Khan, Nazmul Abedin; Sarker, Mithun; Yu, Jong-Sung; Jhung, Sung Hwa
2017-03-22
Porous carbons were prepared from a metal-organic framework (MOF, named ZIF-8), with or without modification, via high-temperature pyrolysis. Porous carbons with high nitrogen content were obtained from the calcination of MOF after introducing an ionic liquid (IL) (IL@MOF) via the ship-in-bottle method. The MOF-derived carbons (MDCs) and IL@MOF-derived carbons (IMDCs) were characterized using various techniques and used for liquid-phase adsorptions in both water and hydrocarbon to understand the possible applications in purification of water and fuel, respectively. Adsorptive performances for the removal of organic contaminants, atrazine (ATZ), diuron, and diclofenac, were remarkably enhanced with the modification/conversion of MOFs to MDC and IMDC. For example, in the case of ATZ adsorption, the maximum adsorption capacity of IMDC (Q 0 = 208 m 2 /g) was much higher than that of activated carbon (AC, Q 0 = 60 m 2 /g) and MDC (Q 0 = 168 m 2 /g) and was found to be the highest among the reported results so far. The results of adsorptive denitrogenation and desulfurization of fuel were similar to that of water purification. The IMDCs are very useful in the adsorptions since these new carbons showed remarkable performances in both the aqueous and nonaqueous phases. These results are very meaningful because hydrophobic and hydrophilic adsorbents are usually required for the adsorptions in the water and fuel phases, respectively. Moreover, a plausible mechanism, H-bonding, was also suggested to explain the remarkable performance of the IMDCs in the adsorptions. Therefore, the IMDCs derived from IL@MOF might have various applications, especially in adsorptions, based on high porosity, mesoporosity, doped nitrogen, and functional groups.
Impact of materials used in lab and field experiments on the recovery of organic micropollutants
NASA Astrophysics Data System (ADS)
Hebig, Klaus; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott
2015-04-01
Organic micropollutants are frequently detected in the aquatic environment. There-fore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and ob-served mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.
Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.
1998-01-01
, although only 5 pesticides were detected in more than 10 percent of the ground-water samples. All 12 pesticides were detected at concentrations below the maximum contaminant levels, except the banned soil fumigants 1,2-dibromo-3-chloropropane (3 detections) and 1,2-dibromoethane (1 detection). Atrazine and desethyl atrazine (a transformation product of atrazine) were the most frequently detected pesticides; they were detected in 11 ground-water samples. The frequent detections of atrazine and desethyl atrazine may be related either to past applications of atrazine or to recent application on rights-of-way. Simazine was detected in 10 ground-water samples and diuron was detected in 4 ground-water samples. The detections of simazine and diuron are generally consistent with their reported applications on the crops near the wells where they were detected. 1,2,3-trichloropropane, a manufacturing by-product of 1,2-dichloropropane and 1,3- dichloropropene formulations, was detected in 4 ground-water samples. The occurrence of 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, and 1,2-dibromoethane is probably related to past use. Similar to nitrate concentrations, pesticide occurrence was positively correlated to dissolved-oxygen concentrations, indicating that areas with high dissolved-oxygen concentrations may be vulnerable to contamination by nitrate and pesticides. High dissolved-oxygen concentrations may be associated with water that has been rapidly recharged. A comparison of the concentrations and the occurrence of nitrate and pesticides between 1986-87 and 1995 indicates that nitrate concentrations may pose a greater threat to the quality of the ground-water resource in this region than pesticides, in the context of current drinking-water standards. Nitrate concentrations were significantly higher in the 1995 ground-water samples than in the 1986-87 samples collected from the same wells. Although the number of pesticide detections in 1995 is higher than the numb
Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005
Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.
2008-01-01
upper Noyer Creek, which drain basins having nurseries, pasture, and rural residential land. Some concentrations of insecticides (diazinon, chlorpyrifos, azinphos-methyl, and p,p?-DDE) exceeded U.S. Environmental Protection Agency (USEPA) aquatic-life benchmarks in Carli, Sieben, Rock, Noyer, Doane, and North Fork Deep Creeks. One azinphos-methyl concentration in Doane Creek (0.21 micrograms per liter [?g/L]) exceeded Federal and State of Oregon benchmarks for the protection of fish and benthic invertebrates. Concentrations of several other pesticide compounds exceeded non-USEPA benchmarks. Twenty-six pesticides or degradates were detected in the Clackamas River mainstem, typically at much lower concentrations than those detected in the lower-basin tributaries. At least 1 pesticide was detected in 65 percent of 34 samples collected from the Clackamas River, with an average of 2?3 pesticides per sample. Pesticides were detected in 9 (or 60 percent) of the 15 finished water samples collected from the study water-treatment plant during 2003?2005. These included 10 herbicides, 1 insecticide, 1 fungicide, 1 insect repellent, and 2 pesticide degradates. The herbicides diuron and simazine were the most frequently detected (four times each during the study), at concentrations far below human-health benchmarks?USEPA Maximum Contaminant Levels or U.S. Geological Survey human Health-Based Screening Levels (HBSLs). The highest pesticide concentration in finished drinking water was 0.18 ?g/L of diuron, which was 11 times lower than its low HBSL benchmark. Although 0?2 pesticides were detected in most finished water samples, 9 and 6 pesticides were detected in 2 storm-associated samples from May and September 2005, respectively. Three of the unregulated compounds detected in finished drinking water (diazinon-oxon, deethylatrazine [CIAT], and N, N-diethyl-m-toluamide [DEET]) do not have human-health benchmarks available for comparison. Although most of the 51 curren
Choquette, Anne F.; Freiwald, R. Scott; Kraft, Carol L.
2012-01-01
The Lake Wales Ridge Monitoring (LWRM) Network was established to provide a long-term record of water quality of the surficial aquifer in one of the principal citrus-production areas of Florida. This region is underlain by sandy soils that contain minimal organic matter and are highly vulnerable to leaching of chemicals into the subsurface. This report documents the 1989 through May 2010 sampling history of the LWRM Network and summarizes monitoring results for 38 Network wells that were sampled during the period January 2009 through May 2010. During 1989 through May 2010, the Network’s citrus land-use wells were sampled intermittently to 1999, quarterly from April 1999 to October 2009, and thereafter quarterly to semiannually. The water-quality summaries in this report focus on the period January 2009 through May 2010, during which the Network’s citrus land-use wells were sampled six times and the non-citrus land-use wells were sampled two times. Within the citrus land-use wells sampled, a total of 13 pesticide compounds (8 parent pesticides and 5 degradates) were detected of the 37 pesticide compounds analyzed during this period. The most frequently detected compounds included demethyl norflurazon (83 percent of wells), norflurazon (79 percent), aldicarb sulfoxide (41 percent), aldicarb sulfone (38 percent), imidacloprid (38 percent), and diuron (28 percent). Agrichemical concentrations in samples from the citrus land-use wells during the 2009 through May 2010 period exceeded Federal drinking-water standards (maximum contaminant levels, MCLs) in 1.5 to 24 percent of samples for aldicarb and its degradates (sulfone and sulfoxide), and in 68 percent of the samples for nitrate. Florida statutes restrict the distance of aldicarb applications to drinking-water wells; however, these statutes do not apply to monitoring wells. Health-screening benchmark levels that identify unregulated chemicals of potential concern were exceeded for norflurazon and diuron in 29 and
Genetic Diversity among 3-Chloroaniline- and Aniline-Degrading Strains of the Comamonadaceae
Boon, Nico; Goris, Johan; De Vos, Paul; Verstraete, Willy; Top, Eva M.
2001-01-01
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the
Hengel, Matt; Lee, P
2014-03-01
Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air.
