iGLASS: An Improvement to the GLASS Method for Estimating Species Trees from Gene Trees
Rosenberg, Noah A.
2012-01-01
Abstract Several methods have been designed to infer species trees from gene trees while taking into account gene tree/species tree discordance. Although some of these methods provide consistent species tree topology estimates under a standard model, most either do not estimate branch lengths or are computationally slow. An exception, the GLASS method of Mossel and Roch, is consistent for the species tree topology, estimates branch lengths, and is computationally fast. However, GLASS systematically overestimates divergence times, leading to biased estimates of species tree branch lengths. By assuming a multispecies coalescent model in which multiple lineages are sampled from each of two taxa at L independent loci, we derive the distribution of the waiting time until the first interspecific coalescence occurs between the two taxa, considering all loci and measuring from the divergence time. We then use the mean of this distribution to derive a correction to the GLASS estimator of pairwise divergence times. We show that our improved estimator, which we call iGLASS, consistently estimates the divergence time between a pair of taxa as the number of loci approaches infinity, and that it is an unbiased estimator of divergence times when one lineage is sampled per taxon. We also show that many commonly used clustering methods can be combined with the iGLASS estimator of pairwise divergence times to produce a consistent estimator of the species tree topology. Through simulations, we show that iGLASS can greatly reduce the bias and mean squared error in obtaining estimates of divergence times in a species tree. PMID:22216756
Callahan, Melissa S; McPeek, Mark A
2016-01-01
Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus. Copyright © 2015 Elsevier Inc. All rights reserved.
The fossilized birth–death process for coherent calibration of divergence-time estimates
Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja
2014-01-01
Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181
The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci.
Dos Reis, Mario; Zhu, Tianqi; Yang, Ziheng
2014-07-01
Bayesian methods provide a powerful way to estimate species divergence times by combining information from molecular sequences with information from the fossil record. With the explosive increase of genomic data, divergence time estimation increasingly uses data of multiple loci (genes or site partitions). Widely used computer programs to estimate divergence times use independent and identically distributed (i.i.d.) priors on the substitution rates for different loci. The i.i.d. prior is problematic. As the number of loci (L) increases, the prior variance of the average rate across all loci goes to zero at the rate 1/L. As a consequence, the rate prior dominates posterior time estimates when many loci are analyzed, and if the rate prior is misspecified, the estimated divergence times will converge to wrong values with very narrow credibility intervals. Here we develop a new prior on the locus rates based on the Dirichlet distribution that corrects the problematic behavior of the i.i.d. prior. We use computer simulation and real data analysis to highlight the differences between the old and new priors. For a dataset for six primate species, we show that with the old i.i.d. prior, if the prior rate is too high (or too low), the estimated divergence times are too young (or too old), outside the bounds imposed by the fossil calibrations. In contrast, with the new Dirichlet prior, posterior time estimates are insensitive to the rate prior and are compatible with the fossil calibrations. We re-analyzed a phylogenomic data set of 36 mammal species and show that using many fossil calibrations can alleviate the adverse impact of a misspecified rate prior to some extent. We recommend the use of the new Dirichlet prior in Bayesian divergence time estimation. [Bayesian inference, divergence time, relaxed clock, rate prior, partition analysis.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Nilsson, Maria A; Härlid, Anna; Kullberg, Morgan; Janke, Axel
2010-05-01
The native rodents are the most species-rich placental mammal group on the Australian continent. Fossils of native Australian rodents belonging to the group Conilurini are known from Northern Australia at 4.5Ma. These fossil assemblages already display a rich diversity of rodents, but the exact timing of their arrival on the Australian continent is not yet established. The complete mitochondrial genomes of two native Australian rodents, Leggadina lakedownensis (Lakeland Downs mouse) and Pseudomys chapmani (Western Pebble-mound mouse) were sequenced for investigating their evolutionary history. The molecular data were used for studying the phylogenetic position and divergence times of the Australian rodents, using 12 calibration points and various methods. Phylogenetic analyses place the native Australian rodents as the sister-group to the genus Mus. The Mus-Conilurini calibration point (7.3-11.0Ma) is highly critical for estimating rodent divergence times, while the influence of the different algorithms on estimating divergence times is negligible. The influence of the data type was investigated, indicating that amino acid data are more likely to reflect the correct divergence times than nucleotide sequences. The study on the problems related to estimating divergence times in fast-evolving lineages such as rodents, emphasize the choice of data and calibration points as being critical. Furthermore, it is essential to include accurate calibration points for fast-evolving groups, because the divergence times can otherwise be estimated to be significantly older. The divergence times of the Australian rodents are highly congruent and are estimated to 6.5-7.2Ma, a date that is compatible with their fossil record.
Calibrated tree priors for relaxed phylogenetics and divergence time estimation.
Heled, Joseph; Drummond, Alexei J
2012-01-01
The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting hashave not been carefully investigated. Here, we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis.
Divergence between human populations estimated from linkage disequilibrium.
Sved, John A; McRae, Allan F; Visscher, Peter M
2008-12-01
Observed linkage disequilibrium (LD) between genetic markers in different populations descended independently from a common ancestral population can be used to estimate their absolute time of divergence, because the correlation of LD between populations will be reduced each generation by an amount that, approximately, depends only on the recombination rate between markers. Although drift leads to divergence in allele frequencies, it has less effect on divergence in LD values. We derived the relationship between LD and time of divergence and verified it with coalescent simulations. We then used HapMap Phase II data to estimate time of divergence between human populations. Summed over large numbers of pairs of loci, we find a positive correlation of LD between African and non-African populations at levels of up to approximately 0.3 cM. We estimate that the observed correlation of LD is consistent with an effective separation time of approximately 1,000 generations or approximately 25,000 years before present. The most likely explanation for such relatively low separation times is the existence of substantial levels of migration between populations after the initial separation. Theory and results from coalescent simulations confirm that low levels of migration can lead to a downward bias in the estimate of separation time.
An improved approximate-Bayesian model-choice method for estimating shared evolutionary history
2014-01-01
Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937
Cox, Trevor F; Czanner, Gabriela
2016-06-30
This paper introduces a new simple divergence measure between two survival distributions. For two groups of patients, the divergence measure between their associated survival distributions is based on the integral of the absolute difference in probabilities that a patient from one group dies at time t and a patient from the other group survives beyond time t and vice versa. In the case of non-crossing hazard functions, the divergence measure is closely linked to the Harrell concordance index, C, the Mann-Whitney test statistic and the area under a receiver operating characteristic curve. The measure can be used in a dynamic way where the divergence between two survival distributions from time zero up to time t is calculated enabling real-time monitoring of treatment differences. The divergence can be found for theoretical survival distributions or can be estimated non-parametrically from survival data using Kaplan-Meier estimates of the survivor functions. The estimator of the divergence is shown to be generally unbiased and approximately normally distributed. For the case of proportional hazards, the constituent parts of the divergence measure can be used to assess the proportional hazards assumption. The use of the divergence measure is illustrated on the survival of pancreatic cancer patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Conceptual issues in Bayesian divergence time estimation
2016-01-01
Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325831
Conceptual issues in Bayesian divergence time estimation.
Rannala, Bruce
2016-07-19
Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).
Fossils matter: improved estimates of divergence times in Pinus reveal older diversification.
Saladin, Bianca; Leslie, Andrew B; Wüest, Rafael O; Litsios, Glenn; Conti, Elena; Salamin, Nicolas; Zimmermann, Niklaus E
2017-04-04
The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
Turner, Alan H; Pritchard, Adam C; Matzke, Nicholas J
2017-01-01
Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a 'smoothed' timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches.
Turner, Alan H.; Pritchard, Adam C.; Matzke, Nicholas J.
2017-01-01
Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches. PMID:28187191
Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir
2018-01-01
Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954
Bayesian relaxed clock estimation of divergence times in foraminifera.
Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng
2011-10-01
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.
van Tuinen, Marcel; Torres, Christopher R.
2015-01-01
Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life. PMID:26106406
Middleton, Christopher P.; Senerchia, Natacha; Stein, Nils; Akhunov, Eduard D.; Keller, Beat
2014-01-01
Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8–9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1–2.9 MYA, while rye diverged from Triticum aestivum approximately 3–4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae. PMID:24614886
Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E
2016-11-01
Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.
Strategies for improving approximate Bayesian computation tests for synchronous diversification.
Overcast, Isaac; Bagley, Justin C; Hickerson, Michael J
2017-08-24
Estimating the variability in isolation times across co-distributed taxon pairs that may have experienced the same allopatric isolating mechanism is a core goal of comparative phylogeography. The use of hierarchical Approximate Bayesian Computation (ABC) and coalescent models to infer temporal dynamics of lineage co-diversification has been a contentious topic in recent years. Key issues that remain unresolved include the choice of an appropriate prior on the number of co-divergence events (Ψ), as well as the optimal strategies for data summarization. Through simulation-based cross validation we explore the impact of the strategy for sorting summary statistics and the choice of prior on Ψ on the estimation of co-divergence variability. We also introduce a new setting (β) that can potentially improve estimation of Ψ by enforcing a minimal temporal difference between pulses of co-divergence. We apply this new method to three empirical datasets: one dataset each of co-distributed taxon pairs of Panamanian frogs and freshwater fishes, and a large set of Neotropical butterfly sister-taxon pairs. We demonstrate that the choice of prior on Ψ has little impact on inference, but that sorting summary statistics yields substantially more reliable estimates of co-divergence variability despite violations of assumptions about exchangeability. We find the implementation of β improves estimation of Ψ, with improvement being most dramatic given larger numbers of taxon pairs. We find equivocal support for synchronous co-divergence for both of the Panamanian groups, but we find considerable support for asynchronous divergence among the Neotropical butterflies. Our simulation experiments demonstrate that using sorted summary statistics results in improved estimates of the variability in divergence times, whereas the choice of hyperprior on Ψ has negligible effect. Additionally, we demonstrate that estimating the number of pulses of co-divergence across co-distributed taxon-pairs is improved by applying a flexible buffering regime over divergence times. This improves the correlation between Ψ and the true variability in isolation times and allows for more meaningful interpretation of this hyperparameter. This will allow for more accurate identification of the number of temporally distinct pulses of co-divergence that generated the diversification pattern of a given regional assemblage of sister-taxon-pairs.
He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li
2012-01-01
An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308
NASA Technical Reports Server (NTRS)
Foote, M.; Hunter, J. P.; Janis, C. M.; Sepkoski, J. J. Jr
1999-01-01
Some molecular clock estimates of divergence times of taxonomic groups undergoing evolutionary radiation are much older than the groups' first observed fossil record. Mathematical models of branching evolution are used to estimate the maximal rate of fossil preservation consistent with a postulated missing history, given the sum of species durations implied by early origins under a range of species origination and extinction rates. The plausibility of postulated divergence times depends on origination, extinction, and preservation rates estimated from the fossil record. For eutherian mammals, this approach suggests that it is unlikely that many modern orders arose much earlier than their oldest fossil records.
Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald
2014-04-01
Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.
Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D
2009-05-13
The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1 and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3-35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7-13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5-26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate an age of 84-113 million years for the divergence of all butterfly families. These results are consistent with diversification of the butterfly families following the radiation of angiosperms and suggest that some classes of opsin genes may be usefully employed for both phylogenetic reconstruction and divergence time estimation.
Fourment, Mathieu; Holmes, Edward C
2014-07-24
Early methods for estimating divergence times from gene sequence data relied on the assumption of a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of rates, local clocks, or the so called "uncorrelated relaxed clock" where substitution rates are assumed to be drawn from a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior. We develop a maximum likelihood method--Physher--that uses local or discrete clocks to estimate evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher can outperform a Bayesian method when the real topology contains two long branches below the root node, even when evolution is strongly clock-like. These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and divergence times from heterochronous sequence data. Physher and the associated data sets used here are available online at http://code.google.com/p/physher/.
Perez, S Ivan; Tejedor, Marcelo F; Novo, Nelson M; Aristide, Leandro
2013-01-01
The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27-31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21-29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.
Perez, S. Ivan; Tejedor, Marcelo F.; Novo, Nelson M.; Aristide, Leandro
2013-01-01
The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27–31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21–29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade. PMID:23826358
Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D
2009-01-01
Background The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Results Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1α and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3–35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7–13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5–26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate an age of 84–113 million years for the divergence of all butterfly families. Conclusion These results are consistent with diversification of the butterfly families following the radiation of angiosperms and suggest that some classes of opsin genes may be usefully employed for both phylogenetic reconstruction and divergence time estimation. PMID:19439087
Jin, Haofei; Yonezawa, Takahiro; Zhong, Yang; Kishino, Hirohisa; Hasegawa, Masami
2017-03-17
The giant rhinoceros beetles (Dynastini, Scarabaeidae, Coleoptera) are distributed in tropical and temperate regions in Asia, America and Africa. Recent molecular phylogenetic studies have revealed that the giant rhinoceros beetles can be divided into three clades representing Asia, America and Africa. Although a correlation between their evolution and the continental drift during the Pangean breakup was suggested, there is no accurate divergence time estimation among the three clades based on molecular data. Moreover, there is a long chronological gap between the timing of the Pangean breakup (Cretaceous: 110-148 Ma) and the emergence of the oldest fossil record (Oligocene: 33 Ma). In this study, we estimated their divergence times based on molecular data, using several combinations of fossil calibration sets, and obtained robust estimates. The inter-continental divergence events among the clades were estimated to have occurred about 99 Ma (Asian clade and others) and 78 Ma (American clade and African clade), both of which are after the Pangean breakup. These estimates suggest their inter-continental divergences occurred by overseas sweepstakes dispersal, rather than by vicariances of the population caused by the Pangean breakup.
Molecular survey of basidiomycetes and divergence time estimation: An Indian perspective
Bhatt, Meghna; Mistri, Pankti; Joshi, Ishita; Ram, Hemal; Raval, Rinni; Thoota, Sruthi; Patel, Ankur; Raval, Dhrupa; Bhargava, Poonam; Soni, Subhash; Bagatharia, Snehal
2018-01-01
This study outlines the biodiversity of mushrooms of India. It reveals the molecular biodiversity and divergence time estimation of basidiomycetes from Gujarat, India. A total of 267 mushrooms were collected from 10 locations across the state. 225 ITS sequences were generated belonging to 105 species, 59 genera and 29 families. Phylogenetic analysis of Agaricaceae reveals monophyletic clade of Podaxis differentiating it from Coprinus. Further, the ancient nature of Podaxis supports the hypothesis that gasteroid forms evolved from secotioid forms. Members of Polyporaceae appeared polyphyletic. Further, our results of a close phylogenetic relationship between Trametes and Lenziteslead us to propose that the genera Trametes may by enlarged to include Lenzites. The tricholomatoid clade shows a clear demarcation for Entolomataceae. However, Lyophyllaceae and Tricholomataceae could not be distinguished clearly. Distribution studies of the mushrooms showed omnipresence of Ganoderma and Schizophyllum. Further, divergence time estimation shows that Dacrymycetes evolved in the Neoproterozoic Era and Hymenochaetales diverged from Agaricomycetes during the Silurian period. PMID:29771956
Vďačný, Peter
2015-08-01
The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.
Clarke, Julia A; Boyd, Clint A
2015-01-01
Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used together to describe the relationship between time trees and a set of fossil data, which we recommend be phylogenetically vetted and referred on the basis of apomorphy. Differences from previously proposed metrics and the utility of MDI and DIG range are illustrated in three empirical case studies from angiosperms, ostracods, and birds. These case studies also illustrate the ways in which MDI and DIG range may be used to assess time trees resultant from analyses varying in calibration regime, divergence dating approach or molecular sequence data analyzed. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times.
dos Reis, Mario; Yang, Ziheng
2011-07-01
The molecular clock provides a powerful way to estimate species divergence times. If information on some species divergence times is available from the fossil or geological record, it can be used to calibrate a phylogeny and estimate divergence times for all nodes in the tree. The Bayesian method provides a natural framework to incorporate different sources of information concerning divergence times, such as information in the fossil and molecular data. Current models of sequence evolution are intractable in a Bayesian setting, and Markov chain Monte Carlo (MCMC) is used to generate the posterior distribution of divergence times and evolutionary rates. This method is computationally expensive, as it involves the repeated calculation of the likelihood function. Here, we explore the use of Taylor expansion to approximate the likelihood during MCMC iteration. The approximation is much faster than conventional likelihood calculation. However, the approximation is expected to be poor when the proposed parameters are far from the likelihood peak. We explore the use of parameter transforms (square root, logarithm, and arcsine) to improve the approximation to the likelihood curve. We found that the new methods, particularly the arcsine-based transform, provided very good approximations under relaxed clock models and also under the global clock model when the global clock is not seriously violated. The approximation is poorer for analysis under the global clock when the global clock is seriously wrong and should thus not be used. The results suggest that the approximate method may be useful for Bayesian dating analysis using large data sets.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence data is analyzed, considerable uncertainty will persist in time estimates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Soares, André E R; Schrago, Carlos G
2015-01-07
Although taxon sampling is commonly considered an important issue in phylogenetic inference, it is rarely considered in the Bayesian estimation of divergence times. In fact, the studies conducted to date have presented ambiguous results, and the relevance of taxon sampling for molecular dating remains unclear. In this study, we developed a series of simulations that, after six hundred Bayesian molecular dating analyses, allowed us to evaluate the impact of taxon sampling on chronological estimates under three scenarios of among-lineage rate heterogeneity. The first scenario allowed us to examine the influence of the number of terminals on the age estimates based on a strict molecular clock. The second scenario imposed an extreme example of lineage specific rate variation, and the third scenario permitted extensive rate variation distributed along the branches. We also analyzed empirical data on selected mitochondrial genomes of mammals. Our results showed that in the strict molecular-clock scenario (Case I), taxon sampling had a minor impact on the accuracy of the time estimates, although the precision of the estimates was greater with an increased number of terminals. The effect was similar in the scenario (Case III) based on rate variation distributed among the branches. Only under intensive rate variation among lineages (Case II) taxon sampling did result in biased estimates. The results of an empirical analysis corroborated the simulation findings. We demonstrate that taxonomic sampling affected divergence time inference but that its impact was significant if the rates deviated from those derived for the strict molecular clock. Increased taxon sampling improved the precision and accuracy of the divergence time estimates, but the impact on precision is more relevant. On average, biased estimates were obtained only if lineage rate variation was pronounced. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stange, Madlen; Sánchez-Villagra, Marcelo R; Salzburger, Walter; Matschiner, Michael
2018-01-27
The closure of the Isthmus of Panama has long been considered to be one of the best defined biogeographic calibration points for molecular divergence-time estimation. However, geological and biological evidence has recently cast doubt on the presumed timing of the initial isthmus closure around 3 Ma but has instead suggested the existence of temporary land bridges as early as the Middle or Late Miocene. The biological evidence supporting these earlier land bridges was based either on only few molecular markers or on concatenation of genome-wide sequence data, an approach that is known to result in potentially misleading branch lengths and divergence times, which could compromise the reliability of this evidence. To allow divergence-time estimation with genomic data using the more appropriate multi-species coalescent model, we here develop a new method combining the SNP-based Bayesian species-tree inference of the software SNAPP with a molecular clock model that can be calibrated with fossil or biogeographic constraints. We validate our approach with simulations and use our method to reanalyze genomic data of Neotropical army ants (Dorylinae) that previously supported divergence times of Central and South American populations before the isthmus closure around 3 Ma. Our reanalysis with the multi-species coalescent model shifts all of these divergence times to ages younger than 3 Ma, suggesting that the older estimates supporting the earlier existence of temporary land bridges were artifacts resulting at least partially from the use of concatenation. We then apply our method to a new RAD-sequencing data set of Neotropical sea catfishes (Ariidae) and calibrate their species tree with extensive information from the fossil record. We identify a series of divergences between groups of Caribbean and Pacific sea catfishes around 10 Ma, indicating that processes related to the emergence of the isthmus led to vicariant speciation already in the Late Miocene, millions of years before the final isthmus closure. © The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir
2010-10-27
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.
Narang, Pooja; Wilson Sayres, Melissa A.
2016-01-01
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias. PMID:27702816
So many genes, so little time: A practical approach to divergence-time estimation in the genomic era
2018-01-01
Phylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. “Gene shopping”, wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that “gene shopping” can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity. PMID:29772020
Smith, Stephen A; Brown, Joseph W; Walker, Joseph F
2018-01-01
Phylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. "Gene shopping", wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that "gene shopping" can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity.
Kalman filter estimation of human pilot-model parameters
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.
1975-01-01
The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.
Langergraber, Kevin E.; Prüfer, Kay; Rowney, Carolyn; Boesch, Christophe; Crockford, Catherine; Fawcett, Katie; Inoue, Eiji; Inoue-Muruyama, Miho; Mitani, John C.; Muller, Martin N.; Robbins, Martha M.; Schubert, Grit; Stoinski, Tara S.; Viola, Bence; Watts, David; Wittig, Roman M.; Wrangham, Richard W.; Zuberbühler, Klaus; Pääbo, Svante; Vigilant, Linda
2012-01-01
Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage. PMID:22891323
Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J
2017-06-06
Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non-linear longitudinal outcomes, enabling the identification of the age at which risk factor trajectories diverge between groups of participants. The method is suitable for the analysis of unbalanced longitudinal data, with only a limited number of repeated measures per participants and where the time-related outcome is typically marked by transitional changes or by distinct phases of change over time.
Akın, Ciğdem; Bilgin, C Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg
2010-11-01
AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.
Skoglund, Pontus; Götherström, Anders; Jakobsson, Mattias
2011-04-01
Despite recent technological advances in DNA sequencing, incomplete coverage remains to be an issue in population genomics, in particular for studies that include ancient samples. Here, we describe an approach to estimate population divergence times for non-overlapping sequence data that is based on probabilities of different genealogical topologies under a structured coalescent model. We show that the approach can be adapted to accommodate common problems such as sequencing errors and postmortem nucleotide misincorporations, and we use simulations to investigate biases involved with estimating genealogical topologies from empirical data. The approach relies on three reference genomes and should be particularly useful for future analysis of genomic data that comprise of nonoverlapping sets of sequences, potentially from different points in time. We applied the method to shotgun sequence data from an ancient wolf together with extant dogs and wolves and found striking resemblance to previously described fine-scale population structure among dog breeds. When comparing modern dogs to four geographically distinct wolves, we find that the divergence time between dogs and an Indian wolf is smallest, followed by the divergence times to a Chinese wolf and a Spanish wolf, and a relatively long divergence time to an Alaskan wolf, suggesting that the origin of modern dogs is somewhere in Eurasia, potentially southern Asia. We find that less than two-thirds of all loci in the boxer and poodle genomes are more similar to each other than to a modern gray wolf and that--assuming complete isolation without gene flow--the divergence time between gray wolves and modern European dogs extends to 3,500 generations before the present, corresponding to approximately 10,000 years ago (95% confidence interval [CI]: 9,000-13,000). We explicitly study the effect of gene flow between dogs and wolves on our estimates and show that a low rate of gene flow is compatible with an even earlier domestication date ∼30,000 years ago (95% CI: 15,000-90,000). This observation is in agreement with recent archaeological findings and indicates that human behavior necessary for domestication of wild animals could have appeared much earlier than the development of agriculture.
NASA Astrophysics Data System (ADS)
Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.
Hey, Jody; Nielsen, Rasmus
2004-01-01
The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526
Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales
dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng
2015-01-01
Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
2017-01-01
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. PMID:28637852
Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins
Heath, Tracy A.; Ksepka, Daniel T.; Stadler, Tanja; Welch, David; Drummond, Alexei J.
2017-01-01
The total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth–death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\sim}12.7$\\end{document} Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models (version at least 1.0.4) installed. [Birth–death process; calibration; divergence times; MCMC; phylogenetics.] PMID:28173531
Springer, Mark S; Emerling, Christopher A; Meredith, Robert W; Janečka, Jan E; Eizirik, Eduardo; Murphy, William J
2017-01-01
The explosive, long fuse, and short fuse models represent competing hypotheses for the timing of placental mammal diversification. Support for the explosive model, which posits both interordinal and intraordinal diversification after the KPg mass extinction, derives from morphological cladistic studies that place Cretaceous eutherians outside of crown Placentalia. By contrast, most molecular studies favor the long fuse model wherein interordinal cladogenesis occurred in the Cretaceous followed by intraordinal cladogenesis after the KPg boundary. Phillips (2016) proposed a soft explosive model that allows for the emergence of a few lineages (Xenarthra, Afrotheria, Euarchontoglires, Laurasiatheria) in the Cretaceous, but otherwise agrees with the explosive model in positing the majority of interordinal diversification after the KPg mass extinction. Phillips (2016) argues that rate transference errors associated with large body size and long lifespan have inflated previous estimates of interordinal divergence times, and further suggests that most interordinal divergences are positioned after the KPg boundary when rate transference errors are avoided through the elimination of calibrations in large-bodied and/or long lifespan clades. Here, we show that rate transference errors can also occur in the opposite direction and drag forward estimated divergence dates when calibrations in large-bodied/long lifespan clades are omitted. This dragging forward effect results in the occurrence of more than half a billion years of 'zombie lineages' on Phillips' preferred timetree. By contrast with ghost lineages, which are a logical byproduct of an incomplete fossil record, zombie lineages occur when estimated divergence dates are younger than the minimum age of the oldest crown fossils. We also present the results of new timetree analyses that address the rate transference problem highlighted by Phillips (2016) by deleting taxa that exceed thresholds for body size and lifespan. These analyses recover all interordinal divergence times in the Cretaceous and are consistent with the long fuse model of placental diversification. Finally, we outline potential problems with morphological cladistic analyses of higher-level relationships among placental mammals that may account for the perceived discrepancies between molecular and paleontological estimates of placental divergence times. Copyright © 2016 Elsevier Inc. All rights reserved.
Consequences of Secondary Calibrations on Divergence Time Estimates.
Schenk, John J
2016-01-01
Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.
Narang, Pooja; Wilson Sayres, Melissa A
2016-12-31
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Roger, Andrew J; Hug, Laura A
2006-01-01
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes. PMID:16754613
Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A
2014-07-01
Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans.
Ujiié, Yurika; Ishitani, Yoshiyuki
2016-01-01
Ecological adaptation to environmental changes is a strong driver of evolution, enabling speciation of pelagic plankton in the open ocean without the presence of effective physical barriers to gene flow. The tropical ocean environment, which plays an important role in shaping marine biodiversity, has drastically and frequently changed since the Pliocene. Nevertheless, the evolutionary history of tropical pelagic plankton has been poorly understood, as phylogeographic investigations are still in the developing state and paleontological approaches are insufficient to obtain a sequential record from the deep-sea sediments. The planktonic foraminifer Pulleniatina obliquiloculata is widely distributed in the tropical area throughout the world's oceans, and its phylogeography is well established. It is thus one of the best candidates to examine how past environmental changes may have shifted the spatial distribution and affected the diversification of tropical pelagic plankton. Such an examination requires the divergence history of the planktonic foraminifers, yet the gene marker (partial small subunit (SSU) rDNA) previously used for phylogeographic studies was not powerful enough to achieve a high accuracy in estimating the divergence times. The present study focuses on improving the precision of divergence time estimates for the splits between sibling species (genetic types) of planktonic foraminifers by increasing the number of genes as well as the number of nucleotide bases used for molecular clock estimates. We have amplified the entire coding regions of two ribosomal RNA genes (SSU rDNA and large subunit (LSU) rDNA) of three genetic types of P. obliquiloculata and two closely related species for the first time and applied them to the Bayesian relaxed clock method. The comparison of the credible intervals of the four datasets consisting either of sequences of the partial SSU rDNA, the complete SSU rDNA, LSU rDNA, or a combination of both genes (SSU+LSU) clearly demonstrated that the two-gene dataset improved the accuracy of divergence time estimates. The P. obliquiloculata lineage diverged twice, first at the end of the Pliocene (3.1 Ma) and again in the middle Pleistocene (1.4 Ma). Both timings coincided with the environmental changes, which indirectly involved geographic separation of populations. The habitat of P. obliquiloculata was expanded toward the higher latitudinal zones during the stable warm periods and subsequently placed on the steep environmental gradients following the global cooling. Different environmental conditions in the stable warm tropics and unstable higher latitudes may have triggered ecological divergence among the populations, leading to adaptive differentiation and eventually speciation. A comprehensive analysis of divergence time estimates combined with phylogeography enabled us to reveal the evolutionary history of the pelagic plankton and to find the potential paleoenvironmental events, which could have changed their biogeography and ecology.
Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L
2017-05-01
The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun
2012-01-01
Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.
Zhao, Ying; Bu, Wenjun
2012-01-01
Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163
Integrating paleoecology and genetics of bird populations in two sky island archipelagos.
McCormack, John E; Bowen, Bonnie S; Smith, Thomas B
2008-06-27
Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence.
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution.
Warnock, Rachel C M; Yang, Ziheng; Donoghue, Philip C J
2017-06-28
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. © 2017 The Authors.
A revised timescale for human evolution based on ancient mitochondrial genomes.
Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2013-04-08
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dating Tips for Divergence-Time Estimation.
O'Reilly, Joseph E; Dos Reis, Mario; Donoghue, Philip C J
2015-11-01
The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales. Copyright © 2015 Elsevier Ltd. All rights reserved.
2014-01-01
Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056
Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin
2014-06-05
Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.
Jin, Y-T; Brown, R P
2013-08-01
The Qinghai-Tibetan Plateau (QTP) is an important biogeographical area and has recently become a focus for biodiversity studies. Phyrnocephalus lizards form a widespread Eurasian group with oviparous and viviparous reproductive modes, but two previous mtDNA studies of species from around the QTP have provided different phylogenetic hypotheses. We analysed three loci (mtDNA, RAG-1, AME) from all recognised Chinese Phrynocephalus species to reconstruct the speciation history of the group and to estimate species divergence times. The effects of mtDNA partitioning strategy on phylogenetic inference were examined. Bayes factor comparisons of marginal likelihoods (mLs) estimated using stepping-stone sampling revealed that partitioning strategy had a major impact on mL. Nevertheless, it had a negligible effect on the inferred tree topology. The impact of hard-bound uniform or equivalent soft-bound gamma speciation time calibration priors as well as the use of a fixed topology (as opposed to integration over all possible species histories) on divergence time estimation were also assessed, and found to have little impact on posterior estimates. All three gene trees and the species tree supported the hypothesis that the Chinese species form oviparous and viviparous sister clades. This was in agreement with an early mtDNA study but differed from a subsequent reanalysis of the mtDNA data. Inclusion of mtDNA from more widely distributed Phrynocephalus (from previous studies) indicates that the oviparous P. interscapularis from Central Asia lies outside the clade of Chinese viviparous and oviparous species, but that other Asian oviparous species lie within the Chinese oviparous clade. The median of the posterior on the divergence time of Chinese oviparous and viviparous species was 9.7 Ma ago (95% interval: 7.2-13.0 Ma ago), which coincides with major uplifting of the QTP and indicates that viviparity evolved when this clade became restricted to regions of high elevation. We also found that cladogenesis within the viviparous clade began around 5 Ma ago whereas those in the oviparous clade began around 8.6 Ma ago. We establish more robust estimates of divergence times and relationships within this important group and so provide improved insights into the origins of Phrynocephalus diversity across the QTP. Copyright © 2013 Elsevier Inc. All rights reserved.
