Sample records for divalent cluster ion

  1. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    PubMed Central

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  2. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    NASA Astrophysics Data System (ADS)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  3. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  4. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions.

    PubMed

    Tansel, Berrin; Lunn, Griffin; Monje, Oscar

    2018-03-01

    Struvite (MgNH 4 PO 4 ·6H 2 O) forms in aqueous systems with high ammonia and phosphate concentrations. However, conditions that result into struvite formation are highly dependent on the ionic compositions, temperature, pH, and ion speciation characteristics. The primary ions involved in struvite formation have complex interactions and can form different crystals depending on the ionic levels, pH and temperature. Struvite as well as struvite analogues (with substitution of monovalent cations for NH 4 + or divalent cations for Mg 2+ ) as well as other crystals can form simultaneously and result in changes in crystal morphology during crystal growth. This review provides the results from experimental and theoretical studies on struvite formation and decomposition studies. Characteristics of NH 4 + or divalent cations for Mg 2+ were evaluated in comparison to monovalent and divalent ions for formation of struvite and its analogues. Struvite crystals forming in wastewater systems are likely to contain crystals other than struvite due to ionic interactions, pH changes, temperature effects and clustering of ions during nucleation and crystal growth. Decomposition of struvite occurs following a series of reactions depending on the rate of heating, temperature and availability of water during heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.

    PubMed

    Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M; Gu, Baohua; Liang, Liyuan; Smith, Jeremy C

    2013-01-08

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.

  6. Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2

    NASA Astrophysics Data System (ADS)

    Samad, Abdus; Shafique, Aamir; Shin, Young-Han

    2017-04-01

    A comparative study of the monovalent (Li, Na, and K) and multivalent (Be, Mg, Ca, and Al) metal ion adsorption and diffusion on an electronically semi-metallic two-dimensional nanosheet of 1T structured TiS2 is presented here to contribute to the search for abundant, cheap, and nontoxic ingredients for efficient rechargeable metal ion batteries. The total formation energy of the metal ion adsorption and the Bader charge analysis show that the divalent Mg and Ca ions can have a charge storage density double that of the monovalent Li, Na, and K ions, while the Be and Al ions form metallic clusters even at a low adsorption density because of their high bulk energies. The adsorption of Mg ions shows the lowest averaged open circuit voltage (0.13 V). The activation energy barriers for the diffusion of metal ions on the surface of the monolayer successively decrease from Li to K and Be to Ca. Mg and Ca, being divalent, are capable of storing a higher power density than Li while K and Na have a higher rate capability than the Li ions. Therefore, rechargeable Li ion batteries can be totally or partially replaceable by Mg ion batteries, where high power density and high cell voltage are required, while the abundant, cheap, and fast Na ions can be used for green grid applications.

  7. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  8. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less

  9. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  10. The permeability of endplate channels to monovalent and divalent metal cations

    PubMed Central

    1980-01-01

    The relative permeability of endplate channels to monovalent and divalent metal ions was determined from reversal potentials. Thallium is the most permeant ion with a permeability ratio relative to Na+ of 2.5. The selectivity among alkali metals is weak with a sequence, Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+, and permeability ratios of 1.4, 1.3, 1.1, 1.0, and 0.9. The selectivity among divalent ions is also weak, with a sequence for alkaline earths of Mg++ greater than Ca++ greater than Ba++ greater than Sr++. The transition metal ions Mn++, Co++, Ni++, Zn++, and Cd++ are also permeant. Permeability ratios for divalent ions decreased as the concentration of divalent ion was increased in a manner consistent with the negative surface potential theory of Lewis (1979 J. Physiol. (Lond.). 286: 417--445). With 20 mM XCl2 and 85.5 mM glucosamine.HCl in the external solution, the apparent permeability ratios for the alkaline earth cations (X++) are in the range 0.18--0.25. Alkali metal ions see the endplate channel as a water-filled, neutral pore without high-field-strength sites inside. Their permeability sequence is the same as their aqueous mobility sequence. Divalent ions, however, have a permeability sequence almost opposite from their mobility sequence and must experience some interaction with groups in the channel. In addition, the concentrations of monovalent and divalent ions are increased near the channel mouth by a weak negative surface potential. PMID:6247423

  11. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    PubMed

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  12. Directly Relating Gas-Phase Cluster Measurements to Solution-Phase Hydrolysis, the Absolute Standard Hydrogen Electrode Potential, and the Absolute Proton Solvation Energy

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O’Brien, Jeremy T.; Williams, Evan R.

    2009-01-01

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M-(H2O)242+(g)+e−(g)→M(H2O)24+(g) and 2) M(H2O)242+(g)+e−(g)→MOH(H2O)23+(g)+H(g) and the hydrogen atom affinities of MOH(H2O)23+(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e−(g) (standard deviation of 0.02 V) and a real proton solvation free energy of −265 kcal mol−1 are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution. PMID:19440999

  13. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    DOE PAGES

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl 2, CoCl 2, MnCl 2, and NiCl 2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu 2+ ions. The interactions of 1-based monolayers with Co 2+ and Cu 2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivitymore » (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu 2+ than Co 2+ ions. In the presence of relatively high concentrations of Cu 2+ ions in the subphase (1.4 × 10 -3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu 2+ clusters contiguous to the monolayer of 1.« less

  14. Soft x-ray absorption spectroscopy study of the electronic structures of the MnFe Prussian blue analogs (RbxBay) Mn[3 -(x +2 y )]/2[Fe (CN) 6] H2O

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Seong, Seungho; Kim, Hyun Woo; Kim, D. H.; Thakur, Nidhi; Yusuf, S. M.; Kim, Bongjae; Min, B. I.; Kim, Younghak; Kim, J.-Y.; de Groot, F. M. F.; Kang, J.-S.

    2017-11-01

    The electronic structures of Prussian blue analog (RbxBay) Mn[3 -(x +2 y )]/2[Fe (CN) 6] cyanides have been investigated by employing soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) at the Fe and Mn L (2 p ) edges. The measured XAS spectra have been analyzed with the configuration-interaction (CI) cluster model calculations. The valence states of the Fe and Mn ions are found to be Fe2 +-Fe3 + mixed valent, with an average valency of v (Fe )˜2.8 and nearly divalent (Mn2 +), respectively. Our Mn/Fe 2 p XMCD study supports that Mn2 + ions are in the high-spin states while Fe2 +-Fe3 + ions are in the low-spin states. The Fe and Mn 2 p XAS spectra are found to be essentially the same for 80 ≤T ≤ 300 K, suggesting that a simple charge transfer upon cooling from Fe3 +-CN -Mn2 + to Fe2 +-CN -Mn3 + does not occur in (RbxBay) Mn[3 -(x +2 y )]/2[Fe (CN) 6] . According to the CI cluster model analysis, it is necessary to take into account both the ligand-to-metal charge transfer and the metal-to-ligand charge transfer in describing Fe 2 p XAS, while the effect of charge transfer is negligible in describing Mn 2 p XAS. The CI cluster model analysis also shows that the trivalent Fe3 + ions have a strong covalent bonding with the C ≡N ligands and are under a large crystal-field energy of 10 D q ˜3 eV, in contrast to the weak covalency effect and a small 10 D q ˜0.6 eV for the divalent Mn2 + ions.

  15. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    NASA Astrophysics Data System (ADS)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of attractive forces between particles for bivalent ions for particular ranges of bulk concentrations. The three-scale model is applied to numerically simulate ion diffusion in a compacted clay liner underneath a sanitary landfill. Owing to the distinct constitutive behavior of the swelling pressure and partition coefficient for each ionic species, different compaction regimes and diffusion/adsorption patterns, with totally different characteristic time scales, are observed for sodium and calcium migration in the clay liner.

  16. RENAL TUBULAR TRANSPORT OF INORGANIC DIVALENT IONS BY THE AGLOMERULAR MARINE TELEOST, LOPHIUS AMERICANUS

    PubMed Central

    Berglund, Fredrik; Forster, Roy P.

    1958-01-01

    A characterization was attempted of the mechanisms involved in the tubular transport of inorganic divalent ions by the aglomerular kidney of Lophius, attention being paid particularly to the possible existence of transport maxima (Tm) and to competition for transport among related substances undergoing tubular excretion. Excretory rates of divalent ions in non-treated fish during standard laboratory conditions paralleled spontaneous changes in urine flow. Tm rates of excretion were reached for magnesium, sulfate, and thiosulfate with corresponding plasma levels of 2 to 5, 5 to 17, and 4 to 12 µM/ml. respectively. Elevation of magnesium chloride levels in plasma markedly depressed calcium excretion; sodium thiosulfate similarly depressed sulfate excretion. Experimental observations suggest the existence of a transport system for divalent cations separate from another for divalent anions. Within each transport system the ion with the higher excretion rate depressed competitively transfer of the other ion. Neither system was influenced by probenecid (benemid) in doses which markedly depressed the simultaneous excretion rate of p-aminohippuric acid. PMID:13491814

  17. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2.

    PubMed

    Sarmento, Maria J; Coutinho, Ana; Fedorov, Aleksander; Prieto, Manuel; Fernandes, Fábio

    2017-10-31

    Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P 2 and PI(3,5)P 2 . Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca 2+ -induced PI(4,5)P 2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P 2 . Clustering of PI(4,5)P 2 is also detected at physiological concentrations of Mg 2+ , suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P 2 and PI(3,5)P 2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.

  18. Effect of divalent ions on the optical emission behavior of protein thin films

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2016-05-01

    Photoluminescence behaviors of proteinthin film, bovine serum albumin (BSA) have been studied in the presence of three divalent ions (Mg2+, Ca2+ and Ba2+) at different temperatures using fluorescence spectroscopy. Film thickness and morphology have been studied using atomic force microscopy. Variation of different physicochemical parameters like temperature, solvent polarity, pH, ionic strength, substrate binding etc. can make conformational changes in the protein structure and hence influences the emission behavior.In thin film conformation of BSA, dynamic quenching behavior has beenidentified in the presence of all the three divalent ions at pH≈ 5.5. Depending upon the charge density of the divalent ions interaction with protein molecules modifies and as a result quenching efficiency varies. Also after heat treatment, conformation of the protein molecules changes and as a result the quenching efficiency enhances than that of the unheated films. Studies on such protein-ion interactions and conformational variation may explore various functions of protein when it will adsorb on soft surfaces like membranes, vesicles, etc.

  19. Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells.

    PubMed

    Hayashi, Y; Tsunenari, T; Mori, T

    1999-03-01

    Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.

  20. Malic enzyme: Tritium isotope effects with alternative dinucleotide substrates and divalent metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsten, W.E.; Harris, B.G.; Cook, P.F.

    1992-01-01

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion dependent oxidative decarboxylation of L-malate to yield pyruvate, carbon dioxide and NADH. Multiple isotope effect studies suggest a stepwise chemical mechanism with hydride transfer from L-malate to NAD occurring first to form oxalacetate, followed by decarboxylation. Utilizing L-malate-2-T, tritium V/K isotope effects have been determined for the hydride transfer step using a variety of alternative dinucleotide substrates and divalent metal ions. Combination of these data with deuterium isotope effects data and previously determined [sup 13]C isotope effects has allowed the calculation of intrinsic isotope effects for the malic enzymemore » catalyzed reaction. The identity of both the dinucleotide substrate and divalent metal ion has an effect of the size of the intrinsic isotope effect for hydride transfer.« less

  1. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  2. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  3. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  4. Inverse Thio Effects in the Hepatitis Delta Virus Ribozyme Reveal that the Reaction Pathway Is Controlled by Metal Ion Charge Density

    PubMed Central

    2015-01-01

    The hepatitis delta virus (HDV) ribozyme self-cleaves in the presence of a wide range of monovalent and divalent ions. Prior theoretical studies provided evidence that self-cleavage proceeds via a concerted or stepwise pathway, with the outcome dictated by the valency of the metal ion. In the present study, we measure stereospecific thio effects at the nonbridging oxygens of the scissile phosphate under a wide range of experimental conditions, including varying concentrations of diverse monovalent and divalent ions, and combine these with quantum mechanical/molecular mechanical (QM/MM) free energy simulations on the stereospecific thio substrates. The RP substrate gives large normal thio effects in the presence of all monovalent ions. The SP substrate also gives normal or no thio effects, but only for smaller monovalent and divalent cations, such as Li+, Mg2+, Ca2+, and Sr2+; in contrast, sizable inverse thio effects are found for larger monovalent and divalent cations, including Na+, K+, NH4+, and Ba2+. Proton inventories are found to be unity in the presence of the larger monovalent and divalent ions, but two in the presence of Mg2+. Additionally, rate–pH profiles are inverted for the low charge density ions, and only imidazole plus ammonium ions rescue an inactive C75Δ variant in the absence of Mg2+. Results from the thio effect experiments, rate–pH profiles, proton inventories, and ammonium/imidazole rescue experiments, combined with QM/MM free energy simulations, support a change in the mechanism of HDV ribozyme self-cleavage from concerted and metal ion-stabilized to stepwise and proton transfer-stabilized as the charge density of the metal ion decreases. PMID:25799319

  5. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  6. Spectroscopic characterization of metal bound phytochelatin analogue (Glu-Cys)4-Gly.

    PubMed

    Cheng, Yongsheng; Yan, Yong-Bin; Liu, Jinyuan

    2005-10-01

    The metal ion binding properties of a phytochelatin (PC) analogue, (Glu-Cys)4-Gly (named as EC4), have been studied by a divalent metal ion binding assay monitored by UV-visible spectroscopy, circular dichroism and NMR spectroscopy. Spectro- photometric titration with different divalent metal ions have revealed that the stiochoimetry of metal-bound EC4 was 1:1, and its metal binding affinities with different divalent metal ions in the order of Cd(II)>Cu(II)>Zn(II)>Pb(II)>Ni(II)>Co(II). UV-visible spectroscopic analysis of metal complexes indicated that four sulfur atoms in cysteine residues are attributable to ligand-to-metal charge transfer (LMCT) between divalent metal ions and EC4, and further confirmed by 1D H1 NMR study and Circular Dichroism. In addition, Circular Dichroism spectra of both free and metal-bound forms of EC4 revealed that metal coordination drives the nonapeptide chain to fold into a turned conformation. The comprehensive analysis of spectroscopic properties of the nonapeptide complexed with metal ions not only provides a fundamental description of the metal ion binding properties of PC analogue, but also shows a correlation between metal binding affinity of PC analogue and the induction activity of metal ions.

  7. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.

    PubMed

    Shi, Ya-Zhou; Jin, Lei; Feng, Chen-Jie; Tan, Ya-Lan; Tan, Zhi-Jie

    2018-06-01

    RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.

  8. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders

    PubMed Central

    Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.

    2013-01-01

    The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308

  9. Condensation of monovalent and divalent metal ions on a Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Bloch, J. Mati; Yun, Wenbing

    1990-01-01

    A system that consists of a monolayer spread on a solution containing a monovalent and a divalent ion is investigated. The solution of the Poisson-Boltzmann-Stern equation for this system indicates that the metal ions segregating to the surface can be found in two distinct states. Divalent ions are chemically condensed on the monolayer, while monovalent ions are electrically attracted to it. We derive simple expressions for the charge left on the surfactant monolayer and the amount of metal ions condensed on the monolayer. These formulas reproduce very accurately (to within pro milles) the values obtained using the nonlinear Grahame equation and eliminate the need to solve that equation. That permits a simple identification of the state of the surfactant monolayer and we propose a universal condensation chart that characterizes the state of the surfactant. We further derive a chemical equilibrium equation for the surface components that has considerable range of validity. This equation requires a knowledge of the bulk concentrations only, and thus allows in many cases the identification of the state of the monolayer, avoiding the need to solve the full nonlinear Poisson-Boltzmann equation. All existing experimental results on Langmuir systems are in good agreement with the one-dimensional Poisson-Boltzmann-Stern model with no adjustable parameters. Several of these fits are presented in this work and are also mapped on the condensation chart. Our calculations point to some characteristic differences between the monovalent and the divalent ions that explain why it is possible to build Langmuir-Blodgett multilayers from divalent compensated surfactants but not from monovalent ones.

  10. Interaction of divalent metal ions with human translocase of inner membrane of mitochondria Tim23.

    PubMed

    Feng, Wei; Zhang, Yongqiang; Deng, Honghua; Li, Shu Jie

    2016-06-17

    The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. Tim23p, the core component of TIM23 complex, forms the import pore across the inner membrane and exerts a key function in the protein import. However, the interaction of divalent metal ions with Tim23p and the contribution in the interaction of presequence peptide with Tim23p are still unknown. Herein, we investigated the interaction of divalent metal ions with the intermembrane space domain of Tim23p (Tim23IMS) and the interaction of presequence peptides with Tim23IMS in presence of Ca(2+) ion by fluorescence spectroscopy in vitro. The static fluorescence quenching indicates the existence of strong binding between divalent metal ions and Tim23IMS. The order of the binding strength is Ca(2+), Mg(2+), Cu(2+), Mn(2+), and Co(2+) (from strong to weak). Moreover, the interaction of presequence peptides with Tim23IMS is weakened in presence of Ca(2+) ion, which implicates that Ca(2+) ion may play an important role in the protein import by TIM23 complex. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    PubMed Central

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  12. Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue.

    PubMed

    Mir, Aamir; Golden, Barbara L

    2016-02-02

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. On the basis of this crystal structure as well as a wealth of biochemical studies, we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.

  13. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Aamir; Golden, Barbara L.

    2015-11-09

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the p K A of G12. Finally, on the basis ofmore » this crystal structure as well as a wealth of biochemical studies, in this paper we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.« less

  14. Mechanism of pyridine-ligand exchanges at the different labile sites of 3d heterometallic and mixed valence mu3-oxo trinuclear clusters.

    PubMed

    Novitchi, Ghenadie; Riblet, Fabrice; Scopelliti, Rosario; Helm, Lothar; Gulea, Aurelian; Merbach, André E

    2008-11-17

    The syntheses and single crystal X-ray structural analysis of five novel hetero- and homometallic mu 3-oxo trinuclear cluster with the formula [Fe (III) 2M (II)(mu 3-O)(mu-O 2CCH 3) 6(4-Rpy) 3]. x(4-Rpy). y(CH 3CN) where R = Ph for 1(Fe 2Mn), 2(Fe 2Fe), 3(Fe 2Co), 4(Fe 2Ni) and R = CF 3 for 5(Fe 2Co), are reported. The persistence of the structure for compounds 2- 5 in dichloromethane solution in the temperature range 190-320 K is demonstrated by (1)H and (19)F NMR spectroscopy. Even at the lowest temperature, the electron exchange in the homometallic mixed-valence compound 2(Fe 2Fe) is in the fast regime at the NMR time scale. Variable temperature and pressure NMR line broadening allowed quantifying the fast coordinated/free 4-Rpy exchanges at the two labile metal centers in these clusters: 2: Fe (III)( k (298)/10 (3) s (-1) = 16.6; Delta H (++) = 60.32 kJ mol (-1); Delta S (++) = + 34.8 J K (-1) mol (-1); Delta V (++) = + 12.5 cm (3) mol (-1)); 3: Fe (11.9; 58.92; +30.7; +10.6) and Co (2.8; 68.24; +49.8; +13.9); 4: Fe(12.2; 67.91; +61.0; -) and Ni (0.37; 78.62; +67.8; +12.3); 5: Fe (46; 58.21; +39.3; +14.2) and Co (4.7; 55.37; +11.2; +10.9). A limiting D mechanism is assigned to these exchange reactions. This assignment is based on a first-order rate law, the detection of intermediates, the positive and large entropies and volumes of activation. The order of reactivity k (Co) > k (Ni) is expected for a D mechanism at these metal centers: their low exchange rates are due to their strong binding with the 4-Rpy donor. Surrounded by oxygen donors the d (5) iron(III) usually reacts associatively; however, here due to low affinity of this ion for nitrogen the mechanism is D and the rate of exchange is very fast, even faster than on the divalent ions. There is no significant effect of the divalent ion in cluster 2, 3, and 5 on the exchange rates of 4-Phpy at the iron center, which seems to indicate that the specific electronic interactions between the three ions making the clusters do not influence the Fe (III)-N bond strength.

  15. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    PubMed

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  16. Interpretation with a Donnan-based concept of the influence of simple salt concentration on the apparent binding of divalent ions to the polyelectrolytes polystyrenesulfonate and dextran sulfate

    USGS Publications Warehouse

    Marinsky, J.A.; Baldwin, Robert F.; Reddy, M.M.

    1985-01-01

    It has been shown that the apparent enhancement of divalent metal ion binding to polyions such as polystyrenesulfonate (PSS) and dextran sulfate (DS) by decreasing the ionic strength of these mixed counterion systems (M2+, M+, X-, polyion) can be anticipated with the Donnan-based model developed by one of us (J.A.M.). Ion-exchange distribution methods have been employed to measure the removal by the polyion of trace divalent metal ion from simple salt (NaClO4)-polyion (NaPSS) mixtures. These data and polyion interaction data published earlier by Mattai and Kwak for the mixed counterion systems MgCl2-LiCl-DS and MgCl2-CsCl-DS have been shown to be amenable to rather precise analysis by this model. ?? 1985 American Chemical Society.

  17. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    PubMed

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications. © 2011 American Chemical Society

  18. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  19. Comparative study of mono- and dinuclear complexes of late 3d-metal chlorides with N,N-dimethylformamide in the gas phase.

    PubMed

    Duchácková, Lucie; Roithová, Jana; Milko, Petr; Zabka, Jan; Tsierkezos, Nikos; Schröder, Detlef

    2011-02-07

    Mono- and binuclear complexes of N,N-dimethylformamide (DMF) with chlorides of the divalent, late 3d metals M = Co, Ni, Cu, and Zn are investigated by means of electrospray ionization (ESI). Specifically, ESI leads to monocations of the type [(DMF)(n)MCl](+) and [(DMF)(n)M(2)Cl(3)](+), of which the species with n = 2 and 3 were selected for in-depth studies. The latter include collision-induced dissociation experiments, gas-phase infrared spectroscopy, and calculations using density functional theory. The mononuclear complexes [(DMF)(n)MCl](+) almost exclusively lose neutral DMF upon collisional activation with the notable exception of the copper complex, for which also a reduction from Cu(II) to Cu(I) concomitant with the release of atomic chlorine is observed. For the dinuclear clusters, there exists a competition between loss of a DMF ligand and cluster degradation via loss of neutral MCl(2) with decreasing cluster stability from cobalt to zinc. For the specific case of [(DMF)(n)ZnCl](+) and [(DMF)(n)Zn(2)Cl(3)](+), ion-mobility mass spectrometry indicates the existence of two isomeric cluster ions in the case of [(DMF)(2)Zn(2)Cl(3)](+) which corroborates parallel theoretical predictions.

  20. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    PubMed Central

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  1. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2007-01-01

    Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566

  2. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.

    PubMed

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L

    2015-10-20

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.

  3. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    PubMed

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  4. Kinetics studies with fruit bromelain (Ananas comosus) in the presence of cysteine and divalent ions.

    PubMed

    Kaur, Tajwinder; Kaur, Amandeep; Grewal, Ravneet K

    2015-09-01

    The kinetics of cysteine and divalent ion modulation viz. Ca(2+), Cu(2+), Hg(2+) of fruit bromelain (EC 3.4.22.33) have been investigated in the present study. Kinetic studies revealed that at pH 4.5, cysteine induced V-type activation of bromelain catalyzed gelatin hydrolysis. At pH 3.5, Ca(2+) inhibited the enzyme noncompetitively, whereas, both K-and V-type activations of bromelain were observed in the presence of 0.5 mM Ca(2+) at pH 4.5 and 7.5. Bromelain was inhibited competitively at 0.6 mM Cu(2+) ions at pH 3.5, which changed to an uncompetitive inhibition at pH 4.5 and 7.5. An un-competitive inhibition of bromelain catalyzed gelatin hydrolysis was observed in the presence of 0.6 mM Hg(2+) at pH 3.5 and 4.5. These findings suggest that divalent ions modulation of fruit bromelain is pH dependent.

  5. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multivalent Cation-Bridged PI(4,5)P2 Clusters Form at Very Low Concentrations.

    PubMed

    Wen, Yi; Vogt, Volker M; Feigenson, Gerald W

    2018-06-05

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca 2+ , Mg 2+ , Zn 2+ , or trivalent ions Fe 3+ and Al 3+ . Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  8. Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.

    PubMed

    Edelson, J; McMullen, J P

    1976-09-01

    Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.

  9. Divalent metal ions modulated strong frustrated M(II)-Fe(III)3O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex.

    PubMed

    Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He

    2015-10-25

    Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.

  10. Lipid domains in zwitterionic-anionic lipid mixtures induced by combined effect of monovalent and divalent ions

    NASA Astrophysics Data System (ADS)

    Xu, Hongcheng; Ganesan, Sai; Matysiak, Silvina

    Lipid domain formation is an important process for many cellular processes. In experiment, the effects of Ba2+, Sr2+, Ca2+ and Mg2+ in inducing lateral phase separation in the binary phosphatidylcholine-phosphatidylserine (PC-PS) bilayer are quite different, of which the molecular mechanism remains to be understood. We have explored the effect of monovalent (MI) and divalent (MII) cationic radii on lipid domain formation in mixed zwitterionic-anionic lipid bilayers. We propose a mechanism for the formation of divalent-cation-induced lipid domains based on MD simulations with our Water-Explicit Polarizable MEMbrane (WEPMEM) coarse-grained model, which uses PC as the model for zwitterionic and PS for anionic lipids. Lipid aggregation only occurs with limited range of monovalent and divalent ion sizes in agreement with experimental observations. More ordering and closer packing of the lipids are noted within the domains, which correlate with bilayer thickness, curvature and lipid asymmetry. The results of the simulations reveal that the lipid domain consists of MII-mediated anionic lipid dimer/trimer complexes bridged by monovalent ions MI and provide a stereochemical insight in understanding the experimentally observed calcium-induced phase separation.

  11. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution

    PubMed Central

    Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad

    2011-01-01

    In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977

  12. Ion Exchange Polymeric Coatings for Selective Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael

    Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.

  13. The Structure of the Metal Transporter Tp34 and its Affinity for Divalent Metal Ions

    NASA Astrophysics Data System (ADS)

    Knutsen, Gregory; Deka, Ranjit; Brautigam, Chad; Tomchick, Diana; Machius, Mischa; Norgard, Michael

    2007-10-01

    Tp34 is periplasmic membrane protein of the nonculitvatable spirochete Treponema pallidum, the pathogen of syphillis. It was proposed that Tp34 is a divalent metal transporter, but the identity of the preferred metal ion(s) was unclear. In this study we investigated the ability of divalent metal ions to induce rTp34 dimerization using hydrodynamic techniques and determine the crystal structure of metal bound forms. Using analytical ultracentrifugation sedimentation velocity experiments, we determined that cobalt is superior to nickel at inducing the dimerization of rTp34. rTp34 was crystallized and selected crystals were incubated at a pH 7.5 with CuSO4 and NiSO4. Diffraction experiments were conducted and the processed electron density maps showed that copper was bound to the major metal binding site as well as to three additional minor binding sites. By contrast nickel was only bound to the major metal binding site in one monomer and to three additional minor sites. These results along with previous findings support evidence of Tp34 being involved with metal transport and/or iron utilization.

  14. Arsenic removal in conjunction with lime softening

    DOEpatents

    Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.

    2004-10-12

    A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.

  15. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    PubMed

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    NASA Astrophysics Data System (ADS)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  17. Structures and interactions among globular proteins above the isoelectric point in the presence of divalent ions: A small angle neutron scattering and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.

    2018-02-01

    Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.

  18. Partitioning of dopant cations between β-tricalcium phosphate and fluorapatite

    NASA Astrophysics Data System (ADS)

    Jay, E. E.; Mallinson, P. M.; Fong, S. K.; Metcalfe, B. L.; Grimes, R. W.