Lu, Tao; Shi, Jie-wei; Sun, Zhou-ping; Qi, Ming-fang; Liu, Yu-feng; Li, Tian-lai
2017-01-01
Objective: To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. Methods: Six-leaf-stage tomato seedlings (“Liaoyuanduoli”, n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 μmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 μmol/(m2·s) (HH); Part 3, spayed with 100 μmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 μmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. Results: HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (F v/F m), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and Y I) significantly decreased whereas acceptor and donor side limitation of PSI (Y NA and Y ND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy Y NPQ and Y NO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. Conclusions: The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity. PMID:28681588
Petersen, Karina; Heiaas, Harald Hasle; Tollefsen, Knut Erik
2014-05-01
Organisms in the environment are exposed to a number of pollutants from different compound groups. In addition to the classic pollutants like the polychlorinated biphenyls, polyaromatic hydrocarbons (PAHs), alkylphenols, biocides, etc. other compound groups of concern are constantly emerging. Pharmaceuticals and personal care products (PPCPs) can be expected to co-occur with other organic contaminants like biocides, PAHs and alkylphenols in areas affected by wastewater, industrial effluents and intensive recreational activity. In this study, representatives from these four different compound groups were tested individually and in mixtures in a growth inhibition assay with the marine algae Skeletonema pseudocostatum (formerly Skeletonema costatum) to determine whether the combined effects could be predicted by models for additive effects; the concentration addition (CA) and independent action (IA) prediction model. The eleven tested compounds reduced the growth of S. pseudocostatum in the microplate test in a concentration-dependent manner. The order of toxicity of these chemicals were irgarol>fluoxetine>diuron>benzo(a)pyrene>thioguanine>triclosan>propranolol>benzophenone 3>cetrimonium bromide>4-tert-octylphenol>endosulfan. Several binary mixtures and a mixture of eight compounds from the four different compound groups were tested. All tested mixtures were additive as model deviation ratios, the deviation between experimental and predicted effect concentrations, were within a factor of 2 from one or both prediction models (e.g. CA and IA). Interestingly, a concentration dependent shift from IA to CA, potentially due to activation of similar toxicity pathways at higher concentrations, was observed for the mixture of eight compounds. The combined effects of the multi-compound mixture were clearly additive and it should therefore be expected that PPCPs, biocides, PAHs and alkylphenols will collectively contribute to the risk in areas contaminated by such complex
Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe
2017-06-01
Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny
2018-06-01
Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine
Geret, F; Burgeot, T; Haure, J; Gagnaire, B; Renault, T; Communal, P Y; Samain, J F
2013-12-01
This study investigated the effects on the physiology of Pacific oyster, Crassostrea gigas, of a mixture of pesticides containing 0.8 μg L(-1) alachlor, 0.6 μg L(-1) metolachlor, 0.7 μg L(-1) atrazine, 0.6 μg L(-1) terbuthylazine, 0.5 μg L(-1) diuron, 0.6 μg L(-1) fosetyl aluminum, 0.05 μg L(-1) carbaryl, and 0.7 μg L(-1) glyphosate for a total concentration of 4.55 μg L(-1) . The total nominal concentration of pesticides mixture corresponds to the pesticide concentrations in the shellfish culture area of the Marennes-Oleron basin. Two varieties of C. gigas were selected on the foreshore, based on their characteristics in terms of resistance to summer mortality, to assess the effects of the pesticide mixture after 7 days of exposure under controlled conditions. The early effects of the mixture were assessed using enzyme biomarkers of nitrogen metabolism (GS, glutamine synthetase), detoxification metabolism (GST, glutathione S-transferase), and oxidative stress (CAT, catalase). Sublethal effects on hemocyte parameters (phagocytosis and esterase activity) and DNA damages (DNA adducts) were also measured. Changes in metabolic activities were characterized by increases in GS, GST, and CAT levels on the first day of exposure for the "resistant" oysters and after 3-7 days of exposure for the "susceptible" oysters. The formation of DNA adducts was detected after 7 days of exposure. The percentage of hemocyte esterase-positive cells was reduced in the resistant oysters, as was the hemocyte phagocytic capacity in both oyster varieties after 7 days of exposure to the pesticide mixture. This study highlights the need to consider the low doses and the mixture of pesticides to evaluate the effects of these molecules on organisms. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wagner, Thomas; Bollmann, Ulla E.; Bester, Kai; Birk, Steffen
2013-04-01
Karst aquifers are widely used as drinking water resources. However, their high vulnerability to chemical and bacterial contamination due to the heterogeneity in aquifer properties (highly conductive solution conduits embedded in the less conductive fissured rock) is difficult to assess and thus poses major challenges to the management of karst water resources. Contamination of karst springs by organic micro-pollutants has been observed in recent studies. Within this study the water from different springs draining one karst aquifer as well as the main sinking stream replenishing it were analysed before, during and after a storm water event in order to examine the occurrence of different pesticides and biocides. Contaminants from both urban as well as agricultural origin could be detected in the water with concentrations in the low ng/L range (tebuconazole, carbendazim, diuron, isoproturon, terbutryn, atrazine, dichlorobenzamide (BAM), which is a metabolite of dichlobenil). While some compounds could be followed from the sinking stream to the springs (e.g. dichlorobenzamide) some seem to have a source in the autogenic recharge from the karst plateau (Tebuconazole: wood preservative in buildings). These compounds appear to be related to fast flow components with residence times in the order of days, which are known from a number of tracer tests with fluorescent dyes. However, the occurrence of the pesticide atrazine (banned since 1995 in Austria) in the springs, while on the other hand no current input into the karst occurs, shows that some compounds have long residence times in the karst aquifer. These differences in residence times can hardly be attributed to differences in physico-chemical properties of the compounds and must thus be due to the presence of slow and fast flow components. This is in agreement with the duality of karst aquifers due to highly conductive networks of solution conduits embedded in less conductive fissured carbonate rocks.
Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses
Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.
2013-01-01
Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows
Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment
Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P.
2016-01-01
Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2–10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments. PMID:27806103
Phytotoxicity of four photosystem II herbicides to tropical seagrasses.
Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P
2013-01-01
Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of
Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei.
Diepens, Noël J; Buffan-Dubau, Evelyne; Budzinski, Hélène; Kallerhoff, Jean; Merlina, Georges; Silvestre, Jérome; Auby, Isabelle; Nathalie Tapie; Elger, Arnaud
2017-03-01
Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 μg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC 10 ) (2 μg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide. Copyright © 2016
Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China.
Kong, Lingxiao; Kadokami, Kiwao; Duong, Hanh Thi; Chau, Hong Thi Cam
2016-12-01
Groundwater contamination in China has become a growing public concern because of the country's rapid economic development and dramatically increasing fresh water demand. However, there is little information available on groundwater quality, particularly with respect to trace organic micro-pollutants contamination. This study was undertaken to investigate the occurrence of 1300 pollutants at 27 groundwater sites in Beijing and Tianjin, North China. Seventy-eight chemicals (6% of the targeted compounds) were detected in at least one sampling point; observed chemicals included polycyclic aromatic hydrocarbons (PAHs), pesticides, plasticizers, antioxidants, pharmaceuticals and other emerging compounds. Chemicals with a frequency of detection over 70% were 2-ethyl-1-hexanol (median concentration 152 ng L -1 ), benzyl alcohol (582 ng L -1 ), 2-phenoxy-ethanol (129 ng L -1 ), acetophenone (74 ng L -1 ), pentamethylbenzene (51 ng L -1 ), nitrobenzene (40 ng L -1 ) and dimethyl phthalate (64 ng L -1 ). Pesticides with concentrations exceeding the EU maximum residual limits (MRL) of 0.1 μg L -1 were 1,4-dichlorobenzene, oxadixyl, diflubenzuron, carbendazim, diuron, and the E and Z isomers of dimethomorph. Naphthalene and its 7 alkylated derivatives were widely observed at maximum concentration up to 30 μg L -1 , which, although high, is still below the Australian drinking water guidelines of 70 μg L -1 . The risk assessment indicated there is no human health risk through the oral consumption from most wells, although there were four wells in which total seven compounds were found at the concentrations with a potential adverse health effects. This work provides a wide reconnaissance on broad spectrum of organic micro-contaminants in groundwater in North China. Copyright © 2016. Published by Elsevier Ltd.