An improvement of the measurement of time series irreversibility with visibility graph approach
NASA Astrophysics Data System (ADS)
Wu, Zhenyu; Shang, Pengjian; Xiong, Hui
2018-07-01
We propose a method to improve the measure of real-valued time series irreversibility which contains two tools: the directed horizontal visibility graph and the Kullback-Leibler divergence. The degree of time irreversibility is estimated by the Kullback-Leibler divergence between the in and out degree distributions presented in the associated visibility graph. In our work, we reframe the in and out degree distributions by encoding them with different embedded dimensions used in calculating permutation entropy(PE). With this improved method, we can not only estimate time series irreversibility efficiently, but also detect time series irreversibility from multiple dimensions. We verify the validity of our method and then estimate the amount of time irreversibility of series generated by chaotic maps as well as global stock markets over the period 2005-2015. The result shows that the amount of time irreversibility reaches the peak with embedded dimension d = 3 under circumstances of experiment and financial markets.
Cutter, Asher D
2008-04-01
Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis.
Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N
1995-01-01
We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363
Devitt, Thomas J
2006-12-01
The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.
Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.
2013-01-01
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303
Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J
2012-02-01
Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.
When did anoles diverge? An analysis of multiple dating strategies.
Román-Palacios, Cristian; Tavera, Jose; Del Rosario Castañeda, María
2018-06-12
Whereas most of the studies that discuss the evolutionary divergence of Anolis lizards have dated the clade's crown group in between 31-64 Ma, a single study has recovered a significantly older age for the same node (87 Ma). These differences also entail notable consequences on the preferred biogeographical hypothesis for the whole clade. Here we analyze a total of seven dating strategies by combining three calibration sources in independent BEAST runs to infer the most probable divergence timing for anole lizards (a mitochondrial rate for ND2 gene, the Anolis dominicanus fossil, and a group of fossils assigned to the Priscagamines, Iguanines, and Idontosaurus clades). Based on the estimated timing, we also addressed whether chronograms differ the most in deeper or shallower nodes by exploring the trend in the standard deviation of mean ages between chronograms across time. Next, we focus on the pattern for a single shallow node by hypothesizing the biogeography of the island-endemic Malpelo anole (Anolis agassizi), and evaluating the temporal congruence between the species' divergence and the island geology. The estimated set of ages suggests that anoles most likely diverged 72 Ma (71-73 Ma), with the crown group established around 58 Ma (51-65 Ma). Dispersal is therefore supported as the major driver in the biogeography of the group (and in Caribbean lineages in particular). Our analyses also indicated that (1) rate-based analyses pulled dates toward younger ages, (2) the differences in node ages between chronograms decrease towards the tips regardless of the position of the constrained node, and that (3) the estimated age for deep nodes (e.g. Anolis stem) is highly influenced when deep nodes are also constrained. The latter two results imply that the estimated age for shallower nodes is largely unaffected by the used temporal constraint. The congruence of all chronograms for the Malpelo anole also support this finding. Anolis agassizi was found to have diverged before the emergence of Malpelo island in each analysis (anole: 19-31 Ma vs. Malpelo island: 16-17 Ma). We recommend when performing absolute dating analyses to first test for sequence saturation in the analyzed dataset (especially when calibrations are based on molecular rates). Our study also points out the importance of using of multiple node constraints, especially when placed deeply in the tree, for fossil-based divergence dating analyses. Copyright © 2018. Published by Elsevier Inc.
Statistical Constraints on Station Clock Parameters in the NRCAN PPP Estimation Process
2008-12-01
e.g., Two-Way Satellite Time and Frequency Transfer ( TWSTFT ), GPS Common View (CV), and GPS P3 [9]. Finally, PPP shows a 2- times improvement in...the collocated Two-Way Satellite Time and Frequency Technique ( TWSTFT ) estimates for the same baseline. The TWSTFT estimates are available every 2...periodicity is due to the thermal variations described in the previous section, while the divergence between both PPP solutions and TWSTFT estimates is due
Ibarra-Cerdeña, Carlos N; Zaldívar-Riverón, Alejandro; Peterson, A Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M
2014-10-01
The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.
Integrating paleoecology and genetics of bird populations in two sky island archipelagos
McCormack, John E; Bowen, Bonnie S; Smith, Thomas B
2008-01-01
Background Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Results Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. Conclusion This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence. PMID:18588695
Bayesian phylogenetic estimation of fossil ages.
Drummond, Alexei J; Stadler, Tanja
2016-07-19
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Bayesian phylogenetic estimation of fossil ages
Drummond, Alexei J.; Stadler, Tanja
2016-01-01
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325827
Fast algorithms for computing phylogenetic divergence time.
Crosby, Ralph W; Williams, Tiffani L
2017-12-06
The inference of species divergence time is a key step in most phylogenetic studies. Methods have been available for the last ten years to perform the inference, but the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that significantly improves the performance of the divergence time process. As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349 primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%. Through the use of these new algorithms we open up the ability to perform divergence time inference on large phylogenetic studies.
Zhivotovsky, Lev A.; Underhill, Peter A.; Cinnioğlu, Cengiz; Kayser, Manfred; Morar, Bharti; Kivisild, Toomas; Scozzari, Rosaria; Cruciani, Fulvio; Destro-Bisol, Giovanni; Spedini, Gabriella; Chambers, Geoffrey K.; Herrera, Rene J.; Yong, Kiau Kiun; Gresham, David; Tournev, Ivailo; Feldman, Marcus W.; Kalaydjieva, Luba
2004-01-01
We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9×10-4 per 25 years, with a standard deviation across loci of 5.7×10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria. PMID:14691732
Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L
2016-03-01
We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.
Bayesian estimation of post-Messinian divergence times in Balearic Island lizards.
Brown, R P; Terrasa, B; Pérez-Mellado, V; Castro, J A; Hoskisson, P A; Picornell, A; Ramon, M M
2008-07-01
Phylogenetic relationships and timings of major cladogenesis events are investigated in the Balearic Island lizards Podarcislilfordi and P.pityusensis using 2675bp of mitochondrial and nuclear DNA sequences. Partitioned Bayesian and Maximum Parsimony analyses provided a well-resolved phylogeny with high node-support values. Bayesian MCMC estimation of node dates was investigated by comparing means of posterior distributions from different subsets of the sequence against the most robust analysis which used multiple partitions and allowed for rate heterogeneity among branches under a rate-drift model. Evolutionary rates were systematically underestimated and thus divergence times overestimated when sequences containing lower numbers of variable sites were used (based on ingroup node constraints). The following analyses allowed the best recovery of node times under the constant-rate (i.e., perfect clock) model: (i) all cytochrome b sequence (partitioned by codon position), (ii) cytochrome b (codon position 3 alone), (iii) NADH dehydrogenase (subunits 1 and 2; partitioned by codon position), (iv) cytochrome b and NADH dehydrogenase sequence together (six gene-codon partitions), (v) all unpartitioned sequence, (vi) a full multipartition analysis (nine partitions). Of these, only (iv) and (vi) performed well under the rate-drift model. These findings have significant implications for dating of recent divergence times in other taxa. The earliest P.lilfordi cladogenesis event (divergence of Menorcan populations), occurred before the end of the Pliocene, some 2.6Ma. Subsequent events led to a West Mallorcan lineage (2.0Ma ago), followed 1.2Ma ago by divergence of populations from the southern part of the Cabrera archipelago from a widely-distributed group from north Cabrera, northern and southern Mallorcan islets. Divergence within P.pityusensis is more recent with the main Ibiza and Formentera clades sharing a common ancestor at about 1.0Ma ago. Climatic and sea level changes are likely to have initiated cladogenesis, with lineages making secondary contact during periodic landbridge formation. This oscillating cross-archipelago pattern in which ancient divergence is followed by repeated contact resembles that seen between East-West refugia populations from mainland Europe.
The evolution of methods for establishing evolutionary timescales
2016-01-01
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838
The evolution of methods for establishing evolutionary timescales.
Donoghue, Philip C J; Yang, Ziheng
2016-07-19
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Do missing data influence the accuracy of divergence-time estimation with BEAST?
Zheng, Yuchi; Wiens, John J
2015-04-01
Time-calibrated phylogenies have become essential to evolutionary biology. A recurrent and unresolved question for dating analyses is whether genes with missing data cells should be included or excluded. This issue is particularly unclear for the most widely used dating method, the uncorrelated lognormal approach implemented in BEAST. Here, we test the robustness of this method to missing data. We compare divergence-time estimates from a nearly complete dataset (20 nuclear genes for 32 species of squamate reptiles) to those from subsampled matrices, including those with 5 or 2 complete loci only and those with 5 or 8 incomplete loci added. In general, missing data had little impact on estimated dates (mean error of ∼5Myr per node or less, given an overall age of ∼220Myr in squamates), even when 80% of sampled genes had 75% missing data. Mean errors were somewhat higher when all genes were 75% incomplete (∼17Myr). However, errors increased dramatically when only 2 of 9 fossil calibration points were included (∼40Myr), regardless of missing data. Overall, missing data (and even numbers of genes sampled) may have only minor impacts on the accuracy of divergence dating with BEAST, relative to the dramatic effects of fossil calibrations. Copyright © 2015 Elsevier Inc. All rights reserved.
Tavera, Jose; Acero P, Arturo; Wainwright, Peter C
2018-04-01
We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation indicates that Haemulidae originated during the mid Eocene (54.7-42.3 Ma) but that the major lineages were formed during the mid-Oligocene 30-25 Ma. We propose a new classification that reflects the phylogenetic history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology. Copyright © 2017 Elsevier Inc. All rights reserved.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
Han, Qiyang; Wellner, Jon A
2016-01-01
In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES
Han, Qiyang; Wellner, Jon A.
2017-01-01
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410
Ibarra-Cerdeña, Carlos N.; Zaldívar-Riverón, Alejandro; Peterson, A. Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M.
2014-01-01
The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios. PMID:25356550
TimeTree2: species divergence times on the iPhone.
Kumar, Sudhir; Hedges, S Blair
2011-07-15
Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K-12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo).
Naumova O, Y u; Rychkov S, Y u
1998-03-01
On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.
Sohn, Jae-Cheon; Labandeira, Conrad C; Davis, Donald R
2015-02-04
It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.
A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times
Heath, Tracy A.
2012-01-01
In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account. PMID:22334343
Inoue, Jun G; Kumazawa, Yoshinori; Miya, Masaki; Nishida, Mutsumi
2009-06-01
The continental distributions of freshwater fishes in the family Notopteridae (Osteoglossomorpha) across Africa, India, and Southeast Asia constitute a long standing and enigmatic problem of freshwater biogeography. The migrational pathway of the Asian notopterids has been discussed in light of two competing schemes: the first posits recent transcontinental dispersal while the second relies on distributions being shaped by ancient vicariance associated with plate-tectonic events. In this study, we determined complete mitochondrial DNA sequences from 10 osteoglossomorph fishes to estimate phylogenetic relationships using partitioned Bayesian and maximum likelihood methods and divergence dates of the family Notopteridae with a partitioned Bayesian approach. We used six species representing the major lineages of the Notopteridae and seven species from the remaining osteoglossomorph families. Fourteen more-derived teleosts, nine basal actinopterygians, two coelacanths, and one shark were used as outgroups. Phylogenetic analyses indicated that the African and Asian notopterids formed a sister group to each other and that these notopterids were a sister to a clade comprising two African families (Mormyridae and Gymnarchidae). Estimated divergence time between the African and Asian notopterids dated back to the early Cretaceous when India-Madagascar separated from the African part of Gondwanaland. Thus, estimated time of divergence based on the molecular evidence is at odds with the recent dispersal model. It can be reconciled with the geological and paleontological evidence to support the vicariance model in which the Asian notopterids diverged from the African notopterids in Gondwanaland and migrated into Eurasia on the Indian subcontinent from the Cretaceous to the Tertiary. However, we could not exclude an alternative explanation that the African and Asian notopterids diverged in Pangea before its complete separation into Laurasia and Gondwanaland, to which these two lineages were later confined, respectively.
Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago.
Schlebusch, Carina M; Malmström, Helena; Günther, Torsten; Sjödin, Per; Coutinho, Alexandra; Edlund, Hanna; Munters, Arielle R; Vicente, Mário; Steyn, Maryna; Soodyall, Himla; Lombard, Marlize; Jakobsson, Mattias
2017-11-03
Southern Africa is consistently placed as a potential region for the evolution of Homo sapiens We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians. Using traditional and new approaches, we estimate the first modern human population divergence time to between 350,000 and 260,000 years ago. This estimate increases the deepest divergence among modern humans, coinciding with anatomical developments of archaic humans into modern humans, as represented in the local fossil record. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Technical Reports Server (NTRS)
Battistuzzi, Fabia U.; Feijao, Andreia; Hedges, S. Blair
2004-01-01
BACKGROUND: The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (approximately 7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. RESULTS: Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5-3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1-4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8-4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8-3.1 Ga, and an origin of aerobic methanotrophy 2.5-2.8 Ga. CONCLUSIONS: Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8-2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations.
Jennings, W Bryan; Wogel, Henrique; Bilate, Marcos; Salles, Rodrigo de O L; Buckup, Paulo A
2016-09-01
The microhylid frogs belonging to the genus Arcovomer have been reported from lowland Atlantic Rainforest in the Brazilian states of Espírito Santo, Rio de Janeiro, and São Paulo. Here, we use DNA barcoding to assess levels of genetic divergence between apparently isolated populations in Espírito Santo and Rio de Janeiro. Our mtDNA data consisting of cytochrome oxidase subunit I (COI) nucleotide sequences reveals 13.2% uncorrected and 30.4% TIM2 + I + Γ corrected genetic divergences between these two populations. This level of divergence exceeds the suggested 10% uncorrected divergence threshold for elevating amphibian populations to candidate species using this marker, which implies that the Espírito Santo population is a species distinct from Arcovomer passarellii. Calibration of our model-corrected sequence divergence estimates suggests that the time of population divergence falls between 12 and 29 million years ago.
Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.
Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F
2016-05-13
Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.
Rocha, Amanda V.; Rivera, Luis O.; Martinez, Jaime; Prestes, Nêmora P.; Caparroz, Renato
2014-01-01
Coalescent theory provides powerful models for population genetic inference and is now increasingly important in estimates of divergence times and speciation research. We use molecular data and methods based on coalescent theory to investigate whether genetic evidence supports the hypothesis of A. pretrei and A. tucumana as separate species and whether genetic data allow us to assess which allopatric model seems to better explain the diversification process in these taxa. We sampled 13 A. tucumana from two provinces in northern Argentina and 28 A. pretrei from nine localities of Rio Grande do Sul, Brazil. A 491 bp segment of the mitochondrial gene cytochrome c oxidase I was evaluated using the haplotype network and phylogenetic methods. The divergence time and other demographic quantities were estimated using the isolation and migration model based on coalescent theory. The network and phylogenetic reconstructions showed similar results, supporting reciprocal monophyly for these two taxa. The divergence time of lineage separation was estimated to be approximately 1.3 million years ago, which corresponds to the lower Pleistocene. Our results enforce the current taxonomic status for these two Amazon species. They also support that A. pretrei and A. tucumana diverged with little or no gene flow approximately 1.3 million years ago, most likely after the establishment of a small population in the Southern Yungas forest by dispersion of a few founders from the A. pretrei ancestral population. This process may have been favored by habitat corridors formed in hot and humid periods of the Quaternary. Considering that these two species are considered threatened, the results were evaluated for their implications for the conservation of these two species. PMID:25251765
Resolution of ray-finned fish phylogeny and timing of diversification.
Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo
2012-08-21
Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."
Resolution of ray-finned fish phylogeny and timing of diversification
Near, Thomas J.; Eytan, Ron I.; Dornburg, Alex; Kuhn, Kristen L.; Moore, Jon A.; Davis, Matthew P.; Wainwright, Peter C.; Friedman, Matt; Smith, W. Leo
2012-01-01
Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the “bush at the top of the tree” that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the “Second Age of Fishes.” PMID:22869754
Closing the gap between rocks and clocks using total-evidence dating
2016-01-01
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term ‘deep root attraction’ (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325833
Closing the gap between rocks and clocks using total-evidence dating.
Ronquist, Fredrik; Lartillot, Nicolas; Phillips, Matthew J
2016-07-19
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Park, Eunji; Hwang, Dae-Sik; Lee, Jae-Seong; Song, Jun-Im; Seo, Tae-Kun; Won, Yong-Jin
2012-01-01
The phylum Cnidaria is comprised of remarkably diverse and ecologically significant taxa, such as the reef-forming corals, and occupies a basal position in metazoan evolution. The origin of this phylum and the most recent common ancestors (MRCAs) of its modern classes remain mostly unknown, although scattered fossil evidence provides some insights on this topic. Here, we investigate the molecular divergence times of the major taxonomic groups of Cnidaria (27 Hexacorallia, 16 Octocorallia, and 5 Medusozoa) on the basis of mitochondrial DNA sequences of 13 protein-coding genes. For this analysis, the complete mitochondrial genomes of seven octocoral and two scyphozoan species were newly sequenced and combined with all available mitogenomic data from GenBank. Five reliable fossil dates were used to calibrate the Bayesian estimates of divergence times. The molecular evidence suggests that cnidarians originated 741 million years ago (Ma) (95% credible region of 686-819), and the major taxa diversified prior to the Cambrian (543 Ma). The Octocorallia and Scleractinia may have originated from radiations of survivors of the Permian-Triassic mass extinction, which matches their fossil record well. Copyright © 2011 Elsevier Inc. All rights reserved.
TimeTree2: species divergence times on the iPhone
Kumar, Sudhir; Hedges, S. Blair
2011-01-01
Summary: Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K–12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. Availability: TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo). Contact: sbh1@psu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21622662
Rate variation and estimation of divergence times using strict and relaxed clocks.
Brown, Richard P; Yang, Ziheng
2011-09-26
Understanding causes of biological diversity may be greatly enhanced by knowledge of divergence times. Strict and relaxed clock models are used in Bayesian estimation of divergence times. We examined whether: i) strict clock models are generally more appropriate in shallow phylogenies where rate variation is expected to be low, ii) the likelihood ratio test of the clock (LRT) reliably informs which model is appropriate for dating divergence times. Strict and relaxed models were used to analyse sequences simulated under different levels of rate variation. Published shallow phylogenies (Black bass, Primate-sucking lice, Podarcis lizards, Gallotiinae lizards, and Caprinae mammals) were also analysed to determine natural levels of rate variation relative to the performance of the different models. Strict clock analyses performed well on data simulated under the independent rates model when the standard deviation of log rate on branches, σ, was low (≤ 0.1), but were inappropriate when σ>0.1 (95% of rates fall within 0.0082-0.0121 subs/site/Ma when σ = 0.1, for a mean rate of 0.01). The independent rates relaxed clock model performed well at all levels of rate variation, although posterior intervals on times were significantly wider than for the strict clock. The strict clock is therefore superior when rate variation is low. The performance of a correlated rates relaxed clock model was similar to the strict clock. Increased numbers of independent loci led to slightly narrower posteriors under the relaxed clock while older root ages provided proportionately narrower posteriors. The LRT had low power for σ = 0.01-0.1, but high power for σ = 0.5-2.0. Posterior means of σ2 were useful for assessing rate variation in published datasets. Estimates of natural levels of rate variation ranged from 0.05-3.38 for different partitions. Differences in divergence times between relaxed and strict clock analyses were greater in two datasets with higher σ2 for one or more partitions, supporting the simulation results. The strict clock can be superior for trees with shallow roots because of low levels of rate variation between branches. The LRT allows robust assessment of suitability of the clock model as does examination of posteriors on σ2.
Del Latte, Laura; Bortolin, Francesca; Rota-Stabelli, Omar; Fusco, Giuseppe; Bonato, Lucio
2015-01-01
Abstract Stenotaenia is one of the largest and most widespread genera of geophilid centipedes in the Western Palearctic, with a very uniform morphology and about fifteen species provisionally recognized. For a better understanding of Stenotaenia species-level taxonomy, we have explored the possibility of using molecular data. As a preliminary assay, we sampled twelve populations, mainly from the Italian region, and analyzed partial sequences of the two genes COI and 28S. We employed a DNA-barcoding approach, complemented by a phylogenetic analysis coupled with divergence time estimation. Assuming a barcoding gap of 10–16% K2P pairwise distances, we found evidence for the presence of at least six Stenotaenia species in the Italian region, which started diverging about 50 million years ago, only partially matching with previously recognized species. We found that small-sized oligopodous species belong to a single clade that originated about 33 million years ago, and obtained some preliminary evidence of the related genus Tuoba being nested within Stenotaenia. PMID:26257533
Sexual selection drives speciation in an Amazonian frog
Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.
2007-01-01
One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.
Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min
2014-10-01
Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.
The oldest platypus and its bearing on divergence timing of the platypus and echidna clades
Rowe, Timothy; Rich, Thomas H.; Vickers-Rich, Patricia; Springer, Mark; Woodburne, Michael O.
2008-01-01
Monotremes have left a poor fossil record, and paleontology has been virtually mute during two decades of discussion about molecular clock estimates of the timing of divergence between the platypus and echidna clades. We describe evidence from high-resolution x-ray computed tomography indicating that Teinolophos, an Early Cretaceous fossil from Australia's Flat Rocks locality (121–112.5 Ma), lies within the crown clade Monotremata, as a basal platypus. Strict molecular clock estimates of the divergence between platypus and echidnas range from 17 to 80 Ma, but Teinolophos suggests that the two monotreme clades were already distinct in the Early Cretaceous, and that their divergence may predate even the oldest strict molecular estimates by at least 50%. We generated relaxed molecular clock models using three different data sets, but only one yielded a date overlapping with the age of Teinolophos. Morphology suggests that Teinolophos is a platypus in both phylogenetic and ecological aspects, and tends to contradict the popular view of rapid Cenozoic monotreme diversification. Whereas the monotreme fossil record is still sparse and open to interpretation, the new data are consistent with much slower ecological, morphological, and taxonomic diversification rates for monotremes than in their sister taxon, the therian mammals. This alternative view of a deep geological history for monotremes suggests that rate heterogeneities may have affected mammalian evolution in such a way as to defeat strict molecular clock models and to challenge even relaxed molecular clock models when applied to mammalian history at a deep temporal scale. PMID:18216270
The oldest platypus and its bearing on divergence timing of the platypus and echidna clades.
Rowe, Timothy; Rich, Thomas H; Vickers-Rich, Patricia; Springer, Mark; Woodburne, Michael O
2008-01-29
Monotremes have left a poor fossil record, and paleontology has been virtually mute during two decades of discussion about molecular clock estimates of the timing of divergence between the platypus and echidna clades. We describe evidence from high-resolution x-ray computed tomography indicating that Teinolophos, an Early Cretaceous fossil from Australia's Flat Rocks locality (121-112.5 Ma), lies within the crown clade Monotremata, as a basal platypus. Strict molecular clock estimates of the divergence between platypus and echidnas range from 17 to 80 Ma, but Teinolophos suggests that the two monotreme clades were already distinct in the Early Cretaceous, and that their divergence may predate even the oldest strict molecular estimates by at least 50%. We generated relaxed molecular clock models using three different data sets, but only one yielded a date overlapping with the age of Teinolophos. Morphology suggests that Teinolophos is a platypus in both phylogenetic and ecological aspects, and tends to contradict the popular view of rapid Cenozoic monotreme diversification. Whereas the monotreme fossil record is still sparse and open to interpretation, the new data are consistent with much slower ecological, morphological, and taxonomic diversification rates for monotremes than in their sister taxon, the therian mammals. This alternative view of a deep geological history for monotremes suggests that rate heterogeneities may have affected mammalian evolution in such a way as to defeat strict molecular clock models and to challenge even relaxed molecular clock models when applied to mammalian history at a deep temporal scale.
Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence
Santos-Garcia, Diego; Vargas-Chavez, Carlos; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.
2015-01-01
Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont. PMID:25716826
Estimation of primate speciation dates using local molecular clocks.
Yoder, A D; Yang, Z
2000-07-01
Protein-coding genes of the mitochondrial genomes from 31 mammalian species were analyzed to estimate the speciation dates within primates and also between rats and mice. Three calibration points were used based on paleontological data: one at 20-25 MYA for the hominoid/cercopithecoid divergence, one at 53-57 MYA for the cetacean/artiodactyl divergence, and the third at 110-130 MYA for the metatherian/eutherian divergence. Both the nucleotide and the amino acid sequences were analyzed, producing conflicting results. The global molecular clock was clearly violated for both the nucleotide and the amino acid data. Models of local clocks were implemented using maximum likelihood, allowing different evolutionary rates for some lineages while assuming rate constancy in others. Surprisingly, the highly divergent third codon positions appeared to contain phylogenetic information and produced more sensible estimates of primate divergence dates than did the amino acid sequences. Estimated dates varied considerably depending on the data type, the calibration point, and the substitution model but differed little among the four tree topologies used. We conclude that the calibration derived from the primate fossil record is too recent to be reliable; we also point out a number of problems in date estimation when the molecular clock does not hold. Despite these obstacles, we derived estimates of primate divergence dates that were well supported by the data and were generally consistent with the paleontological record. Estimation of the mouse-rat divergence date, however, was problematic.
Wielstra, Ben; Arntzen, Jan W
2014-01-01
If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.
Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation.
Didier, Gilles; Fau, Marine; Laurin, Michel
2017-11-01
Since the diversification process cannot be directly observed at the human scale, it has to be studied from the information available, namely the extant taxa and the fossil record. In this sense, phylogenetic trees including both extant taxa and fossils are the most complete representations of the diversification process that one can get. Such phylogenetic trees can be reconstructed from molecular and morphological data, to some extent. Among the temporal information of such phylogenetic trees, fossil ages are by far the most precisely known (divergence times are inferences calibrated mostly with fossils). We propose here a method to compute the likelihood of a phylogenetic tree with fossils in which the only considered time information is the fossil ages, and apply it to the estimation of the diversification rates from such data. Since it is required in our computation, we provide a method for determining the probability of a tree topology under the standard diversification model. Testing our approach on simulated data shows that the maximum likelihood rate estimates from the phylogenetic tree topology and the fossil dates are almost as accurate as those obtained by taking into account all the data, including the divergence times. Moreover, they are substantially more accurate than the estimates obtained only from the exact divergence times (without taking into account the fossil record). We also provide an empirical example composed of 50 Permo-Carboniferous eupelycosaur (early synapsid) taxa ranging in age from about 315 Ma (Late Carboniferous) to 270 Ma (shortly after the end of the Early Permian). Our analyses suggest a speciation (cladogenesis, or birth) rate of about 0.1 per lineage and per myr, a marginally lower extinction rate, and a considerable hidden paleobiodiversity of early synapsids. [Extinction rate; fossil ages; maximum likelihood estimation; speciation rate.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Past Sure is Tense: On Interpreting Phylogenetic Divergence Time Estimates.
Brown, Joseph W; Smith, Stephen A
2018-03-01
Divergence time estimation-the calibration of a phylogeny to geological time-is an integral first step in modeling the tempo of biological evolution (traits and lineages). However, despite increasingly sophisticated methods to infer divergence times from molecular genetic sequences, the estimated age of many nodes across the tree of life contrast significantly and consistently with timeframes conveyed by the fossil record. This is perhaps best exemplified by crown angiosperms, where molecular clock (Triassic) estimates predate the oldest (Early Cretaceous) undisputed angiosperm fossils by tens of millions of years or more. While the incompleteness of the fossil record is a common concern, issues of data limitation and model inadequacy are viable (if underexplored) alternative explanations. In this vein, Beaulieu et al. (2015) convincingly demonstrated how methods of divergence time inference can be misled by both (i) extreme state-dependent molecular substitution rate heterogeneity and (ii) biased sampling of representative major lineages. These results demonstrate the impact of (potentially common) model violations. Here, we suggest another potential challenge: that the configuration of the statistical inference problem (i.e., the parameters, their relationships, and associated priors) alone may preclude the reconstruction of the paleontological timeframe for the crown age of angiosperms. We demonstrate, through sampling from the joint prior (formed by combining the tree (diversification) prior with the calibration densities specified for fossil-calibrated nodes) that with no data present at all, that an Early Cretaceous crown angiosperms is rejected (i.e., has essentially zero probability). More worrisome, however, is that for the 24 nodes calibrated by fossils, almost all have indistinguishable marginal prior and posterior age distributions when employing routine lognormal fossil calibration priors. These results indicate that there is inadequate information in the data to over-rule the joint prior. Given that these calibrated nodes are strategically placed in disparate regions of the tree, they act to anchor the tree scaffold, and so the posterior inference for the tree as a whole is largely determined by the pseudodata present in the (often arbitrary) calibration densities. We recommend, as for any Bayesian analysis, that marginal prior and posterior distributions be carefully compared to determine whether signal is coming from the data or prior belief, especially for parameters of direct interest. This recommendation is not novel. However, given how rarely such checks are carried out in evolutionary biology, it bears repeating. Our results demonstrate the fundamental importance of prior/posterior comparisons in any Bayesian analysis, and we hope that they further encourage both researchers and journals to consistently adopt this crucial step as standard practice. Finally, we note that the results presented here do not refute the biological modeling concerns identified by Beaulieu et al. (2015). Both sets of issues remain apposite to the goals of accurate divergence time estimation, and only by considering them in tandem can we move forward more confidently.
Rapid diversification of Tragopogon and ecological associates in Eurasia.
Bell, C D; Mavrodiev, E V; Soltis, P S; Calaminus, A K; Albach, D C; Cellinese, N; Garcia-Jacas, N; Soltis, D E
2012-12-01
Tragopogon comprises approximately 150 described species distributed throughout Eurasia from Ireland and the UK to India and China with a few species in North Africa. Most of the species diversity is found in Eastern Europe to Western Asia. Previous phylogenetic analyses identified several major clades, generally corresponding to recognized taxonomic sections, although relationships both among these clades and among species within clades remain largely unresolved. These patterns are consistent with rapid diversification following the origin of Tragopogon, and this study addresses the timing and rate of diversification in Tragopogon. Using BEAST to simultaneously estimate a phylogeny and divergence times, we estimate the age of a major split and subsequent rapid divergence within Tragopogon to be ~2.6 Ma (and 1.7-5.4 Ma using various clock estimates). Based on the age estimates obtained with BEAST (HPD 1.7-5.4 Ma) for the origin of crown group Tragopogon and 200 estimated species (to accommodate a large number of cryptic species), the diversification rate of Tragopogon is approximately 0.84-2.71 species/Myr for the crown group, assuming low levels of extinction. This estimate is comparable in rate to a rapid Eurasian radiation in Dianthus (0.66-3.89 species/Myr), which occurs in the same or similar habitats. Using available data, we show that subclades of various plant taxa that occur in the same semi-arid habitats of Eurasia also represent rapid radiations occurring during roughly the same window of time (1.7-5.4 Ma), suggesting similar causal events. However, not all species-rich plant genera from the same habitats diverged at the same time, or at the same tempo. Radiations of several other clades in this same habitat (e.g. Campanula, Knautia, Scabiosa) occurred at earlier dates (45-4.28 Ma). Existing phylogenetic data and diversification estimates therefore indicate that, although some elements of these semi-arid communities radiated during the Plio-Pleistocene period, other clades sharing the same habitat appear to have diversified earlier. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Estimation of divergence from Hardy-Weinberg form.
Stark, Alan E
2015-08-01
The Hardy–Weinberg (HW) principle explains how random mating (RM) can produce and maintain a population in equilibrium, that is, with constant genotypic proportions. When proportions diverge from HW form, it is of interest to estimate the fixation index F, which reflects the degree of divergence. Starting from a sample of genotypic counts, a mixed procedure gives first the orthodox estimate of gene frequency q and then a Bayesian estimate of F, based on a credible prior distribution of F, which is described here.