    2011-07-01

    Mixed crystalline phase composite ceramics offer the possibility of partitioning defect species between the phases as well as occupancy of specific sites within a given phase. Here we use atomic scale simulations to study the site preference of an extensive range of divalent and trivalent substitutional ions across the five cation sites in β-tricalcium phosphate ( β-TCP) and the two cations sites in fluorapatite (FAp). This study indicates that in β-TCP small dopant species occupy the smaller of the five cation sites and vice versa. Conversely, in FAp, small divalent species occupy the nominally larger Ca(1) site while larger cations occupy the Ca(2) site. Partition energies between the two phases indicate that divalent species strongly segregate to β-TCP as do Al 3+ and Ga 3+, whereas all other (larger) trivalent ions exhibit little preference.

  19. Quantitative and Comprehensive Decomposition of the Ion Atmosphere around Nucleic Acids

    PubMed Central

    Bai, Yu; Greenfeld, Max; Travers, Kevin; Chu, Vincent B.; Lipfert, Jan; Doniach, Sebastian; Herschlag, Daniel

    2011-01-01

    The ion atmosphere around nucleic acids critically affects biological and physical processes such as chromosome packing, RNA folding, and molecular recognition. However, the dynamic nature of the ion atmosphere renders it difficult to characterize. The basic thermodynamic description of this atmosphere, a full accounting of the type and number of associated ions, has remained elusive. Here we provide the first complete accounting of the ion atmosphere, using buffer equilibration and atomic emission spectroscopy (BE-AES) to accurately quantitate the cation association and anion depletion. We have examined the influence of ion size and charge on ion occupancy around simple, well-defined DNA molecules. The relative affinity of monovalent and divalent cations correlates inversely with their size. Divalent cations associate preferentially over monovalent cations; e.g., with Na+ in four-fold excess of Mg2+ (20 vs. 5 mM), the ion atmosphere nevertheless has three-fold more Mg2+ than Na+. Further, the dicationic polyamine putrescine2+ does not compete effectively for association relative to divalent metal ions, presumably because of its lower charge density. These and other BE-AES results can be used to evaluate and guide the improvement of electrostatic treatments. As a first step, we compare the BE-AES results to predictions from the widely-used nonlinear Poisson Boltzmann (NLPB) theory and assess the applicability and precision of this theory. In the future, BE-AES in conjunction with improved theoretical models, can be applied to complex binding and folding equilibria of nucleic acids and their complexes, to parse the electrostatic contribution from the overall thermodynamics of important biological processes. PMID:17990882

  20. The regulation of integrin function by divalent cations

    PubMed Central

    Zhang, Kun; Chen, JianFeng

    2012-01-01

    Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca2+-binding motifs that have essential roles in integrin biogenesis. The function of another Ca2+-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions. PMID:22647937

  1. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  2. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    NASA Astrophysics Data System (ADS)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  3. Ultrafast intersystem crossings in Fe-Co Prussian blue analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    Ultrafast spincrossover is studied in Fe-Co Prussian blue analogues using a dissipative quantum-mechanical model of a cobalt ion coupled to a breathing mode. All electronic interactions are treated on an equal footing. It is theoretically demonstrated that the divalent cobalt ion reaches 90% of the S = 3/2 value within 20 fs after photoexciting a low-spin Co 3+ ion by an iron-to-cobalt charge transfer. The doublet-to-quartet spin crossover is significantly faster than the oscillation period of the breathing mode. The system relaxes to the lowest manifold of divalent cobalt ( 4T 1) in 150-200 fs. In conclusion, strong oscillations inmore » spin-orbit coupling and the involvement of higher-lying quartets are found.« less

  4. Ultrafast intersystem crossings in Fe-Co Prussian blue analogues

    DOE PAGES

    van Veenendaal, Michel

    2017-07-27

    Ultrafast spincrossover is studied in Fe-Co Prussian blue analogues using a dissipative quantum-mechanical model of a cobalt ion coupled to a breathing mode. All electronic interactions are treated on an equal footing. It is theoretically demonstrated that the divalent cobalt ion reaches 90% of the S = 3/2 value within 20 fs after photoexciting a low-spin Co 3+ ion by an iron-to-cobalt charge transfer. The doublet-to-quartet spin crossover is significantly faster than the oscillation period of the breathing mode. The system relaxes to the lowest manifold of divalent cobalt ( 4T 1) in 150-200 fs. In conclusion, strong oscillations inmore » spin-orbit coupling and the involvement of higher-lying quartets are found.« less

  5. Crystal structure of the new A2SnTa6X18 (A = K, Rb, Cs; X = Cl, Br) cluster compounds

    NASA Astrophysics Data System (ADS)

    Lemoine, P.; Wilmet, M.; Malaman, B.; Paofai, S.; Dumait, N.; Cordier, S.

    2018-01-01

    The crystal structure of the new cluster compounds A2SnTa6X18 (with A = K, Rb, Cs, and X = Cl, Br) was determined by using single-crystal and powder X-ray diffraction, and 119Sn Mössbauer spectroscopy. Those compounds crystallize in the Cs2EuNb6Br18-type structure of space group R 3 ̅. This type of structure is built up on discrete edge-bridged [M6Xi12Xa6]4- cluster units arranged according to a pseudo face-centered cubic stacking, where the octahedral and tetrahedral vacancies are fully occupied by divalent tin cations and monovalent alkaline cations, respectively. The tin cations influence on the halogen matrix and the electronic effects on the cluster units in the Cs2EuNb6Br18-type structure are discussed by comparison with isotype compounds. From those analyses, the ionic radius of Sn2+ in coordination number VI is estimated to be 1.14(1) Å. Finally, K2SnTa6Br18 might be considered as a new example of compound containing a quite bare stannous ion (5 s2 configuration).

  6. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.

    PubMed

    Rijnaarts, Timon; Shenkute, Nathnael T; Wood, Jeffery A; de Vos, Wiebe M; Nijmeijer, Kitty

    2018-05-07

    Divalent cations in feedwater can cause significant decreases in efficiencies for membrane processes, such as reverse electrodialysis (RED). In RED, power is harvested from the mixing of river and seawater, and the obtainable voltage is reduced and the resistance is increased if divalent cations are present. The power density of the RED process can be improved by removing divalent cations from the fresh water. Here, we study divalent cation removal from fresh water using seawater as draw solution in a Donnan dialysis (DD) process. In this way, a membrane system with neither chemicals nor electrodes but only natural salinity gradients can be used to exchange divalent cations. For DD, the permselectivity of the cation exchange membrane is found to be crucial as it determines the ability to block salt leakage (also referred to as co-ion transport). Operating DD using a membrane stack achieved a 76% reduction in the divalent cation content in natural fresh water with residence times of just a few seconds. DD pretreated fresh water was then used in a RED process, which showed improved gross and net power densities of 9.0 and 6.3%, respectively. This improvement is caused by a lower fresh water resistance (at similar open circuit voltages), due to exchange of divalent for monovalent cations.

  7. Study on improving viscosity of polymer solution based on complex reaction

    NASA Astrophysics Data System (ADS)

    Sun, G.; Li, D.; Zhang, D.; Xu, T. H.

    2018-05-01

    The current status of polymer flooding Technology on high salinity oil reservoir is not ideal. A method for increasing the viscosity of polymer solutions is urgently needed. This paper systematically studied the effect of ions with different mass concentrations on the viscosity of polymer solutions. Based on the theory of complex reaction, a countermeasure of increasing viscosity of polymer solution under conditions of high salinity reservoir was proposed. The results show that Ca2+ and Mg2+ have greater influence on the solution viscosity than K+ and Na+. When the concentration of divalent ions increases from 0 mg/L to 80 mg/L, the viscosity of the polymer solution decreases from 210 mPa·s to 38.6 mPa·s. The viscosity of the polymer solution prepared from the sewage treated with the Na2C2O4 increased by 25.3%. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity.

  8. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  9. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  10. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.

    USDA-ARS?s Scientific Manuscript database

    Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...

  11. Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.

    PubMed

    Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe

    2012-02-01

    Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®

  12. Divalent cation interactions with oligogalacturonides.

    PubMed

    Cescutti, P; Rizzo, R

    2001-07-01

    The conformational properties of high and low molecular weight galacturonides were investigated in relation to the ability of oligomers with degree of polymerization >10 to act as elicitors of plant defense mechanisms. Oligomers from polygalacturonate were obtained by means of enzymatic hydrolysis. Two fractions exhibiting high and low average degrees of polymerization were isolated by solvent fractionation and characterized by means of electrospray mass spectrometry. The conformational behaviors of the two fractions were investigated in the presence of different divalent cations using circular dichroism. Calcium, copper, and zinc ions were able to induce a conformational transition in both fractions. When in the presence of the high molecular weight fraction, copper and zinc ions were much more effective than calcium ions, whereas the efficiency was much reduced with low molecular weight oligomers.

  13. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff

    2003-12-05

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less

  14. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  15. The Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions

    PubMed Central

    Søvik, Eirik; LaMora, Angela; Seehra, Gurpreet; Barron, Andrew B.; Duncan, Jennifer G.; Ben-Shahar, Yehuda

    2017-01-01

    Members of the Natural resistance-associated macrophage protein (NRAMP) family are evolutionarily-conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here we demonstrate that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision making in insects. Our studies suggest that the homeostatic regulation of the intra-neuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. PMID:28220999

  16. Study of structure and dielectric properties of 1:2 type modified Barium Niobates in bulk and thin film forms

    NASA Astrophysics Data System (ADS)

    Bishnoi, Bhagwanti Ben S.

    In view of the processing and environmental issues pertaining to lead based ferroelectric materials, investigations on lead free ferroelectrics are carried intensively in recent years. These materials are interesting because, they are flexible with respect to structural changes and functional properties. These materials have potential device applications such as capacitors, sensors, actuators, and memory storage and microwave devices. This thesis is an attempt to elucidate the effect of substitution of isovalent ions (Sr, Ca) at the 'A' site of Hexagonal structured Barium Magnesium Niobate Ba(Mgl/3Nb 2/3)O3 (BMN) as well as effect of simultaneous substitution of divalent ions (Co2+ and Cu2+) on the 'B'-site' of Ba(Mg1/3Nb2/3)O3 (BMN) and Sr(Mg 1/3Nb2/3)O3 (SMN). Their structural, morphological, dielectric, impedance and optical properties are investigated. The XRD study on the ceramic compositions (SMN) showed single phase monoclinic hexagonal perovskite structure at room temperature. The SEM micrograph shows that the grains are uniformly distributed throughout the surface and the average grain size decreases with the substitution of divalent ion doping in Sr(Mg 1/3Nb2/3)O3 ceramic. The diffusivity of ceramics increases with increase in divalent ions substitution. The dielectric study confirmed that the relaxor nature is introduced in the Barium Niobate on replacement by other divalent ions at the A- or B'-site. Among various compositions in Sr(Cu1/3Nb2/3)O3 we obtained most promising dielectric properties. The impedance and modulus spectroscopy were employed to evaluate the different electrical properties of the grain and grain boundary of the ceramics. Ac Conductivity shows the two types of hopping conduction mechanism in frequency exponent vs temperature plots after the divalent ions replacement. The optical band gaps were calculated from UV-Visible spectroscopy ceramic suggested the presence of intermediately energy levels within the band gap. The single phase thin films of various compositions with A- and B'-site substitutions were successfully made using Pulsed laser deposition technique. Over all properties of films are identical to the respective bulk compositions except for some of the samples which exhibited relaxor behaviour only in the film form. Compared to O7+ irradiation the Ag15+ irradiation due to type of defects it created is more effective in reducing lattice strain induced dielectric losses along with marginal loss of dielectric constant. Significant increase in dielectric constant with low loss, on O 7+ as well as Ag15+ ion irradiation, may enhance the electro-optical properties which in turn increase compounds tuneablility for device applications.

  17. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.

    PubMed

    Park, Sungjin; Lee, Kyoung-Seok; Bozoklu, Gulay; Cai, Weiwei; Nguyen, Sonbinh T; Ruoff, Rodney S

    2008-03-01

    Significant enhancement in mechanical stiffness (10-200%) and fracture strength (approximately 50%) of graphene oxide paper, a novel paperlike material made from individual graphene oxide sheets, can be achieved upon modification with a small amount (less than 1 wt %) of Mg(2+) and Ca(2+). These results can be readily rationalized in terms of the chemical interactions between the functional groups of the graphene oxide sheets and the divalent metals ions. While oxygen functional groups on the basal planes of the sheets and the carboxylate groups on the edges can both bond to Mg(2+) and Ca(2+), the main contribution to mechanical enhancement of the paper comes from the latter.

  18. Growth and characterization of divalent transition metal ions doped zinc hydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    D'Souza, Delma; Jagannatha, N.; Nagaraja, K. P.; Rohith, P. S.; Pradeepkumar, K. V.

    2018-05-01

    Zinc hydrogen phosphate (ZnHP) single crystal co-doped with divalent transition metal ions Cobalt (Co2+) and Cadmium (Cd2+) is grown by gel technique in silica hydro gel media. The presence of Co2+ and Cd2+ dopants in the ZnHP crystal was confirmed by Energy Dispersive X-ray Analysis (EDAX).FTIR spectra of the grown crystal depict the stretching and bending vibration of PO4 units, water of crystallization and metal-oxygen bonds. Powder XRD analysis reveals that the grown crystal belongs to monoclinic system with spacegroup P 21. The thermal stability of the grown crystal is rectified from TG-DSC studies.

  19. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    NASA Astrophysics Data System (ADS)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  20. Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.

    1987-06-01

    To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less

  1. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  2. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.

    PubMed

    Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana

    2012-09-30

    Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Spectroscopic detection of metals ions using a novel selective sensor

    NASA Astrophysics Data System (ADS)

    Peralta-Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfan, N.

    2011-09-01

    Colorimetric chemosensors are simple, economical and practical optical approach for detecting toxic metal ions (Hg2+, Pb2+, Ni2+, etc.) in the environment. In this work, we present a simple but highly specific organic compound 4-chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for divalent metal ions in H2O. The mechanism of the interaction between L1 and various metal-ions has been established by UV-vis absorption and emission spectroscopic experiments that indicate favorable coordination of metal ions with L1 in different solvents. Experimental results indicate that the shape of the electronic transition band of L1 (receptor compound) changed after the interaction with divalent metal-ions, such as Hg2+, Pb2+, Mn2+, Co2+, Cu2+, and Ni2+ in aqueous solution. We found that L1 have a considerable selectivity for Ni2+ ions, even in presence of other metals ions when mixtures of DMSO/H2O as are used as solvents. L1, which has been targeted for sensing transition metal ions, exhibits binding-induced color changes from yellow to pink observed even by the naked eye in presence of Ni2+ ions.

  4. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  5. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  6. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.

    PubMed

    Priel, Avi; Gil, Ziv; Moy, Vincent T; Magleby, Karl L; Silberberg, Shai D

    2007-06-01

    Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.

  7. Compositional and Ionic-Size Controls on the Diffusion of Divalent Cations in Garnet: Insights from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.

    2012-12-01

    Divalent cations in garnet (Mg, Fe, Mn, Ca) diffuse at rates that depend strongly on the host-crystal composition and on the ionic radius of the diffusant. Understanding of the nanoscale basis for these behaviors comes from atomistic simulations that calculate energies in the static limit for the defects and transition-state configurations associated with each diffusive step. Diffusion of divalent cations requires (a) creation of a cation-vacancy defect in a dodecahedral site and of a charge-compensating oxygen-vacancy defect that may or may not be in close spatial association; (b) except in the case of self-diffusion, creation of an impurity defect in which a foreign atom replaces the normal atom in a dodecahedral site adjacent to the vacancy; and (c) during the diffusive process, motion of the diffusing atom to a 'saddlepoint' position that represents the transition-state configuration. Comparisons of the system's energy in these various states, in structures of different composition and for ions of different ionic size, allows assessment of the nanoscale controls on diffusion kinetics. Molecular-statics calculations quantify defect energies and identify the transition-state configuration: the maximum energy along the diffusion path between two adjacent dodecahedral sites results when the diffusing ion is surrounded symmetrically by the six oxygen atoms that lie between the two sites. Across the range of end-member compositions, self-diffusion coefficients measured at identical conditions, and the tracer diffusivity of a single ion measured at identical conditions, can each vary by five orders of magnitude or more. Measured activation energies for these motions, however, are all equivalent to within ±6%. Calculated activation energies are in agreement with observations, in that they vary by only ±10%. Calculated vacancy-formation energies, on the other hand, are significantly larger in expanded structures; for example, that energy is greater for Prp than for Grs by ~ 470 kJ/mol. Thus in expanded structures, much higher vacancy concentrations can be produced at the same energetic cost, greatly enhancing rates of diffusion. The primary explanation for the more rapid diffusion of divalent cations in structures with larger cell dimensions therefore comes not from reduced saddlepoint strain energies in more compliant structures, but instead from the smaller energy required to create vacancy defects. Diffusivities of divalent cations exhibit a curious parabolic dependence on ionic size: for each structure, an optimally-sized ion exists, close in size to the dominant ion, that exhibits the fastest diffusion. Larger ions — and enigmatically, smaller ions — both diffuse more slowly. Calculated impurity-defect energies show that undersized impurity ions are bound more tightly in their sites, but the effects are too small in comparison to corresponding reductions in strain energy for the transition-state configuration to account for observed rate differences. Calculated vacancy-association energies reveal a slight tendency for vacancies to associate preferentially with larger impurity ions, but again the effect appears to be too small to provide a full explanation for observed behaviors.

  8. Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.

    PubMed

    Anderson, Michael; Schultz, Eric P; Martick, Monika; Scott, William G

    2013-10-23

    We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na(+) ion binding in the ribozyme's active site. At least two such Na(+) ions are observed. The first Na(+) ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na(+) ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na(+), but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na(+) directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; Christiansen, Gina; Moreno-Román, Paola; Gutiérrez, Andrés H.; Sotelo, Jun; Evangelista, Wilfredo; Fuentes, Patricia; Rueda, Daniel; Flores, Myra; Olivera, Paula; Solis, José; Pesaresi, Alessandro; Lamba, Doriano; Zimic, Mirko

    2012-01-01

    Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn. PMID:22764307

  10. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    PubMed

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Yaung, Jing-Fun; Chen, Yueh-Huey

    2009-01-01

    A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…

  12. Relative affinities of divalent polyamines and of their N-methylated analogues for helical DNA determined by sup 23 Na NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, S.; Brushaber, V.M.; Anderson, C.F.

    1991-07-30

    Interactions of divalent polyamines with double-helical DNA in aqueous solution are investigated by monitoring the decrease in {sup 23}Na NMR relaxation rates as NaDNA is titrated with H{sub 3}N{sup +}-(CH{sub 2}){sub m}-{sup +}NH{sup 3}, where m = 3, 4, 5, or 6. Analogous measurements are made for the same homologous series of methylated polyamines (methonium ions). The dependence of the {sup 23}Na relaxation rates on the amount of added divalent cation (M{sup 2+}) is analyzes quantitatively in terms of a two-state model. The sodium ions are assumed to be in rapid exchange between a bound state, where they are closemore » enough to DNA so that it affects their relaxation rate, and a free state in bulk solution, where their relaxation rate is the same as in solutions containing no DNA. (1) For polyamines and methonium ions of the same m, D{sub H} exceeds D{sub Me} by factors that are significantly larger for m = 3 and 4 than for m = 5 and 6. (2) D{sub H} for m = 3 and 4 is larger than D{sub H} for m = 5 and 6. (3) D{sub Me} for m = 3 and 4 is smaller than D{sub Me} for m = 5 and 6.« less

  13. Specificity in cationic interaction with poly(N-isopropylacrylamide).

    PubMed

    Du, Hongbo; Wickramasinghe, Sumith Ranil; Qian, Xianghong

    2013-05-02

    Classical molecular dynamics (MD) simulations were conducted for PNIPAM in 1 M monovalent alkali chloride salt solutions as well as in 0.5 M divalent Mg(2+) and Ca(2+) chloride salt solutions. It was found that the strength for the direct alkali ion-amide O binding is strongly correlated with the size of the ionic radius. The smallest Li(+) ion binds strongest to amide O, and the largest Cs(+) ion has the weakest interaction with the amide bond. For the divalent Mg(2+) and Ca(2+) ions, their interactions with the amide bond are weak and appear to be mediated by the water molecules, particularly in the case of Mg(2+), resulting from their strong hydration. The direct binding between the cations and amide O requires partial desovlation of the ions that is energetically unfavorable for Mg(2+) and also to a great extent for Ca(2+). The higher cation charge makes the electrostatic interaction more favorable but the dehydration process less favorable. This competition between electrostatic interaction and the dehydration process largely dictates whether the direct binding between the cation and amide O is energetically preferred or not. For monovalent alkali ions, it is energetically preferred to bind directly with the amide O. Moreover, Li(+) ion is also found to associate strongly with the hydrophobic residues on PNIPAM.

  14. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  15. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  16. Formation of nucleoside 5'-polyphosphates from nucleotides and trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1975-01-01

    Nucleoside 5'-polyphosphates (N5PP) formed when solutions of nucleoside 5'-phosphates (N5P) and trimetaphosphate (TMP) are dessicated at room temperature are studied by paper chromatography, electrophoresis, and metal catalytic reactions. Divalent Mg ion exhibited superior catalytic function to other divalent metal ions in the reaction. Major reaction products are indicated. The importance of the N5PP series, TMP, and N5-triphosphate as substrates of RNA and DNA synthesis, and under postulated prebiotic conditions likely to obtain during prebiological ages of the earth, is emphasized and discussed. Alternate drying and wetting, evaporation from a prebiotic puddle, concentration of solubles in the remaining liquid phase, metal catalysis, and the role of these substances in the formation of amino acids and long-chain polyphosphates are considered.

  17. Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt.

    PubMed

    Bae, Sang-Eun; Jung, Tae Sub; Cho, Young-Hwan; Kim, Jong-Yun; Kwak, Kyungwon; Park, Tae-Hong

    2018-06-28

    The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm 2+ and Sm 3+ were electrochemically measured to be 0.92 × 10 -5 and 1.10 × 10 -5 cm 2 /s, respectively, and the standard apparent potential of the Sm 2+/3+ couple was estimated to be -0.82 V vs Ag|Ag + at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation ( E°' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M -1 cm -1 , respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f 6 to 4f 5 5d 1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm 3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm 2+ ion in the solidified LCl-KCl salt at room temperature.

  18. 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kate, O.M. ten, E-mail: o.m.tenkate@tudelft.nl; Energy Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven; Zhang, Z.

    Optical data of Sm, Tb and Yb doped Ca{sub 2}Si{sub 5}N{sub 8} and Sr{sub 2}Si{sub 5}N{sub 8} phosphors that have been prepared by solid-state synthesis, are presented. Together with luminescence data from literature on Ce{sup 3+} and Eu{sup 2+} doping in the M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba) hosts, energy level schemes were constructed showing the energy of the 4f and 5d levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band. The schemes were of great help in interpreting the optical data of the lanthanide doped phosphors and allow commenting on the valencemore » stability of the ions, as well as the stability against thermal quenching of the Eu{sup 2+}d-f emission. Tb{sup 3+} substitutes on both a high energy and a low energy site in Ca{sub 2}Si{sub 5}N{sub 8}, due to which excitation at 4.77 eV led to emission from both the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels, while excitation at 4.34 eV gave rise to mainly {sup 5}D{sub 4} emission. Doping with Sm resulted in typical Sm{sup 3+}f-f line absorption, as well as an absorption band around 4.1 eV in Ca{sub 2}Si{sub 5}N{sub 8} and 3.6 eV in Sr{sub 2}Si{sub 5}N{sub 8} that could be identified as the Sm{sup 3+} charge transfer band. Yb on the other hand was incorporated in both the divalent and the trivalent state in Ca{sub 2}Si{sub 5}N{sub 8}. - Graphical abstract: Energy level schemes showing the 4f ground states of the trivalent ( Black-Down-Pointing-Small-Triangle ) and divalent ( Black-Up-Pointing-Small-Triangle ) lanthanide ions and lowest energy 5d states of the trivalent ({nabla}) and divalent ({Delta}) ions with respect to the valence and conduction bands of Ca{sub 2}Si{sub 5}N{sub 8} (left) and Sr{sub 2}Si{sub 5}N{sub 8} (right). Highlights: Black-Right-Pointing-Pointer Construction of energy level schemes of all lanthanides within the M{sub 2}Si{sub 5}N{sub 8} hosts. Black-Right-Pointing-Pointer Construction was done by analyzing existing as well as new spectroscopic data. Black-Right-Pointing-Pointer Tb{sup 3+}d-f emission from two different Ca sites in Ca{sub 2}Si{sub 5}N{sub 8} has been observed. Black-Right-Pointing-Pointer Observation of the Sm{sup 3+} charge transfer band in Ca{sub 2}Si{sub 5}N{sub 8} and Sr{sub 2}Si{sub 5}N{sub 8}. Black-Right-Pointing-Pointer Ytterbium has been found in the divalent and trivalent state in Ca{sub 2}Si{sub 5}N{sub 8}.« less

  19. Magnetic behavior control in niccolite structural metal formate frameworks [NH2(CH3)2][Fe(III)M(II)(HCOO)6] (M = Fe, Mn, and Co) by varying the divalent metal ions.

    PubMed

    Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He

    2010-11-15

    By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.

  20. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    PubMed

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  1. Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.

    PubMed

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A

    2007-06-07

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises.

  2. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.

    PubMed Central

    Derbyshire, V; Grindley, N D; Joyce, C M

    1991-01-01

    We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions. PMID:1989882

  3. Characterization of a conformationally sensitive murine monoclonal antibody directed to the metal ion-dependent adhesion site face of integrin CD11b.

    PubMed

    Li, Rui; Haruta, Ikuko; Rieu, Philippe; Sugimori, Takashi; Xiong, Jian-Ping; Arnaout, M Amin

    2002-02-01

    Integrin binding to physiologic ligands requires divalent cations and an inside-out-driven switch of the integrin to a high-affinity state. Divalent cations at the metal ion-dependent adhesion site (MIDAS) face of the alpha subunit-derived A domain provide a direct bridge between ligands and the integrin, and it has been proposed that activation dependency is caused by reorientation of the surrounding residues relative to the metal ion, forming an optimal binding interface. To gain more insight into the functional significance of the protein movements on the MIDAS face, we raised and characterized a murine mAb 107 directed against the MIDAS face of the A domain from integrin CD11b. We find that mAb 107 behaves as a ligand mimic. It binds in a divalent-cation-dependent manner to solvent-exposed residues on the MIDAS face of CD11b, blocks interaction of 11bA or the holoreceptor with ligands, and inhibits spreading and phagocytosis by human neutrophils. However, in contrast to physiologic ligands, mAb 107 preferentially binds to the inactive low-affinity form of the integrin, suggesting that its antagonistic effects are exerted in part by stabilizing the receptor in the low-affinity state. These data support a functional relevance of the protein movements on the MIDAS face and suggest that stabilizing the A domain in the low-affinity state may have therapeutic benefit.

  4. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

    PubMed

    Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G

    2017-01-25

    Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

  5. Block by Extracellular Divalent Cations of Drosophila Big Brain Channels Expressed in Xenopus Oocytes

    PubMed Central

    Yanochko, Gina M.; Yool, Andrea J.

    2004-01-01

    Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca2+ and Ba2+ but not by Mg2+ in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu274) and aspartate (Asp253) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu71) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu71 to Asp introduced a new sensitivity to block by extracellular Mg2+; substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca2+, suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination. PMID:14990474

  6. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  7. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    PubMed

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margrete Meltzer, Helle, E-mail: helle.margrete.meltzer@fhi.no; Lise Brantsaeter, Anne; Borch-Iohnsen, Berit

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin <12 {mu}g/L) and 84 had iron deficiency anaemia (serum ferritin <12 {mu}g/L and Hb<120 g/L). The lowmore » ferritin group had increased blood concentrations of Mn, Co and Cd but normal concentrations of Cu, Zn and Pb. In multiple regression models, ferritin emerged as the main determinant of Mn, Co and Cd (p<0.001), while no significant associations with Cu, Zn and Pb were found. Adjusted r{sup 2} for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110{<=}Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.« less

  9. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution.