Kent, Robert; Belitz, Kenneth; Altmann, Andrea J.; Wright, Michael T.; Mendez, Gregory O.
2005-01-01
A study of the occurrence and distribution of pesticide compounds in surface water of the highly urbanized Santa Ana Basin, California, was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program (NAWQA). One-hundred and forty-eight samples were collected from 23 sites, and analyzed for pesticide compounds during the study period from November 1998 to September 2001. Sixty-six different pesticide compounds were detected at varying frequencies and concentrations, and one or more pesticides were detected in 92 percent of the samples. All pesticide concentrations were below maximum levels permitted in drinking water. However, two compounds-diazinon and diuron-exceeded nonenforceable drinking water health-advisory levels in at least one stream sample, and five compounds exceeded guidelines to protect aquatic life-carbaryl, chlorpyrifos, diazinon, lindane, and malathion. Twenty-two pesticide compounds were detected in at least 25 percent of the samples collected from any one fixed site. These are identified as 'major' pesticide compounds and are emphasized in this report. The degree to which pesticides were used in the basin, as well as their physical-chemical properties, are important explanatory factors in stream pesticide occurrence, and most pesticides probably enter streams with urban runoff. Stormflow substantially increases urban runoff, and storm effects on stream pesticide concentrations sometimes persist for several days or weeks after the storm. Water sources other than urban runoff also deliver pesticide compounds to surface water in the basin. For example, atrazine may enter streams in gaining reaches where ground water carries high loads as a result of historical use in the basin. Also, the data suggest that lindane, and perhaps bromacil, are present in treated wastewater, the predominant source of water to streams in the Santa Ana Basin.
Allinson, Mayumi; Zhang, Pei; Bui, AnhDuyen; Myers, Jackie H; Pettigrove, Vincent; Rose, Gavin; Salzman, Scott A; Walters, Robert; Allinson, Graeme
2017-03-01
Urban stormwater samples were collected from five aquatic systems in Melbourne, Australia, on six occasions between October 2011 and March 2012 and tested for 30 herbicides and 14 trace metals. Nineteen different herbicides were observed in one or more water samples from the five sites; chemicals observed at more than 40% of sites were simazine (100%), MCPA (83%), diuron (63%) and atrazine (53%). Using the toxicity unit (TU) concept to assess potential risk to aquatic ecosystems, none of the detected herbicides were considered to pose an individual, group or collective short-term risk to fish or zooplankton in the waters studied. However, 13 herbicides had TU values suggesting they might have posed an individual risk to primary producers at the time of sampling. Water quality guideline levels were exceeded on many occasions for Cd, Cu, Cr, Pb and Zn. Similarly, RQ med and RQ max exceeded 1 for Cd, Cr, Cu, Mn, Ni, Pb, V and Zn. Almost all the metals screened exceeded a log 10 TU of -3 for every trophic level, suggesting that there may have been some impact on aquatic organisms in the studied waterbodies. Our data indicate that Melbourne's urban aquatic environments may be being impacted by approved domestic, industrial and sporting application of herbicides and that stormwater quality needs to be carefully assessed prior to reuse. Further research is required to understand the performance of different urban stormwater wetland designs in removing pesticides and trace metals. Applying the precautionary principle to herbicide regulation is important to ensure there is more research and assessment of the long-term 'performance' standard of all herbicides and throughout their 'life cycle'. Implementing such an approach will also ensure government, regulators, decision makers, researchers, policy makers and industry have the best possible information available to improve the management of chemicals, from manufacture to use.
NASA Astrophysics Data System (ADS)
Domagalski, J. L.
2016-12-01
Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to
Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain).
Köck-Schulmeyer, Marianne; Ginebreda, Antoni; Postigo, Cristina; Garrido, Teresa; Fraile, Josep; López de Alda, Miren; Barceló, Damià
2014-02-01
Pesticide contamination of groundwater is of paramount importance because it is the most sensitive and the largest body of freshwater in the European Union. In this paper, an isotopic dilution method based on on-line solid phase extraction-liquid chromatography (electrospray)-tandem mass spectrometry (SPE-LC(ESI)-MS/MS) was used for the analysis of 22 pesticides in groundwater. Results were evaluated from monitoring 112 wells and piezometers coming from 29 different aquifers located in 18 ground water bodies (GWBs), from Catalonia, Spain, for 4 years as part of the surveillance and operational monitoring programs conducted by the Catalan Water Agency. The analytical method developed allows the determination of the target pesticides (6 triazines, 4 phenylureas, 4 organophosphorous, 1 anilide, 2 chloroacetanilides, 1 thiocarbamate, and 4 acid herbicides) in groundwater with good sensitivity (limits of detection <5 ng/L), accuracy (relative recoveries between 85 and 116%, except for molinate), and repeatability (RSD<23%), and in a fully automated way. The most ubiquitous compounds were simazine, atrazine, desethylatrazine and diuron. Direct relation between frequency of detection of each target compound and Groundwater Ubiquity Score index (GUS index) is observed. Desethylatrazine and deisopropylatrazine, metabolites of atrazine and simazine, respectively, presented the highest mean concentrations. Compounds detected in less than 5% of the samples were cyanazine, molinate, fenitrothion and mecoprop. According to the Directive 2006/118/EC, 13 pesticides have individual values above the requested limits (desethylatrazine, atrazine and terbuthylazine lead the list) and 14 samples have total pesticide levels above 500 ng/L. The GWB with the highest levels of total pesticides is located in Lleida (NE-Spain), with 9 samples showing total pesticide levels above 500 ng/L. Several factors such as regulation of the use of pesticides, type of activities in the area, and
NASA Astrophysics Data System (ADS)
Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.
1996-06-01
In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the
Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.
Dent, M P
2007-08-01
The upcoming European chemicals legislation REACH (Registration, Evaluation, and Authorisation of Chemicals) will require the risk assessment of many thousands of chemicals. It is therefore necessary to develop intelligent testing strategies to ensure that chemicals of concern are identified whilst minimising the testing of chemicals using animals. Xenobiotics may perturb the reproductive cycle, and for this reason several reproductive studies are recommended under REACH. One of the endpoints assessed in this battery of tests is mating performance and fertility. Animal tests that address this endpoint use a relatively large number of animals and are also costly in terms of resource, time, and money. If it can be shown that data from non-reproductive studies such as in-vitro or repeat-dose toxicity tests are capable of generating reliable alerts for effects on fertility then some animal testing may be avoided. Available rat sub-chronic and fertility data for 44 chemicals that have been classified by the European Union as toxic to fertility were therefore analysed for concordance of effects. Because it was considered appropriate to read across data for some chemicals these data sets were considered relevant for 73 of the 102 chemicals currently classified as toxic to reproduction (fertility) under this system. For all but 5 of these chemicals it was considered that a well-performed sub-chronic toxicity study would have detected pathology in the male, and in some cases, the female reproductive tract. Three showed evidence of direct interaction with oestrogen or androgen receptors (linuron, nonylphenol, and fenarimol). The remaining chemicals (quinomethionate and azafenidin) act by modes of action that do not require direct interaction with steroid receptors. However, both these materials caused in-utero deaths in pre-natal developmental toxicity studies, and the relatively low NOAELs and the nature of the hazard identified in the sub-chronic tests provides an alert
Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio
2014-05-01
The province of Jaén counts with four natural parks, numerous rivers, reservoirs and wetlands; moreover, it is probably the region with higher olive oil production in the world, which makes this zone a proper target to be studied based on the European Water Framework Directive 2000/60/CE. The aim of this survey is to monitor a total number of 373 compounds belonging to different families (pesticides, PAHs, nitrosamines, drugs of abuse, pharmaceuticals and life-style compounds) in surface waters located at different points of the province of Jaén. Among these compounds some priority organic substances (regulated by the EU Directive 2008/105/EC) and pollutants of emerging concern (not regulated yet) can be found. A liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) method covering 340 compounds was developed and applied, together with a gas chromatography triple-quadrupole mass spectrometry (GC-MS/MS) method which enabled the analysis of 63 organic contaminants (30 of these compounds are analyzed by LC-TOFMS as well). From April 2009 to November 2010 a total of 83 surface water samples were collected (rivers, reservoirs and wetlands). In this period numerous organic contaminants were detected, most of them at the ng L(-1) level. The most frequently priority substances found were chlorpyrifos ethyl, diuron and hexachlorobenzene. Within the other groups, the most frequently detected compounds were: terbuthylazine, oxyfluorfen, desethyl terbuthylazine, diphenylamine (pesticide family); fluorene, phenanthrene, pyrene (PAHs group), codeine, paracetamol (pharmaceuticals compounds) and caffeine, nicotine (life-style compounds). As is could be expected, the total concentration of emerging contaminants is distinctly larger than that of priority pollutants, highlighting the importance of continuing with the study of their presence, fate and effects in aquatic environments. However, concentration levels (at the ng per liter level) are low in
Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action
Dayan, Franck E.; Owens, Daniel K.; Watson, Susan B.; Asolkar, Ratnakar N.; Boddy, Louis G.