2012-10-24
representative pdf’s via the Kullback - Leibler divergence (KL). Species turnover, or b diversity, is estimated using both this KL divergence and the...multiresolution analysis provides a means for estimating divergence between two textures, specifically the Kullback - Leibler divergence between the pair of ...and open challenges. Ecological Informatics 5: 318–329. 19. Ludovisi A, TaticchiM(2006) Investigating beta diversity by kullback - leibler information
Hsieh, Chia-Hung; Ko, Chiun-Cheng; Chung, Cheng-Han; Wang, Hurng-Yi
2014-07-01
The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in (*)BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation. Copyright © 2014 Elsevier Inc. All rights reserved.
Puckett, Emily E; Etter, Paul D; Johnson, Eric A; Eggert, Lori S
2015-09-01
Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears (Ursus americanus) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.For permissions please email: journals.permissions@oup.com.
Assessing spatiotemporal changes in forest carbon turnover times in observational data and models
NASA Astrophysics Data System (ADS)
Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.
2017-12-01
Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.
Advances in Time Estimation Methods for Molecular Data.
Kumar, Sudhir; Hedges, S Blair
2016-04-01
Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data sets. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2018-01-01
The genus Liolaemus comprises more than 260 species and can be divided in two subgenera: Eulaemus and Liolaemus sensu stricto. In this paper, we present a phylogenetic analysis, divergence times, and ancestral distribution ranges of the Liolaemus alticolor-bibronii group (Liolaemus sensu stricto subgenus). We inferred a total evidence phylogeny combining molecular (Cytb and 12S genes) and morphological characters using Maximum Parsimony and Bayesian Inference. Divergence times were calculated using Bayesian MCMC with an uncorrelated lognormal distributed relaxed clock, calibrated with a fossil record. Ancestral ranges were estimated using the Dispersal-Extinction-Cladogenesis (DEC-Lagrange). Effects of some a priori parameters of DEC were also tested. Distribution ranged from central Perú to southern Argentina, including areas at sea level up to the high Andes. The L. alticolor-bibronii group was recovered as monophyletic, formed by two clades: L. walkeri and L. gracilis, the latter can be split in two groups. Additionally, many species candidates were recognized. We estimate that the L. alticolor-bibronii group diversified 14.5 Myr ago, during the Middle Miocene. Our results suggest that the ancestor of the Liolaemus alticolor-bibronii group was distributed in a wide area including Patagonia and Puna highlands. The speciation pattern follows the South-North Diversification Hypothesis, following the Andean uplift. PMID:29479502
NASA Astrophysics Data System (ADS)
Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.
2018-01-01
The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.
Battistuzzi, Fabia U; Feijao, Andreia; Hedges, S Blair
2004-01-01
Background The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. Results Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8–4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga. Conclusions Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations. PMID:15535883
Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.
2004-01-01
Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.
Liu, Baoyan; Alström, Per; Olsson, Urban; Fjeldså, Jon; Quan, Qing; Roselaar, Kees C S; Saitoh, Takema; Yao, Cheng-Te; Hao, Yan; Wang, Wenjuan; Qu, Yanhua; Lei, Fumin
2017-08-01
Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino-Himalayan Mountains or these mountains and Central Asia-Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid-Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo-/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials-contrary to the usual view that glacial periods resulted mainly in fragmentations.
A dating success story: genomes and fossils converge on placental mammal origins
2012-01-01
The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic mammals have been discovered, and molecular divergence studies have grown from simple clock-like models applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct; most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and palaeontological data and heralds a broader integration of these fields of evolutionary science. PMID:22883371
Ghedotti, Michael J; Davis, Matthew P
2017-04-10
The fossils species †Fundulus detillae, †F. lariversi, and †F. nevadensis from localities in the western United States are represented by well-preserved material with date estimations. We combined morphological data for these fossil taxa with morphological and DNA-sequence data to conduct a phylogenetic analysis and a tip-based divergence-time estimation for the family Fundulidae. The resultant phylogeny is largely concordant with the prior total-evidence phylogeny. The fossil species do not form a monophyletic group, and do not represent a discrete western radiation of Fundulus as previously proposed. The genus Fundulus diverged into subgeneric clades likely in the Eocene or Oligocene (mean age 34.6 mya, 53-23 mya), and all subgeneric and most species-group clades had evolved by the middle Miocene. †Fundulus lariversi is a member of subgenus Fundulus in which all extant species are found only in eastern North America, demonstrating that fundulids had a complicated biogeographic history. We confirmed †Fundulus detillae as a member of the subgenus Plancterus. †F. nevadensis is not classified in a subgenus but likely is related to the subgenera Plancterus and Wileyichthys.
Cracraft, Joel; Houde, Peter; Ho, Simon Y W; Mindell, David P; Fjeldså, Jon; Lindow, Bent; Edwards, Scott V; Rahbek, Carsten; Mirarab, Siavash; Warnow, Tandy; Gilbert, M Thomas P; Zhang, Guojie; Braun, Edward L; Jarvis, Erich D
2015-09-25
Mitchell et al. argue that divergence-time estimates for our avian phylogeny were too young because of an "inappropriate" maximum age constraint for the most recent common ancestor of modern birds and that, as a result, most modern bird orders diverged before the Cretaceous-Paleogene mass extinction event 66 million years ago instead of after. However, their interpretations of the fossil record and timetrees are incorrect. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tully, Damien C.; Fares, Mario A.
2008-12-20
Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification eventsmore » spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.« less
Cumulus cloud model estimates of trace gas transports
NASA Technical Reports Server (NTRS)
Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.
1989-01-01
Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Terrier, Philippe; Dériaz, Olivier
2013-01-01
It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.
Molecular systematics and global phylogeography of angel sharks (genus Squatina).
Stelbrink, Björn; von Rintelen, Thomas; Cliff, Geremy; Kriwet, Jürgen
2010-02-01
Angel sharks of the genus Squatina represent a group comprising 22 extant benthic species inhabiting continental shelves and upper slopes. In the present study, a comprehensive phylogenetic reconstruction of 17 Squatina species based on two mitochondrial markers (COI and 16S rRNA) is provided. The phylogenetic reconstructions are used to test biogeographic patterns. In addition, a molecular clock analysis is conducted to estimate divergence times of the emerged clades. All analyses show Squatina to be monophyletic. Four geographic clades are recognized, of which the Europe-North Africa-Asia clade is probably a result of the Tethys Sea closure. A second sister group relationship emerged in the analyses, including S. californica (eastern North Pacific) and S. dumeril (western North Atlantic), probably related to the rise of the Panamanian isthmus. The molecular clock analysis show that both lineage divergences coincide with the estimated time of these two geological events. Copyright (c) 2009. Published by Elsevier Inc.
Renz, Adina J.; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon. PMID:23825540
Renz, Adina J; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.
Lee, Michael S Y; Ho, Simon Y W
2016-05-23
In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). Copyright © 2016 Elsevier Ltd. All rights reserved.
The Divergence of Neandertal and Modern Human Y Chromosomes
Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.
2016-01-01
Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445
Vagaries of the molecular clock
Ayala, Francisco J.
1997-01-01
The hypothesis of the molecular evolutionary clock asserts that informational macromolecules (i.e., proteins and nucleic acids) evolve at rates that are constant through time and for different lineages. The clock hypothesis has been extremely powerful for determining evolutionary events of the remote past for which the fossil and other evidence is lacking or insufficient. I review the evolution of two genes, Gpdh and Sod. In fruit flies, the encoded glycerol-3-phosphate dehydrogenase (GPDH) protein evolves at a rate of 1.1 × 10−10 amino acid replacements per site per year when Drosophila species are compared that diverged within the last 55 million years (My), but a much faster rate of ≈4.5 × 10−10 replacements per site per year when comparisons are made between mammals (≈70 My) or Dipteran families (≈100 My), animal phyla (≈650 My), or multicellular kingdoms (≈1100 My). The rate of superoxide dismutase (SOD) evolution is very fast between Drosophila species (16.2 × 10−10 replacements per site per year) and remains the same between mammals (17.2) or Dipteran families (15.9), but it becomes much slower between animal phyla (5.3) and still slower between the three kingdoms (3.3). If we assume a molecular clock and use the Drosophila rate for estimating the divergence of remote organisms, GPDH yields estimates of 2,500 My for the divergence between the animal phyla (occurred ≈650 My) and 3,990 My for the divergence of the kingdoms (occurred ≈1,100 My). At the other extreme, SOD yields divergence times of 211 My and 224 My for the animal phyla and the kingdoms, respectively. It remains unsettled how often proteins evolve in such erratic fashion as GPDH and SOD. PMID:9223263
Loera, Israel; Sosa, Victoria; Ickert-Bond, Stefanie M
2012-11-01
A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions. Copyright © 2012 Elsevier Inc. All rights reserved.
The Divergence of Neandertal and Modern Human Y Chromosomes.
Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D
2016-04-07
Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Lang; Li, Jie; Rohwer, Jens G; van der Werff, Henk; Wang, Zhi-Hua; Li, Hsi-Wen
2011-09-01
The Persea group (Lauraceae) has a tropical and subtropical amphi-pacific disjunct distribution with most of its members, and it includes two Macaronesian species. The relationships within the group are still controversial, and its intercontinental disjunction has not been investigated with extensive sampling and precise time dating. • ITS and LEAFY intron II sequences of 78 Persea group species and nine other Lauraceae species were analyzed with maximum parsimony and Bayesian inference. Divergence time estimation employed Bayesian Markov chain Monte Carlo method under a relaxed clock. • Several traditional genera or subgenera within the Persea group form well-supported monophyletic groups except Alseodaphne and Dehaasia. The divergence time of the Persea group is estimated as ∼55.3 (95% higher posterior densities [HPD] 41.4-69.9) million years ago (mya). Two major divergences within the Persea group are estimated as ∼51.9 (95% HPD 38.9-63.9) mya and ∼48.5 (95% HPD 35.9-59.9) mya. • Persea can be retained as a genus by the inclusion of Apollonias barbujana and exclusion a few species that do not fit into the established subgenera. A major revision is recommended for the delimitation between Alseodaphne, Dehaasia, and Nothaphoebe. We suggest that the Persea group originated from the Perseeae-Laureae radiation in early Eocene Laurasia. Its amphi-pacific disjunction results from the disruption of boreotropical flora by climatic cooling during the mid- to late Eocene. The American-Macaronesian disjunction may be explained by the long-distance dispersal.
Cultural and climatic changes shape the evolutionary history of the Uralic languages.
Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N
2013-06-01
Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Pozzi, Luca; Hodgson, Jason A; Burrell, Andrew S; Sterner, Kirstin N; Raaum, Ryan L; Disotell, Todd R
2014-06-01
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled. Copyright © 2014 Elsevier Inc. All rights reserved.
Capurucho, João Marcos Guimarães; Ashley, Mary V; Ribas, Camila C; Bates, John M
2018-06-11
Several biogeographic hypotheses have been proposed to explain connections between Amazonian and Atlantic forest biotas. These hypotheses are related to the timing of the connections and their geographic patterns. We performed a phylogeographic investigation of Tyrant-manakins (Aves: Pipridae, Neopelma/Tyranneutes) which include species inhabiting the Amazon and Atlantic forests, as well as gallery forests of the Cerrado. Using DNA sequence data, we determined phylogenetic relationships, temporal and geographic patterns of diversification, and recent intraspecific population genetic patterns, relative to the history of these biomes. We found Neopelma to be a paraphyletic genus, as N. chrysolophum is sister to Neopelma + Tyranneutes, with an estimated divergence of approximately 18 Myrs BP, within the oldest estimated divergence times of other Amazonian and Atlantic forest avian taxa. Subsequent divergences in the group occurred from Mid Miocene to Early Pliocene and involved mainly the Amazonian species, with an expansion into and subsequent speciation in the Cerrado gallery forests by N. pallescens. We found additional structure within N. chrysocephalum and N. sulphureiventer. Analysis of recent population dynamics in N. chrysocephalum, N. sulphureiventer, and N. pallescens revealed recent demographic fluctuations and restrictions to gene flow related to environmental changes since the last glacial cycle. No genetic structure was detected across the Amazon River in N. pallescens. The tyrant-manakins represent an old historical connection between the Amazon and Atlantic Forest. Copyright © 2018. Published by Elsevier Inc.
Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.
Cannatella, David
2015-01-01
Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.
Ricklefs, Robert E; Bermingham, Eldredge
2004-08-01
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.
Kim, Sang Il; Farrell, Brian D
2015-05-01
Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly, as Jeannel's hypothesis predicted, divergence within Lampriminae between the Australasian Lamprima and the Neotropical Streptocerus was estimated to be circa 37MYA. The split of these lineages were generally concordant with the pattern of continental break-up of the super-continent Gondwana, and our biogeographic reconstructions based on the dispersal-extinction-cladogenesis model (DEC) corroborate our view that the divergences in these austral lineages were caused by vicariance events following the Gondwanan break-up. In addition, the phylogenetic position and geographic origin of the Hawaiian genus Apterocyclus was revealed for the first time. Overall, our results provide the framework toward studying lucanid relationships and divergence time estimates, which allowed for more accurate biogeographic explanations and discussions on ancestral lucanids and the evolutionary origin of the enlarged male mandibles. Copyright © 2015 Elsevier Inc. All rights reserved.
Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J
1994-01-01
We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201
Fuchs, Jérôme; Pons, Jean-Marc; Goodman, Steven M; Bretagnolle, Vincent; Melo, Martim; Bowie, Rauri C K; Currie, David; Safford, Roger; Virani, Munir Z; Thomsett, Simon; Hija, Alawi; Cruaud, Corinne; Pasquet, Eric
2008-07-09
The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. Deciphering which factor explains the current distributional pattern of a given taxonomic group requires robust phylogenies as well as estimates of divergence times. The lineage of Indian Ocean scops-owls (Otus: Strigidae) includes six or seven species that are endemic to Madagascar and portions of the Comoros and Seychelles archipelagos; little is known about the species limits, biogeographic affinities and relationships to each other. In the present study, using DNA sequence data gathered from six loci, we examine the biogeographic history of the Indian Ocean scops-owls. We also compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa. Our analyses revealed that Indian Ocean islands scops-owls do not form a monophyletic assemblage: the Seychelles Otus insularis is genetically closer to the South-East Asian endemic O. sunia than to species from the Comoros and Madagascar. The Pemba Scops-owls O. pembaensis, often considered closely related to, if not conspecific with O. rutilus of Madagascar, is instead closely related to the African mainland O. senegalensis. Relationships among the Indian Ocean taxa from the Comoros and Madagascar are unresolved, despite the analysis of over 4000 bp, suggesting a diversification burst after the initial colonization event. We also highlight one case of putative back-colonization to the Asian mainland from an island ancestor (O. sunia). Our divergence date estimates, using a Bayesian relaxed clock method, suggest that all these events occurred during the last 3.6 myr; albeit colonization of the Indian Ocean islands were not synchronous, O. pembaensis diverged from O. senegalensis about 1.7 mya while species from Madagascar and the Comoro diverged from their continental sister-group about 3.6 mya. We highlight that our estimates coincide with estimates of diversification from other bird lineages. Our analyses revealed the occurrence of multiple synchronous colonization events of the Indian Ocean islands by scops-owls, at a time when faunistic exchanges involving Madagascar was common as a result of lowered sea-level that would have allowed the formation of stepping-stone islands. Patterns of diversification that emerged from the scops-owls data are: 1) a star-like pattern concerning the order of colonization of the Indian Ocean islands and 2) the high genetic distinctiveness among all Indian Ocean taxa, reinforcing their recognition as distinct species.
2008-01-01
Background The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. Deciphering which factor explains the current distributional pattern of a given taxonomic group requires robust phylogenies as well as estimates of divergence times. The lineage of Indian Ocean scops-owls (Otus: Strigidae) includes six or seven species that are endemic to Madagascar and portions of the Comoros and Seychelles archipelagos; little is known about the species limits, biogeographic affinities and relationships to each other. In the present study, using DNA sequence data gathered from six loci, we examine the biogeographic history of the Indian Ocean scops-owls. We also compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa. Results Our analyses revealed that Indian Ocean islands scops-owls do not form a monophyletic assemblage: the Seychelles Otus insularis is genetically closer to the South-East Asian endemic O. sunia than to species from the Comoros and Madagascar. The Pemba Scops-owls O. pembaensis, often considered closely related to, if not conspecific with O. rutilus of Madagascar, is instead closely related to the African mainland O. senegalensis. Relationships among the Indian Ocean taxa from the Comoros and Madagascar are unresolved, despite the analysis of over 4000 bp, suggesting a diversification burst after the initial colonization event. We also highlight one case of putative back-colonization to the Asian mainland from an island ancestor (O. sunia). Our divergence date estimates, using a Bayesian relaxed clock method, suggest that all these events occurred during the last 3.6 myr; albeit colonization of the Indian Ocean islands were not synchronous, O. pembaensis diverged from O. senegalensis about 1.7 mya while species from Madagascar and the Comoro diverged from their continental sister-group about 3.6 mya. We highlight that our estimates coincide with estimates of diversification from other bird lineages. Conclusion Our analyses revealed the occurrence of multiple synchronous colonization events of the Indian Ocean islands by scops-owls, at a time when faunistic exchanges involving Madagascar was common as a result of lowered sea-level that would have allowed the formation of stepping-stone islands. Patterns of diversification that emerged from the scops-owls data are: 1) a star-like pattern concerning the order of colonization of the Indian Ocean islands and 2) the high genetic distinctiveness among all Indian Ocean taxa, reinforcing their recognition as distinct species. PMID:18611281
Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2013-01-01
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species. PMID:24244198
Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2013-11-01
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.
Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina
2016-01-01
Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
2016-01-01
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030
Winter, Sven; Friedman, Ariel L L; Astrin, Jonas J; Gottsberger, Brigitte; Letsch, Harald
2017-02-01
Host plant shifts of insects can lead to a burst of diversification driven by their arrival in a new adaptive zone. In this context, our study aims to explore timing and patterns in the evolution of the weevil tribe Apionini (Brentidae, Curculionoidea, Coleoptera), particularly in relation to affiliations with their host plants. The classification of Apionini is difficult because of their relatively uniform appearance. Most taxa live mono- or oligophagously on members of Asteraceae or Fabaceae, but many are associated with other plant families, like Lamiaceae, Malvaceae and Polygonaceae. However, a comprehensive hypothesis of the phylogenetic relationships within the tribe Apionini is still missing. In the present study, we reconstructed trees and estimated divergence times among tribes. These results were further used to reconstruct the ancestral host plant use in Apionini weevils and to infer if the divergence timing of putative subtribes corresponds with the occurrence and radiation of their specific host plant groups. Phylogenetic analyses confirm the monophyly of most subtribes, with the exceptions of Oxystomatina, Kalcapiina and Aspidapiina. The subribe Aplemonina is inferred to be sister to all remaining Apionini. Divergence time estimates indicate the first occurrence of Apionini in the Upper Cretaceous and a simultaneous occurrence of several families of flowering plants and the occupation by Apionini weevil herbivores. These conspicuous coincidences support either an ancient co-diversification scenario or an escalating diversification in weevils induced by the radiation of flowering plants. Copyright © 2016 Elsevier Inc. All rights reserved.
Low X/Y divergence in four pairs of papaya sex-linked genes.
Yu, Qingyi; Hou, Shaobin; Feltus, F Alex; Jones, Meghan R; Murray, Jan E; Veatch, Olivia; Lemke, Cornelia; Saw, Jimmy H; Moore, Richard C; Thimmapuram, Jyothi; Liu, Lei; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Ming, Ray
2008-01-01
Sex chromosomes in flowering plants, in contrast to those in animals, evolved relatively recently and only a few are heteromorphic. The homomorphic sex chromosomes of papaya show features of incipient sex chromosome evolution. We investigated the features of paired X- and Y-specific bacterial artificial chromosomes (BACs), and estimated the time of divergence in four pairs of sex-linked genes. We report the results of a comparative analysis of long contiguous genomic DNA sequences between the X and hermaphrodite Y (Y(h)) chromosomes. Numerous chromosomal rearrangements were detected in the male-specific region of the Y chromosome (MSY), including inversions, deletions, insertions, duplications and translocations, showing the dynamic evolutionary process on the MSY after recombination ceased. DNA sequence expansion was documented in the two regions of the MSY, demonstrating that the cytologically homomorphic sex chromosomes are heteromorphic at the molecular level. Analysis of sequence divergence between four X and Y(h) gene pairs resulted in a estimated age of divergence of between 0.5 and 2.2 million years, supporting a recent origin of the papaya sex chromosomes. Our findings indicate that sex chromosomes did not evolve at the family level in Caricaceae, and reinforce the theory that sex chromosomes evolve at the species level in some lineages.
Mohandesan, Elmira; Fitak, Robert R; Corander, Jukka; Yadamsuren, Adiya; Chuluunbat, Battsetseg; Abdelhadi, Omer; Raziq, Abdul; Nagy, Peter; Stalder, Gabrielle; Walzer, Chris; Faye, Bernard; Burger, Pamela A
2017-08-30
The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.
Dos Reis, Mario
2016-07-19
Constructing a multi-dimensional prior on the times of divergence (the node ages) of species in a phylogeny is not a trivial task, in particular, if the prior density is the result of combining different sources of information such as a speciation process with fossil calibration densities. Yang & Rannala (2006 Mol. Biol. Evol 23, 212-226. (doi:10.1093/molbev/msj024)) laid out the general approach to combine the birth-death process with arbitrary fossil-based densities to construct a prior on divergence times. They achieved this by calculating the density of node ages without calibrations conditioned on the ages of the calibrated nodes. Here, I show that the conditional density obtained by Yang & Rannala is misspecified. The misspecified density can sometimes be quite strange-looking and can lead to unintentionally informative priors on node ages without fossil calibrations. I derive the correct density and provide a few illustrative examples. Calculation of the density involves a sum over a large set of labelled histories, and so obtaining the density in a computer program seems hard at the moment. A general algorithm that may provide a way forward is given.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).
Vea, Isabelle M.; Grimaldi, David A.
2016-01-01
The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526
Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J
2012-12-01
The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].
Active learning for noisy oracle via density power divergence.
Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi
2013-10-01
The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Jun; Liu, Helu; Zhang, Haibin
2018-04-22
The marine mussels (Mytilidae) are distributed in the oceans worldwide and occupy various habitats with diverse life styles. However, their taxonomy and phylogeny remain unclear from genus to family level due to equivocal morphological and anatomical characters among some taxa. In this study, we inferred the deep phylogenetic relationships among 42 mytiloid species, 19 genera, and five subfamilies of the extant marine mussels by using two mitochondrial (COI and 16S rRNA) and three nuclear (18S and 28S rRNA, and histone H3) genes. Phylogeny was reconstructed with a combination of five genes using Bayesian inference and maximum likelihood method, and divergence time was estimated for the major nodes using a relaxed clock model with three fossil calibrations. Phylogenetic trees revealed two major clades (Clades 1 and 2). In Clade 1, the deep-sea mussels (subfamily Bathymodiolinae) were sister to subfamily Modiolinae (represented by Modiolus), and then was clustered with Leiosolenus (subfamily Lithophaginae). Clade 2 comprised Lithophaga (Lithophaginae) and subfamily Mytilinae. Additionally, a Modiolus species and Musculus senhousia (subfamily Crenellinae) were positioned within the subfamily Mytilinae. The phylogenetic results strongly indicated monophyly of Mytilidae and Bathymodiolinae, polyphyly of Modiolinae and Lithophaginae, and paraphyly of Mytilinae. Divergence time estimation showed an ancient and gradual divergence in most mussel groups, whereas the deep-sea mussels originated recently and diverged rapidly during the Paleogene. The present study provides new insight into the evolutionary history of the marine mussels, and supports taxonomic revision for this important bivalve group. Copyright © 2018 Elsevier Inc. All rights reserved.
Gender-based screening for chlamydial infection and divergent infection trends in men and women.
Rogers, Susan M; Turner, Charles F; Miller, William C; Erbelding, Emily; Eggleston, Elizabeth; Tan, Sylvia; Roman, Anthony; Hobbs, Marcia; Chromy, James; Muvva, Ravikiran; Ganapathi, Laxminarayana
2014-01-01
To assess the potential impact of chlamydial screening policy that recommends routine screening of women but not men. Population surveys of probability samples of Baltimore adults aged 18 to 35 years in 1997-1998 and 2006-2009 collected biospecimens to estimate trends in undiagnosed chlamydial infection. Survey estimates are compared to surveillance data on diagnosed chlamydial infections reported to the Health Department. Prevalence of undiagnosed chlamydial infection among men increased from 1.6% to 4.0%, but it declined from 4.3% to 3.1% among women (p = 0.028 for test of interaction). The annual (average) number of diagnosed infections was substantially higher among women than men in both time periods and increased among both men and women. Undiagnosed infection prevalence was substantially higher among black than non-black adults (4.0% vs 1.2%, p = 0.042 in 1997-98 and 5.5% vs 0.7%, p<0.001 in 2006-09). Divergent trends in undiagnosed chlamydial infection by gender parallel divergent screening recommendations that encourage chlamydial testing for women but not for men.
Lv, Yun-Yun; He, Kai; Klaus, Sebastian; Brown, Rafe M; Li, Jia-Tang
2018-04-01
Currently, the genus Kurixalus comprises 14 species distributed in Southern, Southeast and East Asia. Because of their relatively low dispersal capability and intolerance of seawater, this group is ideal for the study of terrestrial range evolution, especially that portion of its range that extends into the island archipelagos of Southern Asia. We assembled a large dataset of mitochondrial and nuclear genes, and estimated phylogeny by maximum likelihood and Bayesian methods, and we explored the history of each species via divergence-time estimation based on fossil-calibrations. A variety of ancestral-area reconstruction strategies were employed to estimate past changes of the species' geographical range, and to evaluate the impact of different abiotic barriers on range evolution. We found that frilled swamp treefrogs probably originated in Taiwan or South Vietnam in the Oligocene. Alternatively, the lineage leading to Kurixalus appendiculatus strongly supports a hypothesis of terrestrial connection between the Indian and Asian continents in the Oligocene. The outcome of both our divergence-time estimates and ancestral-area reconstruction suggests that the divergence between species from Indochina and Taiwan can probably be attributed to the opening of the South China Sea, approximately 33 million years ago. We could not find evidence for dispersal between mainland China and Taiwan Island. Formation of both Mekong and Red River valleys did not have any impact on Kurixalus species diversification. However, coincidence in timing of climate change and availability of plausible dispersal routes from the Oligocene to the middle Miocene, plausibly implied that Kurixalus diversification in Asia resulted from contemporaneous, climate-induced environmental upheaval (Late Oligocene Warming at 29 Ma; Mi-1 glaciation since 24.4-21.5 Ma; Mid-Miocene Climatic Optimum at 14 Ma), which alternatively opened and closed dispersal routes. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular clocks and the early evolution of metazoan nervous systems.
Wray, Gregory A
2015-12-19
The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.
Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.
Zhao, Yu-Juan; Gong, Xun
2015-07-08
Leucomeris decora and Nouelia insignis (Asteraceae) are narrowly and allopatrically distributed species, separated by the important biogeographic boundary Tanaka Line in Southwest China. Previous morphological, cytogenetic and molecular studies suggested that L. decora is sister to N. insignis. However, it is less clear how the two species diverged, whether in full isolation or occurring gene flow across the Tanaka Line. Here, we performed a molecular study at the population level to characterize genetic differentiation and decipher phylogeographic history in two closely related species based on variation examined in plastid and nuclear DNAs using a coalescent-based approach. These morphologically distinct species share plastid DNA (cpDNA) haplotypes. In contrast, Bayesian analysis of nuclear DNA (nDNA) uncovered two distinct clusters corresponding to L. decora and N. insignis. Based on the IMa analysis, no strong indication of migration was detected based on both cpDNA and nDNA sequences. The molecular data pointed to a major west-east split in nuclear DNA between the two species corresponding with the Tanaka Line. The coalescent time estimate for all cpDNA haplotypes dated to the Mid-Late Pleistocene. The estimated demographic parameters showed that the population size of L. decora was similar to that of N. insignis and both experienced limited demographic fluctuations recently. The study revealed comprehensive species divergence and phylogeographic histories of N. insignis and L. decora divided by the Tanaka Line. The phylogeographic pattern inferred from cpDNA reflected ancestrally shared polymorphisms without post-divergence gene flow between species. The marked genealogical lineage divergence in nDNA provided some indication of Tanaka Line for its role as a barrier to plant dispersal, and lent support to its importance in promoting strong population structure and allopatric divergence.
Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees
Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958
Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan
2011-09-01
To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.
Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi
2013-07-01
To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.
Rocha, Sara; Posada, David; Harris, D James
2013-01-05
Lying in a shallow continental shelf cyclically affected by oscillating sea levels since the Miocene, the Seychelles islands are particularly interesting for evolutionary studies. Recent molecular studies are generating an emerging picture of the origin of its biota, yet very little is known regarding their phylogeographic structure or on the factors promoting diversification within the archipelago. Here we aimed to obtain a detailed depiction of the genetic structure and evolution of one of the most widespread vertebrate groups in the archipelago: the day-geckos of the genus Phelsuma. In parallel, we aimed to infer divergence times between species and subspecies, testing a long-standing hypothesis that argues for different time since sympatry between species as the cause of their different morphological differentiation across the archipelago. Molecular data corroborated the existence of two main lineages, corresponding to the two currently recognized species. Divergences between species likely date back to the Mio-Pliocene, while more recent, Pleistocenic, divergences are suggested within each species. Populations from outer islands share mtDNA haplotypes with inner island populations, suggesting very recent dispersals (or introductions). We found no evidence of current gene flow between species, but results pointed to the possibility of gene flow between (now allopatric) subspecies. Time estimates suggest a synchronous divergence within each species (between island groups). The geographic patterns of genetic variation agree with previous taxonomic subdivisions within each species and the origin of outer islands populations is clearly tracked. The similar intraspecific divergence time estimates obtained suggest that the differential body-size differentiation between species within each group of islands may be driven by factors other than character displacement proportional to time since sympatry, as previously suggested. These factors could include different habitats/resources available within each island group, niche differentiation and/or character displacement. We also bring again into consideration the hypothesis of body size being influenced by the distribution of native vegetation and social systems within this group, although it remains to be tested. Our results highlight not only the necessity of clarifying the role of ecology and interspecific interactions in this group's morphological diversification and community assemblage, but also the importance of co-evolutionary mechanisms and their importance for appropriate conservation of island biodiversity. Further, we provide a detailed description of the phylogeographic structure of these taxa across these islands, which still remain poorly characterized in this respect.
2011-01-01
Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately. PMID:21693066
Nakatani, Masanori; Miya, Masaki; Mabuchi, Kohji; Saitoh, Kenji; Nishida, Mutsumi
2011-06-22
Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately.
Pascoal, Sonia; Mendrok, Magdalena; Wilson, Alastair J; Hunt, John; Bailey, Nathan W
2017-06-01
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among-population (genetic) variance-covariance matrix, D, for all 15 traits, and D max explained nearly two-thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among-population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6
NASA Technical Reports Server (NTRS)
Vickers, Dean; Mahrt, L.
2005-01-01
Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.