    PubMed

    Yepes, Diana; Seidel, Robert; Winter, Bernd; Blumberger, Jochen; Jaque, Pablo

    2014-06-19

    Photoelectron spectroscopy measurements and density functional calculations are combined to determine the lowest electron binding energies of first-row transition-metal aqua ions, titanium through copper, with 3d(1) through 3d(9) electronic configurations, in their most common oxidation states. Vertical ionization energies are found to oscillate considerably between 6.76 and 9.65 eV for the dications and between 7.05 and 10.28 eV for the respective trivalent cations. The metal cations are modeled as [M(H2O)n](q+) clusters (q = 2, 3, and 4; n = 6 and 18) surrounded by continuum solvent. The performance of 10 exchange-correlation functionals, two GGAs, three MGGAs, two HGGAs and three HMGGAs, combined with the MDF10(ECP)/6-31+G(d,p) basis set is assessed for 11 M-O bond distances, 10 vertical ionization energies, 6 adiabatic ionization energies, and the associated reorganization free energies. We find that for divalent cations the HGGA and HMGGA functionals in combination with the 18 water model show the best agreement with experimental vertical ionization energies and geometries; for trivalent ions, the MGGA functionals perform best. The corresponding reorganization free energies (λo) of the oxidized ions are significantly underestimated with all DFT functionals and cluster models. This indicates that the structural reorganization of the solvation shell upon ionization is not adequately accounted for by the simple solvation models used, emphasizing the importance of extended sampling of thermally accessible solvation structures for an accurate computation of this quantity. The photoelectron spectroscopy measurements reported herein provide a comprehensive set of transition-metal redox energetic quantities for future electronic structure benchmarks.

  10. A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese

    NASA Astrophysics Data System (ADS)

    Grace Victoria, S.; Moses Ezhil Raj, A.

    2018-01-01

    The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.

  11. "JCE" Classroom Activity #106. Sequestration of Divalent Metal Ion by Superabsorbent Polymer in Diapers

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun

    2010-01-01

    This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…

  12. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    PubMed

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  13. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.

  14. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  15. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  16. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    PubMed

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  17. Inter-DNA Attraction Mediated by Divalent Counterions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.

    2007-07-20

    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg{sup 2+} ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg{sup 2+}] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin.

  18. Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.

    PubMed

    Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M

    1998-08-01

    The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.

  19. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    PubMed Central

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  20. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  1. The role of calcium and magnesium in the concrete tubes of the sandcastle worm.

    PubMed

    Sun, ChengJun; Fantner, Georg E; Adams, Jonathan; Hansma, Paul K; Waite, J Herbert

    2007-04-01

    Sandcastle worms Phragmatopoma californica build mound-like reefs by sticking together large numbers of sand grains with cement secreted from the building organ. The cement consists of protein plus substantial amounts of calcium and magnesium, which are not invested in any mineral form. This study examined the effect of calcium and magnesium depletion on the structural and mechanical properties of the cement. Divalent ion removal by chelating with EDTA led to a partial collapse of cement architecture and cement dislodgement from silica surfaces. Mechanical properties examined were sand grain pull-out force, tube resistance to compression and cement adhesive force. EDTA treatment reduced sand grain pull-out forces by 60% and tube compressive strength by 50% relative to controls. EDTA lowered both the maximal adhesive force and energy dissipation of cement by up to an order of magnitude. The adhesiveness of calcium- and magnesium-depleted cement could not be restored by re-exposure to the ions. The results suggest that divalent ions play a complex and multifunctional role in maintaining the structure and stickiness of Phragmatopoma cement.

  2. Divalent Metal-Ion Complexes with Dipeptide Ligands Having Phe and His Side-Chain Anchors: Effects of Sequence, Metal Ion, and Anchor.

    PubMed

    Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos

    2015-09-24

    Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.

  3. Interaction of divalent metal ions with Zn(2+)-glycerophosphocholine cholinephosphodiesterase from ox brain.

    PubMed

    Lee, K J; Kim, M R; Kim, Y B; Myung, P K; Sok, D E

    1997-12-01

    The effect of divalent metal ions on the activity of glycerophosphocholine cholinephosphodiesterse from ox brain was examined. Zn(2+)- and Co(2+)-glycerophosphocholine cholinephosphodiesterases were prepared from the exposure of apoenzyme to Zn2+ and Co2+, respectively, and the properties of two metallo-phosphodiesterases were compared to those of native phosphodiesterase. Although two metallo-enzymes were similar in expressing Km value, optimum pH or sensitivity to Cu2+, they differed in the susceptibility to the inhibition by thiocholine or tellurite; while Co(2+)-phosphodiesterase was more sensitive to tellurites, Zn(2+)-phosphodiesterase was more susceptible to inhibition by thiocholine. In addition, Zn(2+)-phosphodiesterase was more thermo-stable than Co2+ enzyme. Separately, when properties of native phosphodiesterase were compared to those of each metallo-phosphodiesterase, native phosphodiesterase was found to be quite similar to Zn(2+)-phosphodiesterase in many respects. Even in thermo-stability, native enzyme resembled Zn(2+)-phosphodiesterase rather than Co(2+)-enzyme. Consistent with this, the stability of native phosphodiesterase was maintained in the presence of Zn2+, but not Co2+, Mn2+ was also as effective as Zn2+ in the stabilization of the enzyme. Noteworthy, the native enzyme was found to be inhibited competitively by Cu2+ with a Ki value of 20 microM, and its inhibitory action was antagonized effectively by Zn2+ or Co2+. Also, choline, another competitive inhibitor of the enzyme, appeared to antagonize the inhibitory action of Cu2+. Taken together, it is suggested that there may be multiple binding sites for divalent metal ions in the molecule of glycerophosphocholine cholinephosphodiesterase.

  4. Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages.

    PubMed

    Torras, Juan; Alemán, Carlos

    2018-02-22

    QM/MM molecular dynamics simulations on the 4His-ΔC* protein cage have been performed using multiple active zones (up to 86 quantum regions). The regulation and nanocage stability exerted by the divalent transition metal ions in the monomer-to-cage conversion have been understood by comparing high level quantum trajectories obtained using Cu 2+ and Ni 2+ coordination ions.

  5. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water.

    PubMed

    Huynh, Uyen T D; Lerbret, Adrien; Neiers, Fabrice; Chambin, Odile; Assifaoui, Ali

    2016-02-11

    We have investigated the interactions between polygalacturonate (polyGal) and four divalent cations (M(2+) = Ba(2+), Ca(2+), Mg(2+), Zn(2+)) that differ in size and affinity for water. Our results evidence that M(2+)-polyGal interactions are intimately linked to the affinity of M(2+) for water. Mg(2+) interacts so strongly with water that it remains weakly bound to polyGal (polycondensation) by sharing water molecules from its first coordination shell with the carboxylate groups of polyGal. In contrast, the other cations form transient ionic pairs with polyGal by releasing preferentially one water molecule (for Zn(2+)) or two (for Ca(2+) and Ba(2+)), which corresponds to monodentate and bidentate binding modes with carboxylates, respectively. The mechanism for the binding of these three divalent cations to polyGal can be described by two steps: (i) monocomplexation and formation of point-like cross-links between polyGal chains (at low M(2+)/Gal molar ratios, R) and (ii) dimerization (at higher R). The threshold molar ratio, R*, between these two steps depends on the nature of divalent cations and is lower for calcium ions (R* < 0.1) than for zinc and barium ions (R* > 0.3). This difference may be explained by the intermediate affinity of Ca(2+) for water with respect to those of Zn(2+) and Ba(2+), which may induce the formation of cross-links of intermediate flexibility. By comparison, the lower and higher flexibilities of the cross-links formed by Zn(2+) and Ba(2+), respectively, may shift the formation of dimers to higher molar ratios (R*).

  6. Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme.

    PubMed

    Ganguly, Abir; Thaplyal, Pallavi; Rosta, Edina; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2014-01-29

    The hepatitis delta virus (HDV) ribozyme catalyzes a self-cleavage reaction using a combination of nucleobase and metal ion catalysis. Both divalent and monovalent ions can catalyze this reaction, although the rate is slower with monovalent ions alone. Herein, we use quantum mechanical/molecular mechanical (QM/MM) free energy simulations to investigate the mechanism of this ribozyme and to elucidate the roles of the catalytic metal ion. With Mg(2+) at the catalytic site, the self-cleavage mechanism is observed to be concerted with a phosphorane-like transition state and a free energy barrier of ∼13 kcal/mol, consistent with free energy barrier values extrapolated from experimental studies. With Na(+) at the catalytic site, the mechanism is observed to be sequential, passing through a phosphorane intermediate, with free energy barriers of 2-4 kcal/mol for both steps; moreover, proton transfer from the exocyclic amine of protonated C75 to the nonbridging oxygen of the scissile phosphate occurs to stabilize the phosphorane intermediate in the sequential mechanism. To explain the slower rate observed experimentally with monovalent ions, we hypothesize that the activation of the O2' nucleophile by deprotonation and orientation is less favorable with Na(+) ions than with Mg(2+) ions. To explore this hypothesis, we experimentally measure the pKa of O2' by kinetic and NMR methods and find it to be lower in the presence of divalent ions rather than only monovalent ions. The combined theoretical and experimental results indicate that the catalytic Mg(2+) ion may play three key roles: assisting in the activation of the O2' nucleophile, acidifying the general acid C75, and stabilizing the nonbridging oxygen to prevent proton transfer to it.

  7. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    PubMed

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions.

    PubMed

    Okajima, Maiko K; Miyazato, Shinji; Kaneko, Tatsuo

    2009-08-04

    We extracted the megamolecular polysaccharide sacran, which contains carboxylate and sulfate groups, from the jellylike extracellular matrix (ECM) of the cyanobacterium Aphanothece sacrum, which has mineral adsorption bioactivity. We investigated the gelation properties of sacran binding with various heavy metal ions. The sacran chain adsorbed heavier metal ions such as indium, rare earth metals, and lead ions more efficiently to form gel beads. In addition, trivalent metal ions adsorbed onto the sacran chains more efficiently than did divalent ions. The investigation of the metal ion binding ratio on sacran chains demonstrated that sacran adsorbed gadolinium trivalent ions more efficiently than indium trivalent ions. Gel bead formation may be closely correlated to the liquid-crystalline organization of sacran.

  9. The role of metals in carcinogenesis: biochemistry and metabolism.

    PubMed Central

    Jennette, K W

    1981-01-01

    The oxyanions of vanadium, chromium, molybdenum, arsenic, and selenium are stable forms of these elements in high oxidation states which cross cell membranes using the normal phosphate and/or sulfate transport systems of the cell. Once inside the cell, these oxyanions may sulfuryl transfer reactions. Often the oxyanions serve as alternate enzyme substrates but form ester products which are hydrolytically unstable compared with the sulfate and phosphate esters and, therefore, decompose readily in aqueous solution. Arsenite and selenite are capable of reacting with sulfhydryl groups in proteins. Some cells are able to metabolize redox active oxyanions to forms of the elements in other stable oxidation states. Specific enzymes may be involved in the metabolic processes. The metabolites of these elements may form complexes with small molecules, proteins and nucleic acids which inhibit their ability to function properly. The divalent ions of beryllium, manganese, cobalt, nickel, cadmium, mercury, and lead are stable forms of these elements which may mimic essential divalent ions such as magnesium, calcium, iron, copper, or zinc. These ions may complex small molecules, enzymes, and nucleic acids in such a way that the normal activity of these species is altered. Free radicals may be produced in the presence of these metal ions which damage critical cellular molecules. PMID:7023933

  10. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    PubMed

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  11. Structure of Polyelectrolyte Brushes in the Presence of Multivalent Counterions

    DOE PAGES

    Yu, Jing; Mao, Jun; Yuan, Guangcui; ...

    2016-07-20

    Polyelectrolyte brushes are of great importance to a wide range of fields, ranging from colloidal stabilization to responsive and tunable materials to lubrication. Here, we synthesized high-density polystyrenesulfonate (PSS) brushes using surface initiated atom transfer radical polymerization and performed neutron reflectivity (NR) and surface force measurements using a surface forces apparatus (SFA) to investigate the effect of monovalent Na +, divalent Ca 2+, Mg 2+, and Ba 2+, and trivalent Y 3+ counterions on the structure of the PSS brushes. NR and SFA results demonstrate that in monovalent salt solution the behavior of the PSS brushes agrees with scaling theorymore » well, exhibiting two distinct regimes: the osmotic and salted brush regimes. Introducing trivalent Y 3+ cations causes an abrupt shrinkage of the PSS brush due to the uptake of Y 3+ counterions. The uptake of Y 3+ counterions and shrinkage of the brush are reversible upon increasing the concentration of monovalent salt. Divalent cations, Mg 2+, Ca 2+, and Ba 2+, while all significantly affecting the structure of PSS brushes, show strong ion specific effects that are related to the specific interactions between the divalent cations and the sulfonate groups. Our results demonstrate that the presence of multivalent counterions, even at relatively low concentrations, can strongly affect the structure of polyelectrolyte brushes. Finally, the results also highlight the importance of ion specificity to the structure of polyelectrolyte brushes in solution.« less

  12. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  13. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C.

    PubMed

    Badr, Myriam A; Pinto, Jose R; Davidson, Michael W; Chase, P Bryant

    2016-01-01

    Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.

  14. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  15. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  16. Selective demineralization of water by nanofiltration application to the defluorination of brackish water.

    PubMed

    Lhassani, A; Rumeau, M; Benjelloun, D; Pontie, M

    2001-09-01

    Nanofiltration is generally used to separate monovalent ions from divalent ions, but it is also possible to separate ions of the same valency by careful application of the transfer mechanisms involved. Analysis of the retention of halide salts reveals that small ions like fluoride are the best retained, and that this is even more marked under reduced pressure when selectivity is greatest. The selectivity desalination of fluorinated brackish water is hence feasible and drinking water can be produced directly at much lower cost than using reverse osmosis by optimizing the pressure for the type of water treated.

  17. Preparation of cation exchanger from lemon and sorption of divalent heavy metals.

    PubMed

    Arslanoglu, Hasan; Soner Altundogan, H; Tumen, Fikret

    2008-05-01

    A cation exchanging material was developed from lemon by modifying the pectic-cellulosic substances in the lemon peel by lemon juice having citric acid. For this purpose, chopped lemon removed from seeds and yellow skin was heated in two stages, firstly at 50 degrees C for 24h and subsequently at 120 degrees C for 2h. The material obtained was ground, repeatedly washed with water and dried. Lemon peel and lemon resin obtained were characterized through physicochemical analyses and FTIR spectroscopy. Heavy metal binding performance of this material was determined by removal tests conducted by using 10mM solutions of divalent metals. Experimental results show that the resin prepared from lemon is effective especially for Pb and Cu removals. For a lemon resin dosage of 10 g l(-1), sorption affinity of divalent metal ions is found to be in an order of Pb>Cu>Ni>Fe>Cd>Zn>Co>Mn. Typically, sorption capacities are about 0.87 and 0.43 mmol g(-1) for Pb and Mn, respectively.

  18. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  19. Hydrogel microspheres from biodegradable polymers as drug delivery systems

    USDA-ARS?s Scientific Manuscript database

    A series of hydrogel microspheres were prepared from pectin, a hydrophilic biopolymer, and zein, a hydrophobic biopolymer, at varying weight ratios. The hydrogel formulation was conducted in the presence of calcium or other divalent metal ions at room temperature under mild conditions. Studies of ...

  20. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.

    PubMed

    Lascol, Manon; Bourgeois, Sandrine; Guillière, Florence; Hangouët, Marie; Raffin, Guy; Marote, Pedro; Lantéri, Pierre; Bordes, Claire

    2016-10-05

    Low methoxyl pectin is known to gel with divalent cations (e.g. Ca(2+), Zn(2+)). In this study, a new way of pectin gelation in the presence of an active pharmaceutical ingredient, chlorhexidine (CX), was highlighted. Thus chlorhexidine interactions with pectin were investigated and compared with the well-known pectin/Ca(2+) binding model. Gelation mechanisms were studied by several physico-chemical methods such as zeta potential, viscosity, size measurements and binding isotherm was determined by Proton Nuclear Magnetic Resonance Spectroscopy ((1)H NMR). The binding process exhibited similar first two steps for both divalent ions: a stoichiometric monocomplexation of the polymer followed by a dimerization step. However, stronger interactions were observed between pectin and chlorhexidine. Moreover, the dimerization step occurred under stoichiometric conditions with chlorhexidine whereas non-stoichiometric conditions were involved with calcium ions. In the case of chlorhexidine, an additional intermolecular binding occurred in a third step. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enzyme-entrapping behaviors in alginate fibers and their papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Matsuo, R.; Ohya, T.

    1987-01-01

    Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer moleculesmore » along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed rougly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated. (Refs. 41).« less

  2. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-02-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  3. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-05-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  4. Double-stranded Endonuclease Activity in Bacillus halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein*

    PubMed Central

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong

    2012-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop. PMID:22942283

  5. Ionic configuration of copper ferrimanganites Cu 0.5Mn xFe 2.5- xO 4

    NASA Astrophysics Data System (ADS)

    Lenglet, M.; Kasperek, J.; Hannoyer, B.; Lopitaux, J.; d'Huysser, A.; Tellier, J. C.

    1992-06-01

    Mössbauer spectrometry, neutron diffraction, XANES, and XPS have led to the determination of the cation distributions of the system Cu 0.5Mn xFe 2.5- xO 4 (0≤ x≤1.5). The three cations are present in both tetrahedral and octahedral sites, and the relative number of Fe ions on A- and B-sites remains nearly constant in the whole range of x. It appears that for x≤0.5 manganese is divalent and copper is in its two oxidation states. For x>0.5 copper and iron are respectively divalent and trivalent; the manganese is in +2 and +3 oxydation states.

  6. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation

    NASA Astrophysics Data System (ADS)

    Lee, Joonseong; Kim, Seonghoon; Chang, Rakwoo; Jayanthi, Lakshmi; Gebremichael, Yeshitila

    2013-01-01

    The present study examines the effects of the model dependence, ionic strength, divalent ions, and hydrophobic interaction on the structural organization of the human neurofilament (NF) brush, using canonical ensemble Monte Carlo (MC) simulations of a coarse-grained model with the amino-acid resolution. The model simplifies the interactions between the NF core and the sidearm or between the sidearms by the sum of excluded volume, electrostatic, and hydrophobic interactions, where both monovalent salt ions and solvents are implicitly incorporated into the electrostatic interaction potential. Several important observations are made from the MC simulations of the coarse-grained model NF systems. First, the mean-field type description of monovalent salt ions works reasonably well in the NF system. Second, the manner by which the NF sidearms are arranged on the surface of the NF backbone core has little influence on the lateral extension of NF sidearms. Third, the lateral extension of the NF sidearms is highly affected by the ionic strength of the system: at low ionic strength, NF-M is most extended but at high ionic strength, NF-H is more stretched out because of the effective screening of the electrostatic interaction. Fourth, the presence of Ca2 + ions induces the attraction between negatively charged residues, which leads to the contraction of the overall NF extension. Finally, the introduction of hydrophobic interaction does not change the general structural organization of the NF sidearms except that the overall extension is contracted.

  7. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba.

    PubMed

    Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R

    1999-09-29

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.

  8. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE PAGES

    Alexandratos, Spiro D.; Zhu, Xiaoping

    2017-08-18

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  9. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandratos, Spiro D.; Zhu, Xiaoping

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  10. Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.

    PubMed

    Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N

    2015-09-01

    In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils.

    PubMed

    Li, Yuping; Douglas, Elliot P

    2013-12-01

    Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding. Published by Elsevier B.V.

  12. Effect of Ca2+ ion concentration on adsorption of poly(carboxylate ether)-based (PCE) superplasticizer on mica.

    PubMed

    Wu, Bo; Chun, Byong-Wa; Gu, Le; Kuhl, Tonya L

    2018-05-09

    Poly(carboxylate ether)-based (PCE) superplasticizers consist of a carboxylic acid backbone and grafted poly(ethylene glycol) (PEG) side chains. Ca 2+ ion bridging mechanism is commonly purported to control PCE's adsorption on negatively charged cement particle surfaces in cement suspension, thus PCE was expected to adsorb on negatively charged surfaces in synthetic pore solutions via Ca 2+ /COO - interactions. Adsorption behaviors of a commercial PCE on negatively charged mica were studied in aqueous electrolyte solutions by a surface forces apparatus. Direct force measurements indicated that the PCE adsorbed onto mica from 0.1 M K 2 SO 4 due to K + ion chelation by the ether oxygen units CH 2 CH 2 O on the PEG chains, but surprisingly did not adsorb from either 0.1 M K 2 SO 4 with saturated Ca(OH) 2 or 0.1 M Ca(NO 3 ) 2 . The adsorption in K 2 SO 4 was weak, enabling the adsorbed PCE layers to be squeezed out under modest compression. Upon separating the surfaces, the PCE immediately achieved an identical re-adsorption. In high-calcium conditions, the PCE was highly positively charged due to Ca 2+ ion chelation by PEG chains and backbone carboxylic groups COO - , and mica also underwent charge reversal due to electrostatic adsorption/binding of Ca 2+ ions. Consequently, the interaction between mica and PCE was electrostatically repulsive and no PCE adsorption occurred. These findings can be explained by the complex interplay of ion chelation by PEG chains, electrostatic binding and screening interactions with charged surfaces in the presence of monovalent and divalent counterions, and ultimately charge reversal of both the charged surfaces and polyelectrolyte in high divalent ion conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Heme Regulates Allosteric Activation of the Slo1 BK Channel

    PubMed Central

    Horrigan, Frank T.; Heinemann, Stefan H.; Hoshi, Toshinori

    2005-01-01

    Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state. PMID:15955873

  14. Pectin/zein microspheres as a sustained drug delivery system

    USDA-ARS?s Scientific Manuscript database

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  15. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers.

    PubMed

    Slochower, David R; Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A

    2015-05-21

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nat. Rev. Mol. Cell Biol., 2008, 9, 99-111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187-192; Michell, FEBS J., 2013, 280, 6281-6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca(2+) [Wang et al., J. Am. Chem. Soc., 2012, 134, 3387-3395; van den Bogaart et al., Nature, 2011, 479, 552-555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo.

  16. Determination of theoretical capacity of metal ion-doped LiMn 2O 4 as the positive electrode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki

    The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.

  17. Interaction of calcium with the human divalent metal-ion transporter-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawki, Ali; Mackenzie, Bryan, E-mail: bryan.mackenzie@uc.edu

    2010-03-12

    Iron deficiency is the most prevalent micronutrient deficiency worldwide. Whereas dietary calcium is known to reduce the bioavailability of iron, the molecular basis of this interaction is not understood. We tested the hypothesis that divalent metal-ion transporter-1 (DMT1)-the principal or only mechanism by which nonheme iron is taken up at the intestinal brush border-is shared also by calcium. We expressed human DMT1 in RNA-injected Xenopus oocytes and examined its activity using radiotracer assays and the voltage clamp. DMT1 did not mediate {sup 45}Ca{sup 2+} uptake. Instead, we found that Ca{sup 2+} blocked the Fe{sup 2+}-evoked currents and inhibited {sup 55}Fe{supmore » 2+} uptake in a noncompetitive manner (K{sub i} {approx} 20 mM). The mechanism of inhibition was independent of voltage and did not involve intracellular Ca{sup 2+} signaling. The alkaline-earth metal ions Ba{sup 2+}, Sr{sup 2+}, and Mg{sup 2+} also inhibited DMT1-mediated iron-transport activity. We conclude that Ca{sup 2+} is a low-affinity noncompetitive inhibitor-but not a transported substrate-of DMT1, explaining in part the effect of high dietary calcium on iron bioavailability.« less

  18. Ion adsorption-induced wetting transition in oil-water-mineral systems.

    PubMed

    Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian

    2015-05-27

    The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

  19. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations

    PubMed Central

    2017-01-01

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na+, K+, Ca2+, and Mg2+, wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery. PMID:28332396

  20. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations.

    PubMed

    Haagh, M E J; Siretanu, I; Duits, M H G; Mugele, F

    2017-04-11

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na + , K + , Ca 2+ , and Mg 2+ , wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.

  1. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  2. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.

  3. Inorganic ion sorbents

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  4. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less

  5. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    NASA Astrophysics Data System (ADS)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  6. An empirical/theoretical model with dimensionless numbers to predict the performance of electrodialysis systems on the basis of operating conditions.

    PubMed

    Karimi, Leila; Ghassemi, Abbas

    2016-07-01

    Among the different technologies developed for desalination, the electrodialysis/electrodialysis reversal (ED/EDR) process is one of the most promising for treating brackish water with low salinity when there is high risk of scaling. Multiple researchers have investigated ED/EDR to optimize the process, determine the effects of operating parameters, and develop theoretical/empirical models. Previously published empirical/theoretical models have evaluated the effect of the hydraulic conditions of the ED/EDR on the limiting current density using dimensionless numbers. The reason for previous studies' emphasis on limiting current density is twofold: 1) to maximize ion removal, most ED/EDR systems are operated close to limiting current conditions if there is not a scaling potential in the concentrate chamber due to a high concentration of less-soluble salts; and 2) for modeling the ED/EDR system with dimensionless numbers, it is more accurate and convenient to use limiting current density, where the boundary layer's characteristics are known at constant electrical conditions. To improve knowledge of ED/EDR systems, ED/EDR models should be also developed for the Ohmic region, where operation reduces energy consumption, facilitates targeted ion removal, and prolongs membrane life compared to limiting current conditions. In this paper, theoretical/empirical models were developed for ED/EDR performance in a wide range of operating conditions. The presented ion removal and selectivity models were developed for the removal of monovalent ions and divalent ions utilizing the dominant dimensionless numbers obtained from laboratory scale electrodialysis experiments. At any system scale, these models can predict ED/EDR performance in terms of monovalent and divalent ion removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mechanistic studies of copper(II)-aminoglycoside mediated DNA damage and magnesium catalyzed nuclease activity of hammerhead ribozyme

    NASA Astrophysics Data System (ADS)

    Patwardhan, Anjali A.

    The antibacterial activity of aminoglycosides stems from their high affinity binding to the 16S rRNA in bacteria resulting in inhibition of protein synthesis. Used to treat acute bacterial infections these antibiotics have limited applications due to their high dosage requirements and the emergence of resistant strains. We have synthesized and characterized Cu(II) derivatives of the aminoglycosides, kanamycin A, tobramycin, neamine, kanamycin B, neomycin B, and paromomycin. The first three exhibit preferential and tight binding to Cu(II) as against neomycin B and kanamycin B and paromomycin. EPR of frozen solutions and UV-visible spectroscopy suggest a change in geometry around the Cu(II) but the stabilities of the complexes in water differ. These copper derivatives efficiently cleave plasmid DNA at micromolar concentrations (hydrolytic) and at nanomolar concentrations in the presence co-reactants like hydrogen peroxide or ascorbic acid. Hydrolysis is multi turnover and exhibits Michelis-Menten kinetics with enzyme-like behavior whereas oxidative cleavage is highly specific with C-4' H abstraction resulting in characteristic base propenal and nucleotide base products. Hydroxyl radicals generated are copper based and are generated in close proximity of the substrate. Hammerhead ribozymes are selectively hydrolyzed in the presence of divalent ions with Mg2+ being the metal ion of choice in vivo . Our studies with complex ions like cobalt hexaammine and fac-triamminetriaquochromium(III) establish outer sphere interactions of Mg2+ with the hammerhead in the catalytic site. There are two sets of sites, one structural and one catalytic. Complex ions in the catalytic site and divalent ions in the structural site result in a slow but active hammerhead ribozyme suggesting that the complex ions are not inhibitory, contrary to what was suggested previously.

  8. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  9. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  10. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    PubMed

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them good vehicles for metal ions delivery. NDs played the Trojan horse role by allowing large amounts of metal ions accumulate into living cells followed by subsequent release of ions in the interior of cells, which then led to cytotoxicity. The present experimental and theoretical results provide useful insight into understanding of cytotoxicity triggered by nanoparticle-ion interactions, and open new ways in the interpretation of nanotoxicity.