2015-01-01
Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid). However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 μM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 μM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II (PSII) on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 μM. Therefore, the herbicidal activity of sarmentine appears to be a
Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias
2016-04-01
Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling
Potential contributions of smectite clays and organic matter to pesticide retention in soils.
Sheng, G; Johnston, C T; Teppen, B J; Boyd, S A
2001-06-01
Soil organic matter (SOM) is often considered the dominant sorptive phase for organic contaminants and pesticides in soil-water systems. This is evidenced by the widespread use of organic-matter-normalized sorption coefficients (K(OM)) to predict soil-water distribution of pesticides, an approach that ignores the potential contribution of soil minerals to sorption. To gain additional perspective on the potential contributions of clays and SOM to pesticide retention in soils, we measured sorption of seven pesticides by a K-saturated reference smectite clay (SWy-2) and SOM (represented by a muck soil). In addition, we measured the adsorption of atrazine by five different K-saturated smectites and Ca-saturated SWy-2. On a unit mass basis, the K-SWy-2 clay was a more effective sorbent than SOM for 4,6-dinitro-o-cresol (DNOC), dichlobenil, and carbaryl of the seven pesticides evaluated, of which, DNOC was sorbed to the greatest extent. Atrazine was sorbed to a similar extent by K-SWy-2 and SOM. Parathion, diuron, and biphenyl were sorbed to a greater extent by SOM than by K-SWy-2. Atrazine was adsorbed by Ca-SWy-2 to a much lesser extent than by K-SWy-2. This appears to be related to the larger hydration sphere of Ca(2+) (compared to that of K(+)) which shrinks the effective size of the adsorption domains between exchangeable cations, and which expands the clay layers beyond the apparently optimal spacing of approximately 12.2 A for sorption of aromatic pesticide structures. Although a simple relation between atrazine adsorption by different K-smectites and charge properties of clay was not observed, the highest charge clay was the least effective sorbent; a higher charge density would result in a loss of adsorption domains. These results indicate that for certain pesticides, expandable soil clays have the potential to be an equal or dominant sorptive phase when compared to SOM for pesticide retention in soil.
Predicting herbicide and biocide concentrations in rivers across Switzerland
NASA Astrophysics Data System (ADS)
Wemyss, Devon; Honti, Mark; Stamm, Christian
2014-05-01
Pesticide concentrations vary strongly in space and time. Accordingly, intensive sampling is required to achieve a reliable quantification of pesticide pollution. As this requires substantial resources, loads and concentration ranges in many small and medium streams remain unknown. Here, we propose partially filling the information gap for herbicides and biocides by using a modelling approach that predicts stream concentrations without site-specific calibration simply based on generally available data like land use, discharge and nation-wide consumption data. The simple, conceptual model distinguishes herbicide losses from agricultural fields, private gardens and biocide losses from buildings (facades, roofs). The herbicide model is driven by river discharge and the applied herbicide mass; the biocide model requires precipitation and the footprint area of urban areas containing the biocide. The model approach allows for modelling concentrations across multiple catchments at the daily, or shorter, time scale and for small to medium-sized catchments (1 - 100 km2). Four high resolution sampling campaigns in the Swiss Plateau were used to calibrate the model parameters for six model compounds: atrazine, metolachlor, terbuthylazine, terbutryn, diuron and mecoprop. Five additional sampled catchments across Switzerland were used to directly compare the predicted to the measured concentrations. Analysis of the first results reveals a reasonable simulation of the concentration dynamics for specific rainfall events and across the seasons. Predicted concentration ranges are reasonable even without site-specific calibration. This indicates the transferability of the calibrated model directly to other areas. However, the results also demonstrate systematic biases in that the highest measured peaks were not attained by the model. Probable causes for these deviations are conceptual model limitations and input uncertainty (pesticide use intensity, local precipitation, etc
Loos, Robert; Wollgast, Jan; Huber, Tania; Hanke, Georg
2007-02-01
A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography-triple-quadrupole (tandem) mass spectrometry (LC-MS-MS). By extraction of 1-L water samples and concentration of the extract to 100 microL, method detection limits (MDLs) as low as 0.05-0.1 ng L(-1) were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L(-1)), the herbicides terbutylazine (7 ng L(-1)), atrazine (5 ng L(-1)), simazine (16 ng L(-1)), diuron (11 ng L(-1)), and atrazine-desethyl (11 ng L(-1)), the pharmaceuticals carbamazepine (9 ng L(-1)), sulfamethoxazole (10 ng L(-1)), gemfibrozil (1.7 ng L(-1)), and benzafibrate (1.2 ng L(-1)), the surfactant metabolite nonylphenol (15 ng L(-1)), its carboxylates (NPE(1)C 120 ng L(-1), NPE(2)C 7 ng L(-1), NPE(3)C 15 ng L(-1)) and ethoxylates (NPE( n )Os, n = 3-17; 300 ng L(-1)), perfluorinated surfactants (PFOS 9 ng L(-1), PFOA 3 ng L(-1)), and estrone (0.4 ng L(-1)). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local
Probabilistic Modeling for Risk Assessment of California Ground Water Contamination by Pesticides
NASA Astrophysics Data System (ADS)
Clayton, M.; Troiano, J.; Spurlock, F.