Pryer, Kathleen M; Schuettpelz, Eric; Wolf, Paul G; Schneider, Harald; Smith, Alan R; Cranfill, Raymond
2004-10-01
The phylogenetic structure of ferns (= monilophytes) is explored here, with a special focus on the early divergences among leptosporangiate lineages. Despite considerable progress in our understanding of fern relationships, a rigorous and comprehensive analysis of the early leptosporangiate divergences was lacking. Therefore, a data set was designed here to include critical taxa that were not included in earlier studies. More than 5000 bp from the plastid (rbcL, atpB, rps4) and the nuclear (18S rDNA) genomes were sequenced for 62 taxa. Phylogenetic analyses of these data (1) confirm that Osmundaceae are sister to the rest of the leptosporangiates, (2) resolve a diverse set of ferns formerly thought to be a subsequent grade as possibly monophyletic (((Dipteridaceae, Matoniaceae), Gleicheniaceae), Hymenophyllaceae), and (3) place schizaeoid ferns as sister to a large clade of "core leptosporangiates" that includes heterosporous ferns, tree ferns, and polypods. Divergence time estimates for ferns are reported from penalized likelihood analyses of our molecular data, with constraints from a reassessment of the fossil record.
Fenner, Jack N
2005-10-01
The length of the human generation interval is a key parameter when using genetics to date population divergence events. However, no consensus exists regarding the generation interval length, and a wide variety of interval lengths have been used in recent studies. This makes comparison between studies difficult, and questions the accuracy of divergence date estimations. Recent genealogy-based research suggests that the male generation interval is substantially longer than the female interval, and that both are greater than the values commonly used in genetics studies. This study evaluates each of these hypotheses in a broader cross-cultural context, using data from both nation states and recent hunter-gatherer societies. Both hypotheses are supported by this study; therefore, revised estimates of male, female, and overall human generation interval lengths are proposed. The nearly universal, cross-cultural nature of the evidence justifies using these proposed estimates in Y-chromosomal, mitochondrial, and autosomal DNA-based population divergence studies.
Scale dependence of the 200-mb divergence inferred from EOLE data.
NASA Technical Reports Server (NTRS)
Morel, P.; Necco, G.
1973-01-01
The EOLE experiment with 480 constant-volume balloons distributed over the Southern Hemisphere approximately at the 200-mb level, has provided a unique, highly accurate set of tracer trajectories in the general westerly circulation. The trajectories of neighboring balloons are analyzed to estimate the horizontal divergence from the Lagrangian derivative of the area of one cluster. The variance of the divergence estimates results from two almost comparable effects: the true divergence of the horizontal flow and eddy diffusion due to small-scale, two-dimensional turbulence. Taking this into account, the rms divergence is found to be of the order of 0.00001 per sec and decreases logarithmically with cluster size. This scale dependence is shown to be consistent with the quasi-geostrophic turbulence model of the general circulation in midlatitudes.
Zhou, Xuming; Xu, Shixia; Xu, Junxiao; Chen, Bingyao; Zhou, Kaiya; Yang, Guang
2012-01-01
Abstract Although great progress has been made in resolving the relationships of placental mammals, the position of several clades in Laurasiatheria remain controversial. In this study, we performed a phylogenetic analysis of 97 orthologs (46,152 bp) for 15 taxa, representing all laurasiatherian orders. Additionally, phylogenetic trees of laurasiatherian mammals with draft genome sequences were reconstructed based on 1608 exons (2,175,102 bp). Our reconstructions resolve the interordinal relationships within Laurasiatheria and corroborate the clades Scrotifera, Fereuungulata, and Cetartiodactyla. Furthermore, we tested alternative topologies within Laurasiatheria, and among alternatives for the phylogenetic position of Perissodactyla, a sister-group relationship with Cetartiodactyla receives the highest support. Thus, Pegasoferae (Perissodactyla + Carnivora + Pholidota + Chiroptera) does not appear to be a natural group. Divergence time estimates from these genes were compared with published estimates for splits within Laurasiatheria. Our estimates were similar to those of several studies and suggest that the divergences among these orders occurred within just a few million years. PMID:21900649
[Phylogeny and divergence time estimation of Schizothoracinae fishes in Xinjiang].
Ayelhan, Haysa; Guo, Yan; Meng, Wei; Yang, Tianyan; Ma, Yanwu
2014-10-01
Based on combined data of mitochondrial COI, ND4 and 16S RNA genes, molecular phylogeny of 4 genera, 10 species or subspecies of Schizothoracinae fishes distributed in Xinjiang were analyzed. The molecular clock was calibrated by divergence time of Cyprininae and geological segregation event between the upper Yellow River and Qinghai Lake. Divergence time of Schizothoracinae fishes was calculated, and its relationship with the major geological events and the climate changes in surrounding areas of Tarim Basin was discussed. The results showed that genus Aspiorhynchus did not form an independent clade, but clustered with Schizothorax biddulphi and S. irregularis. Kimura 2-parameter model was used to calculate the genetic distance of COI gene, the genetic distance between genus Aspiorhynchus and Schizothorax did not reach genus level, and Aspiorhynchus laticeps might be a specialized species of genus Schizothorax. Cluster analysis showed a different result with morphological classification method, and it did not support the subgenus division of Schizothorax fishes. Divergence of two groups of primitive Schizothoracinae (8.18Ma) and divergence of Gymnodiptychus dybowskii and Diptychus maculates (7.67Ma) occurred in late Miocene, which might be related with the separation of Kunlun Mountain and north Tianshan Mountain River system that was caused by the uplift of Qinghai-Tibet Plateau and Tianshan Mountain, and the aridification of Tarim Basin. The terrain of Tarim Basin that was affected by Quaternary Himalayan movement was high in west but low in east, as a result, Lop Nor became the center of surrounding mountain rivers in Tarim Basin, which shaped the distribution pattern of genus Schizothorax.
Solenoid transport of beams with current-dependent initial conditions
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
2017-09-06
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Solenoid transport of beams with current-dependent initial conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Jonniaux, Pierre; Kumazawa, Yoshinori
2008-01-15
Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.
Adaptive statistical pattern classifiers for remotely sensed data
NASA Technical Reports Server (NTRS)
Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.
1975-01-01
A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.
Barba-Montoya, Jose; Dos Reis, Mario; Yang, Ziheng
2017-09-01
Fossil calibrations are the utmost source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis. The quality of calibrations is thus expected to have a major impact on divergence time estimates even if a huge amount of molecular data is available. In Bayesian molecular clock dating, fossil calibration information is incorporated in the analysis through the prior on divergence times (the time prior). Here, we evaluate three strategies for converting fossil calibrations (in the form of minimum- and maximum-age bounds) into the prior on times, which differ according to whether they borrow information from the maximum age of ancestral nodes and minimum age of descendent nodes to form constraints for any given node on the phylogeny. We study a simple example that is analytically tractable, and analyze two real datasets (one of 10 primate species and another of 48 seed plant species) using three Bayesian dating programs: MCMCTree, MrBayes and BEAST2. We examine how different calibration strategies, the birth-death process, and automatic truncation (to enforce the constraint that ancestral nodes are older than descendent nodes) interact to determine the time prior. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. Our results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Maternal and child mortality indicators across 187 countries of the world: converging or diverging.
Goli, Srinivas; Arokiasamy, Perianayagam
2014-01-01
This study reassessed the progress achieved since 1990 in maternal and child mortality indicators to test whether the progress is converging or diverging across countries worldwide. The convergence process is examined using standard parametric and non-parametric econometric models of convergence. The results of absolute convergence estimates reveal that progress in maternal and child mortality indicators is diverging for the entire period of 1990-2010 [maternal mortality ratio (MMR) - β = .00033, p < .574; neonatal mortality rate (NNMR) - β = .04367, p < .000; post-neonatal mortality rate (PNMR) - β = .02677, p < .000; under-five mortality rate (U5MR) - β = .00828, p < .000)]. In the recent period, such divergence is replaced with convergence for MMR but diverged for all the child mortality indicators. The results of Kernel density estimate reveal considerable reduction in divergence of MMR for the recent period; however, the Kernel density distribution plots show more than one 'peak' which indicates the emergence of convergence clubs based on their mortality levels. For child mortality indicators, the Kernel estimates suggest that divergence is in progress across the countries worldwide but tended to converge for countries with low mortality levels. A mere progress in global averages of maternal and child mortality indicators among a global cross-section of countries does not warranty convergence unless there is a considerable reduction in variance, skewness and range of change.
O'Reilly, Joseph E; Donoghue, Philip C J
2018-03-01
Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data.
O’Reilly, Joseph E; Donoghue, Philip C J
2018-01-01
Abstract Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data. PMID:29106675
A Passerine Bird's evolution corroborates the geologic history of the island of New Guinea.
Deiner, Kristy; Lemmon, Alan R; Mack, Andrew L; Fleischer, Robert C; Dumbacher, John P
2011-05-06
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
Deiner, Kristy; Lemmon, Alan R.; Mack, Andrew L.; Fleischer, Robert C.; Dumbacher, John P.
2011-01-01
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history. PMID:21573115
Statistics of surface divergence and their relation to air-water gas transfer velocity
NASA Astrophysics Data System (ADS)
Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.
2012-05-01
Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.
Gender-Based Screening for Chlamydial Infection and Divergent Infection Trends in Men and Women
Rogers, Susan M.; Turner, Charles F.; Miller, William C.; Erbelding, Emily; Eggleston, Elizabeth; Tan, Sylvia; Roman, Anthony; Hobbs, Marcia; Chromy, James; Muvva, Ravikiran; Ganapathi, Laxminarayana
2014-01-01
Objectives To assess the potential impact of chlamydial screening policy that recommends routine screening of women but not men. Methods Population surveys of probability samples of Baltimore adults aged 18 to 35 years in 1997–1998 and 2006–2009 collected biospecimens to estimate trends in undiagnosed chlamydial infection. Survey estimates are compared to surveillance data on diagnosed chlamydial infections reported to the Health Department. Results Prevalence of undiagnosed chlamydial infection among men increased from 1.6% to 4.0%, but it declined from 4.3% to 3.1% among women (p = 0.028 for test of interaction). The annual (average) number of diagnosed infections was substantially higher among women than men in both time periods and increased among both men and women. Undiagnosed infection prevalence was substantially higher among black than non-black adults (4.0% vs 1.2%, p = 0.042 in 1997–98 and 5.5% vs 0.7%, p<0.001 in 2006–09). Conclusion Divergent trends in undiagnosed chlamydial infection by gender parallel divergent screening recommendations that encourage chlamydial testing for women but not for men. PMID:24586491
Host jumps shaped the diversity of extant rust fungi (Pucciniales).
McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J
2016-02-01
The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Ochoa, Luz Eneida; Pereira, Luiz Henrique G; Costa-Silva, Guilherme Jose; Roxo, Fábio F; Batista, Jacqueline S; Formiga, Kyara; Foresti, Fausto; Oliveira, Claudio
2015-05-01
Brachyplatystoma platynemum is a catfish species widely distributed in the Amazon basin. Despite being considered of little commercial interest, the decline in other fish populations has contributed to the increase in the catches of this species. The structure, population genetic variability, and evolutionary process that have driven the diversification of this species are presently unknown. Considering that, in order to better understand the genetic structure of this species, we analyzed individuals from seven locations of the Amazon basin using eight molecular markers: control region and cytochrome b mtDNA sequences, and a set of six nuclear microsatellite loci. The results show high levels of haplotype diversity and point to the occurrence of two structured populations (Amazon River and the Madeira River) with high values for F ST. Divergence time estimates based on mtDNA indicated that these populations diverged about 1.0 Mya (0.2-2.5 Mya 95% HPD) using cytochrome b and 1.4 Mya (0.2-2.7 Mya 95% HPD) using control region. During that time, the influence of climate changes and hydrological events such as sea level oscillations and drainage isolation as a result of geological processes in the Pleistocene may have contributed to the current structure of B. platynemum populations, as well as of differences in water chemistry in Madeira River. The strong genetic structure and the time of genetic divergence estimated for the groups may indicate the existence of strong structure populations of B. platynemum in the Amazon basin.
Ochoa, Luz Eneida; Pereira, Luiz Henrique G; Costa-Silva, Guilherme Jose; Roxo, Fábio F; Batista, Jacqueline S; Formiga, Kyara; Foresti, Fausto; Oliveira, Claudio
2015-01-01
Brachyplatystoma platynemum is a catfish species widely distributed in the Amazon basin. Despite being considered of little commercial interest, the decline in other fish populations has contributed to the increase in the catches of this species. The structure, population genetic variability, and evolutionary process that have driven the diversification of this species are presently unknown. Considering that, in order to better understand the genetic structure of this species, we analyzed individuals from seven locations of the Amazon basin using eight molecular markers: control region and cytochrome b mtDNA sequences, and a set of six nuclear microsatellite loci. The results show high levels of haplotype diversity and point to the occurrence of two structured populations (Amazon River and the Madeira River) with high values for FST. Divergence time estimates based on mtDNA indicated that these populations diverged about 1.0 Mya (0.2–2.5 Mya 95% HPD) using cytochrome b and 1.4 Mya (0.2–2.7 Mya 95% HPD) using control region. During that time, the influence of climate changes and hydrological events such as sea level oscillations and drainage isolation as a result of geological processes in the Pleistocene may have contributed to the current structure of B. platynemum populations, as well as of differences in water chemistry in Madeira River. The strong genetic structure and the time of genetic divergence estimated for the groups may indicate the existence of strong structure populations of B. platynemum in the Amazon basin. PMID:26045952
Morin, Phillip A; Archer, Frederick I; Foote, Andrew D; Vilstrup, Julia; Allen, Eric E; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C; Rasmussen, Morten; Willerslev, Eske; Gilbert, M Thomas P; Harkins, Timothy
2010-07-01
Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from approximately 150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.
Morin, Phillip A.; Archer, Frederick I.; Foote, Andrew D.; Vilstrup, Julia; Allen, Eric E.; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C.; Rasmussen, Morten; Willerslev, Eske; Gilbert, M. Thomas P.; Harkins, Timothy
2010-01-01
Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric “ecotypes” with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from ∼150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times. PMID:20413674
Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species.
Chen, Zhiwen; Feng, Kun; Grover, Corrinne E; Li, Pengbo; Liu, Fang; Wang, Yumei; Xu, Qin; Shang, Mingzhao; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Wendel, Jonathan F; Wang, Kunbo; Hua, Jinping
2016-01-01
The cotton genus (Gossypium spp.) contains 8 monophyletic diploid genome groups (A, B, C, D, E, F, G, K) and a single allotetraploid clade (AD). To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome in this group, we performed a comparative analysis of 19 Gossypium chloroplast genomes, six reported here for the first time. Nucleotide distance in non-coding regions was about three times that of coding regions. As expected, distances were smaller within than among genome groups. Phylogenetic topologies based on nucleotide and indel data support for the resolution of the 8 genome groups into 6 clades. Phylogenetic analysis of indel distribution among the 19 genomes demonstrates contrasting evolutionary dynamics in different clades, with a parallel genome downsizing in two genome groups and a biased accumulation of insertions in the clade containing the cultivated cottons leading to large (for Gossypium) chloroplast genomes. Divergence time estimates derived from the cpDNA sequence suggest that the major diploid clades had diverged approximately 10 to 11 million years ago. The complete nucleotide sequences of 6 cpDNA genomes are provided, offering a resource for cytonuclear studies in Gossypium.
Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species
Li, Pengbo; Liu, Fang; Wang, Yumei; Xu, Qin; Shang, Mingzhao; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Wendel, Jonathan F.; Wang, Kunbo
2016-01-01
The cotton genus (Gossypium spp.) contains 8 monophyletic diploid genome groups (A, B, C, D, E, F, G, K) and a single allotetraploid clade (AD). To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome in this group, we performed a comparative analysis of 19 Gossypium chloroplast genomes, six reported here for the first time. Nucleotide distance in non-coding regions was about three times that of coding regions. As expected, distances were smaller within than among genome groups. Phylogenetic topologies based on nucleotide and indel data support for the resolution of the 8 genome groups into 6 clades. Phylogenetic analysis of indel distribution among the 19 genomes demonstrates contrasting evolutionary dynamics in different clades, with a parallel genome downsizing in two genome groups and a biased accumulation of insertions in the clade containing the cultivated cottons leading to large (for Gossypium) chloroplast genomes. Divergence time estimates derived from the cpDNA sequence suggest that the major diploid clades had diverged approximately 10 to 11 million years ago. The complete nucleotide sequences of 6 cpDNA genomes are provided, offering a resource for cytonuclear studies in Gossypium. PMID:27309527
Detecting the sampling rate through observations
NASA Astrophysics Data System (ADS)
Shoji, Isao
2018-09-01
This paper proposes a method to detect the sampling rate of discrete time series of diffusion processes. Using the maximum likelihood estimates of the parameters of a diffusion process, we establish a criterion based on the Kullback-Leibler divergence and thereby estimate the sampling rate. Simulation studies are conducted to check whether the method can detect the sampling rates from data and their results show a good performance in the detection. In addition, the method is applied to a financial time series sampled on daily basis and shows the detected sampling rate is different from the conventional rates.
Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C
2007-09-01
Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.
Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents
Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.
2012-01-01
The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573
Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun
2015-08-01
The 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum. The PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated. A total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13-0.14 MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparum eba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparum eba-175. Plasmodium falciparum eba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.
Ancient papillomavirus-host co-speciation in Felidae
Rector, Annabel; Lemey, Philippe; Tachezy, Ruth; Mostmans, Sara; Ghim, Shin-Je; Van Doorslaer, Koenraad; Roelke, Melody; Bush, Mitchell; Montali, Richard J; Joslin, Janis; Burk, Robert D; Jenson, Alfred B; Sundberg, John P; Shapiro, Beth; Van Ranst, Marc
2007-01-01
Background Estimating evolutionary rates for slowly evolving viruses such as papillomaviruses (PVs) is not possible using fossil calibrations directly or sequences sampled over a time-scale of decades. An ability to correlate their divergence with a host species, however, can provide a means to estimate evolutionary rates for these viruses accurately. To determine whether such an approach is feasible, we sequenced complete feline PV genomes, previously available only for the domestic cat (Felis domesticus, FdPV1), from four additional, globally distributed feline species: Lynx rufus PV type 1, Puma concolor PV type 1, Panthera leo persica PV type 1, and Uncia uncia PV type 1. Results The feline PVs all belong to the Lambdapapillomavirus genus, and contain an unusual second noncoding region between the early and late protein region, which is only present in members of this genus. Our maximum likelihood and Bayesian phylogenetic analyses demonstrate that the evolutionary relationships between feline PVs perfectly mirror those of their feline hosts, despite a complex and dynamic phylogeographic history. By applying host species divergence times, we provide the first precise estimates for the rate of evolution for each PV gene, with an overall evolutionary rate of 1.95 × 10-8 (95% confidence interval 1.32 × 10-8 to 2.47 × 10-8) nucleotide substitutions per site per year for the viral coding genome. Conclusion Our work provides evidence for long-term virus-host co-speciation of feline PVs, indicating that viral diversity in slowly evolving viruses can be used to investigate host species evolution. These findings, however, should not be extrapolated to other viral lineages without prior confirmation of virus-host co-divergence. PMID:17430578
Pavlova, A; Gan, H M; Lee, Y P; Austin, C M; Gilligan, D M; Lintermans, M; Sunnucks, P
2017-05-01
Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6 113 ) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
Tucker, Derek B; Hedges, Stephen Blair; Colli, Guarino R; Pyron, Robert Alexander; Sites, Jack W
2017-09-01
The phylogenetic relationships and biogeographic history of Caribbean island ameivas ( Pholidoscelis ) are not well-known because of incomplete sampling, conflicting datasets, and poor support for many clades. Here, we use phylogenomic and mitochondrial DNA datasets to reconstruct a well-supported phylogeny and assess historical colonization patterns in the group. We obtained sequence data from 316 nuclear loci and one mitochondrial marker for 16 of 19 extant species of the Caribbean endemic genus Pholidoscelis . Phylogenetic analyses were carried out using both concatenation and species tree approaches. To estimate divergence times, we used fossil teiids to calibrate a timetree which was used to elucidate the historical biogeography of these lizards. All phylogenetic analyses recovered four well-supported species groups (clades) recognized previously and supported novel relationships of those groups, including a ( P. auberi + P. lineolatus ) clade (western + central Caribbean), and a ( P. exsul + P. plei ) clade (eastern Caribbean). Divergence between Pholidoscelis and its sister clade was estimated to have occurred ~25 Ma, with subsequent diversification on Caribbean islands occurring over the last 11 Myr. Of the six models compared in the biogeographic analyses, the scenario which considered the distance among islands and allowed dispersal in all directions best fit the data. These reconstructions suggest that the ancestor of this group colonized either Hispaniola or Puerto Rico from Middle America. We provide a well-supported phylogeny of Pholidoscelis with novel relationships not reported in previous studies that were based on significantly smaller datasets. We propose that Pholidoscelis colonized the eastern Greater Antilles from Middle America based on our biogeographic analysis, phylogeny, and divergence time estimates. The closing of the Central American Seaway and subsequent formation of the modern Atlantic meridional overturning circulation may have promoted dispersal in this group.
Origin, evolution, and biogeography of Juglans: a phylogenetic perspective
USDA-ARS?s Scientific Manuscript database
The eastern Asian and eastern North American disjunction in Juglans offers an opportunity to estimate the time since divergence of the Eurasian and American lineages and to compare it with paleobotanical evidences. Five chloroplast DNA non-coding spacer (NCS) sequences: trnT-trnF, psbA-trnH, atpB-r...
Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales).
Song, Jie; Cui, Bao-Kai
2017-04-20
The aim of this study was to characterize the molecular relationship, origin and historical biogeography of the species in important brown rot fungal genus Laetiporus from East Asia, Europe, Pan-America, Hawaii and South Africa. We used six genetic markers to estimate a genus-level phylogeny including (1) the internal transcribed spacer (ITS), (2) nuclear large subunit rDNA (nrLSU), (3) nuclear small subunit rDNA (nrSSU), (4) translation elongation factor 1-α (EF-1α), (5) DNA-directed RNA polymerase II subunit 2 (RPB2), and (6) mitochondrial small subunit rDNA (mtSSU). Results of multi-locus phylogenetic analyses show clade support for at least seventeen species-level lineages including two new Laetiporus in China. Molecular dating using BEAST estimated the present crown group diverged approximately 20.16 million years ago (Mya) in the early Miocene. Biogeographic analyses using RASP indicated that Laetiporus most likely originated in temperate zones with East Asia and North America having the highest probability (48%) of being the ancestral area. Four intercontinental dispersal routes and a possible concealed dispersal route were established for the first time.
Evolution of the viral hemorrhagic septicemia virus: divergence, selection and origin.
He, Mei; Yan, Xue-Chun; Liang, Yang; Sun, Xiao-Wen; Teng, Chun-Bo
2014-08-01
Viral hemorrhagic septicemia virus (VHSV) is an economically significant rhabdovirus that affects an increasing number of freshwater and marine fish species. Extensive studies have been conducted on the molecular epizootiology, genetic diversity, and phylogeny of VHSV. However, there are discrepancies between the reported estimates of the nucleotide substitution rate for the G gene and the divergence times for the genotypes. Herein, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of the six VHSV genes. Rate estimates based on the G gene indicated that the marine genotypes/subtypes might not all evolve slower than their major European freshwater counterpart. Age calculations on the six genes revealed that the first bifurcation event of the analyzed isolates might have taken place within the last 300 years, which was much younger than previously thought. Selection analyses suggested that two codons of the G gene might be positively selected. Surveys of codon usage bias showed that the P, M and NV genes exhibited genotype-specific variations. Furthermore, we proposed that VHSV originated from the Pacific Northwest of North America. Copyright © 2014 Elsevier Inc. All rights reserved.
Nikaido, Masato; Matsuno, Fumio; Hamilton, Healy; Brownell, Robert L.; Cao, Ying; Ding, Wang; Zuoyan, Zhu; Shedlock, Andrew M.; Fordyce, R. Ewan; Hasegawa, Masami; Okada, Norihiro
2001-01-01
SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution. PMID:11416211
Luebert, Federico; Hilger, Hartmut H; Weigend, Maximilian
2011-10-01
The uplift of the Andes was a major factor for plant diversification in South America and had significant effects on the climatic patterns at the continental scale. It was crucial for the formation of the arid environments in south-eastern and western South America. However, both the timing of the major stages of the Andean uplift and the onset of aridity in western South America remain controversial. In this paper we examine the hypothesis that the Andean South American groups of Heliotropium originated and diversified in response to Andean orogeny during the late Miocene and a the subsequent development of aridity. To this end, we estimate divergence times and likely biogeographical origins of the major clades in the phylogeny of Heliotropium, using both Bayesian and likelihood methods. Divergence times of all Andean clades in Heliotropium are estimated to be of late Miocene or Pliocene ages. At least three independent Andean diversification events can be recognized within Heliotropium. Timing of the diversification in the Andean lineages Heliotropium sects.Heliothamnus, Cochranea, Heliotrophytum, Hypsogenia, Plagiomeris, Platygyne clearly correspond to a rapid, late Miocene uplift of the Andes and a Pliocene development of arid environments in South America. Copyright © 2011 Elsevier Inc. All rights reserved.
Kamneva, Olga K; Rosenberg, Noah A
2017-01-01
Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378
Kumazawa, Y; Nishida, M
2000-12-01
One of the traditional enigmas in freshwater zoogeography has been the evolutionary origin of Scleropages formosus inhabiting Southeast Asia (the Asian arowana), which is a species threatened with extinction among the highly freshwater-adapted fishes from the order Osteoglossiformes. Dispersalists have hypothesized that it originated from the recent (the Miocene or later) transmarine dispersal of morphologically quite similar Australasian arowanas across Wallace's Line, but this hypothesis has been questioned due to their remarkable adaptation to freshwater. We determined the complete nucleotide sequences of two mitochondrial protein genes from 12 osteoglossiform species, including all members of the suborder Osteoglossoidei, with which robust molecular phylogeny was constructed and divergence times were estimated. In agreement with previous morphology-based phylogenetic studies, our molecular phylogeny suggested that the osteoglossiforms diverged from a basal position of the teleostean lineage, that heterotidines (the Nile arowana and the pirarucu) form a sister group of osteoglossines (arowanas in South America, Australasia, and Southeast Asia), and that the Asian arowana is more closely related to Australasian arowanas than to South American ones. However, molecular distances between the Asian and Australasian arowanas were much larger than expected from the fact that they are classified within the same genus. By using the molecular clock of bony fishes, tested for its good performance for rather deep divergences and calibrated using some reasonable assumptions, the divergence between the Asian and Australasian arowanas was estimated to date back to the early Cretaceous. Based on the molecular and geological evidence, we propose a new model whereby the Asian arowana vicariantly diverged from the Australasian arowanas in the eastern margin of Gondwanaland and migrated into Eurasia on the Indian subcontinent or smaller continental blocks. This study also implicates the relatively long absence of osteoglossiform fossil records from the Mesozoic.
Daniels, Savel R; Phiri, Ethel E; Klaus, Sebastian; Albrecht, Christian; Cumberlidge, Neil
2015-07-01
Phylogenetic reconstruction, divergence time estimations and ancestral range estimation were undertaken for 66% of the Afrotropical freshwater crab fauna (Potamonautidae) based on four partial DNA loci (12S rRNA, 16S rRNA, cytochrome oxidase one [COI], and histone 3). The present study represents the most comprehensive taxonomic sampling of any freshwater crab family globally, and explores the impact of paleodrainage interconnectivity on cladogenesis among freshwater crabs. Phylogenetic analyses of the total evidence data using maximum-likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) produced a robust statistically well-supported tree topology that reaffirmed the monophyly of the Afrotropical freshwater crab fauna. The estimated divergence times suggest that the Afrotropical Potamonautidae diverged during the Eocene. Cladogenesis within and among several genera occurred predominantly during the Miocene, which was associated with major tectonic and climatic ameliorations throughout the region. Paleodrainage connectivity was observed with specimens from the Nilo-Sudan and East African coast proving to be sister to specimens from the Upper Guinea Forests in West Africa. In addition, we observed strong sister taxon affinity between specimens from East Africa and the Congo basin, including specimens from Lake Tanganyika, while the southern African fauna was retrieved as sister to the Angolan taxa. Within the East African clade we observed two independent transoceanic dispersal events, one to the Seychelles Archipelago and a second to Madagascar, while we observe a single transoceanic dispersal event from West Africa to São Tomé. The ancestral area estimation suggested a West African/East African ancestral range for the family with multiple dispersal events between southern Africa and East Africa, and between East Africa and Central Africa The taxonomic implications of our results are discussed in light of the widespread paraphyly evident among a number of genera. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae
Biffin, Ed; Lucas, Eve J.; Craven, Lyn A.; Ribeiro da Costa, Itayguara; Harrington, Mark G.; Crisp, Michael D.
2010-01-01
Background and Aims The angiosperm family Myrtaceae comprises 17 tribes with more than half of the estimated 5500 species being referred to the fleshy-fruited and predominantly rainforest associated Syzygieae and Myrteae. Previous studies suggest that fleshy fruits have evolved separately in these lineages, whereas generally shifts in fruit morphology have been variously implicated in diversification rate shifts among angiosperms. A phylogenetic hypothesis and estimate divergence times for Myrtaceae is developed as a basis to explore the evidence for, and drivers of, elevated diversification rates among the fleshy-fruited tribes of Myrtaceae. Methods Bayesian phylogenetic analyses of plastid and nuclear DNA sequences were used to estimate intertribal relationships and lineage divergence times in Myrtaceae. Focusing on the fleshy-fruited tribes, a variety of statistical approaches were used to assess diversification rates and diversification rate shifts across the family. Key Results Analyses of the sequence data provide a strongly supported phylogenetic hypothesis for Myrtaceae. Relative to previous studies, substantially younger ages for many of the clades are reported, and it is argued that the use of flexible calibrations to incorporate fossil data provides more realistic divergence estimates than the use of errorless point calibrations. It is found that Syzygieae and Myrteae have experienced elevated diversification rates relative to other lineages of Myrtaceae. Positive shifts in diversification rate have occurred separately in each lineage, associated with a shift from dry to fleshy fruit. Conclusions Fleshy fruits have evolved independently in Syzygieae and Myrteae, and this is accompanied by exceptional diversification rate shifts in both instances, suggesting that the evolution of fleshy fruits is a key innovation for rainforest Myrtaceae. Noting the scale dependency of this hypothesis, more complex explanations may be required to explain diversification rate shifts occurring within the fleshy-fruited tribes, and the suggested phylogenetic hypothesis provides an appropriate framework for this undertaking. PMID:20462850
Lavoué, Sébastien; Miya, Masaki; Arnegard, Matthew E.; Sullivan, John P.; Hopkins, Carl D.; Nishida, Mutsumi
2012-01-01
One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation. PMID:22606250
Haddrath, Oliver; Baker, Allan J
2012-11-22
The origin and timing of the diversification of modern birds remains controversial, primarily because phylogenetic relationships are incompletely resolved and uncertainty persists in molecular estimates of lineage ages. Here, we present a species tree for the major palaeognath lineages using 27 nuclear genes and 27 archaic retroposon insertions. We show that rheas are sister to the kiwis, emu and cassowaries, and confirm ratite paraphyly because tinamous are sister to moas. Divergence dating using 10 genes with broader taxon sampling, including emu, cassowary, ostrich, five kiwis, two rheas, three tinamous, three extinct moas and 15 neognath lineages, suggests that three vicariant events and possibly two dispersals are required to explain their historical biogeography. The age of crown group birds was estimated at 131 Ma (95% highest posterior density 122-138 Ma), similar to previous molecular estimates. Problems associated with gene tree discordance and incomplete lineage sorting in birds will require much larger gene sets to increase species tree accuracy and improve error in divergence times. The relatively rapid branching within neoaves pre-dates the extinction of dinosaurs, suggesting that the genesis of the radiation within this diverse clade of birds was not in response to the Cretaceous-Paleogene extinction event.