  11. Reaction of N,N'-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.

    2018-05-01

    Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  12. A Single Serine Residue Determines Selectivity to Monovalent Metal Ions in Metalloregulators of the MerR Family

    PubMed Central

    Ibáñez, María M.

    2015-01-01

    ABSTRACT MerR metalloregulators alleviate toxicity caused by an excess of metal ions, such as copper, zinc, mercury, lead, cadmium, silver, or gold, by triggering the expression of specific efflux or detoxification systems upon metal detection. The sensor protein binds the inducer metal ion by using two conserved cysteine residues at the C-terminal metal-binding loop (MBL). Divalent metal ion sensors, such as MerR and ZntR, require a third cysteine residue, located at the beginning of the dimerization (α5) helix, for metal coordination, while monovalent metal ion sensors, such as CueR and GolS, have a serine residue at this position. This serine residue was proposed to provide hydrophobic and steric restrictions to privilege the binding of monovalent metal ions. Here we show that the presence of alanine at this position does not modify the activation pattern of monovalent metal sensors. In contrast, GolS or CueR mutant sensors with a substitution of cysteine for the serine residue respond to monovalent metal ions or Hg(II) with high sensitivities. Furthermore, in a mutant deleted of the Zn(II) exporter ZntA, they also trigger the expression of their target genes in response to either Zn(II), Cd(II), Pb(II), or Co(II). IMPORTANCE Specificity in a stressor's recognition is essential for mounting an appropriate response. MerR metalloregulators trigger the expression of specific resistance systems upon detection of heavy metal ions. Two groups of these metalloregulators can be distinguished, recognizing either +1 or +2 metal ions, depending on the presence of a conserved serine in the former or a cysteine in the latter. Here we demonstrate that the serine residue in monovalent metal ion sensors excludes divalent metal ion detection, as its replacement by cysteine renders a pan-metal ion sensor. Our results indicate that the spectrum of signals detected by these sensors is determined not only by the metal-binding ligand availability but also by the metal-binding cavity flexibility. PMID:25691529

  13. Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Segi, Takashi; Masuda, Ryo; Kobayashi, Yasuhiro; Tsubota, Takayuki; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    Layered rocksalt type oxides, such as Li(Ni1/3Mn1/3Co1/3)O2, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the 61Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni3+ with Jahn-Teller distortion from the Ni2+ ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  14. Price To Be Paid for Two-Metal Catalysis: Magnesium Ions That Accelerate Chemistry Unavoidably Limit Product Release from a Protein Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Douglas M.; Bao, Zhao-Qin; O'’Brien, Patrick

    Incorporation of divalent metal ions into an active site is a fundamental catalytic tool used by diverse enzymes. Divalent cations are used by protein kinases to both stabilize ATP binding and accelerate chemistry. Kinetic analysis establishes that Cyclin-dependent kinase 2 (CDK2) requires simultaneous binding of two Mg 2+ ions for catalysis of phosphoryl transfer. This tool, however, comes with a price: the rate-acceleration effects are opposed by an unavoidable rate-limiting consequence of the use of two Mg 2+ ions by CDK2. The essential metal ions stabilize ADP product binding and limit the overall rate of the reaction. We demonstrate thatmore » product release is rate limiting for activated CDK2 and evaluate the effects of the two catalytically essential Mg 2+ ions on the stability of the ADP product within the active site. We present two new crystal structures of CDK2 bound to ADP showing how the phosphate groups can be coordinated by either one or two Mg 2+ ions, with the occupancy of one site in a weaker equilibrium. Molecular dynamics simulations indicate that ADP phosphate mobility is more restricted when ADP is coordinated by two Mg 2+ ions compared to one. The structural similarity between the rigid ADP·2Mg product and the cooperatively assembled transition state provides a mechanistic rational for the rate-limiting ADP release that is observed. We demonstrate that although the simultaneous binding of two Mg 2+ ions is essential for efficient phosphoryl transfer, the presence of both Mg 2+ ions in the active site also cooperatively increases ADP affinity and opposes its release. Evolution of protein kinases must have involved careful tuning of the affinity for the second Mg 2+ ion in order to balance the needs to stabilize the chemical transition state and allow timely product release. The link between Mg 2+ site affinity and activity presents a chemical handle that may be used by regulatory factors as well as explain some mutational effects.« less

  15. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  16. Inorganic ion sorbent method

    DOEpatents

    Teter, David M [Edgewood, NM; Brady, Patrick V [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM

    2007-07-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  17. Coherent Transient Systems Evaluation

    DTIC Science & Technology

    1993-06-17

    europium doped yttrium silicate in collaboration with IBM Almaden Research Center. Research into divalent ion doped crystals as photon gated materials...noise limited model and ignore the non-ideal properties of the medium, nonlinear effects, spatial crosstalk, gating efficiencies, local heating, the...demonstration of the coherent transient continuous optical processor was performed in europium doped yttrium silicate. Though hyperfine split ground

  18. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case ofmore » positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  19. Ground-state geometries and stability of impurity doped clusters: LinBe and LinMg (n=1-12)

    NASA Astrophysics Data System (ADS)

    Deshpande, M.; Dhavale, A.; Zope, R. R.; Chacko, S.; Kanhere, D. G.

    2000-12-01

    We have investigated the ground-state geometries of LinBe and LinMg (n=1-12) clusters using ab initio molecular dynamics. These divalent impurities Be and Mg induce different geometries and follow a different growth path for n>5. LinMg clusters are significantly different from the host geometries while LinBe clusters can be approximately viewed as Be occupying an interstitial site in the host. Our results indicate that Be gets trapped inside the Li cage, while Mg remains on the surface of the cluster. Mg-induced geometries become three-dimensional earlier at n=4 as compared to the Be system. In spite of a distinct arrangement of atoms in both cases the character of the wave functions in the d manifold is remarkably similar. In both cases an eight valence electron system has been found to be the most stable, in conformity with the spherical jellium model.

  20. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  1. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil, E-mail: Anil.Shukla@pnnl.gov; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations ofmore » singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  2. Hydration Energies and Structures of Alkaline Earth Metal Ions, M2+ (H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba

    PubMed Central

    Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.

    2005-01-01

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612

  3. The bio-physics of condensation of divalent cations into the bacterial wall has implications for growth of Gram-positive bacteria.

    PubMed

    Rauch, Cyril; Cherkaoui, Mohammed; Egan, Sharon; Leigh, James

    2017-02-01

    The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system. We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes. The resulting equations define how cations interact physically with the wall and the characteristic time required for a cation to leave the wall and enter into the bacterium to enable its usage for bacterial metabolism and growth. The model was challenged against experimental data regarding growth of Gram-positive bacteria in the presence of varying concentration of divalent ions. The model explains qualitatively and quantitatively how divalent cations interact with the wall as well as how the biophysical properties of the wall impact on bacterial growth (in particular the initiation of bacterial growth). The interplay between polymer biophysics and the biology of Gram positive bacteria is defined for the first time as a new set of variables that contribute to the kinetics of bacterial growth. Providing an understanding of how bacteria capture essential metal cations in way that does not follow usual binding laws has implications when considering the control of such organisms and their ability to survive and grow in extreme environments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Studies on the effect of divalent metal ions on exfoliative toxins from Staphylococcus hyicus: indications of ExhA and ExhB being metalloproteins.

    PubMed

    Andresen, L O

    1999-04-01

    The exfoliative toxins ExhA and ExhB produced by Staphylococcus hyicus strains NCTC10350 and 1289D-88, respectively, were investigated with regard to the effect of divalent metal ions on toxin production as measured in indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. Data were obtained as endpoint titer values and used as semiquantitative measures for the amount of exfoliative toxin detected in culture supernatants. It was shown that the endpoint titers of ExhA in supernatants from cultures of strain NCTC10350 grown in the presence of 0.5 mM CaCl2, Cu(NO3)2 or ZnSO4 were higher compared to titers obtained by growth in medium supplemented with a number of other divalent metal salts. The titer of ExhB as determined in the indirect ELISA was increased by addition of 0.5 mM CoCl2, Cu(NO3)2 or CuSO4 to the growth medium. When ExhA or ExhB, prepared without addition of metal salt to the liquid growth medium, was subsequently incubated with 25 mM of Co2+, Cu2+ or Zn2+, the endpoint titers of the toxins were increased. Dialysis of ExhA and ExhB prepared with Zn2+ and Co2+, respectively, against certain metal chelators, resulted in a reduction of the titer determined in ELISA. Other metal chelators had varied effect in the detection of the toxins in ELISA. It was, however, not possible to restore the recognition of toxins by the monoclonal antibodies by incubation of EDDHA-dialyzed toxin preparations with Co2+, Cu2+ or Zn2+. The results of this study suggest that ExhA and ExhB are metalloproteins.

  5. Inorganic ion sorbents and methods for using the same

    DOEpatents

    Teter, David M [Edgewood, NM; Brady, Patrick V [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM

    2006-07-11

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  6. Regulation of the Electric Charge in Phosphatidic Acid Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Anderson, Nathaniel A.; Travesset, Alex

    Although a minor component of the lipidome, phosphatidic acid (PA) plays a crucial role in nearly all signaling pathways involving cell membranes, in part because of its variable electrical charge in response to environmental conditions. To investigate how charge is regulated in domains of PA, we applied surface-sensitive X-ray reflectivity and fluorescence near-totalreflection techniques to determine the binding of divalent ions (Ca2+ at various pH values) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) and to the simpler lipid dihexadecyl phosphate (DHDP) spread as monolayers at the air/water interface. We found that the protonation state of PA is controlled not only by the pKa andmore » local pH but also by the strong affinity to PA driven by electrostatic correlations from divalent ions and the cooperative effect of the two dissociable protons, which dramatically enhance the surface charge. A precise theoretical model is presented providing a general framework to predict the protonation state of PA. Implications for recent experiments on charge regulation by hydrogen bonding and the role of pH in PA signaling are discussed in detail.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Akabayov; C Richardson

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstratemore » that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.« less

  8. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  9. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  10. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Edward

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.

  11. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1998-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.

  12. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1998-11-10

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.

  13. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    PubMed Central

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  14. Mechanistic characterization of the HDV genomic ribozyme: solvent isotope effects and proton inventories in the absence of divalent metal ions support C75 as the general acid.

    PubMed

    Cerrone-Szakal, Andrea L; Siegfried, Nathan A; Bevilacqua, Philip C

    2008-11-05

    The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKa's are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.

  15. Symposium on Biosensors

    DTIC Science & Technology

    1989-11-01

    cherists because a new parameter; the refractive index of materials is an important in design as the chemistry of the absorbing or reacting layer ...redox electrode surfaces (the Sharp electrodes); use of enzymes in reactive layers to generate from neutral charge substrate species that can be...and natural and synthetic ionophores in monovalent and divalent ion sensors since 1965); use of selective layers to extract or partition species into

  16. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension.

    PubMed

    Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry

    2011-05-01

    Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.

  17. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.

    PubMed

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem

    2015-11-17

    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.

  18. Inhibition of Monometalated Methionine Aminopeptidase: Inhibitor Discovery and Crystallographic Analysis†

    PubMed Central

    Huang, Min; Xie, Sheng-Xue; Ma, Ze-Qiang; Huang, Qing-Qing; Nan, Fa-Jun; Ye, Qi-Zhuang

    2008-01-01

    Two divalent metal ions are commonly seen in the active site cavity of methionine aminopeptidase, and at least one of the metal ions is directly involved in catalysis. Although ample structural and functional information is available for dimetalated enzyme, methionine aminopeptidase likely functions as a monometalated enzyme under physiological conditions. Information on structure, as well as catalysis and inhibition, of the monometalated enzyme is lacking. By improving conditions of high throughput screening, we identified a unique inhibitor with specificity toward the monometalated enzyme. Kinetic characterization indicates a mutual exclusivity in binding between the inhibitor and the second metal ion at the active site. This is confirmed by X-ray structure, and this inhibitor coordinates with the first metal ion and occupies the space normally occupied by the second metal ion. Kinetic and structural analyses of the inhibition by this and other inhibitors provide insight in designing effective inhibitors of methionine aminopeptidase. PMID:17948983

  19. Comparison of Se and Te clusters produced by ion bombardment

    NASA Astrophysics Data System (ADS)

    Trzyna, Małgorzata

    2017-01-01

    Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS). It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to 1300 m/z. Local maxima or minima (magic numbers) are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  20. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    PubMed

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Oxidation State of Europium in Halide Glasses

    PubMed Central

    Weber, J.K.R.; Vu, M.; Paßlick, C.; Schweizer, S.; Brown, D.E.; Johnson, C.E.; Johnson, J.A.

    2012-01-01

    The luminescent properties of divalent europium ions can be exploited to produce storage phosphors for x-ray imaging applications. The relatively high cost and limited availability of divalent europium halides makes it desirable to synthesize them from the readily available trivalent salts. In this work, samples of pure EuCl3 and fluoride glass melts doped with EuCl3 were processed at 700-800 °C in an inert atmosphere furnace. The Eu oxidation state in the resulting materials was determined using fluorescence and Mössbauer spectroscopy. Heat treatment of pure EuCl3 for 10 minutes at 710 °C resulted in a material comprising approximately equal amounts of Eu2+ and Eu3+. Glasses made using mixtures of EuCl2 and EuCl3 in the starting material contained both oxidation states. This paper describes the sample preparation and analysis and discusses the results in the context of chemical equilibria in the melts. PMID:22101252

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui

    Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less

  3. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  4. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.

    PubMed

    Kuznar, Zachary A; Elimelech, Menachem

    2004-12-15

    The transport and deposition (adhesion) kinetics of viable Cryptosporidium parvum oocysts onto ultrapure quartz surfaces in a radial stagnation point flow system were investigated. Utilizing an optical microscope and an image-capturing device enabled real time observation of oocyst deposition behavior onto the quartz surface in solutions containing either monovalent (KCl) or divalent (CaCl2) salts. Results showed a significantly lower oocyst deposition rate in the presence of a monovalent salt compared to a divalent salt. With a monovalent salt, oocyst deposition rates and corresponding attachment efficiencies were relatively low, even at high KCl concentrations where Derjaguin-Landau-Verwey-Overbeek (DLVO) theory predicts the absence of an electrostatic energy barrier. On the other hand, in the presence of a divalent salt, oocyst deposition rates increased continuously as the salt concentration was increased over the entire range of ionic strengths investigated. The unusually low deposition rate in a monovalent salt solution is attributed to "electrosteric" repulsion between the Cryptosporidium oocyst and the quartz surface, most likely due to proteins on the oocyst surface that extend into the solution. It is further proposed that specific binding of calcium ions to the oocyst surface functional groups results in charge neutralization and conformational changes of surface proteins that significantly reduce electrosteric repulsion.

  5. Structure and catalytic mechanism of LigI: insight into the amidohydrolase enzymes of cog3618 and lignin degradation.

    PubMed

    Hobbs, Merlin Eric; Malashkevich, Vladimir; Williams, Howard J; Xu, Chengfu; Sauder, J Michael; Burley, Stephen K; Almo, Steven C; Raushel, Frank M

    2012-04-24

    LigI from Sphingomonas paucimobilis catalyzes the reversible hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) to 4-oxalomesaconate and 4-carboxy-2-hydroxymuconate in the degradation of lignin. This protein is a member of the amidohydrolase superfamily of enzymes. The protein was expressed in Escherichia coli and then purified to homogeneity. The purified recombinant enzyme does not contain bound metal ions, and the addition of metal chelators or divalent metal ions to the assay mixtures does not affect the rate of product formation. This is the first enzyme from the amidohydrolase superfamily that does not require a divalent metal ion for catalytic activity. The kinetic constants for the hydrolysis of PDC are 340 s(-1) and 9.8 × 10(6) M(-1) s(-1) (k(cat) and k(cat)/K(m), respectively). The pH dependence on the kinetic constants suggests that a single active site residue must be deprotonated for the hydrolysis of PDC. The site of nucleophilic attack was determined by conducting the hydrolysis of PDC in (18)O-labeled water and subsequent (13)C nuclear magnetic resonance analysis. The crystal structures of wild-type LigI and the D248A mutant in the presence of the reaction product were determined to a resolution of 1.9 Å. The C-8 and C-11 carboxylate groups of PDC are coordinated within the active site via ion pair interactions with Arg-130 and Arg-124, respectively. The hydrolytic water molecule is activated by the transfer of a proton to Asp-248. The carbonyl group of the lactone substrate is activated by electrostatic interactions with His-180, His-31, and His-33.

  6. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identificationmore » of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.« less

  7. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  8. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the usemore » of graphene for improving the ionic charge exchange.« less

  9. Synthesis, characterization, and ion-exchange properties of colloidal zeolite nanocrystals

    NASA Astrophysics Data System (ADS)

    Jawor, Anna; Jeong, Byeong-Heon; Hoek, Eric M. V.

    2009-10-01

    Here, we present physical-chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.

  10. Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme

    NASA Astrophysics Data System (ADS)

    Harris, Michael E.; Christian, Eric L.

    There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.

  11. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways.

    PubMed

    Heinz, Leonard P; Kopec, Wojciech; de Groot, Bert L; Fink, Rainer H A

    2018-05-02

    The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba 2+ , Ca 2+ , Mg 2+ , K + , Na + and Cl - ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.

  12. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    NASA Astrophysics Data System (ADS)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  13. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  14. Cation-containing lipid membranes – experiment and md simulations

    DOE PAGES

    Kučerka, Norbert; Dushanov, Ermuhammas; Kholmurodov, Kholmirzo T.; ...

    2017-11-27

    Here, using small angle neutron diffraction and molecular dynamics simulations we studied the interactions between calcium (Ca 2+) or zinc (Zn 2+) cations, and oriented gel phase dipalmitoyl-phosphatidylcholine (DPPC) bilayers. For both cations studied at ~1:7 divalent metal ion to lipid molar ratio (Me2+:DPPC), bilayer thickness increased. Simulation results helped reveal subtle differences in the effects of the two cations on gel phase membranes.

  15. Novel Colloidal and Dynamic Interfacial Phenomena in Liquid Crystalline Systems

    DTIC Science & Technology

    2014-09-13

    Pablo. Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids, Soft Matter, (03 2011): 6828. doi...10.1021/la103975s Santanu Kumar Pal, Claribel Acevedo-Ve?lez, Jacob T. Hunter, Nicholas L. Abbott. Effects of Divalent Ligand Interactions on Surface...peer-reviewed journals: (c) Presentations 7 Presentation #1 (a) Electrical double layer and specific ion effects at interfaces between thermotropic

  16. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    PubMed

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  17. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions.

    PubMed

    Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyżnikowska, Żaneta

    2016-10-01

    The interaction of natural lipopeptide pseudofactin II with a series of doubly charged metal cations was examined by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) mass spectrometry and molecular modelling. The molecular modelling for metal-pseudofactin II provides information on the metal-peptide binding sites. Overall, Mg(2+), Ca(2+) and Zn(2+) favor the association with oxygen atoms spanning the peptide backbone, whereas Cu(2+) is coordinated by three nitrogens. Circular dichroism (CD) results confirmed that Zn(2+) and Cu(2+) can disrupt the secondary structure of pseudofactin II at high concentrations, while Ca(2+) and Mg(2+) did not essentially affect the structure of the lipopeptide. Interestingly, our results showed that the addition of Zn(2+) and Cu(2+) helped smaller micelles to form larger micellar aggregates. Since pseudofactin II binds metals, we tested whether this phenomena was somehow related to its antimicrobial activity against Staphylococcus epidermidis and Proteus mirabilis. We found that the antimicrobial effect of pseudofactin II was increased by supplementation of culture media with all tested divalent metal ions. Finally, by using Gram-positive and Gram-negative bacteria we showed that the higher antimicrobial activity of metal complexes of pseudofactin II is attributed to the disruption of the cytoplasmic membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  19. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites.

    PubMed

    Khaydarov, Rashid A; Khaydarov, Renat R; Gapurova, Olga

    2010-03-01

    The paper deals with a novel method of obtaining nanocarbon-conjugated polymer nanocomposites (NCPC) using nanocarbon colloids (NCC) and polyethylenimine (PEI) for water purification from metal ions. Size of NCC, process of NCPC synthesis, its chemical characteristics, ratio of NCC and PEI in NCPC, speed of coagulation of NCPC, mechanism of interaction of metal ions with NCPC, ability of removing metal ions from water by NCPC against pH have been studied. NCPC has a bonding capacity of 4.0-5.7mmol/g at pH 6 for most of the divalent metal ions. Percent of sorption of Zn(2+), Cd(2+), Cu(2+), Hg(2+), Ni(2+), Cr(6+) ions is higher than 99%. Lifetime of NCPC before coagulation in the treated water is 1s-1000min and depends on the ratio of polymeric molecules and carbon nanoparticle concentrations. Results of laboratory tests of the method are described. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Histone Deacetylase 8: Characterization of Physiological Divalent Metal Catalysis.

    PubMed

    Nechay, Michael R; Gallup, Nathan M; Morgenstern, Amanda; Smith, Quentin A; Eberhart, Mark E; Alexandrova, Anastassia N

    2016-07-07

    Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from histones, resulting in gene silencing. Overexpression of HDACs is associated with cancer, and their inhibitors are of particular interest as chemotherapeutics. However, HDACs remain a target of mechanistic debate. HDAC class 8 is the most studied HDAC, and of particular importance due to its human oncological relevance. HDAC8 has traditionally been considered to be a Zn-dependent enzyme. However, recent experimental assays have challenged this assumption and shown that HDAC8 is catalytically active with a variety of different metals, and that it may be a Fe-dependent enzyme in vivo. We studied two opposing mechanisms utilizing a series of divalent metal ions in physiological abundance (Zn(2+), Fe(2+), Co(2+), Mn(2+), Ni(2+), and Mg(2+)). Extensive sampling of the entire protein with different bound metals was done with the mixed quantum-classical QM/DMD method. Density functional theory (DFT) on an unusually large cluster model was used to describe the active site and reaction mechanism. We have found that the reaction profile of HDAC8 is similar among all metals tested, and follows one of the previously published mechanisms, but the rate-determining step is different from the one previously claimed. We further provide a scheme for estimating the metal binding affinities to the protein. We use the quantum theory of atoms in molecules (QTAIM) to understand the different binding affinities for each metal in HDAC8 as well as the ability of each metal to bind and properly orient the substrate for deacetylation. The combination of this data with the catalytic rate constants is required to reproduce the experimentally observed trend in metal-depending performance. We predict Co(2+) and Zn(2+) to be the most active metals in HDAC8, followed by Fe(2+), and Mn(2+) and Mg(2+) to be the least active.

  1. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  2. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum.

    PubMed

    Chakraborty, Dipjyoti; Maji, Samir; Bandyopadhyay, Abhijit; Basu, Sukalyan

    2007-11-01

    Mucilaginous seeds of Ocimum basilicum were used in uptake studies with cesium-137 and strontium-90. Results showed that uptake was dependent on the structural integrity of the mucilage fibrils. Water imbibed seeds showed higher adsorption of both 137Cs and 90Sr in comparison to seeds pretreated with NaOH, HCl and Na-periodate solution. The uptake was pH dependent and while some divalent metal ions had no or little detrimental effect, the alkali metal ions Li+, Na+ and K+ decreased the uptake. The maximum adsorption capacity was 160 mg cesium g(-1) and 247 mg strontium g(-1) seed dry weight.

  3. Noble gas cluster ions

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10-31, 3.58 × 10-31, 0.23 × 10-31cm6/s, respectively for Neon, Argon, Xenon cluster ions.

  4. Tet(L) and Tet(K) Tetracycline-Divalent Metal/H+ Antiporters: Characterization of Multiple Catalytic Modes and a Mutagenesis Approach to Differences in Their Efflux Substrate and Coupling Ion Preferences

    PubMed Central

    Jin, Jie; Guffanti, Arthur A.; Bechhofer, David H.; Krulwich, Terry A.

    2002-01-01

    The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me2+) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me2+ efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative “antiporter motif,” motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates and others are important only for particular substrates. PMID:12169596

  5. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions.

  6. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  7. Electrostatic effects on clustering and ion dynamics in ionomer melts

    NASA Astrophysics Data System (ADS)

    Ma, Boran; Nguyen, Trung; Pryamitsyn, Victor; Olvera de La Cruz, Monica

    An understanding of the relationships between ionomer chain morphology, dynamics and counter-ion mobility is a key factor in the design of ion conducting membranes for battery applications. In this study, we investigate the influence of electrostatic coupling between randomly charged copolymers (ionomers) and counter ions on the structural and dynamic features of a model system of ionomer melts. Using coarse-grained molecular dynamics (CGMD) simulations, we found that variations in electrostatic coupling strength (Γ) remarkably affect the formation of ion-counter ion clusters, ion mobility, and polymer dynamics for a range of charged monomer fractions. Specifically, an increase in Γ leads to larger ionic cluster sizes and reduced polymer and ion mobility. Analysis of the distribution of the radius of gyration of the clusters further reveals that the fractal dimension of the ion clusters is nearly independent from Γ for all the cases studied. Finally, at sufficiently high values of Γ, we observed arrested heterogeneous ions mobility, which is correlated with an increase in ion cluster size. These findings provide insight into the role of electrostatics in governing the nanostructures formed by ionomers.

  8. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    NASA Astrophysics Data System (ADS)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  9. Initial Binding of Ions to the Interhelical Loops of Divalent Ion Transporter CorA: Replica Exchange Molecular Dynamics Simulation Study

    PubMed Central

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795

  10. Evidence that Clouds of keV Hydrogen Ion Clusters Bounce Elastically from a Solid Surface

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Martin, James J.; Chakrabarti, Suman; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The behavior of hydrogen ion clusters is tested by an inject/hold/extract technique in a Penning-Malmberg trap. The timing pattern of the extraction signals is consistent with the clusters bouncing elastically from a detector several times. The ion clusters behave more like an elastic fluid than a beam of ions.

  11. Ion composition in a noctilucent cloud

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Witt, G.

    1976-01-01

    Ion composition at mesospheric altitudes was measured and compared between high and mid-latitude sites under summer daytime conditions. Rocket-borne measurements were made with pumped quadrupole ion mass spectrometers. The mid-latitude data were obtained at Wallops Island, Virginia on June 30, 1973, at 1510 LMT. Large quantities of hydronium cluster ions were observed through 109+, with maximum concentrations at 55+ and 73+. Also, cluster ions of nitric oxide were observed through 84+. The high latitude launch occurred at Kiruna, Sweden on August 2, 1973, at 0700 LMT following visual sighting of a noctilucent cloud on the prior evening. The data near mesopause shows cluster ions, but also a preponderance of heavy ions between 90 and 145 AMU, with groupings 18 AMU apart but unrelated to the more typical cluster ions. One possible set of consistent identifications leads to iron and iron oxide hydrates. These results may suggest the presence of metallic particulates and ions which form hydrated clusters ions.

  12. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  13. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less

  14. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    PubMed

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) < Ca(2+) < Na(+) < Sr(2+) < K(+) < Cs(+), follows cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  15. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE PAGES

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.; ...

    2017-10-05

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less

  16. FAST TRACK COMMUNICATION: Inhomogeneous charge redistribution in Xe clusters exposed to an intense extreme ultraviolet free electron laser

    NASA Astrophysics Data System (ADS)

    Iwayama, H.; Sugishima, A.; Nagaya, K.; Yao, M.; Fukuzawa, H.; Motomura, K.; Liu, X.-J.; Yamada, A.; Wang, C.; Ueda, K.; Saito, N.; Nagasono, M.; Tono, K.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.; Togashi, T.

    2010-08-01

    The emission of highly charged ions from Xe clusters exposed to intense extreme ultraviolet laser pulses (λ ~ 52 nm) from the free electron laser in Japan was investigated using ion momentum spectroscopy. With increasing average cluster size, we observed multiply charged ions Xez + up to z = 3. From kinetic energy distributions, we found that multiply charged ions were generated near the cluster surface. Our results suggest that charges are inhomogeneously redistributed in the cluster to lower the total energy stored in the clusters.

  17. Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme

    PubMed Central

    Inoue, Atsushi; Takagi, Yasuomi; Taira, Kazunari

    2004-01-01

    Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst. PMID:15302920

  18. Interaction studies of human prion protein (HuPrP109-111: methionine-lysine-histidine) tripeptide model with transition metal cations.