2007-12-01
The California Department of Pesticide Regulation (DPR) is responsible for the registration of pesticides in California. DPR's Environmental Monitoring Branch evaluates the potential for pesticide active ingredients to move to ground water under legal agricultural use conditions. Previous evaluations were primarily based on threshold values for specific persistence and mobility properties of pesticides as prescribed in the California Pesticide Contamination Prevention Act of 1985. Two limitations identified with that process were the univariate nature where interactions of the properties were not accounted for, and the inability to accommodate multiple values of a physical-chemical property. We addressed these limitations by developing a probabilistic modeling method based on prediction of potential well water concentrations. A mechanistic pesticide transport model, LEACHM, is used to simulate sorption, degradation and transport of a candidate pesticide through the root zone. A second empirical model component then simulates pesticide degradation and transport through the vadose zone to a receiving ground water aquifer. Finally, degradation during transport in the aquifer to the well screen is included in calculating final potential well concentrations. Using Monte Carlo techniques, numerous LEACHM simulations are conducted using random samples of the organic carbon normalized soil adsorption coefficients (Koc) and soil dissipation half-life values derived from terrestrial field dissipation (TFD) studies. Koc and TFD values are obtained from gamma distributions fitted to pooled data from agricultural-use pesticides detected in California ground water: atrazine, simazine, diuron, bromacil, hexazinone, and norflurazon. The distribution of predicted well water concentrations for these pesticides is in good agreement with concentrations measured in domestic wells in coarse, leaching vulnerable soils of Fresno and Tulure Counties. The leaching potential of a new
Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
Amara, Intissar; Miled, Wafa; Slama, Rihab Ben; Ladhari, Neji
2018-01-01
The production infrastructure in aquaculture invariably is a complex assortment of submerged components with cages, nets, floats and ropes. Cages are generally made from polyamide or high density polyethylene (PEHD). All of these structures serve as surfaces for biofouling. However, cage nets and supporting infrastructure offer fouling organisms thousands of square meters of multifilament netting. That's why, before immersing them in seawater, they should be coated with an antifouling agent. It helps to prevent net occlusion and to increase its lifespan. Biofouling in marine aquaculture is a specific problem and has three main negative effects. It causes net occlusion and so restricts water and oxygen exchange. Besides, the low dissolved oxygen levels from poor water exchange increases the stress levels of fish, lowers immunity and increases vulnerability to disease. Also, the extra weight imposed by fouling causes cage deformation and structural fatigue. The maintenance and loss of equipment cause the increase of production costs for the industry. Biocides are chemical substances that can prohibit or kill microorganisms responsible for biofouling. The expansion of the aquaculture industry requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. Unfortunately, the use of biocides in the aquatic environment has proved to be harmful as it has toxic effects on the marine environment. The most commonly used biocides in antifouling paints are Tributyltin (TBT), Chlorothalonil, Dichlofluanid, Sea-Nine 211, Diuron, Irgarol 1051 and Zinc Pyrithione. Restrictions were imposed on the use of TBT, that's why organic booster biocides were recently introduced. The replacement products are generally based on copper metal oxides and organic biocides. This paper provides an overview of the effects of antifouling biocides on aquatic organisms. It will focus on the eight booster biocides in
Antiandrogenic chemicals alter sexual differentiation by a variety of mechanisms, and as a consequence, they induce different profiles of effects. For example, in utero treatment with the androgen receptor (AR) antagonist, flutamide, produces ventral prostate agenesis and testicu...
NASA Astrophysics Data System (ADS)
Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.
2016-02-01
During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for
Bollmann, Ulla E; Vollertsen, Jes; Carmeliet, Jan; Bester, Kai
2014-06-01
Biocides such as isothiazolinones, carbamates, triazines, phenylureas, azoles and others are used to protect the surfaces of buildings, e.g. painted or unpainted render or wood. These biocides can be mobilized from the materials if rainwater gets into contact with these buildings. Hence, these biocides will be found in rainwater runoff (stormwater) from buildings that is traditionally managed as "clean water" in stormwater sewer systems and often directly discharged into surface waters without further treatment. By means of a 9 month event-based high resolution sampling campaign the biocide emissions in a small suburban stormwater catchment were analysed and the emission dynamics throughout the single rain events were investigated. Five out of twelve of the rain events (peak events) proved significantly higher concentrations than the rest (average) for at least one compound. Highest median concentrations of 0.045 and 0.052 μg L(-1) were found for terbutryn and carbendazim, while the concentrations for isoproturon, diuron, N-octylisothiazolinone, benzoisothiazolinone, cybutryn, propiconazole, tebuconazole, and mecoprop were one order of magnitude lower. However, during the peak events the concentrations reached up to 1.8 and 0.3 μg L(-1) for terbutryn and carbendazim, respectively. Emissions of an averaged single family house into the stormwater sewer turned out to be 59 and 50 μg event(-1) house(-1) terbutryn and carbendazim, respectively. Emissions for the other biocides ranged from 0.1 to 11 μg event(-1) house(-1). Mass load analysis revealed that peak events contributed in single events as much to the emissions as 11 average events. However, the mass loads were highly dependent on the amounts of rainwater, i.e. the hydraulic flow in the receiving sewer pipe. The analysis of the emission dynamics showed first flush emissions only for single parameters in three events out of twelve. Generally biocides seemed to be introduced into the stormwater system
Nanita, Sergio C; Padivitage, Nilusha L T
2013-03-20
A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of <350°C, ammonium salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while
Bollmann, Ulla E; Tang, Camilla; Eriksson, Eva; Jönsson, Karin; Vollertsen, Jes; Bester, Kai
2014-09-01
In recent years, exterior thermal insulation systems became more and more important leading to an increasing amount of houses equipped with biocide-containing organic façade coatings or fungicide treated wood. It is known that these biocides, e.g. terbutryn, carbendazim, and diuron, as well as wood preservatives as propiconazole, leach out of the material through contact with wind driven rain. Hence, they are present in combined sewage during rain events in concentrations up to several hundred ng L(-1). The present study focused on the occurrence of these biocides in five wastewater treatment plants in Denmark and Sweden during dry and wet weather. It was discovered, that biocides are detectable not only during wet weather but also during dry weather when leaching from façade coatings can be excluded as source. In most cases, the concentrations during dry weather were in the same range as during wet weather (up to 100 ng L(-1)); however, for propiconazole noteworthy high concentrations were detected in one catchment (4.5 μg L(-1)). Time resolved sampling (12 × 2 h) enabled assessments about possible sources. The highest mass loads during wet weather were detected when the rain was heaviest (e.g. up to 116 mg h(-1) carbendazim or 73 mg h(-1) mecoprop) supporting the hypothesis that the biocides were washed off by wind driven rain. Contrary, the biocide emissions during dry weather were rather related to household activities than with emissions from buildings, i.e., emissions were highest during morning and evening hours (up to 50 mg h(-1)). Emissions during night were significantly lower than during daytime. Only for propiconazole a different emission behaviour during dry weather was observed: the mass load peaked in the late afternoon (3 g h(-1)) and declined slowly afterwards. Most likely this emission was caused by a point source, possibly from inappropriate cleaning of spray equipment for agriculture or gardening. Copyright © 2014 Elsevier
Phillips, Patrick J.; Bode, Robert W.