Winterton, Shaun L; Wiegmann, Brian M; Schlinger, Evert I
2007-06-01
The first formal analysis of phylogenetic relationships among small-headed flies (Acroceridae) is presented based on DNA sequence data from two ribosomal (16S and 28S) and two protein-encoding genes: carbomoylphosphate synthase (CPS) domain of CAD (i.e., rudimentary locus) and cytochrome oxidase I (COI). DNA sequences from 40 species in 22 genera of Acroceridae (representing all three subfamilies) were compared with outgroup exemplars from Nemestrinidae, Stratiomyidae, Tabanidae, and Xylophagidae. Parsimony and Bayesian simultaneous analyses of the full data set recover a well-resolved and strongly supported hypothesis of phylogenetic relationships for major lineages within the family. Molecular evidence supports the monophyly of traditionally recognised subfamilies Philopotinae and Panopinae, but Acrocerinae are polyphyletic. Panopinae, sometimes considered "primitive" based on morphology and host-use, are always placed in a more derived position in the current study. Furthermore, these data support emerging morphological evidence that the type genus Acrocera Meigen, and its sister genus Sphaerops, are atypical acrocerids, comprising a sister lineage to all other Acroceridae. Based on the phylogeny generated in the simultaneous analysis, historical divergence times were estimated using Bayesian methodology constrained with fossil data. These estimates indicate Acroceridae likely evolved during the late Triassic but did not diversify greatly until the Cretaceous.
Amo de Paz, Guillermo; Cubas, Paloma; Divakar, Pradeep K.; Lumbsch, H. Thorsten; Crespo, Ana
2011-01-01
There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions. PMID:22174775
Horn, Susanne; Durka, Walter; Wolf, Ronny; Ermala, Aslak; Stubbe, Annegret; Stubbe, Michael; Hofreiter, Michael
2011-01-01
Background Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. Methodology/Principal Findings We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. Conclusions/Significance A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it. PMID:21307956
Divergent estimation error in portfolio optimization and in linear regression
NASA Astrophysics Data System (ADS)
Kondor, I.; Varga-Haszonits, I.
2008-08-01
The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.
Fargette, Denis; Pinel-Galzi, Agnès; Sérémé, Drissa; Lacombe, Séverine; Hébrard, Eugénie; Traoré, Oumar; Konaté, Gnissa
2008-01-01
The mechanisms of evolution of plant viruses are being unraveled, yet the timescale of their evolution remains an enigma. To address this critical issue, the divergence time of plant viruses at the intra- and inter-specific levels was assessed. The time of the most recent common ancestor (TMRCA) of Rice yellow mottle virus (RYMV; genus Sobemovirus) was calculated by a Bayesian coalescent analysis of the coat protein sequences of 253 isolates collected between 1966 and 2006 from all over Africa. It is inferred that RYMV diversified approximately 200 years ago in Africa, i.e., centuries after rice was domesticated or introduced, and decades before epidemics were reported. The divergence time of sobemoviruses and viruses of related genera was subsequently assessed using the age of RYMV under a relaxed molecular clock for calibration. The divergence time between sobemoviruses and related viruses was estimated to be approximately 9,000 years, that between sobemoviruses and poleroviruses approximately 5,000 years, and that among sobemoviruses approximately 3,000 years. The TMRCA of closely related pairs of sobemoviruses, poleroviruses, and luteoviruses was approximately 500 years, which is a measure of the time associated with plant virus speciation. It is concluded that the diversification of RYMV and related viruses has spanned the history of agriculture, from the Neolithic age to the present. PMID:18704169
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.
1976-01-01
The heat resistance of Bacillus subtilis var. niger was measured from 85 to 125 C using moisture levels of % RH or = 0.001 to 100. Curves are presented which characterize thermal destruction using thermal death times defined as F values at a given combination of three moisture and temperature conditions. The times required at 100 C for reductions of 99.99% of the initial population were estimated for the three moisture conditions. The linear model (from which estimates of D are obtained) was satisfactory for estimating thermal death times (% RH or = 0.07) in the plate count range. Estimates based on observed thermal death times and D values for % RH = 100 diverged so that D values generally gave a more conservative estimate over the temperature range 90 to 125 C. Estimates of Z sub F and Z sub L ranged from 32.1 to 58.3 C for % RH of or = 0.07 and 100. A Z sub D = 30.0 was obtained for data observed at % RH or = 0.07.
ERIC Educational Resources Information Center
Schneider, W. Joel; Roman, Zachary
2018-01-01
We used data simulations to test whether composites consisting of cohesive subtest scores are more accurate than composites consisting of divergent subtest scores. We demonstrate that when multivariate normality holds, divergent and cohesive scores are equally accurate. Furthermore, excluding divergent scores results in biased estimates of…
Cruz, R; Vilas, C; Mosquera, J; García, C
2004-11-01
To study the role of divergent selection in the differentiation of the two morphs in a hybrid zone of the intertidal snail Littorina saxatilis, we compared the strength of the divergent selection acting on a series of shell characters (as estimated by the viability of snails in a reciprocal transplant experiment) with the contribution of these characters to the phenotypic differences between the morphs. We found a close correlation between selection and differentiation, which suggests a cause-effect relationship, i.e. that all present differentiation is the result of past divergent selection. In addition, divergent selection was a very important component of the total natural selection acting on shell measures. These novel results support previous evidence, based on allozyme analysis, of a parapatric origin for this hybrid zone. We discuss possible limitations of this interpretation and the circumstances under which allopatric differentiation would produce the same results. Phenotypic analysis of divergent selection may be a useful method of investigating the evolutionary mechanisms involved in differentiation processes.
Mitsui, Yuki; Setoguchi, Hiroaki
2012-12-28
Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence.
Origin of mitochondrial DNA diversity of domestic yaks
Guo, Songchang; Savolainen, Peter; Su, Jianping; Zhang, Qian; Qi, Delin; Zhou, Jie; Zhong, Yang; Zhao, Xinquan; Liu, Jianquan
2006-01-01
Background The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions. Results The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rate are better in agreement with a domestication during the Holocene as supported by archeological records. Conclusion The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau. PMID:16995938
Derkarabetian, Shahan; Ledford, Joel; Hedin, Marshal
2011-12-01
The southern Rocky Mountains and adjacent Intermontane Plateau Highlands region of western North America is a geographically diverse area with an active geologic history. Given the topological complexity and extensive geologic activity, organisms inhabiting this region are expected to show some degree of morphological and genetic divergence, especially populations found on the southern montane 'sky islands' of this region. Here we examine the phylogeographic history and diversification of a montane forest inhabiting harvestmen, Sclerobunus robustus, using a combination of genetic and morphological data. Divergence time estimates indicate that much of the diversification within and between major groups S. robustus predate the Pleistocene glacial cycles. The most widespread subspecies, Sclerobunus robustus robustus, is recovered as six genetically distinct, geographically cohesive mitochondrial phylogroups. Gene tree data for a single nuclear gene reveals congruent, albeit slightly more conservative, patterns of genetic divergence. Despite high levels of genetic divergence throughout their distribution, phylogroups show extreme conservation in somatic and reproductive morphology. This uncoupling of morphological and genetic differentiation may be due to morphological conservatism associated with a conserved microhabitat preference. Based on these data, it is obvious that S. robustus has undergone some level of cryptic diversification. Copyright © 2011 Elsevier Inc. All rights reserved.
Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang
2015-01-01
Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120-140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950-2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4-159.4 ka and 315.8-160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae populations.
Charruau, P; Fernandes, C; Orozco-Terwengel, P; Peters, J; Hunter, L; Ziaie, H; Jourabchian, A; Jowkar, H; Schaller, G; Ostrowski, S; Vercammen, P; Grange, T; Schlötterer, C; Kotze, A; Geigl, E-M; Walzer, C; Burger, P A
2011-02-01
The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000-12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern-East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000-67 000 ya using an average mammalian microsatellite mutation rate and at 4700-44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70-110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity. © 2011 Blackwell Publishing Ltd.
Charruau, P; Fernandes, C; Orozco-terWengel, P; Peters, J; Hunter, L; Ziaie, H; Jourabchian, A; Jowkar, H; Schaller, G; Ostrowski, S; Vercammen, P; Grange, T; Schlötterer, C; Kotze, A; Geigl, E-M; Walzer, C; Burger, P A
2011-01-01
The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000–12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern-East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000–67 000 ya using an average mammalian microsatellite mutation rate and at 4700–44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70–110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity. PMID:21214655
Tripp, Erin A; McDade, Lucinda A
2014-09-01
More than a decade of phylogenetic research has yielded a well-sampled, strongly supported hypothesis of relationships within the large ( > 4000 species) plant family Acanthaceae. This hypothesis points to intriguing biogeographic patterns and asymmetries in sister clade diversity but, absent a time-calibrated estimate for this evolutionary history, these patterns have remained unexplored. Here, we reconstruct divergence times within Acanthaceae using fossils as calibration points and experimenting with both fossil selection and effects of invoking a maximum age prior related to the origin of Eudicots. Contrary to earlier reports of a paucity of fossils of Lamiales (an order of ∼ 23,000 species that includes Acanthaceae) and to the expectation that a largely herbaceous to soft-wooded and tropical lineage would have few fossils, we recovered 51 reports of fossil Acanthaceae. Rigorous evaluation of these for accurate identification, quality of age assessment and utility in dating yielded eight fossils judged to merit inclusion in analyses. With nearly 10 kb of DNA sequence data, we used two sets of fossils as constraints to reconstruct divergence times. We demonstrate differences in age estimates depending on fossil selection and that enforcement of maximum age priors substantially alters estimated clade ages, especially in analyses that utilize a smaller rather than larger set of fossils. Our results suggest that long-distance dispersal events explain present-day distributions better than do Gondwanan or northern land bridge hypotheses. This biogeographical conclusion is for the most part robust to alternative calibration schemes. Our data support a minimum of 13 Old World (OW) to New World (NW) dispersal events but, intriguingly, only one in the reverse direction. Eleven of these 13 were among Acanthaceae s.s., which comprises > 90% of species diversity in the family. Remarkably, if minimum age estimates approximate true history, these 11 events occurred within the last ∼ 20 myr even though Acanthaceae s.s is over 3 times as old. A simulation study confirmed that these dispersal events were significantly skewed toward the present and not simply a chance occurrence. Finally, we review reports of fossils that have been assigned to Acanthaceae that are substantially older than the lower Cretaceous estimate for Angiosperms as a whole (i.e., the general consensus that has resulted from several recent dating and fossil-based studies in plants). This is the first study to reconstruct divergence times among clades of Acanthaceae and sets the stage for comparative evolutionary research in this and related families that have until now been thought to have extremely poor fossil resources. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Generalized Least-Squares Estimate for the Origin of Sporophytic Self-Incompatibility
Uyenoyama, M. K.
1995-01-01
Analysis of nucleotide sequences that regulate the expression of self-incompatibility in flowering plants affords a direct means of examining classical hypotheses for the origin and evolution of this major feature of mating systems. Departing from the classical view of monophyly of all forms of self-incompatibility, the current paradigm for the origin of self-incompatibility postulates multiple episodes of recruitment and modification of preexisting genes. In Brassica, the S locus, which regulates sporophytic self-incompatibility, shows homology to a multigene family present both in self-compatible congeners and in groups for which this form of self-incompatibility is atypical. A phylogenetic analysis of S-allele sequences together with homologous sequences that do not cosegregate with self-incompatibility permits dating the change of function that marked the origin of self-incompatibility. A generalized least-squares method is introduced that provides closed-form expressions for estimates and standard errors for function-specific divergence rates and times of divergence among sequences. This analysis suggests that the age of the sporophytic self-incompatibility system expressed in Brassica exceeds species divergence within the genus by four- to fivefold. The extraordinarily high levels of sequence diversity exhibited by S alleles appears to reflect their ancient derivation, with the alternative hypothesis of hypermutability rejected by the analysis. PMID:7713446
Schley, Rowan J; de la Estrella, Manuel; Pérez-Escobar, Oscar Alejandro; Bruneau, Anne; Barraclough, Timothy; Forest, Félix; Klitgård, Bente
2018-09-01
The flora of the Neotropics is unmatched in its diversity, however the mechanisms by which diversity has accumulated are debated and largely unclear. The Brownea clade (Leguminosae) is a characteristic component of the Neotropical flora, and the species within it are diverse in their floral morphology, attracting a wide variety of pollinators. This investigation aimed to estimate species divergence times and infer relationships within the group, in order to test whether the Brownea clade followed the 'cradle' or 'museum' model of diversification, i.e. whether species evolved rapidly over a short time period, or gradually over many millions of years. We also aimed to trace the spatio-temporal evolution of the clade by estimating ancestral biogeographical patterns in the group. We used BEAST to build a dated phylogeny of 73 Brownea clade species using three molecular markers (ITS, trnK and psbA-trnH), resulting in well-resolved phylogenetic relationships within the clade, as well as robust divergence time estimates from which we inferred diversification rates and ancestral biogeography. Our analyses revealed an Eocene origin for the group, after which the majority of diversification happened in Amazonia during the Miocene, most likely concurrent with climatic and geological changes caused by the rise of the Andes. We found no shifts in diversification rate over time, suggesting a gradual accumulation of lineages with low extinction rates. These results may help to understand why Amazonia is host to the highest diversity of tree species on Earth. Copyright © 2018 Elsevier Inc. All rights reserved.
Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites.
Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki; Nishida, Shin; Wu, Jiaqi; Jin, Haofei; Adachi, Jun; Kishino, Hirohisa; Kurokawa, Ken; Nogi, Yoshifumi; Tanabe, Hideyuki; Mukoyama, Harutaka; Yoshida, Kunio; Rasoamiaramanana, Armand; Yamagishi, Satoshi; Hayashi, Yoshihiro; Yoshida, Akira; Koike, Hiroko; Akishinonomiya, Fumihito; Willerslev, Eske; Hasegawa, Masami
2017-01-09
The Palaeognathae comprise the flightless ratites and the volant tinamous, and together with the Neognathae constitute the extant members of class Aves. It is commonly believed that Palaeognathae originated in Gondwana since most of the living species are found in the Southern Hemisphere [1-3]. However, this hypothesis has been questioned because the fossil paleognaths are mostly from the Northern Hemisphere in their earliest time (Paleocene) and possessed many putative ancestral characters [4]. Uncertainties regarding the origin and evolution of Palaeognathae stem from the difficulty in estimating their divergence times [1, 2] and their remarkable morphological convergence. Here, we recovered nuclear genome fragments from extinct elephant birds, which enabled us to reconstruct a reliable phylogenomic time tree for the Palaeognathae. Based on the tree, we identified homoplasies in morphological traits of paleognaths and reconstructed their morphology-based phylogeny including fossil species without molecular data. In contrast to the prevailing theories, the fossil paleognaths from the Northern Hemisphere were placed as the basal lineages. Combined with our stable divergence time estimates that enabled a valid argument regarding the correlation with geological events, we propose a new evolutionary scenario that contradicts the traditional view. The ancestral Palaeognathae were volant, as estimated from their molecular evolutionary rates, and originated during the Late Cretaceous in the Northern Hemisphere. They migrated to the Southern Hemisphere and speciated explosively around the Cretaceous-Paleogene boundary. They then extended their distribution to the Gondwana-derived landmasses, such as New Zealand and Madagascar, by overseas dispersal. Gigantism subsequently occurred independently on each landmass. Copyright © 2017 Elsevier Ltd. All rights reserved.
The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.
Dohrmann, Martin
2014-02-01
Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.
Gene flow analysis method, the D-statistic, is robust in a wide parameter space.
Zheng, Yichen; Janke, Axel
2018-01-08
We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.
Estimating Divergence Dates and Substitution Rates in the Drosophila Phylogeny
Obbard, Darren J.; Maclennan, John; Kim, Kang-Wook; Rambaut, Andrew; O’Grady, Patrick M.; Jiggins, Francis M.
2012-01-01
An absolute timescale for evolution is essential if we are to associate evolutionary phenomena, such as adaptation or speciation, with potential causes, such as geological activity or climatic change. Timescales in most phylogenetic studies use geologically dated fossils or phylogeographic events as calibration points, but more recently, it has also become possible to use experimentally derived estimates of the mutation rate as a proxy for substitution rates. The large radiation of drosophilid taxa endemic to the Hawaiian islands has provided multiple calibration points for the Drosophila phylogeny, thanks to the "conveyor belt" process by which this archipelago forms and is colonized by species. However, published date estimates for key nodes in the Drosophila phylogeny vary widely, and many are based on simplistic models of colonization and coalescence or on estimates of island age that are not current. In this study, we use new sequence data from seven species of Hawaiian Drosophila to examine a range of explicit coalescent models and estimate substitution rates. We use these rates, along with a published experimentally determined mutation rate, to date key events in drosophilid evolution. Surprisingly, our estimate for the date for the most recent common ancestor of the genus Drosophila based on mutation rate (25–40 Ma) is closer to being compatible with independent fossil-derived dates (20–50 Ma) than are most of the Hawaiian-calibration models and also has smaller uncertainty. We find that Hawaiian-calibrated dates are extremely sensitive to model choice and give rise to point estimates that range between 26 and 192 Ma, depending on the details of the model. Potential problems with the Hawaiian calibration may arise from systematic variation in the molecular clock due to the long generation time of Hawaiian Drosophila compared with other Drosophila and/or uncertainty in linking island formation dates with colonization dates. As either source of error will bias estimates of divergence time, we suggest mutation rate estimates be used until better models are available. PMID:22683811
Prasad, G V R
2009-11-01
This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.
Phylogeny and diversity of neotropical monkey lizards (Iguanidae: Polychrus Cuvier, 1817).
Torres-Carvajal, Omar; Koch, Claudia; Venegas, Pablo J; Poe, Steve
2017-01-01
Neotropical monkey lizards (Polychrus) are arboreal lizards with compressed bodies, partially fused eyelids and strikingly long, whip-like tails. The eight currently recognized species occur in the lowlands of South and Central America. Based on the largest taxon and character sampling to date, we analyze three mitochondrial and one nuclear gene using Bayesian methods to (1) infer the phylogeny of Polychrus under both concatenated-tree and species-tree methods; (2) identify lineages that could represent putative undescribed species; and (3) estimate divergence times. Our species tree places P. acutirostris as the sister taxon to all other species of Polychrus. While the phylogenetic position of P. gutturosus and P. peruvianus is poorly resolved, P. marmoratus and P. femoralis are strongly supported as sister to P. liogaster and P. jacquelinae, respectively. Recognition of P. auduboni and P. marmoratus sensu stricto as distinct species indicates that the populations of "P. marmoratus" from the Amazon and the Atlantic coast in Brazil represent separate species. Similarly, populations of P. femoralis from the Tumbes region might belong to a cryptic undescribed species. Relative divergence times and published age estimates suggest that the orogeny of the Andes did not play a significant role in the early evolution of Polychrus.
Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.
Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R
2016-01-01
Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.
Phylogeny and diversity of neotropical monkey lizards (Iguanidae: Polychrus Cuvier, 1817)
Venegas, Pablo J.; Poe, Steve
2017-01-01
Neotropical monkey lizards (Polychrus) are arboreal lizards with compressed bodies, partially fused eyelids and strikingly long, whip-like tails. The eight currently recognized species occur in the lowlands of South and Central America. Based on the largest taxon and character sampling to date, we analyze three mitochondrial and one nuclear gene using Bayesian methods to (1) infer the phylogeny of Polychrus under both concatenated-tree and species-tree methods; (2) identify lineages that could represent putative undescribed species; and (3) estimate divergence times. Our species tree places P. acutirostris as the sister taxon to all other species of Polychrus. While the phylogenetic position of P. gutturosus and P. peruvianus is poorly resolved, P. marmoratus and P. femoralis are strongly supported as sister to P. liogaster and P. jacquelinae, respectively. Recognition of P. auduboni and P. marmoratus sensu stricto as distinct species indicates that the populations of "P. marmoratus" from the Amazon and the Atlantic coast in Brazil represent separate species. Similarly, populations of P. femoralis from the Tumbes region might belong to a cryptic undescribed species. Relative divergence times and published age estimates suggest that the orogeny of the Andes did not play a significant role in the early evolution of Polychrus. PMID:28570575
Divakar, Pradeep K; Del-Prado, Ruth; Lumbsch, H Thorsten; Wedin, Mats; Esslinger, Theodore L; Leavitt, Steven D; Crespo, Ana
2012-12-01
In spite of the recent advances in generic and species circumscriptions and in recognizing species diversity in lichen-forming fungi, the timing of speciation and the factors that promote diversification in lichens remain largely unexplored. We used brown parmelioids as a model to assess the timing of divergence and explore the impact of geological and climatic events on lineage divergence and diversification in lichenized fungi. Additionally, to clarify the phylogenetic position of the species currently placed in Melanelia disjuncta group, we evaluated the taxonomic status and phylogenetic relationships within Parmeliaceae. • Phylogenetic relationships and divergence time estimates were inferred from a four-loci data set. Alternative hypotheses were tested using Shimodaira-Hasegawa and expected likelihood weights tests. • The M. disjuncta group forms a strongly supported, monophyletic lineage independent from Melanelia s.s. The M. disjuncta clade arose ca. 23.1 million years ago (Ma). Our results suggest that most of the lineages within the clade diversified during the Miocene (17.6 to 11.2 Ma). The split of other brown parmelioids, such as Emodomelanelia-Melanelixia occurred ca. 41.70 Ma, and the radiation of Melanelixia began during the Eocene-Oligocene transition (ca. 33.75 Ma). • Montanelia is described here as a new genus to accommodate species of the Melanelia disjuncta group. Further, the study indicates that the current species delimitation within the newly described genus requires revision. We provide evidence of lineage divergence of Montanelia at the Oligocene-Miocene boundary. Our results indicate that the diversification during Miocene would have happened during major mountain uplifts.
Estimates of radiative flux divergence in the atmosphere from satellite data
NASA Technical Reports Server (NTRS)
Smith, G. L.; Charlock, Thomas P.; Bess, T. D.; Gupta, Shashi; Rutan, David; Rose, Fred G.
1990-01-01
Several options for the inference of the atmospheric radiative flux divergence (ARD) on the basis of satellite data are discussed. Attention is given to the clear-sky case and the cloudy-sky case. LW ARD profiles for different climatological regimes are presented and the effect of cloud base height on LW ARD divergence at various heights is illustrated.
Knowles, Lacey L; Klimov, Pavel B
2011-11-01
With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference--species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates--a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.
Sahli, Heather F.; Conner, Jeffrey K.; Shaw, Frank H.; Howe, Stephen; Lale, Allison
2008-01-01
Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as FST) to differentiation of quantitative floral and phenological traits (measured as QST) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of QST and FST, we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time, and rosette formation have greatly diverged between the native and nonnative populations. Our results suggest the loss of a rosette and the evolution of early flowering time may have been the key adaptations enabling wild radish to become a major agricultural weed. Floral adaptation to different pollinators does not seem to have been as necessary for the success of wild radish in new environments. PMID:18854585
Limborg, M T; Hanel, R; Debes, P V; Ring, A K; André, C; Tsigenopoulos, C S; Bekkevold, D
2012-08-01
Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left complex genetic imprints on populations of marine species. This study investigated population structure and demographic history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers throughout the species' distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a complex population structure across the species' distribution (overall θ(ST)=0.038, P<0.01). Across transition zones markers indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact of mutation in the species' southern distribution in the Mediterranean region. These results were interpreted to reflect more recent divergence times between northern populations in accordance with previous findings. This study demonstrates the usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population genetic studies in species with weak genetic structure, as is the case in many marine species.
Coherence and Divergence of Megatrends in Science and Engineering
NASA Astrophysics Data System (ADS)
Roco, M. C.
2002-04-01
Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S&E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach. This paper presents a perspective on the process of identification, planning and program implementation of S&E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S&E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S&E megatrend.
Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.
Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix
2015-09-01
The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.
Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa.
Montgelard, Claudine; Matthee, Conrad A; Robinson, Terence J
2003-01-01
The phylogenetic relationships among the Gliridae (order Rodentia) were assessed using 3430 nucleotides derived from three nuclear fragments (beta-spectrin non-erythrocytic 1, thyrotropin and lecithin cholesterol acyl transferase) and one mitochondrial gene (12S rRNA). We included 14 glirid species, representative of seven genera of the three recognized subfamilies (Graphiurinae, Glirinae and Leithiinae) in our analysis. The molecular data identified three evolutionary lineages that broadly correspond to the three extant subfamilies. However, the data suggest that the genus Muscardinus, previously regarded as falling within the Glirinae, should be included in the Leithiinae. Molecular dating using local molecular clocks and partitioned datasets allowed an estimate of the timing of cladogenesis within the glirids. Graphiurus probably diverged early in the group's evolution (40-50 Myr ago) and the three subfamilies diverged contemporaneously, probably in Europe. The radiation within Graphiurus is more recent, with the colonization of Africa by this lineage estimated at ca. 8-10 Myr ago. PMID:14561309
Bryson, Robert W; Jaeger, Jef R; Lemos-Espinal, Julio A; Lazcano, David
2012-09-01
Interpretations of phylogeographic patterns can change when analyses shift from single gene-tree to multilocus coalescent analyses. Using multilocus coalescent approaches, a species tree and divergence times can be estimated from a set of gene trees while accounting for gene-tree stochasticity. We utilized the conceptual strengths of a multilocus coalescent approach coupled with complete range-wide sampling to examine the speciation history of a broadly distributed, North American warm-desert toad, Anaxyrus punctatus. Phylogenetic analyses provided strong support for three major lineages within A. punctatus. Each lineage broadly corresponded to one of three desert regions. Early speciation in A. punctatus appeared linked to late Miocene-Pliocene development of the Baja California peninsula. This event was likely followed by a Pleistocene divergence associated with the separation of the Chihuahuan and Sonoran Deserts. Our multilocus coalescent-based reconstruction provides an informative contrast to previous single gene-tree estimates of the evolutionary history of A. punctatus. Copyright © 2012 Elsevier Inc. All rights reserved.
Lee, Adam; Nolan, Alison; Watson, Jason; Tristem, Michael
2013-09-19
The evolutionary arms race between mammals and retroviruses has long been recognized as one of the oldest host-parasite interactions. Rapid evolution rates in exogenous retroviruses have often made accurate viral age estimations highly problematic. Endogenous retroviruses (ERVs), however, integrate into the germline of their hosts, and are subjected to their evolutionary rates. This study describes, for the first time, a retroviral orthologue predating the divergence of placental mammals, giving it a minimum age of 104-110 Myr. Simultaneously, other orthologous selfish genetic elements (SGEs), inserted into the ERV sequence, provide evidence for the oldest individual mammalian-wide interspersed repeat and medium-reiteration frequency interspersed repeat mammalian repeats, with the same minimum age. The combined use of shared SGEs and reconstruction of viral orthologies defines new limits and increases maximum 'lookback' times, with subsequent implications for the field of paleovirology.
Harris, Stephen E; Xue, Alexander T; Alvarado-Serrano, Diego; Boehm, Joel T; Joseph, Tyler; Hickerson, Michael J; Munshi-South, Jason
2016-04-01
How urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice,Peromyscus leucopus,in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucleotide polymorphisms genotyped in 23 populations sampled along an urban-to-rural gradient. Both prehistoric climatic events and recent urbanization impacted these populations. Our modelling indicates that post-glacial sea-level rise led to isolation of mainland and Long Island populations. These models also indicate that several urban parks represent recently isolated P. leucopus populations, and the estimated divergence times for these populations are consistent with the history of urbanization in NYC. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Wahba, G.
1982-01-01
Vector smoothing splines on the sphere are defined. Theoretical properties are briefly alluded to. The appropriate Hilbert space norms used in a specific meteorological application are described and justified via a duality theorem. Numerical procedures for computing the splines as well as the cross validation estimate of two smoothing parameters are given. A Monte Carlo study is described which suggests the accuracy with which upper air vorticity and divergence can be estimated using measured wind vectors from the North American radiosonde network.
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.
2017-08-01
Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.
Soto-Centeno, J Angel; Barrow, Lisa N; Allen, Julie M; Reed, David L
2013-01-01
We evaluated the mtDNA divergence and relationships within Geomys pinetis to assess the status of formerly recognized Geomys taxa. Additionally, we integrated new hypothesis-based tests in ecological niche models (ENM) to provide greater insight into causes for divergence and potential barriers to gene flow in Southeastern United States (Alabama, Florida, and Georgia). Our DNA sequence dataset confirmed and strongly supported two distinct lineages within G. pinetis occurring east and west of the ARD. Divergence date estimates showed that eastern and western lineages diverged about 1.37 Ma (1.9 Ma–830 ka). Predicted distributions from ENMs were consistent with molecular data and defined each population east and west of the ARD with little overlap. Niche identity and background similarity tests were statistically significant suggesting that ENMs from eastern and western lineages are not identical or more similar than expected based on random localities drawn from the environmental background. ENMs also support the hypothesis that the ARD represents a ribbon of unsuitable climate between more suitable areas where these populations are distributed. The estimated age of divergence between eastern and western lineages of G. pinetis suggests that the divergence was driven by climatic conditions during Pleistocene glacial–interglacial cycles. The ARD at the contact zone of eastern and western lineages of G. pinetis forms a significant barrier promoting microgeographic isolation that helps maintain ecological and genetic divergence. PMID:23789071
A synthetic phylogeny of freshwater crayfish: insights for conservation.
Owen, Christopher L; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A
2015-02-19
Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A synthetic phylogeny of freshwater crayfish: insights for conservation
Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.
2015-01-01
Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670
Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Englert, Gerald W.; Kochendorfer, Fred D.
1959-01-01
The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Bounding filter - A simple solution to lack of exact a priori statistics.
NASA Technical Reports Server (NTRS)
Nahi, N. E.; Weiss, I. M.
1972-01-01
Wiener and Kalman-Bucy estimation problems assume that models describing the signal and noise stochastic processes are exactly known. When this modeling information, i.e., the signal and noise spectral densities for Wiener filter and the signal and noise dynamic system and disturbing noise representations for Kalman-Bucy filtering, is inexactly known, then the filter's performance is suboptimal and may even exhibit apparent divergence. In this paper a system is designed whereby the actual estimation error covariance is bounded by the covariance calculated by the estimator. Therefore, the estimator obtains a bound on the actual error covariance which is not available, and also prevents its apparent divergence.
Comparative phylogeography of Mississippi embayment fishes.
Egge, Jacob J D; Hagbo, Taylor J
2015-01-01
The Mississippi Embayment is a prominent physiographic feature of eastern North America consisting of primarily lowland aquatic habitats and a fish fauna that is largely distinct from nearby highland regions. Numerous studies have demonstrated that both pre-Pleistocene and Pleistocene events have had a strong influence on the distributions and relationships of highland fishes in eastern North America. However, the extent to which these same events affected Embayment distributed taxa remains largely unexplored. The purpose of this study was to investigate the relative roles of pre-Pleistocene and Pleistocene events in shaping phylogeographic relationships of four stream dwelling fishes in the Mississippi Embayment. Molecular genetic analyses of the mitochondrial gene cytochrome b were performed for three ictalurid catfish species (Noturus miurus, n = 67; Noturus hildebrandi, n = 93, and Noturus phaeus, n = 44) and one minnow species (Cyprinella camura, n = 78), all distributed in tributary streams of the Mississippi Embayment. Phylogenetic relationships and divergence times among haplotypes for each species were estimated using maximum likelihood and Bayesian methods. Phylogenetic analyses recovered 6 major haplotype clades within N. miurus, 5 within N. hildbrandi, 8 within N. phaeus, and 8 within C. camura. All three Noturus species show a high degree of isolation by drainage, which is less evident in C. camura. A clade of haplotypes from tributaries in the southern portion of the Mississippi Embayment was consistently recovered in all four species. Divergence times among clades spanned the Pleistocene, Pliocene, and Miocene. Novel relationships presented here for C. camura and N. phaeus suggest the potential for cryptic species. Pre-Pleistocene and Pleistocene era sea level fluctuations coincide with some divergence events, but no single event explains any common divergence across all taxa. Like their highland relatives, a combination of both pre-Pleistocene and Pleistocene era events have driven divergences among Embayment lineages.