    PubMed

    Pitchumani Violet Mary, C; Shankar, R; Vijayakumar, S; Kolandaivel, P

    2016-09-01

    In the present study, the coordination bonds between the Methionine-Lysine-Histidine (Ac-MKH-NHMe) tripeptide model associated with the fifth metal binding site, which triggers the β-sheet formation of human prion protein and the divalent metal cations such as Mn(2+), Cu(2+) and Zn(2+) were studied using B3LYP and M052X levels of theory with LANL2DZ basis set. For each transition divalent metal cation, three different coordination modes (4N, 3NO, and 2NSO) were analyzed. The present result reveals that overall structural parameters of MKH model tripeptide are altered due to the interaction of divalent metal cations. Among these three coordination modes, the 4N-M(2)(+) and 4N2O-Mn(2+) complexes are found to have the larger interaction energy, MIA and deformation energies. The triply deprotonated coordination mode of the Ac-MKH-NHMe tripeptide transfers more amount of charge to the divalent metal cations than the dually and singly deprotonated complexes. Furthermore, the atoms in molecules (AIM) topological analysis confirm that, the interaction between the metal cations Mn(2+), Cu(2+) and Zn(2+) and Ac-MKH-NHMe tripeptide are electrostatic dominant and the coordination modes with triply deprotonation states possess larger electron density at their BCP corresponding to their coordination bonds. The electrostatic potential difference maps of the most stable 4N-M(2+) (M(2+)=Cu(2+) and Zn(2+)) and 4N2O-Mn(2+) reveals that, as the ionic radii of the metal ion increases, the delocalization charges localized on the metal cations are found to be decreased. The Infra-red stretching frequencies of NH, CH, and CH2 groups of each coordination complexes are observed with shift in their stretching frequencies. From these observations we conclude that, the transition divalent metal cations binding in 4N coordination mode will induce more conformational changes of the Prion protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Study on the coloration response of a radiochromic film to MeV cluster ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Chiba, Atsuya; Hirano, Yoshimi; Saitoh, Yuichi

    2017-11-01

    A radiochromic film, Gafchromic HD-V2, is applied to a possible method of measuring a two-dimensional (2D) spatial profile of MeV cluster ion beams. The coloration responses of the HD-V2 film to MeV carbon and gold cluster ion beams are experimentally investigated since some cluster effect may appear. The degree of the film coloration is quantified as a change in optical density (OD) by reading the films with an image scanner for high-resolution measurement of the 2D beam profile. The OD response of HD-V2 is characterized as a function of the ion and atom fluence for comparison. The dependences of the OD response on the cluster size, kinetic energy, and ion species are discussed. It is found that the sensitivity of the OD change is reduced when the cluster size is large. The beam profile of MeV cluster ion beams delivered from the tandem accelerator in TIARA is characterized from the measurement result using HD-V2 films. The present results show that the use of the Gafchromic HD-V2 film is suitable for the detail beam profile measurement of MeV cluster ions, especially C60 ions, whose available intensity is rather low in comparison with that of monatomic ion beams.

  20. Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor

    NASA Astrophysics Data System (ADS)

    Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.

    2018-05-01

    Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.

  1. Water-separated ion pairs cause the slow dielectric mode of magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Mamatkulov, Shavkat I.; Rinne, Klaus F.; Buchner, Richard; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-06-01

    We compare the dielectric spectra of aqueous MgSO4 and Na2SO4 solutions calculated from classical molecular dynamics simulations with experimental data, using an optimized thermodynamically consistent sulfate force field. Both the concentration-dependent shift of the static dielectric constant and the spectral shape match the experimental results very well for Na2SO4 solutions. For MgSO4 solutions, the simulations qualitatively reproduce the experimental observation of a slow mode, the origin of which we trace back to the ion-pair relaxation contribution via spectral decomposition. The radial distribution functions show that Mg2+ and SO42 - ions form extensive water-separated—and thus strongly dipolar—ion pairs, the orientational relaxation of which provides a simple physical explanation for the prominent slow dielectric mode in MgSO4 solutions. Remarkably, the Mg2+-SO42 - ion-pair relaxation extends all the way into the THz range, which we rationalize by the vibrational relaxation of tightly bound water-separated ion pairs. Thus, the relaxation of divalent ion pairs can give rise to widely separated orientational and vibrational spectroscopic features.

  2. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Meijer, E W

    2010-07-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3) with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)(n)Cs](+), and in the negative ion mode is [(CsI)(n)I](-). In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    PubMed

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  4. Measurements of ion energies from the explosion of large hydrogen iodide clusters irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tisch, J. W. G.; Hay, N.; Springate, E.; Gumbrell, E. T.; Hutchinson, M. H. R.; Marangos, J. P.

    1999-10-01

    We present measurements of ion energies from the interaction of intense, femtosecond laser pulses with large mixed-species clusters. Multi-keV protons and ~100-keV iodine ions are observed from the explosion of HI clusters produced in a gas jet operated at room temperature. Clusters formed from molecular gases such as HI are thus seen to extend the advantages of the laser-cluster interaction to elements that do not readily form single-species clusters. In the light of recently reported nuclear fusion in laser-heated clusters, we also examine the possibility of boosting the explosion energies of low-Z ions through the use of mixed species clusters.

  5. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  7. Secondary ion mass spectra of gold super clusters up to 140000 Dalton

    NASA Astrophysics Data System (ADS)

    Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Schmid, G.

    1990-03-01

    The bombardment of a two-shell gold complex (Au55(PPh3)12Cl6) with 10 keV Xe+-ions results in the formation of secondary ion masses up to 140000 u. These are by far the largest secondary ions observed under primary particle bombardment. The detection and identification of these ions with a Time-Of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) gives important information about the behavior of naked full-shell clusters. Au13 particles, generated from the Au55 cluster, serve as building blocks for a series of super-clusters up to (Au13)55. The results for keV-ion bombardment are compared to those for MeV-ion bombardment.

  8. Characterization of the reactive and dissociative behavior of transition metal oxide cluster ions in the gas phase.

    PubMed

    Maleknia, S; Brodbelt, J; Pope, K

    1991-05-01

    The reactive and dissociative behavior of molybdenum and tungsten oxide cluster ions has been studied in the gas phase using a triple quadrupole mass spectrometer. Cluster ions (MO3) n (-) were formed via a simple thermal desorption/electron capture negative ionization method, and their structures were characterized by collision-activated dissociation (CAD). Typically, the clusters fragment by losses of neutral (MO3) units. Reactions of the oxide cluster ions with ethylene oxide, cyclohexene oxide, ethylene sulfide cyclohexene sulfide, 2,3-butanedione, and 2,4-pentanedione were examined, and product ions were characterized by CAD. The clusters react with ethylene oxide by addition of ethylene oxide or net addition of oxygen, whereas the clusters react with ethylene sulfide via net addition of one or two sulfur atoms. Reactions of the clusters with the diones result in addition of one or two dione units, in some cases with dehydration.

  9. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  10. Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2011-03-01

    We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.

  11. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  12. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  13. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries

    DOE PAGES

    Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...

    2017-08-24

    Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less

  14. The amino acid sequences of carboxypeptidases I and II from Aspergillus niger and their stability in the presence of divalent cations.

    PubMed

    Svendsen, I; Dal Degan, F

    1998-09-08

    The amino acid sequences of serine carboxypeptidase I (CPD-I) and II (CPD-II), respectively, from Aspergillus niger have been determined by conventional Edman degradation of the reduced and vinylpyridinated enzymes and peptides hereof generated by cleavage with cyanogen bromide, iodobenzoic acid, glutamic acid cleaving enzyme, AspN-endoproteinase and EndoLysC proteinase. CPD-I consists of a single peptide chain of 471 amino acid residues, three disulfide bridges and nine N-glycosylated asparaginyl residues, while CPD-II consists of a single peptide chain of 481 amino acid residues, has three disulfide bridges, one free cysteinyl residue and nine glycosylated asparaginyl residues. The enzymes are closely related to carboxypeptidase S3 from Penicillium janthinellum. Both Ca2+ and Mg2+ stabilize CPD-I as well as CPD-II, at basic pH values, Ca2+ being most effective, while the divalent ions have no effect on the activity of the two enzymes.

  15. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, L.; Beuhler, R.J.; Matthew, M.W.; Ledbetter, M.

    1984-06-25

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10/sup 6/ atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm/sup 2//sec in order to effect a precise modification in that selected area of the workpiece.

  16. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, Lewis; Buehler, Robert J.; Matthew, Michael W.; Ledbetter, Myron

    1985-01-01

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10.sup.6 atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm.sup.2 /sec. in order to effect a precise modification in that selected area of the workpiece.

  17. On Ion Clusters in the Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Donn, Bertram

    1960-01-01

    In a recent paper V.I. Krassovsky (1958) predicts the occurrence of clusters of large numbers of atoms and molecules around ions in the interstellar gas. He then proposes a number of physicochemical processes that would be considerably enhanced by the high particle density in such clusters. In particular, he suggests that absorption by negative ions formed in the clusters would account for the interstellar extinction without any necessity for the presence of grains. Because of the important consequences that ion clusters could have, it is necessary to examine their occurrence more fully. This note re-examines the formation of ion clusters in space and shows that even ion-molecule pairs are essentially non-existent. Ion clusters have been considered by Bloom and Margenau (1952) from the same point of view as that used by Krassovsky, whose basic reference (Joffe and Semenov 1933) unfortunately is not available. A different approach has been used by Eyring, Hirschfelder, and Taylor (1936) following the methods of chemical equilibrium. Both the references cited here enable one to conclude that clustering is negligible. Therefore, the treatment of Eyring et al. is more appropriate than the method of Bloom and Margenau, which depends on the statistical equilibrium of an atmosphere in a force field.

  18. Physico-Chemical Factors Affecting Hydrothermal Resistance and Bonding of Polymeric Composites to Steel Surfaces

    DTIC Science & Technology

    1985-11-01

    and 1.0% PM-odified zinc phosphate hydrate crystals. -117- temperature of decomposition at -1750C, is associated with the dehydration of the...reactions between divalent Ca ions released from CaO-SIO2 grains and carboxylate anions "(COO) yielded during the hydrolysis of functional pendent carboxyl...deterioration of polymers, caused by the hydrolysis of a pendent carbcxyl group, can be restrained by ionic cross-linking initiated by the strongly

  19. The impact of ions on allosteric functions in human liver pyruvate kinase

    PubMed Central

    Alontaga, Aileen Y.

    2010-01-01

    Experimental designs used to monitor the magnitude of an allosteric response can greatly influence observed values. We report here the impact of buffer, monovalent cation, divalent cation and anion on the magnitude of the allosteric regulation of the affinity of human liver pyruvate kinase (hL-PYK) for substrate, phosphoenolpyruvate (PEP). The magnitudes of the allosteric activation by fructose-1,6-bisphosphate (Fru-1,6-BP) and the allosteric inhibition by alanine are independent of most, but not all buffers tested. However, these magnitudes are dependent on whether Mg2+ or Mn2+ is included as the divalent cation. In the presence of Mn2+, any change in Kapp-PEP caused by Fru-1,6-BP is minimal. hL-PYK activity does not appear to require monovalent cation. Monovalent cation binding in the active site impacts PEP affinity with minimum influence on the magnitude of allosteric coupling. However, Na+ and Li+ reduce the magnitude of the allosteric response to Fru-1,6-BP, likely due to mechanisms outside of the active site. Which anion is used to maintain a constant monovalent cation concentration also influences the magnitude of the allosteric response. The value of determining the impact of ions on allosteric function can be appreciated by considering that representative structures used in comparative studies have often been determined using protein crystals grown in diverse buffer and salt conditions. PMID:21609859

  20. Structural and Thermodynamic Consequences of the Replacement of Zinc with Environmental Metals on ERα-DNA Interactions

    PubMed Central

    Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad

    2011-01-01

    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807

  1. Zn deposition at the bone cartilage interface in equine articular cartilage

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  2. Study of Eu{sup 3+} → Eu{sup 2+} reduction in BaAl{sub 2}O{sub 4}:Eu prepared in different gas atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezende, Marcos V. dos S., E-mail: mvsrezende@gmail.com; Valerio, Mário E.G.; Jackson, Robert A.

    2015-01-15

    Highlights: • The effect of different gas atmospheres on the Eu reduction process was studied. • The Eu reduction was monitored analyzing XANES region at the Eu L{sub III}-edge. • Hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization. • Only a part of the Eu ions can be stabilized in the divalent state. • A model of Eu reduction process is proposed. - Abstract: The effect of different gas atmospheres such as H{sub 2}(g), synthetic air, carbon monoxide (CO) and nitrogen (N{sub 2}) on the Eu{sup 3+} → Eu{sup 2+} reduction process during the synthesis ofmore » Eu-doped BaAl{sub 2}O{sub 4} was studied using synchrotron radiation. The Eu{sup 3+} → Eu{sup 2+} reduction was monitored analyzing XANES region when the sample are excited at the Eu L{sub III}-edge. The results show that the hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization in BaAl{sub 2}O{sub 4} and that only a part of the Eu ions can be stabilized in the divalent state. A model of Eu reduction process, based on the incorporation of charge compensation defects, is proposed.« less

  3. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    PubMed

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  4. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  5. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K + cations over Cl - anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly thanmore » divalent cations. Furthermore, the observed K +/Cl - selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  6. Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+[W

    PubMed Central

    Wu, Juyou; Wang, Su; Gu, Yuchun; Zhang, Shaoling; Publicover, Stephen J.; Franklin-Tong, Vernonica E.

    2011-01-01

    Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow “self” recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba2+ ≥ Ca2+ > Mg2+) and the monovalent ions K+ and NH4+ and is enhanced at voltages negative to −100 mV. The Ca2+ conductance is blocked by La3+ but not by verapamil; the K+ currents are tetraethylammonium chloride insensitive and do not require Ca2+. We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity. PMID:21177472

  7. Binding and Leakage of Barium in Alginate Microbeads

    PubMed Central

    Mørch, Yrr A.; Qi, Meirigeng; Gundersen, Per Ole M.; Formo, Kjetil; Lacik, Igor; Skjåk-Bræk, Gudmund; Oberholzer, Jose; Strand, Berit L.

    2013-01-01

    Microbeads of alginate cross-linked with Ca2+ and/or Ba2+ are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared to high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. In order to reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. PMID:22700168

  8. Binding and leakage of barium in alginate microbeads.

    PubMed

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  9. Polymerization Effect of Electrolytes on Hydrogen-Bonding Cryoprotectants: Ion–Dipole Interactions between Metal Ions and Glycerol

    PubMed Central

    2015-01-01

    Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion–dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation–dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation–dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes. PMID:25405831

  10. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    NASA Astrophysics Data System (ADS)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  11. Proceeding of the 18th Intl. Workshop on Inelastic Ion-Surface Collisions (IISC-18)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, Carlos O; Krstic, Predrag S; Meyer, Fred W

    2011-01-01

    The main topics of this proceedings were: (1) Energy loss of particles at surfaces; (2) Scattering of atoms, ions, molecules and clusters; (3) Charge exchange between particles and surfaces; (4) Ion induced desorption, electronic and kinetic sputtering; (5) Defect formation, surface modification and nanostructuring; (6) Electron, photon and secondary ion emission due to particle impact on surfaces; (7) Sputtering, fragmentation, cluster and ion formation in SIMS and SNMS; (8) Cluster/molecular and highly charged ion beams; and (9) Laser induced desorption.

  12. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution. PMID:8563633

  13. Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu

    2018-04-01

    The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.

  14. Novel size-dependent chemistry within ionized van der Waals clusters of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coolbaugh, M.T.; Peifer, W.R.; Garvey, J.F.

    1990-02-22

    The authors present in this paper evidence for size-dependent cluster chemistry occurring in van der Waals clusters of 1,1-difluoroethane. Clusters of C{sub 2}H{sub 4}F{sub 2} are produced from a neat adiabatic expansion and are ionized via electron impact. In addition to the anticipated fragment ions, we observe ions with the general empirical formula of M{sub n}H{sup +} (where n {ge} 4). The reactive process that generates this species cannot be rationalized in terms of intramolecular analogues of known gas-phase bimolecular ion-molecular reactions. Hence, we fell the production of this product cluster ion represents an additional example of a brand newmore » class of ion-molecule reactions that can only occur within the unique solvated environment of the cluster.« less

  15. Role of Autism Susceptibility Gene, CNTNAP2, in Neural Circuitry for Vocal Communication

    DTIC Science & Technology

    2013-10-01

    Grimbert et al., 2003), and ATP2C2 is part of a pathway responsible for shuttling divalent ions to the Golgi apparatus (Faddy et al., 2008...L., & Wuytack, F. (2007). Calcium in the Golgi apparatus . Cell Calcium, 41(5), 405–416. doi:10.1016/j. ceca.2006.11.001 Mizutani, A., Matsuzaki, A...determination. Nature Structural & Molecular Biology, 16(4), 365–371. doi:10.1038/nsmb.1576 This is a contribution from New Perspectives on the Origins

  16. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  17. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    PubMed

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  18. Solid-state NMR study of various mono- and divalent cation forms of the natural zeolite natrolite.

    PubMed

    Park, Min Bum; Vicente, Aurélie; Fernandez, Christian; Hong, Suk Bong

    2013-05-28

    Here we present the one-dimensional (29)Si and (27)Al MAS NMR and two-dimensional (27)Al MQMAS and DQF-STMAS NMR spectra of the monovalent (Na(+), K(+), Rb(+), Cs(+) and NH4(+)) and divalent (Ca(2+), Sr(2+) and Ba(2+)) cation forms of the natural zeolite natrolite (framework type NAT) with complete Si-Al ordering over the crystallographically distinct tetrahedral sites and with the same hydration state (hydrated, partially dehydrated or fully dehydrated). In the case of monovalent cation-exchanged natrolites, the differences in their crystal symmetry evidenced by (29)Si MAS NMR were found to be in good agreement with those determined by crystallographic analyses. However, (27)Al DQF-STMAS NMR spectroscopy shows the presence of two distinct Al sites in dehydrated K-NAT, Rb-NAT and NH4-NAT, suggesting that their actual crystal symmetry is lower than the reported one (i.e., orthorhombic Fdd2). The MAS NMR results also show that the space group of hydrated Ca-NAT is lower than that (monoclinic F1d1) of hydrated scolecite, the natural calcium counterpart of natrolite, which is also the case with hydrated Sr-NAT and Ba-NAT. We believe that the unexpected diversity in the crystal symmetry of natrolite caused by exchange of various mono- and divalent ions, as well as by dehydration, may be inherently due to the high framework flexibility of this natural zeolite.

  19. EPR, SEM and XRD investigation of ornamental limestone and marbles from some renowned Romanian quarries.

    NASA Astrophysics Data System (ADS)

    Covaci, D.; Costea, C.; Dumitras, D.; Duliu, O. G.

    2012-04-01

    Ornamental limestone and marble samples were collected and analysed by means of Electron Paramagnetic Resonance (EPR), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), in order to evidence any systematic peculiarities able to be used in further provenance studies as well as to get more detailed information regarding geochemistry and mineralogy of three of the most important deposits from Romania. In this respect, 20 samples of limestone (Arnota quarry, Capatani Mountains and Mateias South quarry, Iezer Mountains) and 9 of calci-dolomitic marble (Porumbacu de Sus quarry, Fagaras Mountains) were collected over a significant sampling area. EPR spectroscopy, primarily used to asset the degree of homogeneity of considered samples, evidenced, for both Arnota and Mateias South limestone, the presence of a typical six hyperfine lines spectrum of Mn2+ ions in calcite but no traces of Fe ferromagnetic clusters. A more careful investigation has showed that although within the same quarry, there were no significant differences regarding EPR spectra, the resonance lines were systematic narrower in the case of Mateias South samples which suggested a lower content of divalent manganese ions. The Porumbacu calci-dolomitic marble, presented a more intricate Mn2+ spectrum, consisting of a superposition of typical dolomitic and calcitic spectra. Again, the EPR spectra were almost identical, attesting, as in the previous cases, a relative uniform distribution of paramagnetic Mn2+ ions within quarry. In the case of SEM, scattered, back scattered and absorbed electron modes were used to visualise the mineral formations on the sample surfaces while an EDAX quantitative analysis was used to determine the content of the most abundant elements. Although, at a first inspection, both groups of limestone looked almost similar, displaying a great variety of randomly orientated micro-crystalline agglomeration, only in the case of Arnota samples, we have noticed the presence of some micron size graphite inclusions, potential proxies for further provenance studies. The Porumbacu South marble showed a different pattern, characterized by a more uniform crystallite distribution, all of them presenting almost perfect cleaving surfaces. EDAX results evidenced, excepting the dominant Ca and Mg (the last one in the case of Porumbacu de Sus marble), the presence, in small quantities, of some other element such as Fe, Ni, Cu and Zn whose content represent also a good provenance proxy. XRD investigation evidenced not only of the dominant calcite and dolomite mineral phases, but also other minor mineral fraction, whose presence could be well related to the content of mentioned trace elements. Principal Component and Cluster Analysis, finally used to classify all investigated samples, allowed us to group them in three cluster in accordance with their provenance.

  20. Modification of a method-of-characteristics solute-transport model to incorporate decay and equilibrium-controlled sorption or ion exchange

    USGS Publications Warehouse

    Goode, D.J.; Konikow, Leonard F.

    1989-01-01

    The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.

  1. Overcharging below the nanoscale: Multivalent cations reverse the ion selectivity of a biological channel

    NASA Astrophysics Data System (ADS)

    García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.

    2010-02-01

    We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.

  2. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules.

    PubMed

    van Eldijk, Mark B; Schoonen, Lise; Cornelissen, Jeroen J L M; Nolte, Roeland J M; van Hest, Jan C M

    2016-05-01

    Protein cages are an interesting class of biomaterials with potential applications in bionanotechnology. Therefore, substantial effort is spent on the development of capsule-forming designer polypeptides with a tailor-made assembly profile. The expanded assembly profile of a triblock copolypeptide consisting of a metal ion chelating hexahistidine-tag, a stimulus-responsive elastin-like polypeptide block, and a pH-responsive morphology-controlling viral capsid protein is presented. The self-assembly of this multi-responsive protein-based block copolymer is triggered by the addition of divalent metal ions. This assembly process yields monodisperse nanocapsules with a 20 nm diameter composed of 60 polypeptides. The well-defined nanoparticles are the result of the emergent properties of all the blocks of the polypeptide. These results demonstrate the feasibility of hexahistidine-tags to function as supramolecular cross-linkers. Furthermore, their potential for the metal ion-mediated encapsulation of hexahistidine-tagged proteins is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  4. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  5. Impact of sodium ion on multivalent metal ion content in extracellular polymeric substances of granular sludge from an expanded granular sludge bed.

    PubMed

    Fang, Peixiang; He, Xinlin; Li, Junfeng; Yang, Guang; Wang, Zhaoyang; Sun, Zhihua; Zhang, Xuan; Zhao, Chun

    2018-05-15

    The long-term and short-term effects of salinity on the multivalent metal ions within extracellular polymeric substance (EPS) were investigated in this study. The results indicated that the Na + content within the EPS increased significantly from 19.53% to 60.86% under high salinity, and this content in the saline system was 2.2 times higher than that of the control system at the end of the operation. The K + , Ca 2+ and Mg 2+ contents within the EPS decreased from 33.85%, 39.19% and 5.54% to 7.07%, 25.64% and 3.28%, respectively, when the salinity was increased from 0 g/L to 30 g/L. These ions were replaced by Na + through ion exchange and competing ionic binding sites under salt stress. The interaction between divalent metal ions and Na + was reversible with the adaption of anammox to salinity. Salinity exhibited a limited influence on the Fe 3+ within the EPS. Sludge granulation was inhibited under conditions of high salinity due to the replacement of multivalent metal ions by Na + .

  6. Triple Halide Bridges in Chiral MnII2MnIII6NaI2 Cages: Structural and Magnetic Characterization.

    PubMed

    Mayans, Júlia; Font-Bardia, Mercè; Escuer, Albert

    2018-02-05

    A family of decanuclear chiral clusters with a Mn II 2 Mn III 6 Na I 2 core have been synthesized from enantiomerically pure Schiff bases. The new systems consist of two Mn II Mn III 3 Na I units linked by rare triple chloro or bromo bridges between the divalent Mn cations. Susceptibility measurements point out the weak antiferromagnetic interaction mediated by these kinds of bridges and afford the first magnetic measurements for the (μ-Br) 3 case.

  7. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  8. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  9. Coarse-graining, Electrostatics and pH effects in phospholipid systems

    NASA Astrophysics Data System (ADS)

    Travesset, Alex; Vangaveti, Sweta

    2010-03-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (``chemical binding''). It is shown that the ``chemical'' model can be appropriately described by an underlying ``physical'' model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The model is applied to the charged phospholipids phosphatidylserine, Phosphatidc acid and Phosphoinositides and implications for different biological processes are discussed.

  10. Range of plasma ions in cold cluster gases near the critical point

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Quevedo, H. J.; Bonasera, A.; Donovan, M.; Dyer, G.; Gaul, E.; Guardo, G. L.; Gulino, M.; La Cognata, M.; Lattuada, D.; Palmerini, S.; Pizzone, R. G.; Romano, S.; Smith, H.; Trippella, O.; Anzalone, A.; Spitaleri, C.; Ditmire, T.

    2017-05-01

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid-gas phase transition.

  11. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Tuccitto, N.; Torrisi, V.; Delfanti, I.; Licciardello, A.

    2008-12-01

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au n-) in comparison with the molecular ions (M -) and clusters (M xAu y-) by using Bi +, Bi 3+, Bi 5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  12. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Kang, J.-S.; Kim, Kyung Hyun; Kim, Pil; Baik, Jaeyoon; Shin, H. J.

    2014-11-01

    The electronic structures of molecule-based nanoparticles, such as biomineralized Helicobacter pylori ferritin (Hpf), Heme, and RbCo[Fe(CN)6]H2O (RbCoFe) Prussian blue analogue, have been investigated by employing photoemission spectroscopy and soft X-ray absorption spectroscopy. Fe ions are found to be nearly trivalent in Hpf and Heme nanoparticles, which provides evidence that the amount of magnetite (Fe3O4) should be negligible in the Hpf core and that the biomineralization of Fe oxides in the high-Fe-bound-state Hpf core arises from a hematite-like formation. On the other hand, Fe ions are nearly divalent and Co ions are Co2+-Co3+ mixed-valent in RbCoFe. Therefore this finding suggests that the mechanism of the photo-induced transition in RbCoFe Prussian blue analogue is not a simple spin-state transition of Fe2+-Co3+ → Fe3+-Co2+. It is likely that Co2+ ions have the high-spin configuration while Fe2+ ions have the low-spin configuration.

  13. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  14. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions frommore » a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.« less

  15. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm.

    PubMed

    Ochi, Akie; Hossain, Khandker S; Magoshi, Jun; Nemoto, Norio

    2002-01-01

    Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.

  16. The role of correlation and solvation in ion interactions with B-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L.; Thomas, Dennis G.; Pabit, Suzette

    Ionic atmosphere around nucleic acids plays important roles in biological function. Large-scale explicit solvent simulations coupled to experimental assays such as anomalous small-angle X-ray scattering (ASAXS) can provide important insights into the structure and energetics of the ionic atmosphere but are time- and resource-intensive. In this paper, we demonstrate the use of classical density functional theory to model DNA-ion interactions and explore the balance between ion-DNA, ion-water, and ion-ion interactions. In particular, we compute the distribution of RbCl, SrCl2, and CoHexCl3 (cobalt hexammine chlo- ride) around a B-form DNA molecule. The accuracy of the DFT calculations was assessed by comparisonmore » between simulated and experimental ASAXS curves. As expected, these calculations revealed significant differences between the monovalent, divalent, and trivalent cations. About half of the DNA-bound Rb+ ions penetrate into the minor groove of the DNA and half adsorb on the DNA strands. The fraction of cations in the minor groove decreases for the larger Sr2+ ions and becomes zero for CoHex3+ ions, which all adsorb on the DNA strands. The distribution of CoHex3+ ions is mainly determined by Coulomb interactions, while ion-correlation forces play a central role in the monovalent Rb+ distribution and a combination of ion-correlation and hydration forces affect the Sr2+ distribution around DNA.« less

  17. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity of these membranes. PEMs deposited on commercial ultrafiltration (UF) membranes also show high rejections of organic dyes. Coating the surface of polyethersulfone (PES) membranes imparts a selective barrier to dye molecules used in textile production. These films achieve dye rejections >98% and may be useful for wastewater treatment and dye recovery. Other studies in microfluidic channels exploit ion transport phenomena in the vicinity of ion-selective junctions, such as cation-exchange membranes. These studies suggest that ion concentration polarization (ICP) could remove charged species from feed streams.