2004-01-01
Seven herbicides (2,4-D, 2,4-D methyl ester, bromacil, dicamba, diuron, imazaquin, and sulfometuron), four insecticides (carbaryl, diazinon, imidacloprid, and malathion), two fungicides (metalaxyl and myclobutanil), and caffeine (an indicator of wastewater) were detected in at least one sample from the Kisco River at concentrations above 0.1 ug/L (micrograms per liter). Four of these compounds - 2,4-D, 2,4-D methyl ester, dicamba, and metalaxyl - were detected in at least one sample from the Kisco River at a concentration above 1 ug/L. Only three herbicides (2,4-D, imazethapyr, and prometon) and caffeine were detected at concentrations above 0.1 ug/L in one or more of the Middle Branch Croton River samples, and no compounds were detected above 0.4 ug/L in Middle Branch Croton River samples. No samples contained concentrations of pesticides that exceeded human health-based water-quality standards. However, samples from the Kisco River contained four insecticides (carbaryl, chlorpyrifos, diazinon, and malathion) and one herbicide (2,4-D) in concentrations that exceeded water-quality criteria for the protection of aquatic life. Aquatic-life protection criteria were generally exceeded only in stormflow samples collected in June, September, and December 2000. No samples from the Middle Branch Croton River contained target compounds that exceeded water-quality criteria for the protection of aquatic life. Pesticide concentrations were generally higher, and the numbers of compounds generally larger in samples from the Kisco River than in samples from the Middle Branch Croton River, probably because the Kisco River watershed has a greater population density and is more extensively developed. The highest concentrations of most compounds in both streams were detected in stormflow samples collected in June, September, and December 2000. This indicates that stormflow sampling is essential in assessments of pesticide occurrence in streams that drain developed lands. The lowest
Wieck, Stefanie; Olsson, Oliver; Kümmerer, Klaus
2018-06-01
The emission sources of biocidal active substances in households have been under discussion since these substances have been detected frequently in municipal wastewater and receiving surface water bodies. Therefore, the goal of this study was to investigate the products responsible for the emission of these substances to wastewater. We analysed the wastewater of two streets for a set of biocidal active substances. Time-proportional sampling was conducted for one week of each season during one year in each street. The 14 substances analysed with liquid chromatography coupled with tandem mass spectrometry were 1,2-benzisothiazol-3(2H)-one (BIT), C 12 -benzalkonium chloride, carbendazim, 5-chloro-2-methyl-2H-isothiazol-3-one (CMIT), dichlorooctylisothiazolinone (DCOIT), N,N-diethyl-meta-toluamide (DEET), diuron, icaridine, 2-octyl-2H-isothiazol-3-one (OIT), piperonyl butoxide (PBO), triclosan, tebuconazole, terbutryn and tetramethrin. Using data available from household product inventories of the two streets, we searched the lists of ingredients for the products possibly being responsible for the emissions. Except for four substances, all substances have been detected in at least 10% of the samples. Highest concentrations were measured for C 12 -benzalkonium chloride with an average concentration in the daily samples of 7.7 μg/L in one of the streets. Next to C 12 -benzalkonium chloride, BIT, DEET and icaridine were detected in all samples in average concentrations above 1 μg/L in at least one street. The results show that washing and cleaning agents were important sources for preservatives such as BIT and OIT, while triclosan was apparently mainly emitted through personal care products. The mosquito repelling substances DEET and icaridine were found throughout the year, with highest emissions in summer and autumn. In conclusion, the results demonstrate that the sources of biocidal active substances in municipal wastewater are complex and that measures for the
Bradner, Anne; McPherson, Benjamin F.; Miller, Ronald L.; Kish, George; Bernard, Bruce
2005-01-01
The high permeability of the sand and limestone sediments and shallow water table of the Biscayne aquifer make ground water vulnerable to contamination by human activities. To assess potential contamination in the aquifer, untreated ground water was sampled from 30 public-supply wells (40-165 feet deep) in Broward, Miami-Dade, and Palm Beach Counties, 32 shallow wells (10-50 feet deep) in a recently urbanized (residential and light commercial) part of Broward County, and 3 shallow reference wells in Broward County. Results from sample analyses indicate that major ions, pH, dissolved oxygen, nutrients, and trace element concentrations were generally within the range indicative of background concentrations, except for: (1) substantially higher bromide concentrations in water from public-supply wells in southern Miami-Dade County; (2) a few relatively high (greater than 2 milligrams per liter) concentrations of nitrate in water from public-supply wells near agricultural lands in Miami-Dade and southern Broward Counties; and (3) a few relatively high concentrations of arsenic (greater than 10 micrograms per liter) in water from some shallow urban wells near golf courses. Pesticides were detected in every public-supply well, in most of the shallow, urban monitoring wells (78 percent), and in one reference well; however, no pesticide concentration exceeded any drinking-water standard. Fifteen different pesticides or their degradation products were detected. The most frequently detected pesticides were atrazine and tebuthiuron; less frequently detected were the herbicides diuron, fenuron, prometon, metolachlor, simazine, and 2,6-diethylaniline. Volatile organic compounds (VOCs) were detected in most of the public-supply wells (77 percent) and shallow, urban wells (91 percent) and in two of the three reference wells. Thirty-two different VOCs were detected in ground water in the Biscayne aquifer, with cis-1,2-dichloroethene the most frequently detected VOC in the public
Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Gutierrez, Carmen; Martin, Jose Rodriguez; Chowdhuri, Debapratim K; De Pomerai, David I
2013-01-01
As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We
Development of biofilters to treat the pesticides wastes from spraying applications.
Pigeon, O; de Vleeschouwer, C; Cors, F; Weickmans, B; de Ryckel, B; Pussemier, L; Debongnie, Ph; Culot, M
2005-01-01
Several studies carried out in Europe showed the importance of direct losses to the contamination of surface water by pesticides. These pesticides losses can occur at the farm site when the sprayer equipment is filled with the pesticide formulation (spills, overflowing, leaking) and during the clean-up (rinsing) of the sprayer after the treatment. In Belgium studies are carried out on biofilters to treat in an efficient way effluents containing pesticides. The biofilter substrate is elaborated from a homogenised mixture of local soil, chopped straw and peat or composted material, able to absorb or degrade the active substances. Biofilters consist in systems of 2 or 3 units depending on the spray equipment of the farmer and on the configuration of the farmyard. Each unit is made from a 1 m3 plastic container and the different units are stacked in a vertical pile and connected between them using plastic valves and pipes. Eight pilot systems were installed in March 2002 in seven farms and in one agricultural school, all selected in the loamy region of Belgium specialised in arable crops such as cereals, sugar beets and vegetables. The efficacy (yield) of the systems was determined by measuring the balance of the inputs and outputs of the pesticides. Results were expressed in percent of pesticide retained on the biofilters. The results obtained after two years with 5 tracer pesticides (atrazine, carbofuran, diuron, lenacil and simazine) brought on the biofilter installations are very satisfactory since the percentage of retention is generally higher than 95% of the amount applied. In the beginning of 2004, ten new pilot biofilters were installed in several farms or agricultural technical centres (producing cereals, sugar beets, potatoes, vegetables, fruits or ornamental plants), and in a municipal maintenance service. Some biofilters were installed in duplicate in order to compare the efficacy of different substrates. The efficacy of the biofilters was studied for the
NASA Astrophysics Data System (ADS)
Stamm, C.; Scheidegger, R.; Bader, H. P.
2012-04-01
Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed
Phillips, Patrick J.; Bode, Robert W.
2002-01-01
Thirty-seven pesticides and (or) pesticide degradates were detected in baseflow samples collected from 47 stream sites in the Croton River Watershed (374 square miles) in southeastern New York in the summer of 2000. The Croton Reservoir provides about 10 percent of New York City's water supply. Maximum concentrations of most pesticides detected did not exceed 0.1 μg/L (micrograms per liter). This study, by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, was conducted from July through September 2000 and entailed analysis of the samples for more than 150 pesticides and their degradates. Nine compounds were detected at a concentration greater than 0.10 μg/L; three of these were insecticides (diazinon, carbaryl, and imidacloprid), one was a fungicide (mycobutanil), and five were herbicides (simazine, 2,4-D, diuron, hexazinone, and 2,4-D methyl esther). Only two of these compounds (simazine and 2,4-D) were detected at a concentration exceeding 1 μg/L; the simazine concentration exceeded the New York State surface-water standard of 0.5 μg/L. Two insecticides (diazinon and azinphos-methyl) exceeded aquatic-life-protection standard in one sample each. Concentrations of three insecticides (chlorpyrifos, carbaryl, and malathion) were more than 50 percent of the aquatic-life-protection standards in one sample each.Total concentrations of insecticides and herbicides (the sum of the concentrations, whereby all concentrations below the detection limit were set to zero), and the concentrations of the herbicide prometon and the insecticide diazinon, were highest in samples from watersheds with population densities greater than 510 per square mile (21 sites); therefore, the presence of these compounds is attributable to urban, residential, and other developed land uses.The data obtained in this study are useful for making general comparisons among watersheds with differing land uses, but the concentrations represent
Pesticide interactions with soils affected by olive oil mill wastewater
NASA Astrophysics Data System (ADS)
Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail
2013-04-01
Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM
Interaction of Chloroplasts with Inhibitors
Ridley, Stuart M.