On the number of New World founders: a population genetic portrait of the peopling of the Americas.
Hey, Jody
2005-06-01
The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.
An Upgrade of the Aeroheating Software ''MINIVER''
NASA Technical Reports Server (NTRS)
Louderback, Pierce
2013-01-01
Detailed computational modeling: CFO often used to create and execute computational domains. Increasing complexity when moving from 20 to 30 geometries. Computational time increased as finer grids are used (accuracy). Strong tool, but takes time to set up and run. MINIVER: Uses theoretical and empirical correlations. Orders of magnitude faster to set up and run. Not as accurate as CFO, but gives reasonable estimations. MINIVER's Drawbacks: Rigid command-line interface. Lackluster, unorganized documentation. No central control; multiple versions exist and have diverged.
Truccolo, Wilson
2017-01-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity. PMID:28234899
Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson
2017-02-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity.
Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset
Higdon, Jeff W; Bininda-Emonds, Olaf RP; Beck, Robin MD; Ferguson, Steven H
2007-01-01
Background Phylogenetic comparative methods are often improved by complete phylogenies with meaningful branch lengths (e.g., divergence dates). This study presents a dated molecular supertree for all 34 world pinniped species derived from a weighted matrix representation with parsimony (MRP) supertree analysis of 50 gene trees, each determined under a maximum likelihood (ML) framework. Divergence times were determined by mapping the same sequence data (plus two additional genes) on to the supertree topology and calibrating the ML branch lengths against a range of fossil calibrations. We assessed the sensitivity of our supertree topology in two ways: 1) a second supertree with all mtDNA genes combined into a single source tree, and 2) likelihood-based supermatrix analyses. Divergence dates were also calculated using a Bayesian relaxed molecular clock with rate autocorrelation to test the sensitivity of our supertree results further. Results The resulting phylogenies all agreed broadly with recent molecular studies, in particular supporting the monophyly of Phocidae, Otariidae, and the two phocid subfamilies, as well as an Odobenidae + Otariidae sister relationship; areas of disagreement were limited to four more poorly supported regions. Neither the supertree nor supermatrix analyses supported the monophyly of the two traditional otariid subfamilies, supporting suggestions for the need for taxonomic revision in this group. Phocid relationships were similar to other recent studies and deeper branches were generally well-resolved. Halichoerus grypus was nested within a paraphyletic Pusa, although relationships within Phocina tend to be poorly supported. Divergence date estimates for the supertree were in good agreement with other studies and the available fossil record; however, the Bayesian relaxed molecular clock divergence date estimates were significantly older. Conclusion Our results join other recent studies and highlight the need for a re-evaluation of pinniped taxonomy, especially as regards the subfamilial classification of otariids and the generic nomenclature of Phocina. Even with the recent publication of new sequence data, the available genetic sequence information for several species, particularly those in Arctocephalus, remains very limited, especially for nuclear markers. However, resolution of parts of the tree will probably remain difficult, even with additional data, due to apparent rapid radiations. Our study addresses the lack of a recent pinniped phylogeny that includes all species and robust divergence dates for all nodes, and will therefore prove indispensable to comparative and macroevolutionary studies of this group of carnivores. PMID:17996107
An unexpectedly long history of sexual selection in birds-of-paradise
Irestedt, Martin; Jønsson, Knud A; Fjeldså, Jon; Christidis, Les; Ericson, Per GP
2009-01-01
Background The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group. Results The phylogenetic results confirm some traditionally recognized relationships but also suggest novel ones. Furthermore, we find that species pairs are geographically more closely linked than previously assumed. The divergence time estimates suggest that speciation within the birds-of-paradise mainly took place during the Miocene and the Pliocene, and that several polygynous and morphologically homogeneous genera are several million years old. Diversification rates further suggest that the speciation rate within birds-of-paradise is comparable to that of the enitre core Corvoidea. Conclusion The estimated ages of morphologically homogeneous and polygynous genera within the birds-of-paradise suggest that there is no need to postulate a particularly rapid evolution of sexually selected morphological traits. The calculated divergence rates further suggest that the speciation rate in birds-of-paradise has not been excessively high. Thus the idea that sexual selection could generate high speciation rates and rapid changes in sexual ornamentations is not supported by our birds-of-paradise data. Potentially, hybridization and long generation times in polygynous male birds-of-paradise have constrained morphological diversification and speciation, but external ecological factors on New Guinea may also have allowed the birds-of-paradise to develop and maintain magnificent male plumages. We further propose that the restricted but geographically complex distributions of birds-of-paradise species may be a consequence of the promiscuous breeding system. PMID:19758445
Cahill, James A; Soares, André E R; Green, Richard E; Shapiro, Beth
2016-07-19
Understanding when species diverged aids in identifying the drivers of speciation, but the end of gene flow between populations can be difficult to ascertain from genetic data. We explore the use of pairwise sequential Markovian coalescent (PSMC) modelling to infer the timing of divergence between species and populations. PSMC plots generated using artificial hybrid genomes show rapid increases in effective population size at the time when the two parent lineages diverge, and this approach has been used previously to infer divergence between human lineages. We show that, even without high coverage or phased input data, PSMC can detect the end of significant gene flow between populations by comparing the PSMC output from artificial hybrids to the output of simulations with known demographic histories. We then apply PSMC to detect divergence times among lineages within two real datasets: great apes and bears within the genus Ursus Our results confirm most previously proposed divergence times for these lineages, and suggest that gene flow between recently diverged lineages may have been common among bears and great apes, including up to one million years of continued gene flow between chimpanzees and bonobos after the formation of the Congo River.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).
Early Miocene origin and cryptic diversification of South American salamanders
2013-01-01
Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders likely arrived at least by the Early Miocene, well before the completion of the Late Pliocene Panamanian land bridge (widely accepted as ca. 3 MYA). This date is in agreement with recent, controversial, arguments that an older, perhaps short-lived, land connection may have existed between South America and present-day Panama 23–25 MYA. Since its arrival in South America, Bolitoglossa has diversified more extensively than previously presumed and currently includes several cryptic species within a relatively small geographic area. Rather than two upper Amazonian species currently recorded for this region, we propose that at least eight should be recognized, although these additional lineages remain to be formally described. PMID:23497060
2012-01-01
Background Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. Results The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. Conclusions This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence. PMID:23273287
A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle
Hillis, David M.
2014-01-01
Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We developed a metric, scaled block size (SBS), which uses the nonrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient types of admixture, and applied it to the reconstruction of admixture in cattle. Cattle are descendants of 2 independently domesticated lineages, taurine and indicine, which diverged more than 200 000 years ago. Several breeds have hybrid ancestry between these divergent lineages. Using 47 506 single-nucleotide polymorphisms, we analyzed the genomic architecture of the ancestry of 1369 individuals. We focused on 4 groups with admixed ancestry, including 2 anciently admixed African breeds (n = 58; n = 43), New World cattle of Spanish origin (n = 51), and known recent hybrids (n = 46). We estimated the ancestry of chromosomal regions for each individual and used the SBS metric to differentiate the timing of admixture among groups and among individuals within groups. By comparing SBS values of test individuals with standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed cattle. We also estimated ancestry at the chromosomal scale. The X chromosome exhibits reduced indicine ancestry in recent hybrid, New World, and western African cattle, with virtually no evidence of indicine ancestry in New World cattle. PMID:24510946
LinkFinder: An expert system that constructs phylogenic trees
NASA Technical Reports Server (NTRS)
Inglehart, James; Nelson, Peter C.
1991-01-01
An expert system has been developed using the C Language Integrated Production System (CLIPS) that automates the process of constructing DNA sequence based phylogenies (trees or lineages) that indicate evolutionary relationships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It measures variations between the sequences, selects appropriate proportionality constants, and estimates the time that has passed since each pair of organisms diverged from a common ancestor. It then designs and outputs a phylogenic map summarizing these results. LinkFinder can find genetic relationships between different species, and between individuals of the same species, including humans. It was designed to take advantage of the vast amount of sequence data being produced by the Genome Project, and should be of value to evolution theorists who wish to utilize this data, but who have no formal training in molecular genetics. Evolutionary theory holds that distinct organisms carrying a common gene inherited that gene from a common ancestor. Homologous genes vary from individual to individual and species to species, and the amount of variation is now believed to be directly proportional to the time that has passed since divergence from a common ancestor. The proportionality constant must be determined experimentally; it varies considerably with the types of organisms and DNA molecules under study. Given an appropriate constant, and the variation between two DNA sequences, a simple linear equation gives the divergence time.
Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E
2015-11-03
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.
Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.
2015-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647
Divergence times in the termite genus Macrotermes (Isoptera: Termitidae).
Brandl, R; Hyodo, F; Korff-Schmising, M von; Maekawa, K; Miura, T; Takematsu, Y; Matsumoto, T; Abe, T; Bagine, R; Kaib, M
2007-10-01
The evolution of fungus-growing termites is supposed to have started in the African rain forests with multiple invasions of semi-arid habitats as well as multiple invasions of the Oriental region. We used sequences of the mitochondrial COII gene and Bayesian dating to investigate the time frame of the evolution of Macrotermes, an important genus of fungus-growing termites. We found that the genus Macrotermes consists of at least 6 distantly related clades. Furthermore, the COII sequences suggested some cryptic diversity within the analysed African Macrotermes species. The dates calculated with the COII data using a fossilized termite mound to calibrate the clock were in good agreement with dates calculated with COI sequences using the split between Locusta and Chortippus as calibration point which supports the consistency of the calibration points. The clades from the Oriental region dated back to the early Tertiary. These estimates of divergence times suggested that Macrotermes invaded Asia during periods with humid climates. For Africa, many speciation events predated the Pleistocene and fall in range of 6-23 million years ago. These estimates suggest that savannah-adapted African clades radiated with the spread of the semi-arid ecosystems during the Miocene. Apparently, events during the Pleistocene were of little importance for speciation within the genus Macrotermes. However, further investigations are necessary to increase the number of taxa for phylogenetic analysis.
Wan, Yizhen; Schwaninger, Heidi R; Baldo, Angela M; Labate, Joanne A; Zhong, Gan-Yuan; Simon, Charles J
2013-07-05
Grapes are one of the most economically important fruit crops. There are about 60 species in the genus Vitis. The phylogenetic relationships among these species are of keen interest for the conservation and use of this germplasm. We selected 309 accessions from 48 Vitis species,varieties, and outgroups, examined ~11 kb (~3.4 Mb total) of aligned nuclear DNA sequences from 27 unlinked genes in a phylogenetic context, and estimated divergence times based on fossil calibrations. Vitis formed a strongly supported clade. There was substantial support for species and less for the higher-level groupings (series). As estimated from extant taxa, the crown age of Vitis was 28 Ma and the divergence of subgenera (Vitis and Muscadinia) occurred at ~18 Ma. Higher clades in subgenus Vitis diverged 16 - 5 Ma with overlapping confidence intervals, and ongoing divergence formed extant species at 12 - 1.3 Ma. Several species had species-specific SNPs. NeighborNet analysis showed extensive reticulation at the core of subgenus Vitis representing the deeper nodes, with extensive reticulation radiating outward. Fitch Parsimony identified North America as the origin of the most recent common ancestor of extant Vitis species. Phylogenetic patterns suggested origination of the genus in North America, fragmentation of an ancestral range during the Miocene, formation of extant species in the late Miocene-Pleistocene, and differentiation of species in the context of Pliocene-Quaternary tectonic and climatic change. Nuclear SNPs effectively resolved relationships at and below the species level in grapes and rectified several misclassifications of accessions in the repositories. Our results challenge current higher-level classifications, reveal the abundance of genetic diversity in the genus that is potentially available for crop improvement, and provide a valuable resource for species delineation, germplasm conservation and use.
Baumsteiger, Jason; Kinziger, Andrew P; Aguilar, Andres
2016-11-01
Ecological generalists may contain a wealth of information concerning diversity, ecology, and geographic connectivity throughout their range. We explored these ideas in prickly sculpin (Cottus asper), a small generalist freshwater fish species where coastal forms have potentially undergone radiations into inland lacustrine and riverine environments. Using a 962bp cytochrome b mtDNA marker and 11 microsatellites, we estimated diversity, divergence times, gene flow, and structure among populations at 43 locations throughout California. We then incorporated genetic and GIS data into ecological niche models to assess ecological conditions within identified groups. Though not reciprocally monophyletic, unique mtDNA haplotypes, microsatellite clustering, and measures of isolation by distance (Coastal: r = 0.960, P < 0.001; Inland: r = 0.277, P = 0.148) suggest 2 novel taxonomic groups, Coastal and Inland (constrained to Great Central Valley). Divergence estimates of 41-191 kya combined with the regional biogeographic history suggest geographic barriers are absent between groups since divergence, but ecological niche modeling revealed significant environmental differences (t = 10.84, P < 0.001). Introgressed individuals were also discovered between groups in an ecologically and geographically intermediate region. Population structure was limited, predominately found in tributaries of the San Joaquin basin in the Inland group. Overall, C. asper exhibited substantial genetic diversity, despite its ecological generality, reflecting California's historically unique and complex hydrology. More broadly, this study illustrates variable environments within the range of a generalist species may mask genetic divergences and should not be overlooked in biodiversity assessments. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Statistical Field Estimation and Scale Estimation for Complex Coastal Regions and Archipelagos
2009-05-01
instruments applied to mode-73. Deep-Sea Research, 23:559–582. Brown , R. G. and Hwang , P. Y. C. (1997). Introduction to Random Signals and Applied Kalman ...the covariance matrix becomes neg- ative due to numerical issues ( Brown and Hwang , 1997). Some useful techniques to counter these divergence problems...equations ( Brown and Hwang , 1997). If the number of observations is large, divergence problems can arise under certain con- ditions due to truncation errors
Regularized minimum I-divergence methods for the inverse blackbody radiation problem
NASA Astrophysics Data System (ADS)
Choi, Kerkil; Lanterman, Aaron D.; Shin, Jaemin
2006-08-01
This paper proposes iterative methods for estimating the area temperature distribution of a blackbody from its total radiated power spectrum measurements. This is called the inverse blackbody radiation problem. This problem is inherently ill-posed due to the characteristics of the kernel in the underlying integral equation given by Planck's law. The functions involved in the problem are all non-negative. Csiszár's I-divergence is an information-theoretic discrepancy measure between two non-negative functions. We derive iterative methods for minimizing Csiszár's I-divergence between the measured power spectrum and the power spectrum arising from the estimate according to the integral equation. Due to the ill-posedness of the problem, unconstrained algorithms often produce poor estimates, especially when the measurements are corrupted by noise. To alleviate this difficulty, we apply regularization methods to our algorithms. Penalties based on Shannon's entropy, the L1-norm and Good's roughness are chosen to suppress the undesirable artefacts. When a penalty is applied, the pertinent optimization that needs to be performed at each iteration is no longer trivial. In particular, Good's roughness causes couplings between estimate components. To handle this issue, we adapt Green's one-step-late method. This choice is based on the important fact that our minimum I-divergence algorithms can be interpreted as asymptotic forms of certain expectation-maximization algorithms. The effectiveness of our methods is illustrated via various numerical experiments.
The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology
Ho, Simon Y. W.; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth
2008-01-01
Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events. PMID:18286172
The effect of inappropriate calibration: three case studies in molecular ecology.
Ho, Simon Y W; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth
2008-02-20
Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.
2013-01-01
Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would entail selecting areas for protection in Mojave and Sonoran Deserts to retain divergent genetic diversity and ensure connectedness across environmental gradients.
Matsudaira, Kazunari; Hamada, Yuzuru; Bunlungsup, Srichan; Ishida, Takafumi; San, Aye Mi; Malaivijitnond, Suchinda
2018-05-11
Macaca fascicularis aurea (Burmese long-tailed macaque) is 1 of the 10 subspecies of Macaca fascicularis. Despite having few morphological differences from other subspecies, a recent phylogeographic study showed that M. f. aurea is clearly distinct genetically from Macaca fascicularis fascicularis (common long-tailed macaque) and suggests that M. f. aurea experienced a disparate evolutionary pathway versus other subspecies. To construct a detailed evolutionary history of M. f. aurea and its relationships with other macaque species, we performed phylogenetic analyses and divergence time estimation of whole mitochondrial genomes (2 M. f. aurea, 8 M. f. fascicularis, and 16 animals of 12 macaque species) and 2871 bp of the Y chromosome (1 M. f. aurea, 2 M. f. fascicularis, and 5 animals of 5 macaque species) and haplotype network analysis of 758 bp of the Y chromosome (1 M. f. aurea, 2 M. f. fascicularis, and 21 animals of 19 macaque species). Whereas the Y chromosome of M. f. aurea clustered with those of the fascicularis species group in the phylogenetic and haplotype network analyses, its mtDNA clustered within the clade of the sinica species group. Based on this phylogenetic incongruence and the estimated divergence times, we propose that proto-M. f. aurea underwent hybridization with a population of the sinica species group between 2.5 and 0.95 MYA after divergence from the common ancestor of M. fascicularis. Hybridization and introgression might have been central in the evolution of M. f. aurea, similar to what occurred in the evolution of other macaque species and subspecies.
Leite, Rafael N.; Kolokotronis, Sergios-Orestis; Almeida, Francisca C.; Werneck, Fernanda P.; Rogers, Duke S.; Weksler, Marcelo
2014-01-01
The Great American Biotic Interchange (GABI) was greatly influenced by the completion of the Isthmus of Panama and impacted the composition of modern faunal assemblages in the Americas. However, the contribution of preceding events has been comparatively less explored, even though early immigrants in the fossil records are evidence for waif dispersals. The cricetid rodents of the subfamily Sigmodontinae are a classic example of a species-rich South American radiation resulting from an early episode of North American invasion. Here, we provide a temporal and spatial framework to address key aspects of the historical biogeography and diversification of this diverse mammal group by using mitochondrial and nuclear DNA datasets coupled with methods of divergence time estimation, ancestral area reconstruction and comparative phylogenetics. Relaxed-clock time estimates indicate that divergence of the Sigmodontinae began in the middle–late Miocene (ca. 12–9 Ma). Dispersal-vicariance analyses point to the arrival of a single lineage of northern invaders with a widespread ancestral distribution and imply that the initial differentiation between Central and South America gave rise to the most basal groups within the subfamily. These two major clades diversified in the late Miocene followed by the radiation of main tribes until the early Pliocene. Within the Oryzomyalia, tribes diverged initially in eastern South America whereas multiple dispersals into the Andes promoted further diversification of the majority of modern genera. A comparatively uniform background tempo of diversification explains the species richness of sigmodontines across most nodes, except for two akodontine genera with recent increases in diversification rates. The bridging of the Central American seaway and episodes of low sea levels likely facilitated the invasion of South America long before the onset of the post-Isthmian phase of the GABI. PMID:24963664
Pereira, Sergio L; Johnson, Kevin P; Clayton, Dale H; Baker, Allan J
2007-08-01
Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.
Divergence times and colonization of the Canary Islands by Gallotia lizards.
Cox, Siobhan C; Carranza, Salvador; Brown, Richard P
2010-08-01
The Canary Islands have become a model region for evolutionary studies. We obtained 1.8 Kbp of mtDNA sequence from all known island forms of the endemic lizard genus Gallotia and from its sister taxon Psammodromus in order to reanalyze phylogenetic relationships within the archipelago, estimate lineage divergence times, and reconstruct the colonization history of this group. Well-supported phylogenies were obtained using maximum parsimony and Bayesian inference. Previous studies have been unable to establish the branching pattern at the base of the tree. We found evidence that G. stehlini (Gran Canaria) originated from the most basal Gallotia node and G. atlantica from the subsequent node. Divergence times were estimated under a global clock using Bayesian Markov Chain Monte Carlo methods implemented by three different programs: BEAST, MCMCTREE, MULTIDIVTIME. Node constraints were derived from subaerial island appearance data and were incorporated into the analyses as soft or hard maximal bounds. Posterior node ages differed slightly between programs, possibly due to different priors on divergence times. The most eastern Canary Islands first emerged just over 20 mya and their colonization appears to have taken place relatively quickly, around 17-20 mya. The subsequent node is consistent with cladogenesis due to colonization of Gran Canaria from the eastern islands about 11-13 mya. The western islands appear to have been colonized by a dispersal event from Lanzarote/Fuerteventura in the east to either La Gomera or one of the ancient edifices that subsequently formed Tenerife in the west, about 9-10 mya. Within the western islands, the most recent node that is ancestral to both the G. intermedia/G. gomerana/G. simonyi and the G.galloti/G. caesaris clades is dated at about 5-6 mya. Subsequent dispersal events between ancient Tenerife islands and La Gomera are dated at around 3 mya in both clades, although the direction of dispersal cannot be determined. Finally, we show that G. galloti is likely to have colonized La Palma more than 0.5 Ma after emergence of the island 1.77 mya, while G. caesaris from the same clade may have colonized El Hierro very soon after it emerged 1.12 mya. There are tentative indications that the large-bodied endangered G. simonyi colonized El Hierro around the same time or even later than the smaller-bodied G. caesaris. This study demonstrates the effectiveness of Bayesian dating of a phylogeny in helping reconstruct the historical pattern of dispersal across an oceanic archipelago. Copyright 2010 Elsevier Inc. All rights reserved.
Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica
Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix
2015-01-01
The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324
Ruiz-Sanchez, Eduardo
2015-12-01
The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. Copyright © 2015 Elsevier Inc. All rights reserved.
Bapst, D W; Wright, A M; Matzke, N J; Lloyd, G T
2016-07-01
Dated phylogenies of fossil taxa allow palaeobiologists to estimate the timing of major divergences and placement of extinct lineages, and to test macroevolutionary hypotheses. Recently developed Bayesian 'tip-dating' methods simultaneously infer and date the branching relationships among fossil taxa, and infer putative ancestral relationships. Using a previously published dataset for extinct theropod dinosaurs, we contrast the dated relationships inferred by several tip-dating approaches and evaluate potential downstream effects on phylogenetic comparative methods. We also compare tip-dating analyses to maximum-parsimony trees time-scaled via alternative a posteriori approaches including via the probabilistic cal3 method. Among tip-dating analyses, we find opposing but strongly supported relationships, despite similarity in inferred ancestors. Overall, tip-dating methods infer divergence dates often millions (or tens of millions) of years older than the earliest stratigraphic appearance of that clade. Model-comparison analyses of the pattern of body-size evolution found that the support for evolutionary mode can vary across and between tree samples from cal3 and tip-dating approaches. These differences suggest that model and software choice in dating analyses can have a substantial impact on the dated phylogenies obtained and broader evolutionary inferences. © 2016 The Author(s).
Fuchs, Jérôme; Johnson, Jeff A; Mindell, David P
2015-01-01
Understanding how and why lineages diversify is central to understanding the origins of biological diversity. The avian family Falconidae (caracaras, forest-falcons, falcons) has an uneven distribution of species among multiple well-supported clades, and provides a useful system for testing hypotheses about diversification rate and correlation with environmental changes. We analyzed eight independent loci for 1-7 individuals from each of the 64 currently recognized Falconidae species, together with two fossil falconid temporal calibrations, to assess phylogeny, absolute divergence times and potential shifts in diversification rate. Our analyses supported similar diversification ages in the Early to Middle Miocene for the three traditional subfamilies, Herpetotherinae, Polyborinae and Falconinae. We estimated that divergences within the subfamily Falconinae began about 16mya and divergences within the most species-rich genus, Falco, including about 60% of all Falconidae species, began about 7.5mya. We found evidence for a significant increase in diversification rate at the basal phylogenetic node for the genus Falco, and the timing for this rate shift correlates generally with expansion of C4 grasslands beginning around the Miocene/Pliocene transition. Concomitantly, Falco lineages that are distributed primarily in grassland or savannah habitats, as opposed to woodlands, and exhibit migratory, as opposed to sedentary, behavior experienced a higher diversification rate. Published by Elsevier Inc.
A Bayesian framework to estimate diversification rates and their variation through time and space
2011-01-01
Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891
Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei
2018-06-20
The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.
New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys.
Zalmout, Iyad S; Sanders, William J; Maclatchy, Laura M; Gunnell, Gregg F; Al-Mufarreh, Yahya A; Ali, Mohammad A; Nasser, Abdul-Azziz H; Al-Masari, Abdu M; Al-Sobhi, Salih A; Nadhra, Ayman O; Matari, Adel H; Wilson, Jeffrey A; Gingerich, Philip D
2010-07-15
It is widely understood that Hominoidea (apes and humans) and Cercopithecoidea (Old World monkeys) have a common ancestry as Catarrhini deeply rooted in Afro-Arabia. The oldest stem Catarrhini in the fossil record are Propliopithecoidea, known from the late Eocene to early Oligocene epochs (roughly 35-30 Myr ago) of Egypt, Oman and possibly Angola. Genome-based estimates for divergence of hominoids and cercopithecoids range into the early Oligocene; however, the mid-to-late Oligocene interval from 30 to 23 Myr ago has yielded little fossil evidence documenting the morphology of the last common ancestor of hominoids and cercopithecoids, the timing of their divergence, or the relationship of early stem and crown catarrhines. Here we describe the partial cranium of a new medium-sized (about 15-20 kg) fossil catarrhine, Saadanius hijazensis, dated to 29-28 Myr ago. Comparative anatomy and cladistic analysis shows that Saadanius is an advanced stem catarrhine close to the base of the hominoid-cercopithecoid clade. Saadanius is important for assessing competing hypotheses about the ancestral morphotype for crown catarrhines, early catarrhine phylogeny and the age of hominoid-cercopithecoid divergence. Saadanius has a tubular ectotympanic but lacks synapomorphies of either group of crown Catarrhini, and we infer that the hominoid-cercopithecoid split happened later, between 29-28 and 24 Myr ago.
Beet, Clare R; Hogg, Ian D; Collins, Gemma E; Cowan, Don A; Wall, Diana H; Adams, Byron J
2016-09-01
Climate changes are likely to have major influences on the distribution and abundance of Antarctic terrestrial biota. To assess arthropod distribution and diversity within the Ross Sea region, we examined mitochondrial DNA (COI) sequences for three currently recognized species of springtail (Collembola) collected from sites in the vicinity, and to the north of, the Mackay Glacier (77°S). This area acts as a transition between two biogeographic regions (northern and southern Victoria Land). We found populations of highly divergent individuals (5%-11.3% intraspecific sequence divergence) for each of the three putative springtail species, suggesting the possibility of cryptic diversity. Based on molecular clock estimates, these divergent lineages are likely to have been isolated for 3-5 million years. It was during this time that the Western Antarctic Ice Sheet (WAIS) was likely to have completely collapsed, potentially facilitating springtail dispersal via rafting on running waters and open seaways. The reformation of the WAIS would have isolated newly established populations, with subsequent dispersal restricted by glaciers and ice-covered areas. Given the currently limited distributions for these genetically divergent populations, any future changes in species' distributions can be easily tracked through the DNA barcoding of springtails from within the Mackay Glacier ecotone.
Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano
2007-01-01
Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612
Ashfaq, Muhammad; Prosser, Sean; Nasir, Saima; Masood, Mariyam; Ratnasingham, Sujeevan; Hebert, Paul D. N.
2015-01-01
The study analyzes sequence variation of two mitochondrial genes (COI, cytb) in Pediculus humanus from three countries (Egypt, Pakistan, South Africa) that have received little prior attention, and integrates these results with prior data. Analysis indicates a maximum K2P distance of 10.3% among 960 COI sequences and 13.8% among 479 cytb sequences. Three analytical methods (BIN, PTP, ABGD) reveal five concordant OTUs for COI and cytb. Neighbor-Joining analysis of the COI sequences confirm five clusters; three corresponding to previously recognized mitochondrial clades A, B, C and two new clades, “D” and “E”, showing 2.3% and 2.8% divergence from their nearest neighbors (NN). Cytb data corroborate five clusters showing that clades “D” and “E” are both 4.6% divergent from their respective NN clades. Phylogenetic analysis supports the monophyly of all clusters recovered by NJ analysis. Divergence time estimates suggest that the earliest split of P. humanus clades occured slightly more than one million years ago (MYa) and the latest about 0.3 MYa. Sequence divergences in COI and cytb among the five clades of P. humanus are 10X those in their human host, a difference that likely reflects both rate acceleration and the acquisition of lice clades from several archaic hominid lineages. PMID:26373806
Estimating linear-nonlinear models using Rényi divergences
Kouh, Minjoon; Sharpee, Tatyana O.
2009-01-01
This paper compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramér-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data. PMID:19568981
Estimating linear-nonlinear models using Renyi divergences.
Kouh, Minjoon; Sharpee, Tatyana O
2009-01-01
This article compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramer-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data.
Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae).
Liu, Jian-Quan; Gao, Tian-Gang; Chen, Zhi-Duan; Lu, An-Ming
2002-06-01
All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (c) 2002 Elsevier Science (USA).
Li, Longhai; Feng, Cindy X; Qiu, Shi
2017-06-30
An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution without reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Evolutionary Roots and Diversification of the Genus Aeromonas.
Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J G; Fusté, M C
2017-01-01
Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes.
Evolutionary Roots and Diversification of the Genus Aeromonas
Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J. G.; Fusté, M. C.
2017-01-01
Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes. PMID:28228750
Jakava-Viljanen, Miia; Miia, Jakava-Viljanen; Nokireki, Tiina; Tiina, Nokireki; Sironen, Tarja; Tarja, Sironen; Vapalahti, Olli; Olli, Vapalahti; Sihvonen, Liisa; Liisa, Sihvonen; Huovilainen, Anita; Anita, Huovilainen
2015-06-01
Among other Lyssaviruses, Daubenton's and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.
Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing
2018-05-25
The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.
Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki
2016-08-08
The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised.
A possible explanation for the divergent projection of ENSO amplitude change under global warming
NASA Astrophysics Data System (ADS)
Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.
2017-12-01
The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.
Sato, Jun J.; Ohdachi, Satoshi D.; Echenique-Diaz, Lazaro M.; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L.; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki
2016-01-01
The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968
Potential estimates for the p-Laplace system with data in divergence form
NASA Astrophysics Data System (ADS)
Cianchi, A.; Schwarzacher, S.
2018-07-01
A pointwise bound for local weak solutions to the p-Laplace system is established in terms of data on the right-hand side in divergence form. The relevant bound involves a Havin-Maz'ya-Wolff potential of the datum, and is a counterpart for data in divergence form of a classical result of [25], recently extended to systems in [28]. A local bound for oscillations is also provided. These results allow for a unified approach to regularity estimates for broad classes of norms, including Banach function norms (e.g. Lebesgue, Lorentz and Orlicz norms), and norms depending on the oscillation of functions (e.g. Hölder, BMO and, more generally, Campanato type norms). In particular, new regularity properties are exhibited, and well-known results are easily recovered.
Gutenkunst, Ryan N.; Hernandez, Ryan D.; Williamson, Scott H.; Bustamante, Carlos D.
2009-01-01
Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU). PMID:19851460
Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher
2015-01-01
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations. PMID:25919667
Misiewicz, Tracy M; Fine, Paul V A
2014-05-01
Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity. © 2014 John Wiley & Sons Ltd.
Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop
2017-01-01
Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7-15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories.
Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop
2017-01-01
Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7–15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories. PMID:28505209
Phylogeography of the Macaronesian Lettuce Species Lactuca watsoniana and L. palmensis (Asteraceae).
Dias, Elisabete F; Kilian, Norbert; Silva, Luís; Schaefer, Hanno; Carine, Mark; Rudall, Paula J; Santos-Guerra, Arnoldo; Moura, Mónica
2018-02-24
The phylogenetic relationships and phylogeography of two relatively rare Macaronesian Lactuca species, Lactuca watsoniana (Azores) and L. palmensis (Canary Islands), were, until this date, unclear. Karyological information of the Azorean species was also unknown. For this study, a chromosome count was performed and L. watsoniana showed 2n = 34. A phylogenetic approach was used to clarify the relationships of the Azorean endemic L. watsoniana and the La Palma endemic L. palmensis within the subtribe Lactucinae. Maximum parsimony, Maximum likelihood and Bayesian analysis of a combined molecular dataset (ITS and four chloroplast DNA regions) and molecular clock analyses were performed with the Macaronesian Lactuca species, as well as a TCS haplotype network. The analyses revealed that L. watsoniana and L. palmensis belong to different subclades of the Lactuca clade. Lactuca watsoniana showed a strongly supported phylogenetic relationship with North American species, while L. palmensis was closely related to L. tenerrima and L. inermis, from Europe and Africa. Lactuca watsoniana showed four single-island haplotypes. A divergence time estimation of the Macaronesian lineages was used to examine island colonization pathways. Results obtained with BEAST suggest a divergence of L. palmensis and L. watsoniana clades c. 11 million years ago, L. watsoniana diverged from its North American sister species c. 3.8 million years ago and L. palmensis diverged from its sister L. tenerrima, c. 1.3 million years ago, probably originating from an African ancestral lineage which colonized the Canary Islands. Divergence analyses with *BEAST indicate a more recent divergence of the L. watsoniana crown, c. 0.9 million years ago. In the Azores colonization, in a stepping stone, east-to-west dispersal pattern, associated with geological events might explain the current distribution range of L. watsoniana.
Divergence in Siblings' Adult Attachment Security: Potential Contributors and Consequences
ERIC Educational Resources Information Center
Fortuna, Keren
2009-01-01
Previous research has revealed only modest concordance in attachment security between siblings during childhood and adolescence. The first goal of this dissertation was to estimate sibling concordance in adult attachment security and identify factors contributing to divergence. The Adult Attachment Interview (AAI) was administered to young adult…
Wahlberg, Niklas; Weingartner, Elisabet; Warren, Andrew D; Nylin, Sören
2009-01-01
Background Major conflict between mitochondrial and nuclear genes in estimating species relationships is an increasingly common finding in animals. Usually this is attributed to incomplete lineage sorting, but recently the possibility has been raised that hybridization is important in generating such phylogenetic patterns. Just how widespread ancient and/or recent hybridization is in animals and how it affects estimates of species relationships is still not well-known. Results We investigate the species relationships and their evolutionary history over time in the genus Polygonia using DNA sequences from two mitochondrial gene regions (COI and ND1, total 1931 bp) and four nuclear gene regions (EF-1α, wingless, GAPDH and RpS5, total 2948 bp). We found clear, strongly supported conflict between mitochondrial and nuclear DNA sequences in estimating species relationships in the genus Polygonia. Nodes at which there was no conflict tended to have diverged at the same time when analyzed separately, while nodes at which conflict was present diverged at different times. We find that two species create most of the conflict, and attribute the conflict found in Polygonia satyrus to ancient hybridization and conflict found in Polygonia oreas to recent or ongoing hybridization. In both examples, the nuclear gene regions tended to give the phylogenetic relationships of the species supported by morphology and biology. Conclusion Studies inferring species-level relationships using molecular data should never be based on a single locus. Here we show that the phylogenetic hypothesis generated using mitochondrial DNA gives a very different interpretation of the evolutionary history of Polygonia species compared to that generated from nuclear DNA. We show that possible cases of hybridization in Polygonia are not limited to sister species, but may be inferred further back in time. Furthermore, we provide more evidence that Haldane's effect might not be as strong a process in preventing hybridization in butterflies as has been previously thought. PMID:19422691
A Coalescent-Based Estimator of Admixture From DNA Sequences
Wang, Jinliang
2006-01-01
A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918
2011-01-01
Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1) to 0.12% My-1 (28S), and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1). Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods. PMID:22039781
Bidegaray-Batista, Leticia; Arnedo, Miquel A
2011-10-31
The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My(-1) (nad1) to 0.12% My(-1) (28S), and the average divergence rate for the mitochondrial genes was 2.25% My(-1), very close to the "standard" arthropod mitochondrial rate (2.3% My(-1)). Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods.
2013-01-01
Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation. PMID:23786343
Starrett, James; Hedin, Marshal; Ayoub, Nadia; Hayashi, Cheryl Y
2013-07-25
Hemocyanins are multimeric copper-containing hemolymph proteins involved in oxygen binding and transport in all major arthropod lineages. Most arachnids have seven primary subunits (encoded by paralogous genes a-g), which combine to form a 24-mer (4×6) quaternary structure. Within some spider lineages, however, hemocyanin evolution has been a dynamic process with extensive paralog duplication and loss. We have obtained hemocyanin gene sequences from numerous representatives of the spider infraorders Mygalomorphae and Araneomorphae in order to infer the evolution of the hemocyanin gene family and estimate spider relationships using these conserved loci. Our hemocyanin gene tree is largely consistent with the previous hypotheses of paralog relationships based on immunological studies, but reveals some discrepancies in which paralog types have been lost or duplicated in specific spider lineages. Analyses of concatenated hemocyanin sequences resolved deep nodes in the spider phylogeny and recovered a number of clades that are supported by other molecular studies, particularly for mygalomorph taxa. The concatenated data set is also used to estimate dates of higher-level spider divergences and suggests that the diversification of extant mygalomorphs preceded that of extant araneomorphs. Spiders are diverse in behavior and respiratory morphology, and our results are beneficial for comparative analyses of spider respiration. Lastly, the conserved hemocyanin sequences allow for the inference of spider relationships and ancient divergence dates. Copyright © 2013 Elsevier B.V. All rights reserved.
Functional Bregman Divergence and Bayesian Estimation of Distributions (Preprint)
2008-01-01
shows that if the set of possible minimizers A includes EPF [F ], then g∗ = EPF [F ] minimizes the expectation of any Bregman divergence. Note the theorem...probability distribution PF defined over the set M. Let A be a set of functions that includes EPF [F ] if it exists. Suppose the function g∗ minimizes...the expected Bregman divergence between the random function F and any function g ∈ A such that g∗ = arg inf g∈A EPF [dφ(F, g)]. Then, if g∗ exists
Atmospheric Flux Computations in Complex Terrain
NASA Technical Reports Server (NTRS)
Smith, Paul L.; Kopp, Fred J.; Orville, Harold D.
2000-01-01
The greatest challenges in applying atmospheric water budget expressions are in determining the divergence and evapotranspiration terms. The evapotranspiration problem is ubiquitous, and critical issues of spatial and temporal resolution commonly arise in establishing the divergence term. In complex terrain, further difficulties crop up in using typical data on atmospheric profiles of water vapor and wind to estimate the divergence term. Those difficulties are the subject of this paper; considerations related to topographic variations both along and normal to the flow direction are treated.
Estimating the age-specific duration of herpes zoster vaccine protection: a matter of model choice?
Bilcke, Joke; Ogunjimi, Benson; Hulstaert, Frank; Van Damme, Pierre; Hens, Niel; Beutels, Philippe
2012-04-05
The estimation of herpes zoster (HZ) vaccine efficacy by time since vaccination and age at vaccination is crucial to assess the effectiveness and cost-effectiveness of HZ vaccination. Published estimates for the duration of protection from the vaccine diverge substantially, although based on data from the same trial for a follow-up period of 5 years. Different models were used to obtain these estimates, but it is unclear which of these models is most appropriate (if any). Only one study estimated vaccine efficacy by age at vaccination and time since vaccination combined. Recently, data became available from the same trial for a follow-up period of 7 years. We aim to elaborate on estimating HZ vaccine efficacy (1) by estimating it as a function of time since vaccination and age at vaccination, (2) by comparing the fits of a range of models, and (3) by fitting these models on data for a follow-up period of 5 and 7 years. Although the models' fit to data are very comparable, they differ substantially in how they estimate vaccine efficacy to change as a function of time since vaccination and age at vaccination. An accurate estimation of HZ vaccine efficacy by time since vaccination and age at vaccination is hampered by the lack of insight in the biological processes underlying HZ vaccine protection, and by the fact that such data are currently not available in sufficient detail. Uncertainty about the choice of model to estimate this important parameter should be acknowledged in cost-effectiveness analyses. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Antink-Meyer, Allison; Lederman, Norman G.
2015-07-01
The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM) before and after a semester of instruction. Even the short time frame of a typical academic term was found to be sufficient to promote both improvements in divergent thinking skills as well as declining divergent thinking. Declining divergent thinking skills were more common in this time frame than were improvements. The nature of student performance on the SSCM and implications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, Gavin; Sivak, David
Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Renyi divergence.
Williamson, Scott; Fledel-Alon, Adi; Bustamante, Carlos D
2004-09-01
We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary dominance relations in a diploid context. This model provides a maximum-likelihood framework for estimating both selection and dominance parameters of new mutations using information on the frequency spectrum of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter. Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations indicate that this test is quite powerful when a large number of segregating sites are available. We also use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates of the selection parameter can be very strongly biased even for minor deviations from the genic selection model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for completely dominant or recessive mutations. Further, we find that weak overdominant selection can increase, rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has major implications for the interpretation of several popular tests of neutrality.
Sensor trustworthiness in uncertain time varying stochastic environments
NASA Astrophysics Data System (ADS)
Verma, Ajay; Fernandes, Ronald; Vadakkeveedu, Kalyan
2011-06-01
Persistent surveillance applications require unattended sensors deployed in remote regions to track and monitor some physical stimulant of interest that can be modeled as output of time varying stochastic process. However, the accuracy or the trustworthiness of the information received through a remote and unattended sensor and sensor network cannot be readily assumed, since sensors may get disabled, corrupted, or even compromised, resulting in unreliable information. The aim of this paper is to develop information theory based metric to determine sensor trustworthiness from the sensor data in an uncertain and time varying stochastic environment. In this paper we show an information theory based determination of sensor data trustworthiness using an adaptive stochastic reference sensor model that tracks the sensor performance for the time varying physical feature, and provides a baseline model that is used to compare and analyze the observed sensor output. We present an approach in which relative entropy is used for reference model adaptation and determination of divergence of the sensor signal from the estimated reference baseline. We show that that KL-divergence is a useful metric that can be successfully used in determination of sensor failures or sensor malice of various types.
Near, Thomas J; Dornburg, Alex; Friedman, Matt
2014-11-01
The Gonorynchiformes are the sister lineage of the species-rich Otophysi and provide important insights into the diversification of ostariophysan fishes. Phylogenies of gonorynchiforms inferred using morphological characters and mtDNA gene sequences provide differing resolutions with regard to the sister lineage of all other gonorynchiforms (Chanos vs. Gonorynchus) and support for monophyly of the two miniaturized lineages Cromeria and Grasseichthys. In this study the phylogeny and divergence times of gonorynchiforms are investigated with DNA sequences sampled from nine nuclear genes and a published morphological character matrix. Bayesian phylogenetic analyses reveal substantial congruence among individual gene trees with inferences from eight genes placing Gonorynchus as the sister lineage to all other gonorynchiforms. Seven gene trees resolve Cromeria and Grasseichthys as a clade, supporting previous inferences using morphological characters. Phylogenies resulting from either concatenating the nuclear genes, performing a multispecies coalescent species tree analysis, or combining the morphological and nuclear gene DNA sequences resolve Gonorynchus as the living sister lineage of all other gonorynchiforms, strongly support the monophyly of Cromeria and Grasseichthys, and resolve a clade containing Parakneria, Cromeria, and Grasseichthys. The morphological dataset, which includes 13 gonorynchiform fossil taxa that range in age from Early Cretaceous to Eocene, was analyzed in combination with DNA sequences from the nine nuclear genes and a relaxed molecular clock to estimate times of evolutionary divergence. This "tip dating" strategy accommodates uncertainty in the phylogenetic resolution of fossil taxa that provide calibration information in the relaxed molecular clock analysis. The estimated age of the most recent common ancestor (MRCA) of living gonorynchiforms is slightly older than estimates from previous node dating efforts, but the molecular tip dating estimated ages of Kneriinae (Kneria, Parakneria, Cromeria, and Grasseichthys) and the two paedomorphic lineages, Cromeria and Grasseichthys, are considerably younger. Copyright © 2014 Elsevier Inc. All rights reserved.
Mass load estimation errors utilizing grab sampling strategies in a karst watershed
Fogle, A.W.; Taraba, J.L.; Dinger, J.S.
2003-01-01
Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.
A revised timescale for human evolution based on ancient mitochondrial genomes
Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2016-01-01
Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248
Sales, João Bráullio de L; Rodrigues-Filho, Luis F da S; Ferreira, Yrlene do S; Carneiro, Jeferson; Asp, Nils E; Shaw, Paul W; Haimovici, Manuel; Markaida, Unai; Ready, Jonathan; Schneider, Horacio; Sampaio, Iracilda
2017-01-01
Although recent years have seen an increase in genetic analyses that identify new species of cephalopods and phylogeographic patterns, the loliginid squid of South America remain one of the least studied groups. The suggestion that Doryteuthis plei may represent distinct lineages within its extensive distribution along the western Atlantic coasts from Cape Hatteras, USA (36°N) to northern Argentina (35°S) is consistent with significant variation in a number of environmental variables along this range including in both temperature and salinity. In the present study D. plei samples were obtained from a large number of localities along the western Atlantic coasts to investigate the distribution of these possible species in a phylogeographic context. Phylogeographic analyses were performed using the mitochondrial Cytochrome Oxidase I gene and nuclear Rhodopsin gene. Divergence times were estimated using Bayesian strict clock dating with calibrations based on fossil records for divergence from the lineage containing Vampyroteuthis infernalis (162mya), the probable origins of the North American loliginids (45mya), and the European loliginids (20mya) and fossil statolith from Doryteuthis opalescens (3mya). Our results suggest a deep genetic divergence within Doryteuthis plei. The currently described specie consists of two genetically distinct clades (pair-wise genetic divergence of between 7.7 and 9.1%). One clade composed of individuals collected in northwestern Atlantic and Central Caribbean Atlantic waters and the other from southwestern Atlantic waters. The divergence time and sampling locations suggest the speciation process at approximately 16Mya, which is in full agreement with the middle Miocene orogeny of the Caribbean plate, ending up with the formation of the Lesser Antilles and the adjacent subduction zone, coinciding with a particularly low global sea level, resulting in the practical absence of continental shelves at the area, and therefore an effective geographic barrier for D. plei. Furthermore, this study also provides evidence of previously undocumented sub-population structuring in the Gulf of Mexico. Copyright © 2016 Elsevier Inc. All rights reserved.
Goodman, Kari Roesch; Evenhuis, Neal L; Bartošová-Sojková, Pavla; O'Grady, Patrick M
2014-12-01
Flies in the genus Campsicnemus have diversified into the second-largest adaptive radiation of Diptera in the Hawaiian Islands, with 179 Hawaiian endemic species currently described. Here we present the first phylogenetic analysis of Campsicnemus, with a focus on the Hawaiian fauna. We analyzed a combination of two nuclear (CAD, EF1α) and five mitochondrial (COI, COII, 12S, 16S, ND2) loci using Bayesian and maximum likelihood approaches to generate a phylogenetic hypothesis for the genus Campsicnemus. Our sampling included a total of 84 species (6 species from Europe, 1 from North America, 7 species from French Polynesia and 70 species from the Hawaiian Islands). The phylogenies were used to estimate divergence times, reconstruct biogeographic history, and infer ancestral ecological associations within this large genus. We found strong support for a South Pacific+Hawaiian clade, as well as for a monophyletic Hawaiian lineage. Divergence time estimates suggest that Hawaiian Islands were colonized approximately 4.6 million years ago, suggesting that most of the diversity within Campsicnemus evolved since the current high islands began forming ∼5 million years ago. We also observe a novel ecotype within the Pacific Campsicnemus; a widespread obligate water-skating form that has arisen multiple times across the Pacific Islands. Together, these analyses suggest that a combination of ecological, biogeographic and temporal factors have led to the impressive diversity of long-legged flies in Hawaii and elsewhere in the Pacific. Copyright © 2014 Elsevier Inc. All rights reserved.
Phylogeny and evolution of the auks (subfamily Alcinae) based on mitochondrial DNA sequences
Moum, Truls; Johansen, Steinar; Erikstad, Kjell Einar; Piatt, John F.
1994-01-01
The genetic divergence and phylogeny of the auks was assessed by mitochondrial DNA sequence comparisons in a study using 19 of the 22 auk species and two outgroup representatives. We compared more than 500 nucleotides from each of two mitochondrial genes encoding 12S rRNA and the NADH dehydrogenase subunit 6. Divergence times were estimated from transversional substitutions. The dovekie (Alle alle) is related to the razorbill (Alca torda) and the murres (Uria spp). Furthermore, the Xantus's murrelet (Synthliboramphus hypoleucus) and the ancient (Synthliboramphus antiquus) and Japanese murrelets (Synthliboramphus wumizusume) are genetically distinct members of the same main lineage, whereas brachyramphine and synthliboramphine murrelets are not closely related. An early adaptive radiation of six main species groups of auks seems to trace back to Middle Miocene. Later speciation probably involved ecological differentiations and geographical isolations.
Parameter Estimation for the Four Parameter Beta Distribution.
1983-12-01
060 1,000 ,033 -,027 -+046 -. 047 .042 1,000 ITERATIONS FCN2 USED FCN4 USED DIVERGED 4,9260 0.0000 . 4640 o0460 SAMPLE SIZE+ 10 ESTIMATOR: MME1 SEED ; 1...903 .278 1.000 -. 271 .882 .538 1.000 -. 078 -. 202 .038 - 1.000 .050 .228 -o050 .086 .019 1.000 ITERATIONS FCN2 USED FCN4 USED DIVERGED...5.6575 33.2908 .0507 1.1332 .0002 .0000 .0000 .0007 CORRELATION COEFFICIENTS: 1.000 -. 058 1.000 -.914 . 262 1.000 -. 270 .895 .534 1.000 .021 .030 -,045
Gizaw, Abel; Brochmann, Christian; Nemomissa, Sileshi; Wondimu, Tigist; Masao, Catherine Aloyce; Tusiime, Felly Mugizi; Abdi, Ahmed Abdikadir; Oxelman, Bengt; Popp, Magnus; Dimitrov, Dimitar
2016-07-01
The flora on the isolated high African mountains or 'sky islands' is remarkable for its peculiar adaptations, local endemism and striking biogeographical connections to remote parts of the world. Ages of the plant lineages and the timing of their radiations have frequently been debated but remain contentious as there are few estimates based on explicit models and fossil-calibrated molecular clocks. We used the plastid region maturaseK (matK) and a Caryophylloflora paleogenica fossil to infer the age of the genus Lychnis, and constructed a data set of three plastid (matK; a ribosomal protein S16 (rps16); and an intergenic spacer (psbE-petL)) and two nuclear (internal transcribed spacer (ITS) and a region spanning exon 18-24 in the second largest subunit of RNA polymerase II (RPB2)) loci for joint estimation of the species tree and divergence time of the African representatives. The time of divergence of the African high-altitude Lychnis was placed in the late Miocene to early Pliocene. A single speciation event was inferred in the early Pliocene; subsequent speciation took place sporadically from the late Pliocene to the middle Pleistocene. We provide further support for a Eurasian origin of the African 'sky islands' floral elements, which seem to have been recruited via dispersals at different times: some old, as in Lychnis, and others very recent. We show that dispersal and diversification within Africa play an important role in shaping these isolated plant communities. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Isolation with asymmetric gene flow during the nonsynchronous divergence of dry forest birds.
Oswald, Jessica A; Overcast, Isaac; Mauck, William M; Andersen, Michael J; Smith, Brian Tilston
2017-03-01
Dry forest bird communities in South America are often fragmented by intervening mountains and rainforests, generating high local endemism. The historical assembly of dry forest communities likely results from dynamic processes linked to numerous population histories among codistributed species. Nevertheless, species may diversify in the same way through time if landscape and environmental features, or species ecologies, similarly structure populations. Here we tested whether six co-distributed taxon pairs that occur in the dry forests of the Tumbes and Marañón Valley of northwestern South America show concordant patterns and modes of diversification. We employed a genome reduction technique, double-digest restriction site-associated DNA sequencing, and obtained 4407-7186 genomewide SNPs. We estimated demographic history in each taxon pair and inferred that all pairs had the same best-fit demographic model: isolation with asymmetric gene flow from the Tumbes into the Marañón Valley, suggesting a common diversification mode. Overall, we also observed congruence in effective population size (N e ) patterns where ancestral N e were 2.9-11.0× larger than present-day Marañón Valley populations and 0.3-2.0× larger than Tumbesian populations. Present-day Marañón Valley N e was smaller than Tumbes. In contrast, we found simultaneous population isolation due to a single event to be unlikely as taxon pairs diverged over an extended period of time (0.1-2.9 Ma) with multiple nonoverlapping divergence periods. Our results show that even when populations of codistributed species asynchronously diverge, the mode of their differentiation can remain conserved over millions of years. Divergence by allopatric isolation due to barrier formation does not explain the mode of differentiation between these two bird assemblages; rather, migration of individuals occurred before and after geographic isolation. © 2017 John Wiley & Sons Ltd.
Intercontinental divergence in the Populus-associated ectomycorrhizal fungus, Tricholoma populinum.
Grubisha, Lisa C; Levsen, Nicholas; Olson, Matthew S; Taylor, D Lee
2012-04-01
The ectomycorrhizal fungus Tricholoma populinum is host-specific with Populus species. T. populinum has wind-dispersed progagules and may be capable of long-distance dispersal. In this study, we tested the hypothesis of a panmictic population between Scandinavia and North America. DNA sequences from five nuclear loci were used to assess phylogeographic structure and nucleotide divergence between continents. Tricholoma populinum was composed of Scandinavian and North American lineages with complete absence of shared haplotypes and only one shared nucleotide mutation. Divergence of these lineages was estimated at approx. 1.7-1.0 million yr ago (Ma), which occurred after the estimated divergence of host species Populus tremula and Populus balsamifera/Populus trichocarpa at 5 Ma. Phylogeographic structure was not observed within Scandinavian or North American lineages of T. populinum. Intercontinental divergence appears to have resulted from either allopatric isolation; a recent, rare long-distance dispersal founding event followed by genetic drift; or the response in an obligate mycorrhizal fungus with a narrow host range to contractions and expansion of host distribution during glacial and interglacial episodes within continents. Understanding present genetic variation in populations is important for predicting how obligate symbiotic fungi will adapt to present and future changing climatic conditions. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Uncertainty Quantification using Epi-Splines and Soft Information
2012-06-01
use of the Kullback - Leibler divergence measure. The Kullback - Leibler ...to illustrate the application of soft information related to the Kullback - Leibler (KL) divergence discussed in Chapter 2. The idea behind apply- ing... information for the estimation of system performance density functions in order to quantify uncertainty. We conduct empirical testing of
Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes
Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.
2003-01-01
Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.
Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation.
Marshall, David C; Hill, Kathy B R; Marske, Katharine A; Chambers, Colleen; Buckley, Thomas R; Simon, Chris
2012-09-11
The New Zealand (NZ) cicada fauna contains two co-distributed lineages that independently colonized the isolated continental fragment in the Miocene. One extensively studied lineage includes 90% of the extant species (Kikihia + Maoricicada + Rhodopsalta; ca 51 spp.), while the other contains just four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche models of the species from the smaller radiation. Mitochondrial and nuclear-gene trees supported the monophyly of Amphipsalta. Most interspecific diversification within Amphipsalta-Notopsalta occurred from the mid-Miocene to the Pliocene. However, interspecific divergence time estimates had large confidence intervals and were highly dependent on the assumed tree prior, and comparisons of uncorrected and patristic distances suggested difficulty in estimation of branch lengths. In contrast, intraspecific divergence times varied little across analyses, and all appear to have occurred during the Pleistocene. Two large-bodied forest taxa (A. cingulata, A. zelandica) showed minimal phylogeographic structure, with intraspecific diversification dating to ca. 0.16 and 0.37 Ma, respectively. Mid-Pleistocene-age phylogeographic structure was found within two smaller-bodied species (A. strepitans - 1.16 Ma, N. sericea - 1.36 Ma] inhabiting dry open habitats. Branches separating independently evolving species were long compared to intraspecific branches. Ecological niche models hindcast to the Last Glacial Maximum (LGM) matched expectations from the genetic datasets for A. zelandica and A. strepitans, suggesting that the range of A. zelandica was greatly reduced while A. strepitans refugia were more extensive. However, no LGM habitat could be reconstructed for A. cingulata and N. sericea, suggesting survival in microhabitats not detectable with our downscaled climate data. Unlike the large and continuous diversification exhibited by the Kikihia-Maoricicada-Rhodopsalta clade, the contemporaneous Amphipsalta-Notopsalta lineage contains four comparatively old (early branching) species that show only recent diversification. This indicates either a long period of stasis with no speciation, or one or more bouts of extinction that have pruned the radiation. Within Amphipsalta-Notopsalta, greater population structure is found in dry-open-habitat species versus forest specialists. We attribute this difference to the fact that NZ lowland forests were repeatedly reduced in extent during glacial periods, while steep, open habitats likely became more available during late Pleistocene uplift.
Chakona, Albert; Swartz, Ernst R.; Gouws, Gavin
2013-01-01
This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required. PMID:23951050
Premoli, Andrea C; Mathiasen, Paula; Acosta, M Cristina; Ramos, Victor A
2012-01-01
• Here, we performed phylogenetic analyses and estimated the divergence times on mostly sympatric populations of five species within subgenus Nothofagus. We aimed to investigate whether phylogenetic relationships by nuclear internal transcribed spacer (ITS) and phylogeographic patterns by chloroplast DNA (cpDNA) mirror an ancient evolutionary history that was not erased by glacial eras. Extant species are restricted to Patagonia and share a pollen type that was formerly widespread in all southern land masses. Weak reproductive barriers exist among them. • Fifteen cpDNA haplotypes resulted from the analysis of three noncoding regions on 330 individuals with a total alignment of 1794 bp. Nuclear ITS data consisted of 822 bp. We found a deep cpDNA divergence dated 32 Ma at mid-latitudes of Patagonia that predates the phylogenetic divergence of extant taxa. Other more recent breaks by cpDNA occurred towards the north. • Complex paleogeographic features explain the genetic discontinuities. Long-lasting paleobasins and marine ingressions have impeded transoceanic dispersal during range expansion towards lower latitudes under cooler trends since the Oligocene. • Cycles of hybridization-introgression among extant and extinct taxa have resulted in widespread chloroplast capture events. Our data suggest that Nothofagus biogeography will be resolved only if thorough phylogeographic analyses and molecular dating methods are applied using distinct genetic markers. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Zarza, Eugenia; Reynoso, Victor H; Emerson, Brent C
2008-07-01
While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.
Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution
Broughton, Richard E.; Betancur-R., Ricardo; Li, Chenhong; Arratia, Gloria; Ortí, Guillermo
2013-01-01
Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group. PMID:23788273
Oyler-McCance, Sara J.; Cornman, Robert S.; Kenneth L. Jones,; Fike, Jennifer
2015-01-01
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The πZ/πA ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that NeZ/NeA in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
Oyler-McCance, S J; Cornman, R S; Jones, K L; Fike, J A
2015-11-01
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
Verneau, Olivier; Bentz, Sophie; Sinnappah, Neeta Devi; du Preez, Louis; Whittington, Ian; Combes, Claude
2002-01-01
The Polystomatidae is the only family within the Monogenea to parasitize sarcopterygians such as the Australian lungfish Neoceratodus poisteri and freshwater tetrapods (lissamphibians and chelonians). We present a phylogeny based on partial 18S rDNA sequences of 26 species of Polystomatidae and three taxon from the infrasubclass Oligonchoinea (= Polyopisthocotylea) obtained from the gills of teleost fishes. The basal position of the polystome from lungfish within the Polystomatidae suggests that the family arose during the evolutionary transition between actinopterygians and sarcopterygians, ca. 425 million years (Myr) ago. The monophyly of the polystomatid lineages from chelonian and lissamphibian hosts, in addition to estimates of the divergence times, indicate that polystomatids from turtles radiated ca. 191 Myr ago, following a switch from an aquatic amniote presumed to be extinct to turtles, which diversified in the Upper Triassic. Within polystomatids from lissamphibians, we observe a polytomy of four lineages, namely caudatan, neobatrachian, pelobatid and pipid polystomatid lineages, which occurred ca. 246 Myr ago according to molecular divergence-time estimates. This suggests that the first polystomatids of amphibians originated during the evolution and diversification of lissamphibian orders and suborders ca. 250 Myr ago. Finally, we report a vicariance event between two major groups of neobatrachian polystomes, which is probably linked to the separation of South America from Africa ca. 100 Myr ago. PMID:11886648
Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).
Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A
2011-10-01
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.
Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong
2017-05-17
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).
Ji, Cheng; Huang, Jian-dong
2017-01-01
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. PMID:28515201
Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.
2011-01-01
The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275
Assessing the acoustical climate of underground stations.
Nowicka, Elzbieta
2007-01-01
Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented.
NASA Astrophysics Data System (ADS)
Mihálka, Zsuzsanna É.; Surján, Péter R.
2017-12-01
The method of analytic continuation is applied to estimate eigenvalues of linear operators from finite order results of perturbation theory even in cases when the latter is divergent. Given a finite number of terms E(k ),k =1 ,2 ,⋯M resulting from a Rayleigh-Schrödinger perturbation calculation, scaling these numbers by μk (μ being the perturbation parameter) we form the sum E (μ ) =∑kμkE(k ) for small μ values for which the finite series is convergent to a certain numerical accuracy. Extrapolating the function E (μ ) to μ =1 yields an estimation of the exact solution of the problem. For divergent series, this procedure may serve as resummation tool provided the perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic (quartic) oscillator and an example from the many-electron correlation problem.
2013-01-01
Background Grapes are one of the most economically important fruit crops. There are about 60 species in the genus Vitis. The phylogenetic relationships among these species are of keen interest for the conservation and use of this germplasm. We selected 309 accessions from 48 Vitis species,varieties, and outgroups, examined ~11 kb (~3.4 Mb total) of aligned nuclear DNA sequences from 27 unlinked genes in a phylogenetic context, and estimated divergence times based on fossil calibrations. Results Vitis formed a strongly supported clade. There was substantial support for species and less for the higher-level groupings (series). As estimated from extant taxa, the crown age of Vitis was 28 Ma and the divergence of subgenera (Vitis and Muscadinia) occurred at ~18 Ma. Higher clades in subgenus Vitis diverged 16 – 5 Ma with overlapping confidence intervals, and ongoing divergence formed extant species at 12 – 1.3 Ma. Several species had species-specific SNPs. NeighborNet analysis showed extensive reticulation at the core of subgenus Vitis representing the deeper nodes, with extensive reticulation radiating outward. Fitch Parsimony identified North America as the origin of the most recent common ancestor of extant Vitis species. Conclusions Phylogenetic patterns suggested origination of the genus in North America, fragmentation of an ancestral range during the Miocene, formation of extant species in the late Miocene-Pleistocene, and differentiation of species in the context of Pliocene-Quaternary tectonic and climatic change. Nuclear SNPs effectively resolved relationships at and below the species level in grapes and rectified several misclassifications of accessions in the repositories. Our results challenge current higher-level classifications, reveal the abundance of genetic diversity in the genus that is potentially available for crop improvement, and provide a valuable resource for species delineation, germplasm conservation and use. PMID:23826735
Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data
Wang, Xuli; Zang, Rui; Yin, Zhiyuan; Kang, Zhensheng; Huang, Lili
2014-01-01
Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of Valsa and their Cytospora anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in Valsa because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS), β-tubulin (Btu), and translation elongation factor-1 alpha (EF1α), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species V. mali represented two distinct species, V. mali and V. pyri, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both V. mali and V. pyri. Host-range expansion led to the occurrence of V. pyri on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity. PMID:24834333
Comparison of mode estimation methods and application in molecular clock analysis
NASA Technical Reports Server (NTRS)
Hedges, S. Blair; Shah, Prachi
2003-01-01
BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.