  18. FT-ICR mass spectrometric and density functional theory studies of sulfate prenucleation clusters

    NASA Astrophysics Data System (ADS)

    Lemke, K. H.

    2012-12-01

    Recent mass spectrometric1 and relaxation spectroscopic studies2 of metal sulfate salts have demonstrated that aqueous clusters play an important role in sulfate prenucleation processes. While such studies provide evidence that that ion clusters are nucleation relevant species, ultra-high resolution mass spectrumetry, in particular, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) can provide additional valuable information about the molecular composition and stability of individual ion clusters. Prompted by the above studies, our group has begun a systematic survey of metal sulfate clusters using FT-ICR mass spectrometry. Here, I report stoichiometries, structures and thermodynamic properties of calcium sulfate ion clusters, both "dry" and microsolvated, using electrospray ionization FT-ICR mass spectrometry in combination with semi-empirical methods and M062X/aug-cc-PVXZ level density functional theory calculations. In electrosprayed dilute aqueous solutions of CaSO4 (1-20mM), droplet desolvation results in the formation of stable doubly-charged clusters of [Ca(CaSO4)m(H2O)n]+2 (m≤10 & n≤9) as well as larger quadruply-charged ion clusters [Ca2(CaSO4)m(H2O)n]+4 with m≤23 and n≤10, demonstrating considerable sulfate nucleation potential in undersaturated electrolyte solutions. An attempt was also made to assess the extent of ion cluster aggregation in solution prior to electrospray ionization by measuring ion mass spectra at different solution concentrations. In brief, an increase in calcium sulfate concentration from 1-10mM results in a continuous increase in polynuclear ion cluster species, while smaller clusters, for instance, Ca[CaSO4]+2 and corresponding hydrated forms, become increasingly less abundant. Building on semi-empirical methods, M062X calculations have been applied to predict calcium sulfate cluster geometries, both "dry" and microsolvated, as well as the size-dependent evolution of clustering and hydration energies. 1Schoeder et al. (2011) J.Am.Chem.Soc., 133, 2444; 2Chen et al. (2005) J.Sol.Chem., 34, 1045;

  19. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  20. Observation of different core water cluster ions Y-(H2O)n (Y = O2, HCN, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2010-12-01

    Atmospheric ion water clusters have been of long-standing interest in the field of atmospheric sciences, because of them playing a central role in the formation of tropospheric aerosols which affect the photochemistry, radiation budget of the atmosphere and climate. On the basis of a mechanism of aerosol formation in the troposphere proposed by Yu and Turco, termed “ion-mediated nucleation” (Geophys. Res. Lett. 2000, 27, 883), atmospheric ion water clusters are most likely to be produced via two processes; 1) direct attachment of polar solvent molecules H2O to atmospheric ions due to them having strong binding energy via ion-dipole interactions, and 2) growth of ion-induced hydrates into larger water clusters bound via hydrogen-bonding networks by condensation with H2O molecules. The stability and growth rates of water clusters are strongly dependent on the thermochemical properties of individual atmospheric core ions. A large number of thermochemical information of the positive atmospheric ion H3O+ and its hydrates H3O+(H2O)n have been reported so far, while there has been little information of the water clusters with the negative atmospheric core ions. Therefore, fundamental studies of the thermochemistry of various negative atmospheric ion water clusters will contribute towards furthering an understanding of their unique role in atmospheric sciences and climate change. We have recently established an atmospheric pressure DC corona discharge device containing a specific corona needle electrode that made it possible to reproducibly generate negative core ions Y- originating from ambient air (Int. J. Mass Spectrom. 2007, 261, 38; Eur. Phys. J. D 2008, 50, 297). The change in electric field strength on the needle tip resulted in the formation of negative atmospheric core ions Y- with various different lifetimes in air. The low field strength brought about the dominant formation of core ions with short lifetimes in air such as O2- and HOx-, while the longer-lived core ions HCN-, NOx- and COx- were mainly produced at higher field strength. Furthermore, the use of the discharge system coupled to mass spectrometers led to the stable formation of large water clusters Y-(H2O)n due to adiabatic expansion caused by the pressure difference between the ambient discharge area (760 torr) and vacuum region in the mass spectrometers (≈ 1 torr). Here we show the resulting mass spectra of large water clusters Y-(H2O)n (0 ≤ n ≥ 80) with the dominant negative core ion Y- such as O2-, HO-, HO2-, HCN-, NO2-, NO3-, NO3-(HNO3)2, CO3- and HCO4- which play a central role in tropospheric ion chemistry, as well as the detailed mechanism of formation of those negative ion water clusters by atmospheric pressure DC corona discharge mass spectrometry. Here we also provide new thermochemical information about magic numbers and first hydrated shells for individual negative core ions Y-, which have particular stability in the Y-(H2O)n cluster series, by using the reliable mass spectrometry data obtained and the relationship between the temperature condition in a reaction chamber and the resulting cluster distribution.

  1. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  2. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  3. The 3.2 Angstrom Resolution Structure of the Polymorphic Cowpea Chlorotic Mottle Virus Ribonucleoprotein Particle

    NASA Astrophysics Data System (ADS)

    Speir, Jeffrey Alan

    Structural studies of the polymorphic cowpea chlorotic mottle virus have resulted in high resolution structures for two distinct icosahedral ribonucleoprotein particle conformations dependent upon whether acidic or basic pH conditions prevail. CCMV is stable below pH 6.5, however metal-free particles maintain a 10% increase in hydrodynamic volume at pH >=q 7.5. Identification of this swollen' form of CCMV, which can easily be disrupted with 1M NaCl, led to the first reassembly of an icosahedral virus in vitro from purified viral protein and RNA to form infectious particles, and its assembly has been the subject of biochemical and biophysical investigations for over twenty-five years. Under well defined conditions of pH, ionic strength and divalent metal ion concentration, CCMV capsid protein or capsid protein and RNA will reassemble to form icosahedral particles of various sizes, sheets, tubes, rosettes, and a variety of laminar structures which resemble virion structures from non-related virus families. Analysis of native particles at 3.2A resolution and swollen particles at 28A resolution has suggested that the chemical basis for the formation of polymorphic icosahedral and anisometric structures is: (i) hexamers formed of beta-barrel subunits stabilized by an unusual hexameric parallel beta structure made up of their N-termini, (ii) the location of protein-RNA interactions, (iii) divalent metal cation binding sites that regulate quasi-symmetrical subunit associations, (iv) charge repulsion across the same interfaces when lacking divalent metal ions at basic pH, which induces the formation of sixty 20A diameter portals for RNA release, and (v) a novel, C-terminal-based, subunit dimer assembly unit. The use of C- and N-terminal arms in CCMV has not been observed in other icosahedral RNA virus structures determined at near atomic resolution, however, their detailed interactions and roles in stabilizing the quaternary organization of CCMV are related to that found in the atomic structures of the DNA tumor papovaviruses (SV40 and polyoma). The swollen structure is closely similar to the expanded form of tomato bushy stunt virus (TBSV) previously determined at 8A resolution by X-ray crystallography.

  4. Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH+·C Wobble Formation in Double-Stranded DNA

    PubMed Central

    2017-01-01

    The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947

  5. Characterization of high explosive particles using cluster secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Mahoney, Christine; Wight, Scott; Lareau, Richard

    2006-01-01

    The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.

  6. On the Surface Mapping using Individual Cluster Impacts

    PubMed Central

    Fernandez-Lima, F.A.; Eller, M.J.; DeBord, J.D.; Verkhoturov, S.V.; Della-Negra, S.; Schweikert, E.A.

    2011-01-01

    This paper describes the advantages of using single impacts of large cluster projectiles (e.g. C60 and Au400) for surface mapping and characterization. The analysis of co-emitted time-resolved photon spectra, electron distributions and characteristic secondary ions shows that they can be used as surface fingerprints for target composition, morphology and structure. Photon, electron and secondary ion emission increases with the projectile cluster size and energy. The observed, high abundant secondary ion emission makes cluster projectiles good candidates for surface mapping of atomic and fragment ions (e.g., yield >1 per nominal mass) and molecular ions (e.g., few tens of percent in the 500 < m/z < 1500 range). PMID:22393269

  7. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    PubMed

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca 2+ crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca 2+ crosslinking. The relative content of sodium ions within the Ca 2+ crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T 2 of sodium ions within the Ca 2+ crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of 23 Na + in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    NASA Astrophysics Data System (ADS)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  9. Generation and collision-induced dissociation of ammonium tetrafluoroborate cluster ions.

    PubMed

    Dain, Ryan P; Van Stipdonk, Michael J

    2008-07-01

    Singly and doubly charged cluster ions of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using collision-induced dissociation (CID) and ion-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster ions and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product ions. CID profiles, and measurements of changing precursor and product ion signal intensity as a function of applied collision voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ ions to determine the influence of the cation on the relative stability of cluster ions. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ ions the most difficult to dissociate.

  10. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2014-08-01

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  12. Synthesis and characterization of the divalent samarium Zintl-phases SmMg 2Bi 2 and SmMg 2Sb 2

    DOE PAGES

    Ramirez, D.; Gallagher, A.; Baumbach, R.; ...

    2015-08-29

    Here, single crystals of LnMg 2Bi 2 (Ln = Yb, Eu, Sm) and SmMg 2Sb 2 were synthesized using Mg-Bi metal and Mg-Sb metal fluxes, respectively. The crystal structures are of the CaAl 2Si 2 type with space group P3 m1 (#164, Z = 1): SmMg 2Bi 2 ( a = 4.7745(1)Å, c = 7.8490(2)Å), EuMg 2Bi 2 ( a = 4.7702(1)Å, c = 7.8457(2) Å), YbMg 2Bi 2 ( a = 4.7317(2)Å, c = 7.6524(3) Å), and SmMg 2Sb 2 ( a = 4.6861(1) Å, c = 7.7192(2) Å). Heat capacity, electrical transport, and magnetization of all bismuth containingmore » phases were measured. The materials behave as “poor metals” with resistivity between 2 and 10 mΩ·cm. Temperature independent Van Vleck paramagnetism is observed in SmMg 2Bi 2 indicative of divalent samarium (Sm 2+) ions.« less

  13. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping.

    PubMed

    Henke, Paul S; Mak, Chi H

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg(2+) that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  14. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  15. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  16. Crystallization and preliminary X-ray analysis of a protease inhibitor from the latex of Carica papaya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkan, Mohamed; Garcia-Pino, Abel; Dibiani, Rachid

    2006-12-01

    The Kunitz-type trypsin/chymotrypsin inhibitor isolated from C. papaya latex has been crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms are observed, diffracting to 2.6 and 1.7 Å. A Kunitz-type protease inhibitor purified from the latex of green papaya (Carica papaya) fruits was crystallized in the presence and absence of divalent metal ions. Crystal form I, which is devoid of divalent cations, diffracts to a resolution of 2.6 Å and belongs to space group P3{sub 1} or P3{sub 2}. This crystal form is a merohedral twin with two molecules in the asymmetric unit and unit-cell parameters a = bmore » = 74.70, c = 78.97 Å. Crystal form II, which was grown in the presence of Co{sup 2+}, diffracts to a resolution of 1.7 Å and belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.26, b = 81.99, c = 140.89 Å.« less

  17. Double Transfer Voltammetry in Two-Polarizable Interface Systems: Effects of the Lipophilicity and Charge of the Target and Compensating Ions.

    PubMed

    Molina, Ángela; Laborda, Eduardo; Olmos, José Manuel; Millán-Barrios, Enrique

    2018-03-06

    Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.

  18. Racetrack-shape fixed field induction accelerator for giant cluster ions

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya

    2015-05-01

    A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.

  19. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    NASA Astrophysics Data System (ADS)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  20. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  1. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  2. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    PubMed

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  3. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE PAGES

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-24

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D 2-tagged GlyGlyH +·(H 2O) 1–4 are presented. As a result, they display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  4. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    PubMed

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  5. Development of the ion source for cluster implantation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Dugin, S. N.; Oks, E. M.; Gushenets, V. I.; Hershcovitch, A.; Jonson, B.; Poole, H. J.

    2014-02-01

    Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.

  6. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  7. Insights into water-mediated ion clustering in aqueous CaSO4 solutions: pre-nucleation cluster characteristics studied by ab initio calculations and molecular dynamics simulations.

    PubMed

    Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei

    2017-05-10

    The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.

  8. Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus

    Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less

  9. Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses

    DOE PAGES

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; ...

    2016-10-07

    Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less

  10. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maza R.; Wilson, J.A.; Hetherington, R.

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.

  12. Fluorescence Properties of Fe2+- and Co2+-doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials

    DTIC Science & Technology

    2011-09-01

    composition also affects the Co2+ and Fe2+ dopant lifetimes and temperature dependencies. Crystal growth effort is underway in order to improve the...single-crystalline samples of Fe2+ or divalent cobalt ion (Co2+)-doped CMT crystals were produced by Brimrose Corporation using a modified vertical...Bridgman technique (18). The starting high purity ingredients Cd, Mn, and Te along with the dopants (Fe and Co) are placed in a pre-cleaned and baked

  13. Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.

    2017-08-27

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.

  14. Novel polymeric LIT and divalent cation fast ion conducting materials

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.

  15. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  16. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Technical Reports Server (NTRS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-01-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  17. Screening of biologically important Zn2 + by a chemosensor with fluorescent turn on-off mechanism

    NASA Astrophysics Data System (ADS)

    Khan, Tanveer A.; Sheoran, Monika; Nikhil Raj M., Venkata; Jain, Surbhi; Gupta, Diksha; Naik, Sunil G.

    2018-01-01

    Reported herein the synthesis, characterization and biologically important zinc ion binding propensity of a weakly fluorescent chemosensor, 4-methyl-2,6-bis((E)-(2-(4-phenylthiazol-2-yl)hydrazono)methyl)phenol (1). 1H NMR spectroscopic titration experiment reveals the binding knack of 1 to the essential Zn2 +. The photo-physical studies of 1 exhibit an enhancement in the fluorescence by several folds upon binding with the zinc ions attributed to PET-off process, with a binding constant value of 5.22 × 103 M- 1. 1 exhibits an excellent detection range for Zn2 + with lower detection limit value of 2.31 × 10- 8 M. The selectivity of 1 was studied with various mono and divalent metal cations and it was observed that most cations either quenches the fluorescence or remains unchanged except for Cd2 +, which shows a slight enhancement in fluorescence intensity of 1. The ratiometric displacement of Cd2 + ions by Zn2 + ions shows an excellent selectivity towards in-situ detection of Zn2 + ions. Photo-physical studies also support the reversible binding of 1 to Zn2 + ions having on and off mechanism in presence of EDTA. Such recognition of the biologically important zinc ions finds potential application in live cell imaging.

  18. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

    PubMed Central

    2015-01-01

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273

  19. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  20. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    NASA Astrophysics Data System (ADS)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation in combination with two-step annealing is effective in fabricating ultra-shallow junctions.

  1. In situ remediation process using divalent metal cations

    DOEpatents

    Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.

    2004-12-14

    An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.

  2. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  3. The adsorption of helium atoms on small cationic gold clusters.

    PubMed

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  4. A DIM model for sodium cluster-ions interacting with a charged conducting sphere

    NASA Astrophysics Data System (ADS)

    Kuntz, P. J.

    A diatomics-in-molecules (DIM) model for the energy, shape and charge distribution of metal cluster ions in the presence of a charged insulated conducting sphere is presented. The electrostatic interaction between the sphere and the cluster-ion is introduced in a self-consistent manner which allows the sphere to be polarized by the ion and the ion by the sphere. This interaction appears in the diagonal elements of the model Hamiltonian matrix in such a way that the lowest eigenvalue includes the correct electrostatic energy for the charge distribution in the ground state. The model is applied to the calculation of fusion barriers for Na+2 and Na+3 ions. When both the charge distribution and the geometric configuration of the cluster-ion are allowed to relax freely, the energy as a function of distance from the sphere is nearly the same as that calculated from the electrostatic energy alone, which implies that details of the molecular structure of the cluster-ion can be neglected in calculating fusion barriers from charge polarization alone. That the fusion barriers lie sufficiently far away from the sphere so that the molecule does not dissociate under the influence of the Coulomb interaction confirms that it is meaningful to speak of two separate entities at the barrier position.

  5. Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore.

    PubMed

    Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui

    2014-03-10

    A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions.

  6. Stem-Loop V of Varkud Satellite RNA Exhibits Characteristics of the Mg2+ Bound Structure in the Presence of Monovalent Ions

    PubMed Central

    2015-01-01

    The Varkud Satellite RNA contains a self-cleaving ribozyme that has been shown to function independently of its surroundings. This 160 nucleotide ribozyme adopts a catalytically active tertiary structure that includes a kissing hairpin complex formed by stem-loop I and stem-loop V (SLV). The five-nucleotide 5′-rUGACU loop of the isolated SLV has been shown to adopt a Mg2+-dependent U-turn structure by solution NMR. This U-turn hairpin is examined here by molecular dynamics simulations in the presence of monovalent and divalent ions. Simulations confirm on an all-atom level the hypotheses for the role of the Mg2+ ions in stabilizing the loop, as well as the role of the solvent exposed U700 base. Additionally, these simulations suggest the Mg2+-free stem-loop adopts a wide range of structures, including energetically favorable structures similar to the Mg2+-bound loop structure. We propose this structure is a “gatekeeper” or precursor to Mg2+ binding when those ions are present. PMID:26328924

  7. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0

  8. Electron-induced chemistry in microhydrated sulfuric acid clusters

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  9. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  10. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  11. Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters

    DOE PAGES

    Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-04-16

    We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less

  12. Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne

    We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar

    Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less

  14. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  15. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    NASA Astrophysics Data System (ADS)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  16. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya D.; Archer, Randall B.; Damin, Craig A.; Mendoza-Cruz, Rubén; Rhodes, Christopher P.

    2017-03-01

    Rechargeable magnesium batteries provide the potential for lower cost and improved safety compared with lithium-ion batteries, however obtaining cathode materials with highly reversible Mg-ion capacities is hindered by the high polarizability of divalent Mg-ions and slow solid-state Mg-ion diffusion. We report that incorporating poly(ethylene oxide) (PEO) between the layers of hydrated vanadium pentoxide (V2O5) xerogels results in significantly improved reversible Mg-ion capacities. X-ray diffraction and high resolution transmission electron microscopy show that the interlayer spacing between V2O5 layers was increased by PEO incorporation. Vibrational spectroscopy supports that the polymer interacts with the V2O5 lattice. The V2O5-PEO nanocomposite exhibited a 5-fold enhancement in Mg-ion capacity, improved stability, and improved rate capabilities compared with V2O5 xerogels. The Mg-ion diffusion coefficient of the nanocomposite was increased compared with that of V2O5 xerogels which is attributed to enhanced Mg-ion mobility due to the shielding interaction of PEO with the V2O5 lattice. This study shows that beyond only interlayer spacing, the nature of interlayer interactions of Mg-ions with V2O5, PEO, and H2O are key factors that affect Mg-ion charge transport and storage in layered materials. The design of layered materials with controlled interlayer interactions provides a new approach to develop improved cathodes for magnesium batteries.

  17. Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body

    NASA Astrophysics Data System (ADS)

    Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich

    2013-12-01

    Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.

  18. Properties of small Ar sub N-1 K/+/ ionic clusters

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Danilowicz, R.; Dugan, J.

    1977-01-01

    A self-consistent formalism is developed that, based upon a many-body potential, dynamically determines the thermodynamic properties of ionic clusters without an a priori designation of the equilibrium structures. Aggregates consisting of a single closed shell K(+) ion and N-1 isoelectronic argon atoms were studied. The clusters form crystallites at low temperatures, and melting transitions and spontaneous dissociations are indicated. The results confirm experimental evidence that shows that ionic clusters become less stable with increasing N. The crystallite structures formed by four different clusters are isosceles triangle, skewed form, octahedron with ion in the middle, and icosahedron with the ion in the middle.

  19. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics.

    PubMed

    Konidala, Praveen; Niemeyer, Bernd

    2007-07-01

    The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.

  20. Development of an optical thermal history coating sensor based on the oxidation of a divalent rare earth ion phosphor

    NASA Astrophysics Data System (ADS)

    Yáñez-González, Álvaro; Ruiz-Trejo, Enrique; van Wachem, Berend; Skinner, Stephen; Beyrau, Frank; Heyes, Andrew

    2016-11-01

    The measurement of temperatures in gas turbines, boilers, heat exchangers and other components exposed to hot gases is essential to design energy efficient systems and improve maintenance procedures. When on-line measurements, such as those performed with thermocouples and pyrometers, are not possible or inconvenient, the maximum temperatures of operation can be recorded and measured off-line after operation. Although thermal paints have been used for many years for this purpose, a novel technique based on irreversible changes in the optical properties of thermographic phosphors, can overcome some of the disadvantages of previous methods. In particular, oxidation of the divalent rare earth ion phosphor BaMgAl10O17:Eu (BAM:Eu) has shown great potential for temperature sensing between 700 °C and 1200 °C. The emission spectra of this phosphor change with temperature, which permits to define an intensity ratio between different lines in the spectra that can be used as a measurand of the temperature. In this paper, the study of the sensing capabilities of a sensor coating based on BAM:Eu phosphor material is addressed for the first time. The sensitivity of the intensity ratio is investigated in the temperature range from 800 °C to 1100 °C, and is proved to be affected by ionic diffusion of transition metals from the substrate. The use of an interlayer made of zirconia proves efficient in reducing ionic diffusion and coatings with this diffusion barrier present sensitivity comparable to that of the powder material.

  1. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces.

    PubMed

    Alshakhs, Mohammed J; Kovscek, Anthony R

    2016-07-01

    The impact of injection brine salinity and ionic composition on oil recovery has been an active area of research for the past 25years. Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery. The role of salinity modification is attributed to its ability to shift wettability of a rock surface toward water wetness. The amount of trapped oil released depends on the nature of rock, oil, and brine surface interactions. Reservoir rocks exhibit different affinities to fluids. Carbonates show stronger adsorption of oil films as opposed to the strongly water-wet and mixed-wet sandstones. The concentration of divalent ions and total salinity of the injection brine are other important factors to consider. Accordingly, this paper provides a review of laboratory and field studies of the role of brine composition on oil recovery from carbonaceous rock as well as rationalization of results using DLVO (Derjaguin, Landau, Verwey and Overbeek) theory of surface forces. DLVO evaluates the contribution of each component of the oil/brine/rock system to the wettability. Measuring zeta potential of each pair of surfaces by a charged particle suspension method is used to estimate double layer forces, disjoining pressure, and contact-angle. We demonstrate the applicability of the DLVO approach by showing a comprehensive experimental study that investigates the effect of divalent ions in carbonates, and uses disjoining pressure results to rationalize observations from core flooding and direct contact-angle measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Modeling the surface of Campylobacter fetus: protein surface layer stability and resistance to cationic antimicrobial peptides.

    PubMed

    Roberts, James M D; Graham, Lori L; Quinn, Bonnie; Pink, David A

    2013-03-01

    Campylobacter fetus is a Gram negative bacterium recognized for its virulence in animals and humans. This bacterium possesses a paracrystalline array of high molecular weight proteins known as surface-layer proteins covering its cell surface. A mathematical model has been made of the outer membrane of this bacterium, both with its surface-layer proteins (S+) and without (S-). Monte Carlo computer simulation was used to understand the stability of the surface-layer protein structure as a function of ionic concentration. The interactions of an electrically-charged antimicrobial agent, the cationic antimicrobial peptide protamine, with surface-layer proteins and with the lipopolysaccharides of the outer membrane were modeled and analyzed. We found that (1) divalent ions stabilize the surface-layer protein array by reducing the fluctuations perpendicular and parallel to the membrane plane thereby promoting adhesion to the LPS region. This was achieved via (2) divalent ions bridging the negatively-charged LPS Core. The effect of this bridging is to bring individual Core regions closer together so that the O-antigens can (3) increase their attractive van der Waals interactions and "collapse" to form a surface with reduced perpendicular fluctuations. These findings provide support for the proposal of Yang et al. [1]. (4) No evidence for a significant increase in Ca(2+) concentration in the region of the surface-layer protein subunits was observed in S+ simulations compared to S- simulations. (5) We predicted the trends of protamine MIC tests performed on C. fetus and these were in good agreement with our experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  5. The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2α indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway.

    PubMed

    Liu, Huihui; Wang, Hong; Teng, Maikun; Li, Xu

    2014-02-01

    CK2 is a ubiquitous and conserved protein kinase in eukaryotic organisms and is important in many biological processes. It is unique in maintaining constitutive activity and in using both ATP and GTP as phosphor donors. In this study, crystal structures of recombinant Saccharomyces cerevisiae CK2α (scCK2α) complexed with GMPPNP, ATP and AMPPN with either Mg2+ or Mn2+ as the coordinated divalent cation are presented. The overall structure of scCK2α shows high similarity to its homologous proteins by consisting of two domains with the co-substrate lying in the cleft between them. However, three characteristic features distinguish scCK2α from its homologues. Firstly, the Lys45-Glu53 and Arg48-Glu53 interactions in scCK2α lead Lys50 to adopt a unique conformation that is able to stabilize the γ-phosphate of the co-substrate, which makes the existence of the `essential divalent cation' not so essential. The multiple nucleotide-divalent cation binding modes of the active site of scCK2α are apparently different from the two-divalent-cation-occupied active site of Zea mays CK2α and human CK2α. Secondly, conformational change of Glu53 in scCK2α-AMPPN breaks its interaction with Lys45 and Arg48; as a result, the co-substrate binding pocket becomes more open. This may suggest a clue to a possible ADP/GDP-release pathway, because the NE1 atom of the Trp in the `DWG motif' of CK2α forms a hydrogen bond to the O atom of Leu212, which seems to make ADP release by means of the `DFG-in flip to DFG-out' model found in most eukaryotic protein kinases impossible. Coincidentally, two sulfate ions which may mimic two phosphate groups were captured by Arg161 and Lys197 around the pocket. Mutagenesis and biochemical experiments on R161A and K197A mutants support the above proposal. Finally, scCK2α is unique in containing an insertion region whose function had not been identified in previous research. It is found that the insertion region contributes to maintaining the constitutively active conformation of the scCK2α catalytic site, but does not participate in interaction with the regulatory subunits.

  6. Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument

    DOE PAGES

    Yin, C.; Tyo, E.; Kuchta, K.; ...

    2014-05-06

    Here, we report a new high vacuum instrument which is dedicated to the preparation of well-defined clusters supported on model and technologically relevant supports for catalytic and materials investigations. The instrument is based on deposition of size selected metallic cluster ions that are produced by a high flux magnetron cluster source. Furthermore, we maximize the throughput of the apparatus by collecting and focusing ions utilizing a conical octupole ion guide and a linear ion guide. The size selection is achieved by a quadrupole mass filter. The new design of the sample holder provides for the preparation of multiple samples onmore » supports of various sizes and shapes in one session. After cluster deposition onto the support of interest, samples will be taken out of the chamber for a variety of testing and characterization.« less

  7. Correspondence between ion-cluster and bulk thermodynamics: on the validity of the cluster pair approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Chialvo, Ariel; Simonson, J Michael

    2013-01-01

    Molecular models and experimental estimates based on the cluster pair approximation (CPA) provide inconsistent predictions of absolute single-ion hydration properties. To understand the origin of this discrepancy we used molecular simulations to study the transition between hydration of alkali metal and halide ions in small aqueous clusters and bulk water. The results demonstrate that the assumptions underlying the CPA are not generally valid as a result of a significant shift in the ion hydration free energies (~15 kJ/mol) and enthalpies (~47 kJ/mol) in the intermediate range of cluster sizes. When this effect is accounted for, the systematic differences between modelsmore » and experimental predictions disappear, and the value of absolute proton hydration enthalpy based on the CPA gets in closer agreement with other estimates.« less

  8. Method and apparatus for the production of cluster ions

    DOEpatents

    Friedman, Lewis; Beuhler, Robert J.