1977-01-01
A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU. Cofactors of cyclic electron transport also protect against DCMU-induced photodestruction of pigments. Their concentration dependence for this protection appears to reflect their various abilities to catalyze cyclic photophosphorylation. The extent to which the chlorophylls are destroyed in the major pigment-protein complexes from chloroplasts illuminated with and without DCMU has been measured. In the absence of DCMU, the light-harvesting chlorophyll a/b protein complex is destroyed most rapidly. In the presence of DCMU, the losses of chlorophyll a from the photosystem I P700-chlorophyll a protein and the chlorophyll a/b complex are about the same. Chlorophyll losses are matched by simultaneous losses of the protein moieties; spectral analyses show that the remaining
Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs
2017-10-01
to reach a maximum concentration followed by a decrease of their concentrations for longer contact times. For the studied conditions, the TP's concentrations at the outlet of the reactors ranged from 0 to 61% of the initial parent compound concentration, CTZ being a more persistent TP against further oxidation than TRA-NOX. Finally, it was demonstrated in both reactors that the formation of bromate (BrO 3 - ), a potentially carcinogenic oxidation by-product, could be controlled by H 2 O 2 addition with a general improvement on micropollutant abatement. Post-treatment by granular activated carbon (GAC) filtration enabled the reduction of micropollutants and TPs concentrations but no changes in bromate were observed. The combined algae assay showed that water quality was significantly improved after oxidation and GAC post-treatment, driven by the abatement of the spiked pesticides (diuron and atrazine). Copyright © 2017 Elsevier Ltd. All rights reserved.
Is there a specific geochemical signature of urban soils dedicated to stormwater infiltration?
NASA Astrophysics Data System (ADS)
Delolme, Cécile; Poulenard, Jérôme; Dorioz, Jean-Marcel; Bedell, Jean-Philippe; Winiarski, Thierry
2014-05-01
. We show specifically that these soils are good phosphorus sink (1 to 3 g/kg dw) with a great proportion of available P . Dioxines and PCB are detected in all the 19 samples with contents varying from 2 to 30 ng/kg dw for the sum of 17 dioxines and 8 to 500 mg/kg dw for the sum of the 7 indicator PCB. Diuron was measured in half of the basins and para-ter-octylphénol (30 to 100 mg/kg dw) and 4-nonylphénol (300 to 1300 mg/kg dw) were quantified in all the samples. In order to see if there is a co-structure between the geochemical properties of the 19 sites and the catchment characteristics, a STATIS analysis was used to carry out a multi-table analysis with the 6 tables characterizing the sites (catchment characteristics, heavy metal content, main geochemical properties, organic pollutant content, infra-red spectra, visible spectra) and is still under way. This first results of this analysis confirm that the geochemical characteristics are independant from land use and mostly linked to an "urban geochemical specificity" in relation to air quality and urban surfaces characteristics.
Organic/carbon nanotubes hybrid thin films for chemical detection
NASA Astrophysics Data System (ADS)
Banimuslem, Hikmat Adnan
[a]pyrene, pentachlorophenol (PCP), 2-chlorophenol, diuron and simazine in water as well as amines vapours in ambient air utilizing total internal reflection spectroscopic ellipsometry (TIRE) as an optical detection method. Different concentrations of pesticides in water ranging from 1 to 25 mug/L have been examined. It was revealed that the shifts in [mathematical equation] spectra of CuPcR[4]SWCNT films were evidently larger than those produced by the pristine CuPcR[4] films, indicating largely improved films' sensitivity of the hybrid films. Adsorption of amines onto films' surfaces has been realised by monitoring changes in the phase shift [mathematical equation] of TIRE. Methylamine has shown higher sensitivity and lower response time among the studied amines. For all amines vapours, the sensitivity of SWCNT/CuPcR[4] hybrid films was higher than the sensitivity of pristine Cu[1]PCR[4] films. Further work has been carried out on hybrids of SWCNT with zinc phthalocyanines (ZnPc). Thin films of pristine SWCNT and SWCNT/ZnPc hybrids were prepared by drop casting onto interdigitated electrodes and applied as active layers to detect ammonia vapor by measuring electrical resistance changes. Influence of pyrene substituent in the phthalocyanine ring on the hybrid formation and their sensor response has also been verified.
Williams, D.R.; Clark, M.E.
2001-01-01
-eight pesticides and 7 pesticide metabolites were analyzed in 31 samples collected in Deer Creek and in 18 samples collected in South Branch Plum Creek. Of the 85 pesticides and pesticide metabolites analyzed, 25 of the pesticides were detected at least once in Deer Creek, and 20 of the pesticides were detected at least once in South Branch Plum Creek. Atrazine was the most commonly detected pesticide in both streams. There was a distinct seasonal pattern of atrazine, simazine, and metolachlor concentrations measured at both sites.Prometon was detected in 3 of the 18 samples collected in South Branch Plum Creek in 1997 and in 28 of the 31 samples collected in Deer Creek in both 1997 and 1998. Prometon generally is applied in conjunction with asphalt paving projects and is commonly used in residential areas. The highest measured concentrations of prometon detected in Deer Creek were in the five storm samples collected on August 25-26, 1998.At the Deer Creek site, 9 of the 25 pesticides detected throughout the study were detected only in the sample collected on June 13, 1997. Those nine pesticides included acifluorfen, bentazon, bromoxynil, dicamba, dichlorprop, fenuron, linuron, MCPA, and neburon. Nine other pesticides also were detected in that sample.All concentrations of pesticides were well below established drinking-water guidelines. The maximum measured concentration of diazinon in Deer Creek (0.097 µg/L) and South Branch Plum Creek (0.974 µg/L) exceeded the aquatic life guideline of 0.009 µg/L established by the National Academy of Sciences/National Academy of Engineers. The maximum measured concentration of azinphos-methyl in South Branch Plum Creek (an estimated value of 0.033 µg/L) exceeded the chronic aquatic-life guideline of 0.01 µg/L established by the USEPA.Twenty-five samples were collected from Deer Creek and analyzed for volatile organic compounds (VOCs). Of 87 VOCs analyzed for, 22 were detected at least once, and 12 were gasoline-related compounds. Acetone
Weaver, T.L.; Healy, D.; Sabin, T.G.
2005-01-01
. Atrazine and metolachlor were detected in all samples, and the atrazine degradate deethylatrazine was detected in all samples from Pine Creek and Athens & Indian Creek Drain. Another atrazine degradate (2-hydroxy-atrazine, or OIET) was detected five of the six times that it was included in the analyses. A single sample collected from Athens & Indian Creek Drain in May 2001 had relatively higher concentrations of acetochlor, atrazine, CIAT (deethylatrazine), and diuron than the other sampling sites did during the study. Analysis for various species of mercury was completed on samples collected at Pine Creek and Athens & Indian Creek Drain in July 2003, and results were similar to those typical of unimpaired streams in the Midwest. None of the surface-water sites had major ion, nutrient, or trace-element concentrations that exceeded Michigan Department of Environmental Quality standards for nonpotable surface water.USGS also collected 11 ground-water samples from 7 wells on or adjacent to the traditional reservation in 2003. Two wells were sampled twice, and a single well was sampled three times, in order to document any chemical changes that might have occurred as a result of aquifer recharge, which most typically occurs in late winter to spring in the southern Lower Peninsula of Michigan. Samples were analyzed for 184 pesticides and degradates and caffeine. There were five detections of four pesticides or degradates, but none of the detected chemicals are included in current U.S. Environmental Protection Agency drinking-water standards. The remaining 181 analytes were below laboratory reporting limits.
Ockerman, Darwin J.; Petri, Brian L.