    1988-01-01

    A method and apparatus for the production of cluster ions, and preferably isotopic hydrogen cluster ions is disclosed. A gas, preferably comprising a carrier gas and a substrate gas, is cooled to about its boiling point and expanded through a supersonic nozzle into a region maintained at a low pressure. Means are provided for the generation of a plasma in the gas before or just as it enters the nozzle.

  9. Method and apparatus for the production of cluster ions

    DOEpatents

    Friedman, L.; Beuhler, R.J.

    A method and apparatus for the production of cluster ions, and preferably isotopic hydrogen cluster ions is disclosed. A gas, preferably comprising a carrier gas and a substrate gas, is cooled to about its boiling point and expanded through a supersonic nozzle into a region maintained at a low pressure. Means are provided for the generation of a plasma in the gas before or just as it enters the nozzle.

  10. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study.

    PubMed

    Pastré, David; Piétrement, Olivier; Fusil, Stéphane; Landousy, Fabrice; Jeusset, Josette; David, Marie-Odile; Hamon, Loïc; Le Cam, Eric; Zozime, Alain

    2003-10-01

    The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.

  11. Kinetic study of sunflower phospholipase Dα: interactions with micellar substrate, detergents and metals.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim

    2011-07-01

    Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Membrane technology applied to acid mine drainage from copper mining.

    PubMed

    Ambiado, K; Bustos, C; Schwarz, A; Bórquez, R

    2017-02-01

    The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes - NF99 and RO98pHt, both from Alfa Laval - were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.

  13. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  14. Development of Wien filter for small ion gun of surface analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahng, Jungbae; Busan Center, Korea Basic Science Institute, Busan 609-735; Hong, Jonggi

    The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum.more » Methods Phys. Res., Sect. B 206, 830–837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar{sup +}{sub 2500} clusters from Ar{sup +}{sub 2400} to Ar{sup +}{sub 2600} clusters with a 1-mm collimator.« less

  15. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  16. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  17. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  18. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  19. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio

    PubMed Central

    2012-01-01

    Background Research interest in phosphonates metal organic frameworks (MOF) has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh) network of cobalt vinylphosphonate (Co(vP)·H2O). Results A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh) network Co(vP)·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data. Conclusions Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost. PMID:22932493

  20. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  1. Syntheses, crystal structures, and properties of six new lanthanide(III) transition metal tellurium(IV) oxyhalides with three types of structures.

    PubMed

    Shen, Yue-Ling; Mao, Jiang-Gao

    2005-07-25

    Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into a 1D two-unit repeating (zweier) chain via corner-sharing. These 1D copper(I) chloride chains are inserted into the tunnels of the neodymium(III) tellurite via Nd-Cl-Cu bridges. Luminescent studies show that ErCuTe(2)O(6)Cl and Nd(4)Cu(TeO(3))(5)Cl(3) exhibit strong luminescence in the near-IR region. Magnetic measurements indicate the antiferromagnetic interactions between magnetic centers in these compounds.

  2. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions.

    PubMed Central

    Earnshaw, D J; Gait, M J

    1998-01-01

    The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982

  3. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  4. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  5. Mass spectrometric study of the negative and positive secondary ions emitted from ethanol microdroplets by MeV-energy heavy ion impact

    NASA Astrophysics Data System (ADS)

    Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu

    2018-06-01

    We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.

  6. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution.

    PubMed

    Venkataraman, Sangita; Prasad, Burra V L S; Selvarajan, Ramasamy

    2018-02-10

    RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.

  7. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution

    PubMed Central

    Venkataraman, Sangita; Prasad, Burra V L S; Selvarajan, Ramasamy

    2018-01-01

    RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny. PMID:29439438

  8. Effect of Valence of Counterions on the Structure of Charged Membranes, a Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Qiao, Baofu; Olvera de La Cruz, Monica

    2012-02-01

    Phospholipids have been investigated for a long period, due to its ability of self-assembling into bilayer structures which resemble biological membranes. But most of the studies have been limited on the neutral phosphatidylcholine based lipids. The understanding of charged membranes (e.g., phosphatidylserine) is very limited due to the repulsion between the charged groups on lipids. In the present work, we investigated the effect of different counter-ions on the structures of charged membranes formed by 1,2-dilauroyl-sn-glycoro-3-phospho-L-serine. Three kinds of counterions were investigated, from monovalent, to divalent, to trivalent ions. Molecular dynamics simulations were performed at all-atom level. We have calculated the area per lipid. And the interaction between counterions and COO^- groups was found to dominate over that between counterions and PO4^- groups.

  9. IONIC EFFECTS ON LIGNIFICATION AND PEROXIDASE IN TISSUE CULTURES

    PubMed Central

    Lipetz, Jacques; Garro, Anthony J.

    1965-01-01

    Crown-gall tumor tissue cultures release peroxidase into the medium in response to the concentration of specific ions in the medium. This release is not due to diffusion from cut surfaces or injured cells. Calcium, magnesium, and ammonium were, in that order, most effective in increasing peroxidase release. The enzyme was demonstrated cytochemically on the cell walls and in the cytoplasm. Cell wall fractions, exhaustively washed in buffer, still contained bound peroxidase. This bound peroxidase could be released by treating the wall fractions with certain divalent cations or ammonium. The order of effectiveness for removing the enzyme from the washed cell walls is: Ca++ ≈ Sr++ > Ba++ > Mg++ > NH4 +. These data support the thesis presented that specific ions can control the deposition of lignin on cell walls by affecting the peroxidase levels on these walls. PMID:19866650

  10. Transmission of cluster ions through a tandem accelerator of several stripper gases.

    PubMed

    Saitoh, Yuichi; Chiba, Atsuya; Narumi, Kazumasa

    2009-10-01

    The transmissions of carbon cluster ion beams through a tandem accelerator using several stripper gases (He, N2, CO2, and SF6) with a terminal voltage of 2.5 MV were measured as a function of the gas pressure in investigating the most suitable gas for cluster ion acceleration. This resulted in it being demonstrated that the highest transmission could be obtained using the smaller size gas, i.e., helium displayed the best performance of the four gases used. In addition, the ratio of transmissions of C(n) with helium and nitrogen increased with increases in the n, thus revealing that helium gas should prove the most effective in larger cluster ion acceleration using the same energy.

  11. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  12. Method for Continuous Monitoring of Electrospray Ion Formation

    NASA Astrophysics Data System (ADS)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  13. Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Zhao, Wuduo; Wang, Weiguo; Hua, Lei; Chen, Ping; Hou, Keyong; Huang, Yunguang; Li, Haiyang

    2016-03-01

    The dependence of multiply charged ions on laser ellipticity in methyl iodide clusters with 532 nm nanosecond laser was measured using a time-of-flight mass spectrometer. The intensities of multiply charged ions Iq+(q = 2-4) with circularly polarised laser pulse were clearly higher than those with linearly polarised laser pulse but the intensity of single charged ions I+ was inverse. And the dependences of ions on the optical polarisation state were investigated and a flower petal and square distribution for single charged ions (I+, C+) and multiply charged ions (I2+, I3+, I4+, C2+) were observed, respectively. A theoretical calculation was also proposed to simulate the distributions of ions and theoretical results fitted well with the experimental ones. It indicated that the high multiphoton ionisation probability in the initial stage would result in the disintegration of big clusters into small ones and suppress the production of multiply charged ions.

  14. The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest

    NASA Astrophysics Data System (ADS)

    Bianchi, Federico; Garmash, Olga; He, Xucheng; Yan, Chao; Iyer, Siddharth; Rosendahl, Ida; Xu, Zhengning; Rissanen, Matti P.; Riva, Matthieu; Taipale, Risto; Sarnela, Nina; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Junninen, Heikki

    2017-11-01

    In order to investigate the negative ions in the boreal forest we have performed measurements to chemically characterise the composition of negatively charged clusters containing highly oxygenated molecules (HOMs). Additionally, we compared this information with the chemical composition of the neutral gas-phase molecules detected in the ambient atmosphere during the same period. The chemical composition of the ions was retrieved using an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF-MS) while the gas-phase neutral molecules (mainly sulfuric acid and HOMs) were characterised using the same mass spectrometer coupled to a nitrate-based chemical ionisation unit (CI-APi-TOF). Overall, we divided the identified HOMs in two classes: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). During the day, among the ions, in addition to the well-known pure sulfuric acid clusters, we found a large number of HOMs clustered with nitrate (NO3-) or bisulfate (HSO4-), with the first one being more abundant. During the night, the distribution of ions, mainly composed of HOM clustered with NO3-, was very similar to the neutral compounds that are detected in the CI-APi-TOF as adducts with the artificially introduced primary ion (NO3-). For the first time, we identified several clusters containing up to 40 carbon atoms. These ions are formed by up to four oxidised α-pinene units clustered with NO3-. While we know that dimers (16-20 carbon atoms) are probably formed by a covalent bond between two α-pinene oxidised units, it is still unclear what bonding formed larger clusters. Finally, diurnal profiles of the negative ions were consistent with the neutral compounds revealing that ONs peak during the day while HOMs are more abundant at night-time. However, during the day, a large fraction of the negative charge is taken up by the pure sulfuric acid clusters causing differences between ambient ions and neutral compounds (i.e. less available charge for HOM and ON).

  15. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    PubMed

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  16. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.

    PubMed

    Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  17. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  18. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for allmore » water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane.« less

  19. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    NASA Astrophysics Data System (ADS)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  20. The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*

    PubMed Central

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-01-01

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424

  1. The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.

    PubMed

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-02-21

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.

  2. Reductive spectrophotometry of divalent tin sensitization on soda lime glass

    NASA Astrophysics Data System (ADS)

    Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith

    2016-07-01

    Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.

  3. Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation

    NASA Astrophysics Data System (ADS)

    Tiraferri, Alberto; Saldarriaga Hernandez, Laura Andrea; Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2017-03-01

    Nanosized colloids of iron oxide adsorb heavy metals, enhance the biodegradation of contaminants, and represent a promising technology to clean up contaminated aquifers. Goethite particles for aquifer reclamation were recently synthesized with a coating of humic acids to reduce aggregation. This study investigates the stability and the mobility in porous media of this material as a function of aqueous chemistry, and it identifies the best practices to maximize the efficacy of the related remediation. Humic acid-coated nanogoethite (hydrodynamic diameter ˜90 nm) displays high stability in solutions of NaCl, consistent with effective electrosteric stabilization. However, particle aggregation is fast when calcium is present and, to a lesser extent, also in the presence of magnesium. This result is rationalized with complexation phenomena related to the interaction of divalent cations with humic acid, inducing rapid flocculation and sedimentation of the suspensions. The calcium dose, i.e., the amount of calcium ions with respect to solids in the dispersion, is the parameter governing stability. Therefore, more concentrated slurries may be more stable and mobile in the subsurface than dispersions of low particle concentration. Particle concentration during field injection should be thus chosen based on concentration and proportion of divalent cations in groundwater.

  4. Recombination of electrons with NH4/+/-/NH3/n-series ions

    NASA Technical Reports Server (NTRS)

    Huang, C.-M.; Biondi, M. A.; Johnsen, R.

    1976-01-01

    The paper examines the recombination of electrons with ammonium-series cluster ions, NH4(+)-(NH3)n, for two reasons: (1) NH4(+) may be a significant ion in the lower atmospheres of the earth and the outer planets, and (2) to investigate the weak temperature dependence of the cluster ion's recombination coefficient. A microwave afterglow mass spectrometer was used to determine the recombination coefficients for the first five members of the ammonium series, (18+) through (86+), at temperatures between 200 and 410 K. The electron temperature dependence of the recombination coefficient was determined for (35+) and (52+), the n = 1 and 2 cluster ions, over the temperature range 300-3000 K.

  5. Trivalent Ions under Charged Langmuir Monolayers: Nanoscale Mechanisms for Charge Inversion and Liquid-Liquid Extraction

    NASA Astrophysics Data System (ADS)

    Miller, Mitchell

    Ions dissolved in solution are known to interact in remarkable ways with charged Langmuir monolayers. The organic monolayer can be used as a molecular template for ordered nucleation of inorganic crystals (biomineralization) and functional nanoparticles. However, the clear majority of experiments demonstrating these behaviors have been performed with divalent ions. Trivalent ions are present in several important processes that are unique from previously studied divalent systems. We will demonstrate that trivalent ions under floating monolayers can model two important systems: charge inversion and liquid-liquid solvent extraction. Using in situ synchrotron x-ray scattering and emission methods, we can make direct, nanoscale observations of the interactions between ion and monolayer. Charge inversion is a fascinating phenomenon in which small ions of an opposite charge to some large object (colloidal particle, DNA molecule, etc.) will attach to and reverse the object's charge, rather than simply neutralizing it. There are many experimental systems demonstrating this behavior and an enormous body of theoretical work to explain it. Two classes of explanation exist for how charge inversion may occur, "chemical" and "physical" mechanism. Using grazing incidence diffraction (GID), we have found that ions can form an ordered lattice which is incommensurate to a floating, charged monolayer. Because the ions are incommensurate, they cannot be specifically attached to molecules in the monolayer and must be, therefore, held in place by "physical" means. Solvent extraction can be an extremely complex procedure, so our approach to studying it is to simplify the system into a basic model. Ordinarily, two immiscible liquids--an aqueous phase containing some desired species and other impurities and an organic phase, which sometimes contains extractant molecules that improve efficiency--are mixed together and allowed to separate again. While the liquids are being mixed together, the target species from the aqueous phase is pulled across the interface into the organic phase. The mechanism by which the transfer occurs is very poorly understood and very difficult to study directly since it is a very dynamic process and obscured by the bulk of the liquids. Here we propose that the air-water interface is a model of the liquid-liquid interface; in our model, the hydrophobic "organic" phase is the air above the water. This lets us make direct observations of the interactions between ions dissolved in the aqueous phase and the extractant molecules in the organic phase with x-rays, something which would be impossible in an ordinary solvent extraction experiment. We observed a sharp transition in ordering as the atomic weight of the ion dissolved in solution is increased. One would expect a continuous variation, since the size of the ions varies continuously. Second, using x-ray fluorescence, we find that heavier lanthanides are much more strongly attracted to the monolayer than light ones. The unexpected nature of our results emphasizes the need for bottom-up approaches to understanding these systems rather than the top-down method used for the last century. In addition, our results demonstrate that it is, indeed, possible to overcome the experimental difficulties and make the types of measurements necessary for this approach.

  6. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.

    PubMed

    Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A

    2009-09-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.

  7. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  8. Superconducting state parameters of monovalent and polyvalent amorphous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in; Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakor@rediffmail.com

    2015-08-28

    In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N{sub 0}V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.

  9. Superconducting state parameters of monovalent and polyvalent amorphous

    NASA Astrophysics Data System (ADS)

    Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.

    2015-08-01

    In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N0V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.

  10. Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60

    NASA Astrophysics Data System (ADS)

    Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.

    2013-12-01

    Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.

  11. Chemistry Within Molecular Clusters

    DTIC Science & Technology

    1992-06-01

    reactions, and only occur within van der Waals clusters. 23 They include the generation of (C2H4F2),>4H+ ions from 1,1- difluoroethane clusters, 4 the...of fragment ions, and identification of the molecule must be made by the characteristic fragmentation pattern. The mass spectrum of 1,1- difluoroethane

  12. Chemistry within Molecular Clusters

    DTIC Science & Technology

    1992-05-29

    within van der Waals clusters. 23 They include the generation of (C2H4F 2),,>4H+ ions from 1,1- difluoroethane clusters, 24 the generation of (CH 3...fragment ions, and identification of the molecule must be made by the characteristic fragmentation pattern. The mass spectrum of 1,1- difluoroethane (DFE

  13. The Effect of Moisture on the Hydrolysis of Basic Salts.

    PubMed

    Shi, Xiaoyang; Xiao, Hang; Chen, Xi; Lackner, Klaus S

    2016-12-19

    A great deal of information exists concerning the hydration of ions in bulk water. Much less noticeable, but equally ubiquitous is the hydration of ions holding on to several water molecules in nanoscopic pores or in natural air at low relative humidity. Such hydration of ions with a high ratio of ions to water molecules (up to 1:1) are essential in determining the energetics of many physical and chemical systems. Herein, we present a quantitative analysis of the energetics of ion hydration in nanopores based on molecular modeling of a series of basic salts associated with different numbers of water molecules. The results show that the degree of hydrolysis of basic salts in the presence of a few water molecules is significantly different from that in bulk water. The reduced availability of water molecules promotes the hydrolysis of divalent and trivalent basic ions (S 2 - , CO 3 2- , SO 3 2- , HPO 4 2- , SO 4 2- , PO 4 3- ), which produces lower valent ions (HS - , HCO 3 - , HSO 3 - , H 2 PO 4 - , HSO 4 - , HPO 4 2- ) and OH - ions. However, reducing the availability of water inhibits the hydrolysis of monovalent basic ions (CN - , HS - ). This finding sheds some light on a vast number of chemical processes in the atmosphere and on solid porous surfaces. The discovery has wide potential applications including designing efficient absorbents for acidic gases. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    PubMed

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  15. Effect of sharp maximum in ion diffusivity for liquid xenon

    NASA Astrophysics Data System (ADS)

    Lankin, A. V.; Orekhov, M. A.

    2016-11-01

    Ion diffusion in a liquid usually could be treated as a movement of an ion cluster in a viscous media. For small ions this leads to a special feature: diffusion coefficient is either independent of the ion size or increases with it. We find a different behavior for small ions in liquid xenon. Calculation of the dependence of an ion diffusion coefficient in liquid xenon on the ion size is carried out. Classical molecular dynamics method is applied. Calculated dependence of the ion diffusion coefficient on its radius has sharp maximums at the ion radiuses 1.75 and 2 Å. Every maximum is placed between two regions with different stable ion cluster configurations. This leads to the instability of these configurations in a small region between them. Consequently ion with radius near 1.75 or 2 Å could jump from one configuration to another. This increases the speed of the diffusion. A simple qualitative model for this effect is suggested. The decomposition of the ion movement into continuous and jump diffusion shows that continuous part of the diffusion is the same as for the ion cluster in the stable region.

  16. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  17. Hidden Charge States in Soft-X-Ray Laser-Produced Nanoplasmas Revealed by Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schroedter, L.; Müller, M.; Kickermann, A.; Przystawik, A.; Toleikis, S.; Adolph, M.; Flückiger, L.; Gorkhover, T.; Nösel, L.; Krikunova, M.; Oelze, T.; Ovcharenko, Y.; Rupp, D.; Sauppe, M.; Wolter, D.; Schorb, S.; Bostedt, C.; Möller, T.; Laarmann, T.

    2014-05-01

    Highly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviolet spectral range provides fingerprints of transient states of high energy density matter. Spectra from clusters consisting of a xenon core and a surrounding argon shell show that a small fraction of the fluorescence signal comes from multiply charged xenon ions in the cluster core. Initially, these ions are as highly charged as the ions in the outer shells of pure xenon clusters with charge states up to at least 11+.

  18. Transmission of cluster ions through a tandem accelerator of several stripper gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Yuichi; Chiba, Atsuya; Narumi, Kazumasa

    2009-10-15

    The transmissions of carbon cluster ion beams through a tandem accelerator using several stripper gases (He, N{sub 2}, CO{sub 2}, and SF{sub 6}) with a terminal voltage of 2.5 MV were measured as a function of the gas pressure in investigating the most suitable gas for cluster ion acceleration. This resulted in it being demonstrated that the highest transmission could be obtained using the smaller size gas, i.e., helium displayed the best performance of the four gases used. In addition, the ratio of transmissions of C{sub n} with helium and nitrogen increased with increases in the n, thus revealing thatmore » helium gas should prove the most effective in larger cluster ion acceleration using the same energy.« less

  19. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  20. Raman spectroscopy of few-layer graphene prepared by C2-C6 cluster ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Zhang, R.; Zhang, Z. D.; Huang, Z. H.; Liu, C. S.; Fu, D. J.; Liu, J. R.

    2013-07-01

    Few-layer graphene has been prepared on 300 nm-thick Ni films by C2-C6 cluster ion implantation at 20 keV/cluster. Raman spectroscopy reveals significant influence of the number of atoms in the cluster, the implantation dose, and thermal treatment on the structure of the graphene layers. In particular, the graphene samples exhibit a sharp G peak at 1584 cm-1 and 2D peaks at 2711-2717 cm-1. The IG/I2D ratios higher than 1.70 and IG/ID ratio as high as 1.95 confirm that graphene sheets with low density of defects have been synthesized with much improved quality by ion implantation with larger clusters of C4-C6.

  1. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  2. The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.

    PubMed

    Novikov, Alexey; Caroff, Martine; Della-Negra, Serge; Depauw, Joël; Fallavier, Mireille; Le Beyec, Yvon; Pautrat, Michèle; Schultz, J Albert; Tempez, Agnès; Woods, Amina S

    2005-01-01

    A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents. Copyright (c) 2005 John Wiley & Sons, Ltd.

  3. Emission spectroscopy of divalent-cation-doped GaN photocatalysts

    NASA Astrophysics Data System (ADS)

    Hirai, Takeshi; Harada, Takashi; Ikeda, Shigeru; Matsumura, Michio; Saito, Nobuo; Nishiyama, Hiroshi; Inoue, Yasunobu; Harada, Yoshiyuki; Ohno, Nobuhito; Maeda, Kazuhiko; Kubota, Jun; Domen, Kazunari

    2011-12-01

    Photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra of GaN particles doped with divalent cations (Mg2+, Zn2+, and Be2+), which promote photocatalytic overall water splitting, were investigated. The PL and TRPL spectra were mainly attributed to donor-acceptor pair recombination between the divalent cation dopants and divalent anion impurities (O2- and S2-) unintentionally introduced from raw materials, which form acceptor and donor levels, respectively. These levels are likely to provide holes and electrons required for photocatalytic reactions, contributing to the photocatalytic activity of the GaN-based photocatalysts for overall water splitting.

  4. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less

  5. Cluster formation in precompound nuclei in the time-dependent framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetrumpf, B.; Nazarewicz, W.

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  6. Cluster formation in precompound nuclei in the time-dependent framework

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-15

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  7. Cluster formation in precompound nuclei in the time-dependent framework

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-01

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.

  8. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.

  9. Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes

    PubMed Central

    Porchia, Andrea C.; Salerno, Graciela L.

    1996-01-01

    Biosynthesis of sucrose-6-P catalyzed by sucrose-phosphate synthase (SPS), and the presence of sucrose-phosphate phosphatase (SPP) leading to the formation of sucrose, have both been ascertained in a prokaryotic organism: Anabaena 7119, a filamentous heterocystic cyanobacterium. Two SPS activities (SPS-I and SPS-II) were isolated by ion-exchange chromatography and partially purified. Four remarkable differences between SPSs from Anabaena and those from higher plants were shown: substrate specificity, effect of divalent cations, native molecular mass, and oligomeric composition. Both SPS-I and SPS-II accept Fru-6-P (Km for SPS-I = 0.8 ± 0.1 mM; Km for SPS-II = 0.7 ± 0.1 mM) and UDP-Glc as substrates (Km for SPS-I = 1.3 ± 0.4 mM; Km for SPS-II = 4.6 ± 0.4 mM), but unlike higher plant enzymes, they are not specific for UDP-Glc. GDP-Glc and TDP-Glc are also SPS-I substrates (Km for GDP-Glc = 1.2 ± 0.2 mM and Km for TDP-Glc = 4.0 ± 0.4 mM), and ADP-Glc is used by SPS-II (Km for ADP-Glc = 5.7 ± 0.7 mM). SPS-I has an absolute dependence toward divalent metal ions (Mg2+ or Mn2+) for catalytic activity, not found in plants. A strikingly smaller native molecular mass (between 45 and 47 kDa) was determined by gel filtration for both SPSs, which, when submitted to SDS/PAGE, showed a monomeric composition. Cyanobacteria are, as far as the authors know, the most primitive organisms that are able to biosynthesize sucrose as higher plants do. PMID:8942980

  10. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy.

    PubMed

    McColl, Damian J; Chen, Xiaowu

    2010-01-01

    HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009. Published by Elsevier B.V.

  11. Excrétion rénale des ions divalents après homotransplantation rénale

    PubMed Central

    Cartier, F.; Popovtzer, M. M.; Robinette, J.; Pinggera, W. F.; Halgrimson, C. G.; Starzl, T. E.

    2010-01-01

    RÉSUMÉ L’élimination rénale des ions divalents, celle du Na et du K, ont été étudiées de façon comparative dans les suites immédiates de l’homotransplantation rénale chez 6 patients. Durant la période initiale polyurique (> 3ml/mn), le taux d’excrétion du Ca filtré (Cca/Ccr), du Mg, du P, du Na et du K, est élevé et il existe une corrélation étroite et quasi constante entre l’élimination du Ca, du Mg et du Na ; la corrélation n’est pas constante entre l’élimination du Na et du K, du Mg et du K. Pendant les deux jours suivants, le taux d’excrétion diminue, sauf pour le P ; il existe encore une corrélation entre l’excrétion du Ca, du Mg et du Na, non entre celle du Na et du K, du Mg et du K. L’excrétion du Ca l’emporte sur celle du Na au cours de la première période, non au cours de la seconde. A la lumière de ces données, on envisage l’intervention possible de divers facteurs, tels l’inflation hydrosique et l’hyperazotémie préalables, l’ischémie rénale contemporaine de la transplantation, les effets de la dénervation rénale, du traitement cortisonique, de l’hyperparathyroïdie et ceux des modifications circulatoires rénales. PMID:4574592

  12. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity

    PubMed Central

    Wojciechowski, Cheryl L.; Cardia, James P.; Kantrowitz, Evan R.

    2002-01-01

    The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a kcat of 16 s−1 and a Km of 175 μM at a pH optimum of 8.0 when assayed at 25°C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum kcat of 100 s−1, with a Km of 93 μM at 65°C. Activity was stable at 65°C for >24 h and at 90°C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer. PMID:11910033

  13. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surfacemore » area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.« less

  14. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, H.B.; Hu, Y.J.; Bernstein, E.R.

    Small methanol clusters are formed by expanding a mixture of methanol vapor seeded in helium and are detected using vacuum UV (vuv) (118 nm) single-photon ionization/linear time-of-flight mass spectrometer (TOFMS). Protonated cluster ions, (CH{sub 3}OH){sub n-1}H{sup +} (n=2-8), formed through intracluster ion-molecule reactions following ionization, essentially correlate to the neutral clusters, (CH{sub 3}OH){sub n}, in the present study using 118 nm light as the ionization source. Both experimental and Born-Haber calculational results clarify that not enough excess energy is released into protonated cluster ions to initiate further fragmentation in the time scale appropriate for linear TOFMS. Size-specific spectra for (CH{submore » 3}OH){sub n} (n=4 to 8) clusters in the OH stretch fundamental region are recorded by IR+vuv (118 nm) nonresonant ion-dip spectroscopy through the detection chain of IR multiphoton predissociation and subsequent vuv single-photon ionization. The general structures and gross features of these cluster spectra are consistent with previous theoretical calculations. The lowest-energy peak contributed to each cluster spectrum is redshifted with increasing cluster size from n=4 to 8, and limits near {approx}3220 cm{sup -1} in the heptamer and octamer. Moreover, IR+vuv nonresonant ionization detected spectroscopy is employed to study the OH stretch first overtone of the methanol monomer. The rotational temperature of the clusters is estimated to be at least 50 K based on the simulation of the monomer rotational envelope under clustering conditions.« less

  16. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  17. Sudden appearance of sub-keV structured ions in the inner magnetosphere within one hour: drift simulation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Ebihara, Yusuke; Dandouras, Iannis; Nilsson, Hans

    2014-05-01

    Energy-latitude dispersed structured sub-keV ions in the inner magnetosphere drifts very slowly in the noon-to-afternoon sectors because the eastward corotation and the westward magnetic drift balances to each other there. However, majority of Cluster ion observation by the Cluster Ion Spectrometry (CIS) COmposition DIstribution Function (CODIF) instrument during 2001-2006 showed significant development or intensification (by more than factor of 3) within 1-2 h in that sector during the Cluster perigee traversals that quickly scans latitudinal structure at a fixed local time (Yamauchi et al., 2013). The frequent observations of significant inbound-outbound differences in the wedge-like dispersed ions by Cluster indicates either new injections or high eastward drift velocity even in the afternoon sector. To examine the former possibility, i.e., whether such sudden appearances in the dayside can be explained by the drift motion of ions that are formed during substorm-related injections, we numerically simulated two such examples, one at noon (8 September 2002) and the other in the afternoon (9 July 2001), based on the same ion drift simulation model that has successfully reproduced the ion pattern of an inbound-outbound symmetric event at 5 MLT observed by the Cluster CIS/CODIF instrument. The model uses backward phase-space mapping to a boundary at the nightside 8 Earth radii and forward numerical simulation using re-constructed distribution function at that boundary. For both examples, the ion drift model with finite duration (limited to 1-2 hours) of proton source in the nightside can explain the observed large inbound-outbound differences in the sub-keV proton population without any new sources. Ion drift motion is thus able to cause rapid changes of complicated ion populations, at remote places from the source long time after the substorm activities, although this result does not eliminate the possibility of having independent ionospheric sources. References: Yamauchi, M. et al.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569-1578, doi:10.5194/angeo-31-1569-2013, 2013.

  18. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.

    PubMed

    Oberhauser, A; Alvarez, O; Latorre, R

    1988-07-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

  19. Polymer stability and function for electrolyte and mixed conductor applications

    NASA Astrophysics Data System (ADS)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  20. Role of the constant region domain in the structural diversity of human antibody light chains.

    PubMed

    Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo

    2017-04-01

    Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.

  1. Treatment of mining waste leachate by the adsorption process using spent coffee grounds.

    PubMed

    Ayala, Julia; Fernández, Begoña

    2018-02-15

    The removal of heavy metals from mining waste leachate by spent coffee grounds has been investigated. In synthetic solutions, metal uptake was studied in batch adsorption experiments as a function of pH, contact time, initial metal concentration, adsorbent concentration, particle size, and the effect of co-ions (Na, K, Ca, Mg, Cu, Cd, Ni, Zn). Results showed that adsorption was significantly affected by pH, showing the highest affinity within a pH range of 5-7. Sorption of heavy metals reached equilibrium in 3 h. Removal percentages of metals ions increased with increasing dosage. Particle size did not have a significant influence on metal uptake. The adsorption of heavy metals was found to fit Langmuir and Freundlich isotherms. Maximum Zn, Cd and Ni uptake values were calculated as 10.22, 5.96 and 7.51 mg/g, respectively, using unwashed coffee grounds (UCG) as the adsorbent and 5.36, 4.28 and 4.37 mg/g when employing washed coffee grounds as the adsorbent. The presence of co-ions inhibited the uptake of heavy metals, divalent ions having a more negative effect than monovalent ions. The results obtained in the experiments with mining waste leachate showed that UCG is effective in removing heavy metals.

  2. Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3

    DOE PAGES

    Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang; ...

    2017-03-07

    The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less

  3. Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang

    The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less

  4. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions.

    PubMed

    Kashefolgheta, Sadra; Vila Verde, Ana

    2017-08-09

    We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.

  5. [CuCl(n)](2-n) ion-pair species in 1-ethyl-3-methylimidazolium chloride ionic liquid-water mixtures: ultraviolet-visible, X-ray absorption fine structure, and density functional theory characterization.

    PubMed

    Li, Guosheng; Camaioni, Donald M; Amonette, James E; Zhang, Z Conrad; Johnson, Timothy J; Fulton, John L

    2010-10-07

    We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption fine structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu(2+) with multiple Cl(-) ligands to form various CuCl(n)((2-n)) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM(+) cation. Ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl(4)(2-) species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C(2) symmetry compared to D(2d) in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.

  6. RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations

    PubMed Central

    Kirmizialtin, Serdal; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Elber, Ron

    2012-01-01

    RNA molecules play critical roles in many cellular processes. Traditionally viewed as genetic messengers, RNA molecules were recently discovered to have diverse functions related to gene regulation and expression. RNA also has great potential as a therapeutic and a tool for further investigation of gene regulation. Metal ions are an integral part of RNA structure and should be considered in any experimental or theoretical study of RNA. Here, we report a multidisciplinary approach that combines anomalous small-angle x-ray scattering and molecular-dynamics (MD) simulations with explicit solvent and ions around RNA. From experiment and simulation results, we find excellent agreement in the number and distribution of excess monovalent and divalent ions around a short RNA duplex. Although similar agreement can be obtained from a continuum description of the solvent and mobile ions (by solving the Poisson-Boltzmann equation and accounting for finite ion size), the use of MD is easily extended to flexible RNA systems with thermal fluctuations. Therefore, we also model a short RNA pseudoknot and find good agreement between the MD results and the experimentally derived solution structures. Surprisingly, both deviate from crystal structure predictions. These favorable comparisons of experiment and simulations encourage work on RNA in all-atom dynamic models. PMID:22385853

  7. Effects of increasing number of rings on the ion sensing ability of CdSe quantum dots: a theoretical study

    NASA Astrophysics Data System (ADS)

    Malik, Pragati; Kakkar, Rita

    2018-04-01

    A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II-VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n ( n = 3, 6, 9 which are in the size range of 0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.

  8. Emergence of californium as the second transitional element in the actinide series

    PubMed Central

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; DePrince, A. Eugene; Polinski, Matthew J.; Van Cleve, Shelley M.; House, Jane H.; Kikugawa, Naoki; Gallagher, Andrew; Arico, Alexandra A.; Dixon, David A.; Albrecht-Schmitt, Thomas E.

    2015-01-01

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. The metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence. PMID:25880116

  9. Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.

    PubMed

    Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold

    2017-03-17

    A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physicochemical characteristics of LR3-IGF1 protein inclusion bodies: electrophoretic mobility studies.

    PubMed

    Wangsa-Wirawan, N D; O'Neill, B K; Middelberg, A P

    2001-01-01

    A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.

  11. Purification and partial characterization of PfHRP-II protein of Plasmodium falciparum.

    PubMed

    Ghimire, Prakash; Samantaray, J C; Mirdha, B R; Patra, A K; Panda, A K

    2003-12-01

    The human malarial parasite Plasmodium falciparum secretes various intra-and extra-cellular proteins during its asexual life cycle in human RBC. Histidine rich protein-II (HRP-II) is one of the most prominent proteins, found to be secreted by P. falciparum throughout the asexual cycle with the peak during mature schizont stage of the parasite development in human IRBC. The high histidine content (35% of the total amino acids in protein) of this protein suggested the potential to bind divalent metal ions. We have demonstrated by metal chelate chromatography, an extraordinary capacity of HRP-II to bind nickel ions (Ni++) and employed this characteristic to purify the extra-cellular HRP-II protein secreted by P. falciparum from culture supernatant. The identity of the purified protein was verified by the relative molecular weight on SDS-PAGE, by reacting with polyclonal antibodies directed against it using Western blot technique.

  12. Helical Structure Determines Different Susceptibilities of dsDNA, dsRNA, and tsDNA to Counterion-Induced Condensation

    PubMed Central

    Kornyshev, Alexei A.; Leikin, Sergey

    2013-01-01

    Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation. PMID:23663846

  13. B1-Metallo-beta-Lactamases: Where do we stand?

    PubMed Central

    Mojica, Maria F.; Bonomo, Robert A.; Fast, Walter

    2015-01-01

    Metallo-beta-Lactamases (MBLs) are class B β-lactamases that hydrolyze almost all clinically-available β-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase / oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat. PMID:26424398

  14. Simultaneous Pressure-Induced Magnetic and Valence Transitions in Type-I Clathrate Eu8Ga16Ge30

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Tsutsui, Satoshi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Avila, Marcos A.; Yamamoto, Shuhei; Yamane, Haruki; Suekuni, Koichiro; Umeo, Kazunori; Kume, Tetsuji; Nakano, Satoshi; Takabatake, Toshiro

    2014-01-01

    We have performed X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) measurements at pressures up to 17 GPa for the clathrate Eu8Ga16Ge30 (Curie temperature TC = 36 K). The temperature dependence of the XMCD spectra agrees well with that of the DC magnetization at ambient pressure. The TC is gradually enhanced with increasing pressures up to 13.3 GPa, and the divalent state of the Eu ions with J = 7/2 remains stable, but at 17 GPa the XMCD intensity is strongly suppressed and a spectral weight corresponding to the trivalent state of Eu ions (with no magnetic moment) appears in the XAS spectrum. The concurrent change from the type-I clathrate structure to an amorphous phase has been observed by X-ray diffraction experiment. We conclude that the amorphization of this compound induces the mixed valence state, which collapses the ferromagnetism.

  15. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology

    NASA Astrophysics Data System (ADS)

    Secchi, E.; Munarin, F.; Alaimo, M. D.; Bosisio, S.; Buzzaccaro, S.; Ciccarella, G.; Vergaro, V.; Petrini, P.; Piazza, R.

    2014-11-01

    Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca2+ ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.

  16. A thiourea derivative as potential ionophore for copper sensing

    NASA Astrophysics Data System (ADS)

    Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.

  17. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shang, Yan-Xia; Zhang, Zao-Di; Wang, Ze-Song; Zhang, Rui; Fu, De-Jun

    2015-01-01

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11375135) and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-03).

  18. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals.

    PubMed

    Buckeridge, J; Catlow, C R A; Scanlon, D O; Keal, T W; Sherwood, P; Miskufova, M; Walsh, A; Woodley, S M; Sokol, A A

    2015-01-09

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  19. Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Catlow, C. R. A.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Miskufova, M.; Walsh, A.; Woodley, S. M.; Sokol, A. A.

    2015-01-01

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p -type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  20. Reactions and properties of clusters

    NASA Astrophysics Data System (ADS)

    Castleman, A. W., Jr.

    1992-09-01

    The elucidation from a molecular point of view of the differences and similarities in the properties and reactivity of matter in the gaseous compared to the condensed state is a subject of considerable current interest. One of the promising approaches to this problem is to utilize mass spectrometry in conjunction with laser spectroscopy and fast-flow reaction devices to investigate the changing properties, structure and reactivity of clusters as a function of the degree of solvation under well-controlled conditions. In this regard, an investigation of molecular cluster ions has provided considerable new insight into the basic mechanisms of ion reactions within a cluster, and this paper reviews some of the recent advances in cluster production, the origin of magic numbers and relationship to cluster ion stabilities, and solvation effects on reactions. There have been some notable advances in the production of large cluster ions under thermal reaction conditions, enabling a systematic study of the influence of solvation on reactions to be carried out. These and other new studies of magic numbers have traced their origin to the thermochemical stability of cluster ions. There are several classes of reaction where solvation has a notable influence on reactivity. A particularly interesting example comes from recent studies of the reactions of the hydroxyl anion with CO2 and SO2, studied as a function of the degree of hydration of OH-. Both reactions are highly exothermic, yet the differences in reactivity are dramatic. In the case of SO2, the reaction occurs at near the collision rate. By contrast, CO2 reactivity plummets dramatically for clusters having more than four water molecules. The slow rate is in accord with observations in the liquid phase.

  1. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  2. Water cluster fragmentation probed by pickup experiments

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  3. Surface Modification of Silicone Rubber for Adhesion Patterning of Mesenchymal Stem Cells by Water Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.

    2011-01-01

    Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.

  4. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  5. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.

    PubMed

    Xiao, Yinlong; Peijnenburg, Willie J G M; Chen, Guangchao; Vijver, Martina G

    2018-01-01

    Toxicity of metallic nanoparticle suspensions (NP (total) ) is generally assumed to result from the combined effect of the particles present in suspensions (NP (particle) ) and their released ions (NP (ion) ). Evaluation and consideration of how water chemistry affects the particle-specific toxicity of NP (total) are critical for environmental risk assessment of nanoparticles. In this study, it was found that the toxicity of Cu NP (particle) to Daphnia magna, in line with the trends in toxicity for Cu NP (ion) , decreased with increasing pH and with increasing concentrations of divalent cations and dissolved organic carbon (DOC). Without the addition of DOC, the toxicity of Cu NP (total) to D. magna at the LC50 was driven mainly by Cu NP (ion) (accounting for ≥53% of the observed toxicity). However, toxicity of Cu NP (total) in the presence of DOC at a concentration ranging from 5 to 50mg C/L largely resulted from the NP (particle) (57%-85%), which could be attributable to the large reduction of the concentration of Cu NP (ion) and the enhancement of the stability of Cu NP (particle) when DOC was added. Our results indicate that water chemistry needs to be explicitly taken into consideration when evaluating the role of NP (particle) and NP (ion) in the observed toxicity of NP (total) . Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Caesium sputter ion source compatible with commercial SIMS instruments

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M.; Adams, F.

    2006-07-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si n- and Cu n- ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  7. Structure and electrostatic property of cytoplasmic domain of ZntB transporter

    PubMed Central

    Tan, Kemin; Sather, Alicia; Robertson, Janice L; Moy, Shiu; Roux, Benoît; Joachimiak, Andrzej

    2009-01-01

    ZntB is the distant homolog of CorA Mg2+ transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn2+ and Cd2+, but not Mg2+. Here, we report the 1.90 Å crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn2+ or Cd2+ binding sites were identified in the high-resolution structure. Instead, 25 well-defined Cl− ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl− ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport. PMID:19653298

  8. Binding of Dissolved Strontium by Micrococcus luteus

    PubMed Central

    Faison, Brendlyn D.; Cancel, Carmen A.; Lewis, Susan N.; Adler, Howard I.

    1990-01-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity. PMID:16348370

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Sather, A.; Robertson, J. L.

    ZntB is the distant homolog of CorA Mg{sup 2+} transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn{sup 2+} and Cd{sup 2+}, but not Mg{sup 2+}. Here, we report the 1.90 {angstrom} crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn{sup 2+} or Cd{sup 2+} binding sites were identified in the high-resolution structure. Instead,more » 25 well-defined Cl{sup -} ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl{sup -} ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport.« less

  10. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.

    PubMed

    Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim

    2018-04-24

    We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong

    2014-11-01

    The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.

  12. Selective adsorption of Pb(II) from aqueous solution using porous biosilica extracted from marine diatom biomass: Properties and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Yarong; Wang, Jingfeng; Wang, Xin; Cheng, Jay Jiayang; Wen, Zhiyou

    2017-02-01

    Biosilica with a surface area of 143 m2 g-1 derived from marine diatoms was prepared using an easy two-step method involving washing with dilute acid and baking. The extracted biosilica was used to remove divalent lead ions, i.e., Pb(II), from aqueous solution. The effects on Pb(II) adsorption of initial pH, shaking speed, and adsorbent loading were investigated. The adsorption of Pb(II) in the presence of other ions was also investigated. The biosilica showed a high adsorption capacity with high selectivity for Pb(II). The experimental maximum adsorption capacity was 108.2-120.4 mg g-1 at an adsorbent loading of 1 g L-1. The adsorption process was best described by the Langmuir model. The adsorbent selectively adsorbed Pb(II) from binary ion systems in the presence of Cu(II), Cd(II), Ni(II), and Ag(I). The results of this study show that biosilica extracted from fresh marine diatoms is a more efficient and selective adsorbent for Pb(II) than other inorganic adsorbents.

  13. Electrostatic correlations at the Stern layer: Physics or chemistry?

    NASA Astrophysics Data System (ADS)

    Travesset, A.; Vangaveti, S.

    2009-11-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.

  14. Measurement of urinary calcium using AT89C51RD2 microcontroller.

    PubMed

    Neelamegam, P; Jamaludeen, A; Rajendran, A; Raghunathan, R

    2009-04-01

    A simple and inexpensive absorption technique for determination of calcium ion in urine samples is developed, comprising a light emitting diode (650 nm) as the light source and photodiode as the detector with AT89C51RD2 microcontroller. The design of the system and details of interface, calibration, and procedure of operation are explained in this paper. Software is developed to monitor sample processing and to display the results in liquid crystal display screen. With 15 microl sample volume, a linear output is obtained in the range of 2.5-7.5 mM calcium with a detection limit of 0.06 mM. Interferences from other cations such as monovalent ion and divalent ion are investigated in the expected range, which are normally present in clinical samples, and absorption changes over the pH range of 3-12 are also determined. This system has been demonstrated successfully for the successive assay of calcium in urine samples, with the results comparing well to those achieved and in good agreement with values obtained with the current clinical spectrophotometric method at 95% of confidence level.

  15. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Streptomyces coelicolor SCO4226 Is a Nickel Binding Protein

    PubMed Central

    Jin, Hua; Zhang, Rong-Guang; Virolle, Marie-Joelle; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    The open reading frame SCO4226 of Streptomyces coelicolor A3(2) encodes an 82-residue hypothetical protein. Biochemical assays revealed that each SCO4226 dimer binds four nickel ions. To decipher the molecular function, we solved the crystal structures of SCO4226 in both apo- and nickel-bound (Ni-SCO4226) forms at 1.30 and 2.04 Å resolution, respectively. Each subunit of SCO4226 dimer adopts a canonical ferredoxin-like fold with five β-strands flanked by two α-helices. In the structure of Ni-SCO4226, four nickel ions are coordinated at the surface of the dimer. Further biochemical assays suggested that the binding of Ni2+ triggers the self-aggregation of SCO4226 in vitro. In addition, RT-qPCR assays demonstrated that the expression of SCO4226 gene in S. coelicolor is specifically up-regulated by the addition of Ni2+, but not other divalent ions such as Cu2+, Mn2+ or Co2+. All these results suggested that SCO4226 acts as a nickel binding protein, probably required for nickel sequestration and/or detoxification. PMID:25285530

  17. Specific interactions versus counterion condensation. 2. Theoretical treatment within the counterion condensation theory.

    PubMed

    Donati, Ivan; Benegas, Julio C; Cesàro, Attilio; Paoletti, Sergio

    2006-05-01

    Polyuronates such as pectate and alginate are very well-known examples of biological polyelectrolytes undergoing, upon addition of divalent cations, an interchain association that acts as the junction of an eventually formed stable hydrogel. In the present paper, a thermodynamic model based on the counterion condensation theory has been developed to account for this cation-induced chain pairing of negatively charged polyelectrolytes. The strong interactions between cross-linking ions and uronate moieties in the specific binding site have been described in terms of chemical bonding, with complete charge annihilation between the two species. The chain-pairing process is depicted as progressively increasing with the concentration of cross-linking counterions and is thermodynamically defined by the fraction of each species. On these bases, the total Gibbs energy of the system has been expressed as the sum of the contributions of the Gibbs energy of the (single) chain stretches and of the (associated) dimers, weighted by their respective fractions 1 - theta and theta. In addition, the model assumes that the condensed divalent counterions exhibit an affinity free-energy for the chain, G(C)(aff,0), and the junction, G(D)(aff,0), respectively. Moreover, a specific Gibbs energy of chemical bonding, G(bond,0), has been introduced as the driving force for the formation of dimers. The model provides the mathematical formalism for calculating the fraction, theta, of chain dimers formed and the amount of ions condensed and bound onto the polyelectrolyte when two different types of counterions (of equal or different valence) are present. The effect of the parameter G(bond,0) has been investigated and, in particular, its difference from G(C,D)(aff,0) was found to be crucial in determining the distribution of the ions into territorial condensation and chemical bonding, respectively. Finally, the effect of the variation of the molar ratio between cross-linking ions and uronic groups in the specific binding sites, sigma0, was evaluated. In particular, a remarkable decrease in the amount of condensed counterions has been pointed out in the case of sigma0 = 1/3, with respect to the value of sigma0 = 1/4, characterizing the traditional "egg-box" structure, as a result of the drop of the charge density of the polyelectrolyte induced by complete charge annihilation.

  18. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme.

    PubMed

    Kaur, Ramanjit; Mudgal, Rajat; Narwal, Manju; Tomar, Shailly

    2018-06-26

    Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m 7 GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m 7 GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m 7 G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m 7 GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m 7 GMP-nsP1 complex by utilizing anti-m 7 G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg 2+ ) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg 2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC 50 values were estimated to be 2.69 µM, 5.72 µM and 1.18 mM, respectively. Copyright © 2018. Published by Elsevier B.V.

  19. Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua

    2011-02-21

    We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.

  20. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  1. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  2. Static time-of-flight secondary ion mass spectrometry analysis of microelectronics related substrates using a polyatomic ion source

    NASA Astrophysics Data System (ADS)

    Ravanel, X.; Trouiller, C.; Juhel, M.; Wyon, C.; Kwakman, L. F. Tz.; Léonard, D.

    2008-12-01

    Recent time-of-flight secondary ion mass spectrometry studies using primary ion cluster sources such as Au n+, SF 5+, Bi n+ or C 60+ have shown the great advantages in terms of secondary ion yield enhancement and ion formation efficiency of polyatomic ion sources as compared to monoatomic ion sources like the commonly used Ga +. In this work, the effective gains provided by such a source in the static ToF-SIMS analysis of microelectronics devices were investigated. Firstly, the influence of the number of atoms in the primary cluster ion on secondary ion formation was studied for physically adsorbed di-isononyl phthalate (DNP) (plasticizer) and perfluoropolyether (PFPE). A drastic increase in secondary ion formation efficiency and a much lower detection limit were observed when using a polyatomic primary ion. Moreover, the yield of the higher mass species was much enhanced indicating a lower degree of fragmentation that can be explained by the fact that the primary ion energy is spread out more widely, or that there is a lower energy per incoming ion. Secondly, the influence of the number of Bi atoms in the Bi n primary ion on the information depth was studied using reference thermally grown silicon oxide samples. The information depth provided by a Bi n cluster was shown to be lowered when the number of atoms in the aggregate was increased.

  3. Dual shell-like magnetic clusters containing Ni(II) and Ln(III) (Ln = La, Pr, and Nd) ions.

    PubMed

    Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Zhiping; Nichol, Gary; Huang, Rong-Bin; Zheng, Lan-Sun

    2008-04-07

    Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.

  4. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-02

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.

  5. Influence of Natural Organic Matter on Attachment Kinetics of Salmonella Typhimurium

    NASA Astrophysics Data System (ADS)

    Chowdhury, I.; Zorlu, O.; Hill, J. E.; Walker, S. L.

    2011-12-01

    Salmonella enterica serovar Typhimurium is one of the most common and virulent bacterial pathogens, usually found in food and water. This waterborne pathogen has been attributed to causing gastroenteritis and typhoid fever, leading to 16 million cases and over half a million deaths worldwide each year. Natural organic matter (NOM) is ubiquitous in environment and previous work has shown NOM to enhance the stability and transport of bacteria cells; hence NOM will certainly interact with Salmonella and affect its transport in environment. The objective of this study was to investigate the influence of NOM (Suwannee River humic acid standard II, SRHA) on the attachment kinetics of a model Salmonella (Salmonella enterica serovar Typhimurium SA5983) to glass. The transport study was conducted in a parallel plate flow chamber using fluorescent microscope to visualize the bacterial cells, which were tagged with green fluorescent protein (GFP). The solution pH was unadjusted, and the flow rate through parallel plate channel was 0.1 mL/min to simulate groundwater conditions. Parameters varied in this study were NOM presence, ion valence (K+, Ca2+) as well as cell growth phase (mid-exponential and late-exponential growth phases). These parameters were chosen because ion valence may alter the NOM conformation and capacity for bridging, as well growth phase impacts the cellular surface chemistry. Extensive characterization of the bacterial cells was conducted including measurements of electrophoretic mobility, hydrophobicity, acidity, surface charge density and extracellular polymeric substance content. Additionally, electrokintic characterization was conducted for the glass. Preliminary results demonstrated the sensitivity of cell attachment to ionic valence and cell growth phase. Also the addition of NOM reduced the attachment of the Salmonella cells significantly under all of these conditions. Without NOM, attachment efficiencies (α) in KCl were similar at both growth phases; however, in the presence of the divalent ion, α decreased as the cells aged. In presence of NOM and KCl, α was significantly lower at late exponential phase than mid exponential phase; whereas, the opposite was observed with divalent ions. These trends indicate the complex role of NOM, which is coupled with ion valence and growth phase, in the transport of Salmonella. Detailed results will be presented along with proposed mechanisms involved in the interactions between Salmonella and NOM. These mechanisms highlight the role this important naturally occurring macromolecule plays in the fate of Salmonella. This understanding will improve our ability to predict the behavior of this pathogen in environmentally relevant conditions.

  6. Manganese-Enhanced MRI: Biological Applications in Neuroscience.

    PubMed

    Malheiros, Jackeline Moraes; Paiva, Fernando Fernandes; Longo, Beatriz Monteiro; Hamani, Clement; Covolan, Luciene

    2015-01-01

    Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn(2+)) enhances MRI contrast in vivo. Due to similarities between Mn(2+) and calcium (Ca(2+)), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca(2+) channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.

  7. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  8. Photodarkening kinetics in a high-power YDFA versus CW or short-pulse seed conditions

    NASA Astrophysics Data System (ADS)

    Jolly, Alain; Vinçont, Cyril; Boullet, Johan

    2017-02-01

    We propose an innovating model to describe the kinetics of competing photo-darkening and photo-bleaching phenomena in high-power, Ytterbium-Doped-Fibre-Amplifiers. This model makes use of aggregated species of trivalent Ytterbium and divalent ions, which operate as primarily efficient color-centers. This ensures multi-photon excitation, partly from the pump and partly from the signal. The fit of numerical computations with dedicated experiments help to validate our theoretical assumptions, in the definition of the involved physics. Potential applications of this study include further discussions for the selection of processing options with fibre-manufacturers and the optimization of operating conditions.

  9. FTMS studies of sputtered metal cluster ions (IV): size-selective effects in the chemistry of Fe{/n +} with NH3 and Pd{/n +} with D2 or C2H4

    NASA Astrophysics Data System (ADS)

    Irion, M. P.; Selinger, A.; Schnabel, P.

    1991-03-01

    Fe{/n +} and Pd{/n +} clusters up to n=19 and n=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe{/n +} clusters react by simply adsorbing intact NH3 molecules. Only Fe{4/+} ions show dehydrogenation/adsorption to Fe4(NH){/m +} intermediates ( m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd{n/+} cluster ions ( n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd{6/+} appear totally unreactive. Towards D2, Pd{7/+} ions seem inert, whereas Pd{8/+} adsorb up to two molecules.

  10. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  11. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  12. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE PAGES

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  13. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-03-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  14. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-07-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2 p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  15. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  16. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE PAGES

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...

    2016-12-09

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  17. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. A meteor ablation-cluster ion atmospheric sodium theory

    NASA Technical Reports Server (NTRS)

    Richter, E. S.; Sechrist, C. F., Jr.

    1979-01-01

    Neutral and ionic forms of sodium form narrow, well-defined layers which peak in the 90-95 km altitude region at midlatitudes. A new theory for the sodium layer is presented, which is found to be in good agreement with existing atmospheric observations as well as available laboratory measurements of rate constants. The layer is believed to result naturally from a meteor ablation source over a chemical sink with vertical transport of Na(+) playing an important role in the layer shape and variation. While the neutral chemistry is believed to consist of chemical equilibrium between Na and NaO, the ion chemistry departs from earlier studies and considers a cluster ion scheme. It is possible that higher-order cluster ions of sodium play a role in the formation of aerosols, through attachment or ion-induced nucleation processes.

  19. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    PubMed

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  20. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria

    PubMed Central

    Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi

    2015-01-01

    In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction. PMID:26212518

Top