2001-01-01
applied as fertilizer and 0.03 pound per acre per year from rainfall. Twenty-one pesticides were detected in runoff with varying degrees of frequency during the study. The herbicide atrazine was detected in all runoff samples. All of the most frequently detected pesticides (atrazine, trifluralin, simazine, pendimethalin, and diuron) exhibited higher concentrations during the pre-harvest period (March? May) than during the post-harvest period (August? October). During 1996?98, an average of 0.37 pound per acre per year of atrazine was applied to the lower study area. During the same period, 0.0027 pound per acre per year of atrazine and its breakdown product deethylatrazine exited the lower study area in runoff (about 0.7 percent of the total atrazine applied to the cropland). During 1997, when heavy rainfall occurred during the months of April and May, the atrazine plus deethylatrazine exiting the lower study area was 1.8 percent of the applied atrazine. The 1996?98 average sediment yield was 610 pounds per acre per year. Sediment loads from the study area are associated with large storm events. Of the 45,300 tons of sediment transported from the study area during 1996?98 about 87 percent was transported during the three largest runoff events (April 1997, October 1997, and October 1998). Runoff-weighted average concentrations were computed for selected nutrients and pesticides. The 1996?98 runoff-weighted concentrations for total nitrogen and total phosphorus were 1.3 and 0.50 milligrams per liter, respectively. The 1996?98 runoff-weighted concentration for atrazine plus deethylatrazine was 2.7 micrograms per liter.
Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.
2010-01-01
preliminary review of the data collected in 2005 and 2008 indicated that differences in the surficial geology, land use (as a surrogate for pesticide use), and above-average precipitation for most of 2004 through 2008, as well as differences in the number and performance of USGS laboratory methods used, could have led to more pesticides detected in groundwater samples collected in 2008 than in groundwater samples collected in 2005. Thus, although data from both years of collection were used for interpretive analysis, emphasis was placed on the analysis of the data obtained in 2008. The presence of pesticides in shallow groundwater (less than approximately 100 ft (feet), or 30 m (meters), below land surface) indicated at least the upper surficial aquifer in Washington, D.C. was susceptible to contamination. One or more herbicides or insecticides were detected in groundwater samples collected from 50 percent of the shallow wells sampled in 2005, and from 62 percent of the shallow wells sampled in 2008. Differences among types of pesticides in shallow groundwater were apparent. The most frequently detected class of herbicides was the s-triazine compounds-atrazine, simazine, or prometon, or the atrazine-degradate compounds-2-chloro-4-ethylamino-6-amino-s-triazine (desethylatrazine or CIAT) and 2-chloro-4-isopropylamino-6-amino-s-triazine (hydroxyatrazine or OIET). The next most frequently detected classes of herbicides were the chloroacetanilides, including metolachlor and acetochlor, and the ureic herbicides, including diuron (and degradate, 3,4-dichloroaniline), fluometuron, metsulfuron methyl, sulfameturon, bromacil, and tebuthiuron. Insecticides also were detected, but less frequently than herbicides, with one or more insecticides present in groundwater samples from 38 percent of shallow wells sampled in 2008. Detected insecticides included parent or degradate compounds commonly used for either nonspecific or haustellate (sucking) insects, including chlorpyri
Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.
2009-01-01
), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec
Kent, Robert; Belitz, Kenneth
2012-01-01
-concentrations in some percentage of the aquifer: arsenic, boron, fluoride, gross alpha activity, molybdenum, uranium, and vanadium. Perchlorate, as a constituent of special interest, was evaluated separately from other inorganic constituents, and had high relative-concentrations in 11.1 percent, moderate in 53.3 percent, and low or not detected in 35.6 percent of the primary aquifers. In contrast to the inorganic constituents, relative-concentrations of organic constituents (one or more) were high in 6.7 percent, moderate in 11.1 percent, and low or not detected in 82.2 percent of the primary aquifers. Of the 237 organic and special-interest constituents analyzed for, 39 constituents were detected (21 VOCs, 13 pesticides, 3 pharmaceuticals, and 2 constituents of special interest). All of the detected VOCs had health-based benchmarks, and five of these—1,1-dichloroethene, 1,2-dibromo-3-chloropropane (DBCP), tetrachloroethene (PCE), carbon tetrachloride, and trichloroethene (TCE)—were detected in at least one sample at a concentration above a benchmark (high relative-concentration). Seven of the 13 pesticides had health-based benchmarks, and none were detected above these benchmarks (no high relative-concentrations). Pharmaceuticals do not have health-based benchmarks. Thirteen organic constituents were frequently detected (detected in at least 10 percent of samples without regard to relative-concentrations): bromodichloromethane, chloroform, cis-1,2-dichloroethene, 1,1-dichloroethene, dichlorodifluoromethane (CFC-12), methyl tert-butyl ether (MTBE), PCE, TCE, trichlorofluoromethane (CFC-11), atrazine, bromacil, diuron, and simazine.
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2013-01-01
had greater high and moderate aquifer-scale proportions in the Madera-Chowchilla study unit than did organic constituents. RCs for inorganic constituents with health-based benchmarks were high in 37% of the primary aquifer system, moderate in 30%, and low in 33%. The inorganic constituents contributing most to the high aquifer-scale proportion were arsenic (13%), uranium (17%), gross alpha particle activity (20%), nitrate (6.7%), and vanadium (3.3%). RCs for inorganic constituents with non-health-based benchmarks were high in 6.7% of the primary aquifer system, and the constituent contributing most to the high aquifer-scale proportion was total dissolved solids (TDS). RCs for organic constituents with health-based benchmarks were high in 10% of the primary aquifer system, moderate in 3.3%, and low in 40%; organic constituents were not detected in 47% of the primary aquifer system. The fumigant 1,2-dibromo-3-chloropropane (DBCP) was the only organic constituent detected at high RCs. Seven organic constituents were detected in 10% or more of the primary aquifer system: DBCP; the fumigant additive 1,2,3-trichloropropane; the herbicides simazine, atrazine, and diuron; the trihalomethane chloroform; and the solvent tetrachloroethene (PCE). RCs for the special-interest constituent perchlorate were moderate in 20% of the primary aquifer system. The second component of this study, the understanding assessment, identified the natural and human factors that may affect groundwater quality by evaluating statistical correlations between water-quality constituents and potential explanatory factors, such as land use, position relative to important geologic features, groundwater age, well depth, and geochemical conditions in the aquifer. Results of the statistical evaluations were used to explain the distribution of constituents in the study unit. Depth to the top of perforations in the well and groundwater age were the most important explanatory factors for many constituents. High
Smith, Kirk P.
2013-01-01
were associated with base flow. Upward temporal trends in annual loads of Cl and Na were identified on the basis of data for water years 1998 to 2008 for the outlet of the Cambridge Reservoir in the Hobbs Brook Basin; however, similar trends were not identified for the main stem of Stony Brook downstream from the reservoir. The proportions of the TN load attributed to base flow and stormflow were similar in each tributary. In contrast, more than 83 percent of the TP loads in the tributaries and about 73 percent of the TP load in main stem of Stony Brook were associated with stormflow. Mean annual yields of Ca, Cl, Na, and SO4 in the Stony Brook Reservoir watershed, which represents most of the drinking-water source area, were 14, 85, 46, and 9 metric tons per square kilometer, respectively. Mean annual yields among the individual tributary subbasins varied extensively. Mean annual yields for the respective constituents increased with an increase in roadway and parking-lot area in the tributary subbasins. Mean annual yields of TN in the tributary subbasins ranged from about 740 to more than 1,200 kilograms per square kilometer and exceeded the yield for the main stem of Stony Brook at USGS station 01104460 upstream from the Stony Brook Reservoir. Mean annual yields estimated for the herbicides 2,4-D and imidacloprid ranged from 34 to 310 grams per square kilometer (g/km2) and 3 to 170 g/km2, respectively. Annual loads for 2,4-D were entirely associated with stormflow. The largest annual load for imidacloprid was estimated for the main stem of Stony Brook; however, the highest annual yield for this pesticide, as well as for benomyl, carbaryl, metalaxyl, and propiconazole, was estimated for a tributary to the Stony Brook Reservoir that drains largely residential and recreational areas. Mean annual yields for the herbicide siduron ranged from 6.9 to 35 g/km2 with most of the loads associated with stormflow. Mean annual yields for the insecticide diuron ranged from 2.1 to 4