Inferring the demographic history of European Ficedula flycatcher populations
2013-01-01
Background Inference of population and species histories and population stratification using genetic data is important for discriminating between different speciation scenarios and for correct interpretation of genome scans for signs of adaptive evolution and trait association. Here we use data from 24 intronic loci re-sequenced in population samples of two closely related species, the pied flycatcher and the collared flycatcher. Results We applied Isolation-Migration models, assignment analyses and estimated the genetic differentiation and diversity between species and between populations within species. The data indicate a divergence time between the species of <1 million years, significantly shorter than previous estimates using mtDNA, point to a scenario with unidirectional gene-flow from the pied flycatcher into the collared flycatcher and imply that barriers to hybridisation are still permeable in a recently established hybrid zone. Furthermore, we detect significant population stratification, predominantly between the Spanish population and other pied flycatcher populations. Conclusions Our results provide further evidence for a divergence process where different genomic regions may be at different stages of speciation. We also conclude that forthcoming analyses of genotype-phenotype relations in these ecological model species should be designed to take population stratification into account. PMID:23282063
Kernel and divergence techniques in high energy physics separations
NASA Astrophysics Data System (ADS)
Bouř, Petr; Kůs, Václav; Franc, Jiří
2017-10-01
Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.
Mitochondrial genomes of two Australian fishflies with an evolutionary timescale of Chauliodinae.
Yang, Fan; Jiang, Yunlan; Yang, Ding; Liu, Xingyue
2017-06-30
Fishflies (Corydalidae: Chauliodinae) with a total of ca. 130 extant species are one of the major groups of the holometabolous insect order Megaloptera. As a group which originated during the Mesozoic, the phylogeny and historical biogeography of fishflies are of high interest. The previous hypothesis on the evolutionary history of fishflies was based primarily on morphological data. To further test the existing phylogenetic relationships and to understand the divergence pattern of fishflies, we conducted a molecule-based study. We determined the complete mitochondrial (mt) genomes of two Australian fishfly species, Archichauliodes deceptor Kimmins, 1954 and Protochauliodes biconicus Kimmins, 1954, both members of a major subgroup of Chauliodinae with high phylogenetic significance. A phylogenomic analysis was carried out based on 13 mt protein coding genes (PCGs) and two rRNAs genes from the megalopteran species with determined mt genomes. Both maximum likelihood and Bayesian inference analyses recovered the Dysmicohermes clade as the sister group of the Archichauliodes clade + the Protochauliodes clade, which is consistent with the previous morphology-based hypothesis. The divergence time estimation suggested that the divergence among the three major subgroups of fishflies occurred during the Late Jurassic and Early Cretaceous when the supercontinent Pangaea was undergoing sequential breakup.
World health inequality: convergence, divergence, and development.
Clark, Rob
2011-02-01
Recent studies characterize the last half of the twentieth century as an era of cross-national health convergence, with some attributing welfare gains in the developing world to economic growth. In this study, I examine the extent to which welfare outcomes have actually converged and the extent to which economic development is responsible for the observed trends. Drawing from estimates covering 195 nations during the 1955-2005 period, I find that life expectancy averages converged during this time, but that infant mortality rates continuously diverged. I develop a narrative that implicates economic development in these contrasting trends, suggesting that health outcomes follow a "welfare Kuznets curve." Among poor countries, economic development improves life expectancy more than it reduces infant mortality, whereas the situation is reversed among wealthier nations. In this way, development has contributed to both convergence in life expectancy and divergence in infant mortality. Drawing from 674 observations across 163 countries during the 1980-2005 period, I find that the positive effect of GDP PC on life expectancy attenuates at higher levels of development, while the negative effect of GDP PC on infant mortality grows stronger. Copyright © 2010 Elsevier Ltd. All rights reserved.
Radiation of the Drosophila nannoptera species group in Mexico.
Lang, M; Polihronakis Richmond, M; Acurio, A E; Markow, T A; Orgogozo, V
2014-03-01
The Drosophila nannoptera species group, a taxon of Mexican cactophilic flies, is an excellent model system to study the influence of abiotic and biotic factors on speciation, the genetic causes of ecological specialization and the evolution of unusual reproductive characters. However, the phylogenetic relationships in the nannoptera species group and its position within the virilis-repleta phylogeny have not been thoroughly investigated. Using a multilocus data set of gene coding regions of eight nuclear and three mitochondrial genes, we found that the four described nannoptera group species diverged rapidly, with very short internodes between divergence events. Phylogenetic analysis of repleta group lineages revealed that D. inca and D. canalinea are sister to all other repleta group species, whereas the annulimana species D. aracataca and D. pseudotalamancana are sister to the nannoptera and bromeliae species groups. Our divergence time estimates suggest that the nannoptera species group radiated following important geological events in Central America. Our results indicate that a single evolutionary transition to asymmetric genitalia and to unusual sperm storage may have occurred during evolution of the nannoptera group. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Isolation with Migration Models for More Than Two Populations
Hey, Jody
2010-01-01
A method for studying the divergence of multiple closely related populations is described and assessed. The approach of Hey and Nielsen (2007, Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA. 104:2785–2790) for fitting an isolation-with-migration model was extended to the case of multiple populations with a known phylogeny. Analysis of simulated data sets reveals the kinds of history that are accessible with a multipopulation analysis. Necessarily, processes associated with older time periods in a phylogeny are more difficult to estimate; and histories with high levels of gene flow are particularly difficult with more than two populations. However, for histories with modest levels of gene flow, or for very large data sets, it is possible to study large complex divergence problems that involve multiple closely related populations or species. PMID:19955477
Isolation with migration models for more than two populations.
Hey, Jody
2010-04-01
A method for studying the divergence of multiple closely related populations is described and assessed. The approach of Hey and Nielsen (2007, Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA. 104:2785-2790) for fitting an isolation-with-migration model was extended to the case of multiple populations with a known phylogeny. Analysis of simulated data sets reveals the kinds of history that are accessible with a multipopulation analysis. Necessarily, processes associated with older time periods in a phylogeny are more difficult to estimate; and histories with high levels of gene flow are particularly difficult with more than two populations. However, for histories with modest levels of gene flow, or for very large data sets, it is possible to study large complex divergence problems that involve multiple closely related populations or species.
Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape.
Bryson, Robert W; García-Vázquez, Uri Omar; Riddle, Brett R
2012-01-01
The widespread montane Mexican horned lizard Phrynosoma orbiculare (Squamata: Phrynosomatidae) represents an ideal species to investigate the relative impacts of Neogene vicariance and Quaternary climate change on lineage diversification across the Mexican highlands. We used mitochondrial DNA to examine the maternal history of P. orbiculare and estimate the timing and tempo of lineage diversification. Based on our results, we inferred 11 geographically structured, well supported mitochondrial lineages within this species, suggesting P. orbiculare represents a species complex. Six divergences between lineages likely occurred during the Late Miocene and Pliocene, and four splits probably happened during the Pleistocene. Diversification rate appeared relatively constant through time. Spatial and temporal divergences between lineages of P. orbiculare and co-distributed taxa suggest that a distinct period of uplifting of the Transvolcanic Belt around 7.5-3 million years ago broadly impacted diversification in taxa associated with this mountain range. To the north, several river drainages acting as filter barriers differentially subdivided co-distributed highland taxa through time. Diversification patterns observed in P. orbiculare provide additional insight into the mechanisms that impacted differentiation of highland taxa across the complex Mexican highlands. Copyright © 2011 Elsevier Inc. All rights reserved.
When can stress facilitate divergence by altering time to flowering?
Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A
2015-12-01
Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.
Phylogeny and Divergence Times of Gymnosperms Inferred from Single-Copy Nuclear Genes
Guo, Dong-Mei; Yang, Zu-Yu; Wang, Xiao-Quan
2014-01-01
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms. PMID:25222863
Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun
2017-01-01
Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
Thompson, Dawn; Regev, Aviv; Roy, Sushmita
2015-01-01
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C.; Beymer, David; Rangarajan, Anand
2010-01-01
In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions – specifically Mixture of Gaussians – estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes. PMID:20426043
Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C; Beymer, David; Rangarajan, Anand
2009-01-01
In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions--specifically Mixture of Gaussians--estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes.
Role of mantle flow in Nubia-Somalia plate divergence
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Iaffaldano, G.; Calais, E.
2015-01-01
Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.
Isolation and characterization of a highly evolved type 3 vaccine-derived poliovirus in China.
Zhang, Xiaowei; Qin, Chong; Li, Wei; Zheng, Zhenhua; Wang, Hanzhong; Cui, Zongqiang
2017-06-15
In this study, we report the identification and characterization of a highly evolved type 3 vaccine-derived poliovirus (VDPV) strain designated as WIV14, isolated in 2014 from a 4-year-old child suspected of having an enteroviral infection in China. Complete genome sequence of WIV14 revealed multiple nucleotide substitutions when compared with the attenuated poliovirus (PV) Sabin 3, including the reversion of three major attenuation sites to wild type. From the nucleotide divergence for the P1/capsid region, we estimated that the evolution time of WIV14 was more than 7 years, indicating the possible long time of replication. WIV14 strain seemed to have differences in biological characteristics compared with attenuated PV strains, such as being non-temperature-sensitive and producing large plaques. The current isolation of a highly divergent type 3 VDPV gives an idea of the risk of emergent VDPV strains, and emphasizes the importance of maintaining high vaccination coverage and herd immunity against PVs in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Skourtanioti, Eirini; Kapli, Paschalia; Ilgaz, Çetin; Kumlutaş, Yusuf; Avcı, Aziz; Ahmadzadeh, Faraham; Crnobrnja-Isailović, Jelka; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos
2016-10-01
Morphological and DNA data support that the East Mediterranean snake-eyed skink Ablepharus kitaibelii represents a species complex that includes four species A. kitaibelii, A. budaki, A. chernovi, and A. rueppellii, highlighting the need of its taxonomic reevaluation. Here, we used Bayesian and Maximum Likelihood methods to estimate the phylogenetic relationships of all members of the complex based on two mitochondrial (cyt b, 16S rRNA) and two nuclear markers (MC1R, and NKTR) and using Chalcides, Eumeces, and Eutropis as outgroups. The biogeographic history of the complex was also investigated through the application of several phylogeographic (BEAST) and biogeographic (BBM) analyses. Paleogeographic and paleoclimatic data were used to support the inferred phylogeographic patterns. The A. kitaibelli species complex exhibits high genetic diversity, revealing cases of hidden diversity and cases of non-monophyletic species such as A. kitaibelii and A. budaki. Our results indicate that A. pannonicus branches off first and a group that comprises specimens of A. kitaibelli and A. budaki from Kastelorizo Island group (southeast Greece) and southwest Turkey, respectively is differentiated from the rest A. kitaibelli and A. budaki populations and may represent a new species. The estimated divergence times place the origin of the complex in the Middle Miocene (∼16Mya) and the divergence of most currently recognized species in the Late Miocene. The inferred ancestral distribution suggests that the complex originated in Anatolia, supposing that several vicariance and dispersal events that are related with the formation of the Mid-Aegean Trench, the Anatolian Diagonal and the orogenesis of the mountain chains in southern and eastern Anatolia have led to current distribution pattern of A. kitaibelii species complex in the Balkans and Middle East. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, L.; Weisberg, R. H.
2016-02-01
A 3D, numerical circulation model, with high resolution (20 m) at important mass conveyances (inlets and rivers etc.), is developed to estimate the bulk residence time and diagnose the salt balances and salt fluxes for Tampa Bay estuary. These analyses are justified via quantitative comparisons between the simulation and observations of sea level, velocity and salinity. The non-tidal circulation is the primary agent for the flushing of Tampa Bay. Tides alone have a minor effect. Exceptions pertain to within a tidal excursion from the bay mouth and regions with multiple inlets where different tide phases aid in flushing. The fully 3D salt flux divergences (SFD) and fluxes vary spatially throughout the estuary. On experimental duration (three month) average, the total advective SFD is balanced primarily by the vertical diffusive SFD, except near the bottom of the channel where the horizontal diffusive SFD is also important. Instantaneously, the local rate of salinity change is controlled primarily by the advective SFD, with a secondary contribution by the vertical diffusive SFD everywhere and the horizontal diffusive SFD near the channel bottom. After decomposing the advective salt fluxes and their divergences into mean quantity and tidal pumping, the horizontal and vertical advective SFDs by the mean quantities are large and counterbalance, with their sum being a small but significant residual. The horizontal and vertical advective SFDs by tidal pumping are relatively small (when compared with the mean quantities) and counterbalance; but, when summed, their residual is comparable in magnitude to that by the mean quantities. So whereas the salt fluxes by tidal pumping are secondary importance to the salt fluxes by the mean quantities, their total flux divergences are of comparable importance. The salt flux 3D components vary along the Tampa Bay axis, and these findings may be typical of coastal plain estuaries given their geometrical complexities.
Coalescent genealogy samplers: windows into population history
Kuhner, Mary K.
2016-01-01
Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program. PMID:19101058
Coalescent genealogy samplers: windows into population history.
Kuhner, Mary K
2009-02-01
Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program.
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae).
Pavan, Ana C; Marroig, Gabriel
2017-03-01
We investigate the biogeographic processes related to the origin and current patterns of distribution of the extant species of the genus Pteronotus. This clade of insectivorous bats is widely distributed in the Neotropical Region and has recently gone through a taxonomic update which increased more than twice its diversity. Using six molecular markers of 15 Pteronotus lineages ranging from Mexico to Central Brazil, we reconstruct a time-calibrated tree and infer molecular evolutionary rates for this bat genus. In addition, estimates of range evolution across phylogeny were obtained through statistical model testing among six different biogeographic models. The origin of the genus Pteronotus occurred approximately 16million years ago (Ma), with initial cladogenesis events being evenly distributed across the phylogeny. Divergence between most closely related species is recent, falling in the Pleistocene period less than 2.6Ma. Mainland lineages present congruent patterns of north versus south continent splitting while insular clades differ in their time of arrival in the Caribbean Islands. Temporal and geographic range estimates for early nodes of Pteronotus phylogeny suggest a central role of Neogene tectonic reorganizations of Central America in the group diversification process. Also, South American colonization by Pteronotus occurred early in the genus history. Founder-event speciation was an important mode of lineage splitting in Pteronotus, with two independent dispersal jumps having occurred to the Greater Antilles. Finally, Pleistocenic sea-level variation and climatic oscillations are possibly associated with divergence between sister-species and recent ages of MRCA for Pteronotus species. Copyright © 2017 Elsevier Inc. All rights reserved.
Uncertainty Quantification using Exponential Epi-Splines
2013-06-01
Leibler divergence. The choice of κ in applications can be informed by the fact that the Kullback - Leibler divergence between two normal densities, ϕ1... of ran- dom output quantities of interests. The framework systematically incorporates hard information derived from physics-based sensors, field test ... information , and determines the ‘best’ estimate within that family. Bayesian estima- tion makes use of prior soft information
Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images
Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.
2013-01-01
Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342
Biogeographic Dating of Speciation Times Using Paleogeographically Informed Processes
Landis, Michael J.
2017-01-01
Abstract Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of Earth’s history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts are available for use with RevBayes. PMID:27155009
Genome size evolution in relation to leaf strategy and metabolic rates revisited.
Beaulieu, Jeremy M; Leitch, Ilia J; Knight, Charles A
2007-03-01
It has been proposed that having too much DNA may carry physiological consequences for plants. The strong correlation between DNA content, cell size and cell division rate could lead to predictable morphological variation in plants, including a negative relationship with leaf mass per unit area (LMA). In addition, the possible increased demand for resources in species with high DNA content may have downstream effects on maximal metabolic efficiency, including decreased metabolic rates. Tests were made for genome size-dependent variation in LMA and metabolic rates (mass-based photosynthetic rate and dark respiration rate) using our own measurements and data from a plant functional trait database (Glopnet). These associations were tested using two metrics of genome size: bulk DNA amount (2C DNA) and monoploid genome size (1Cx DNA). The data were analysed using an evolutionary framework that included a regression analysis and independent contrasts using a phylogenetic tree with estimates of molecular diversification times. A contribution index for the LMA data set was also calculated to determine which divergences have the greatest influence on the relationship between genome size and LMA. A significant negative association was found between bulk DNA amount and LMA in angiosperms. This was primarily a result of influential divergences that may represent early shifts in growth form. However, divergences in bulk DNA amount were positively associated with divergences in LMA, suggesting that the relationship may be indirect and mediated through other traits directly related to genome size. There was a significant negative association between genome size and metabolic rates that was driven by a basal divergence between angiosperms and gymnosperms; no significant independent contrast results were found. Therefore, it is concluded that genome size-dependent constraints acting on metabolic efficiency may not exist within seed plants.
Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’
Whinnett, Alaine; Zimmermann, Marie; Willmott, Keith R; Herrera, Nimiadina; Mallarino, Ricardo; Simpson, Fraser; Joron, Mathieu; Lamas, Gerardo; Mallet, James
2005-01-01
‘Suture zones’ are areas where hybrid and contact zones of multiple taxa are clustered. Such zones have been regarded as strong evidence for allopatric divergence by proponents of the Pleistocene forest refugia theory, a vicariance hypothesis frequently used to explain diversification in the Amazon basin. A central prediction of the refugia and other vicariance theories is that the taxa should have a common history so that divergence times should be coincident among taxa. A suture zone for Ithomiinae butterflies near Tarapoto, NE Peru, was therefore studied to examine divergence times of taxa in contact across the zone. We sequenced 1619 bp of the mitochondrial COI/COII region in 172 individuals of 31 species from across the suture zone. Inferred divergence times differed remarkably, with divergence between some pairs of widespread species (each of which may have two or more subspecies interacting in the zone, as in the genus Melinaea) being considerably less than that between hybridizing subspecies in other genera (for instance in Oleria). Our data therefore strongly refute a simple hypothesis of simultaneous vicariance and suggest that ongoing parapatric or other modes of differentiation in continuous forest may be important in driving diversification in Amazonia. PMID:16271979
Evolutionary Diversification of New Caledonian Araucaria
Kranitz, Mai Lan; Biffin, Edward; Clark, Alexandra; Hollingsworth, Michelle L.; Ruhsam, Markus; Gardner, Martin F.; Thomas, Philip; Mill, Robert R.; Ennos, Richard A.; Gaudeul, Myriam; Lowe, Andrew J.; Hollingsworth, Peter M.
2014-01-01
New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade. PMID:25340350
Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure
Berisha, Visar; Wisler, Alan; Hero, Alfred O.; Spanias, Andreas
2015-01-01
Information divergence functions play a critical role in statistics and information theory. In this paper we show that a non-parametric f-divergence measure can be used to provide improved bounds on the minimum binary classification probability of error for the case when the training and test data are drawn from the same distribution and for the case where there exists some mismatch between training and test distributions. We confirm the theoretical results by designing feature selection algorithms using the criteria from these bounds and by evaluating the algorithms on a series of pathological speech classification tasks. PMID:26807014
An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
NASA Astrophysics Data System (ADS)
Dukkipati, Ambedkar; Manathara, Joel George
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.
Behavioral versus genetic determination of lipoproteins andidentical twins discordant for exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Paul T.; Blanche, Patricia J.; Krauss, Ronald M.
Lipoprotein and weight differences between vigorously active and sedentary MZ twins are used to: (1) estimate the effects of training while controlling for genotype; (2) estimate genetic concordance in the presence of divergent lifestyles.
Segmenting the human genome based on states of neutral genetic divergence.
Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D
2013-09-03
Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.
Scarpassa, Vera Margarete; Conn, Jan E.
2011-01-01
Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene Epoch. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene Epoch for New World anophelines. PMID:22049039
Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.
2014-01-01
SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600
A molecular timescale of eukaryote evolution and the rise of complex multicellular life
Hedges, S Blair; Blair, Jaime E; Venturi, Maria L; Shoe, Jason L
2004-01-01
Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma. Conclusions The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2–3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity. PMID:15005799
A molecular timescale of eukaryote evolution and the rise of complex multicellular life
NASA Technical Reports Server (NTRS)
Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.
2004-01-01
BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to approximately 10 types at 1500 Ma and 50 cell types at approximately 1000 Ma. CONCLUSIONS: The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2-3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity.
Dawson, Natalie G.; Hope, Andrew G.; Talbot, Sandra L.; Cook, Joseph A.
2013-01-01
Aim: We examined data for ermine (Mustela erminea) to test two sets of diversification hypotheses concerning the number and location of late Pleistocene refugia, the timing and mode of diversification, and the evolutionary influence of insularization. Location: Temperate and sub-Arctic Northern Hemisphere. Methods: We used up to two mitochondrial and four nuclear loci from 237 specimens for statistical phylogeographical and demographic analyses. Coalescent species-tree estimation used a Bayesian approach for clade divergence based on external mutation rate calibrations. Approximate Bayesian methods were used to assess population size, timing of divergence and gene flow. Results: Limited structure coupled with evidence of population growth across broad regions, including previously ice-covered areas, indicated expansion from multiple centres of differentiation, but high endemism along the North Pacific coast (NPC). A bifurcating model of diversification with recent growth spanning three glacial cycles best explained the empirical data. Main conclusions: A newly identified clade in North America indicated a fourth refugial area for ermine. The shallow coalescence of all extant ermine reflects a recent history of diversification overlying a deeper fossil record. Post-glacial colonization has led to potential contact zones for multiple lineages in north-western North America. A model of diversification of ermine accompanied by recent gene flow was marginally less well supported than a model of divergence of major clades in response to the most recent glacial cycles.
Unmack, Peter J.; Dowling, Thomas E.; Laitinen, Nina J.; Secor, Carol L.; Mayden, Richard L.; Shiozawa, Dennis K.; Smith, Gerald R.
2014-01-01
Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyletic Pantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression. PMID:24619087
Mitogenomic analysis of the genus Panthera.
Wei, Lei; Wu, Xiaobing; Zhu, Lixin; Jiang, Zhigang
2011-10-01
The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one O(L)R, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.
Lóriga, Josmaily; Schmidt, Alexander R; Moran, Robbin C; Feldberg, Kathrin; Schneider, Harald; Heinrichs, Jochen
2014-09-01
• Closing gaps in the fossil record and elucidating phylogenetic relationships of mostly incomplete fossils are major challenges in the reconstruction of the diversification of fern lineages through time. The cosmopolitan family Dryopteridaceae represents one of the most species-rich families of leptosporangiate ferns, yet its fossil record is sparse and poorly understood. Here, we describe a fern inclusion in Miocene Dominican amber and investigate its relationships to extant Dryopteridaceae.• The morphology of the fossil was compared with descriptions of extant ferns, resulting in it being tentatively assigned to the bolbitidoid fern genus Elaphoglossum. This assignment was confirmed by reconstructing the evolution of the morphological characters preserved in the inclusion on a molecular phylogeny of 158 extant bolbitidoid ferns. To assess the morphology-based assignment of the fossil to Elaphoglossum, we examined DNA-calibrated divergence time estimates against the age of the amber deposits from which it came.• The fossil belongs to Elaphoglossum and is the first of a bolbitidoid fern. Its assignment to a particular section of Elaphoglossum could not be determined; however, sects. Lepidoglossa, Polytrichia, and Setosa can be discounted because the fossil lacks subulate scales or scales with acicular marginal hairs. Thus, the fossil might belong to either sects. Amygdalifolia, Wrightiana, Elaphoglossum, or Squamipedia or to an extinct lineage.• The discovery of a Miocene Elaphoglossum fossil provides remarkable support to current molecular clock-based estimates of the diversification of these ferns. © 2014 Botanical Society of America, Inc.
Lens, Frederic; Vos, Rutger A.; Charrier, Guillaume; van der Niet, Timo; Merckx, Vincent; Baas, Pieter; Aguirre Gutierrez, Jesus; Jacobs, Bart; Chacon Dória, Larissa; Smets, Erik; Delzon, Sylvain; Janssens, Steven B.
2016-01-01
Background and Aims Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. Methods After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species. The conditions under which the genera diversified were estimated using ancestral area reconstruction and optimization of ancestral climates, and xylem-specific conductivity measurements were performed. Key Results Viburnum, characterized by scalariform vessel perforations (ancestral), diversified earlier than Sambucus, having simple perforations (derived). Ancestral climate reconstruction analyses point to cold temperate preference for Viburnum and warm temperate for Sambucus. This is reflected in the xylem-specific conductivity rates of the co-occurring species investigated, showing that Viburnum lantana has rates much lower than Sambucus nigra. Conclusions The lack of selective pressure for high conductive efficiency during early diversification of Viburnum and the potentially adaptive value of scalariform perforations in frost-prone cold temperate climates have led to retention of the ancestral vessel perforation type, while higher temperatures during early diversification of Sambucus have triggered the evolution of simple vessel perforations, allowing more efficient long-distance water transport. PMID:27498812
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Nielsen, E.
Two bistatic VHF radar systems, STARE and SABRE, have been employed to estimate ionospheric electric fields in the geomagnetic latitude range 61.1 - 69.3° (geographic latitude range 63.8 - 72.6°) over northern Scandinavia. 173 days of good backscatter from all four radars have been analysed during the period 1982 to 1986, from which the average ionospheric divergence electric field versus latitude and time is calculated. The average magnetic field-aligned currents are computed using an AE-dependent empirical model of the ionospheric conductance. Statistical Birkeland current estimates are presented for high and low values of the Kp and AE indices as well as positive and negative orientations of the IMF B z component. The results compare very favourably to other ground-based and satellite measurements.
Hallas, Joshua M; Brian Simison, W; Gosliner, Terrence M
2016-04-01
Recent studies investigating vicariance and dispersal have been focused on correlating major geological events with instances of taxonomic expansion by incorporating the fossil record with molecular clock analyses. However, this approach becomes problematic for soft-bodied organisms that are poorly represented in the fossil record. Here, we estimate the phylogenetic relationships of the nudibranch genus Acanthodoris Gray, 1850 using three molecular markers (16S, COI, H3), and then test two alternative geologically calibrated molecular clock scenarios in BEAST and their effect on ancestral area reconstruction (AAR) estimates employed in LAGRANGE. The global temperate distribution of Acanthodoris spans multiple geological barriers, including the Bering Strait (∼5.32 Mya) and the Baja Peninsula (∼5.5 Mya), both of which are used in our dating estimates. The expansion of the Atlantic Ocean (∼95-105 Mya) is also used to calibrate the relationship between A. falklandica Eliot, 1905 and A. planca Fahey and Valdés, 2005, which are distributed in southern Chile and South Africa respectively. Phylogenetic analyses recovered strong biogeographical signal and recovered two major clades representing northern and southern hemispheric distributions of Acanthodoris. When all three geological events are applied to the calibration analyses, the age for Acanthodoris is estimated to be mid-Cretaceous. When the expansion of the Atlantic Ocean is excluded from our analyses, however, Acanthodoris is estimated to be much younger, with a divergence time estimate during the Miocene. Regardless of divergence estimates, our AAR suggests that Acanthodoris may have origins in the Atlantic Ocean with the Atlantic acting as a dispersal point to the northeastern Pacific. These results suggest that Acanthodoris exhibits a rare instance of western trans-arctic expansion. This study also shows that northeast Pacific specimens of A. pilosa should be regarded as A. atrogriseata and that A. serpentinotus should be regarded as a synonym of A. pina. Copyright © 2016 Elsevier Inc. All rights reserved.
Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain
NASA Astrophysics Data System (ADS)
Moderow, U.; Feigenwinter, C.; Bernhofer, C.
2007-04-01
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5 10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.
Calvo, Marta; Alda, Fernando; Oliverio, Marco; Templado, José; Machordom, Annie
2015-10-01
Four genetically distinct clades were recently described under the name Dendropoma petraeum, a Mediterranean endemic vermetid gastropod. The aim of this work is to date the processes that drove to the diversification within this taxon and to relate them to the corresponding historical events occurred in the Mediterranean Sea. Sequences from mitochondrial and nuclear markers were obtained from specimens collected in 29 localities spanning over 4000km across the entire distribution range of D. petraeum species complex. The phylogenetic and coalescent-based analyses confirmed the four well-supported and largely differentiated lineages of D. petraeum, clearly delimited geographically along a west-east axis within the Mediterranean Sea: Western, Tyrrhenian-Sicilian, Ionian-Aegean and Levantine lineages. Divergence time estimates, obtained using a range of known substitution rates for other marine gastropods, indicated two main stages of diversification. In the first period (between 9.5 and 4.5mya), the ancestral D. petraeum diverged into the current four lineages. The most recent period occurred between 3.72 and 0.66mya in the late Pliocene-early Pleistocene, and included the main within-lineage diversification events. Therefore, if the divergence time between the major lineages of Dendropoma in the Mediterranean actually predated or coincided with the Messinian Salinity Crisis, then they should have survived to this dramatic period within the Mediterranean, as supported by Bayes Factors model comparison. Conversely, if the divergence started after the crisis, congruent with the idea that no true marine organism survived the Messinian Salinity Crisis, then our results indicate substitution rates of Dendropoma much higher than usual (5.16% per million years for COI, 3.04% for 16S). More recent climate changes seem to have conditioned the demographic history of each lineage differently. While Western and Tyrrhenian-Sicilian lineages both underwent an increase in their effective population sizes from 1.5 to 0.6mya coinciding with a long interglacial period, the Ionian-Aegean and Levantine lineages showed constant effective population sizes since 2-2.5mya, suggesting that these eastern lineages might represent small and relict populations surviving the subsequent Quaternary glaciations in isolated refugia. Copyright © 2015 Elsevier Inc. All rights reserved.
Rodríguez, V; Brown, R P; Terrasa, B; Pérez-Mellado, V; Castro, J A; Picornell, A; Ramon, M M
2013-10-01
Two monophyletic sister species of wall lizards inhabit the two main groups of Balearic Islands: Podarcis lilfordi from islets and small islands around Mallorca and Menorca and Podarcis pityusensis from Ibiza, Formentera and associated islets. Genetic diversity within the endangered P. lilfordi has been well characterized, but P. pityusensis has not been studied in depth. Here, 2430 bp of mtDNA and 15 microsatellite loci were analysed from P. pityusensis populations from across its natural range. Two main genetic groupings were identified, although geographical structuring differed slightly between the mtDNA and the nuclear loci. In general, individuals from islets/islands adjacent to the main island of Ibiza were genetically distinct from those from Formentera and the associated Freus islands for both mtDNA and the nuclear loci. However, most individuals from the island of Ibiza were grouped with neighbouring islets/islands for nuclear loci, but with Formentera and Freus islands for the mitochondrial locus. A time-calibrated Bayesian tree was constructed for the principal mitochondrial lineages within the Balearics, using the multispecies coalescent model, and provided statistical support for divergence of the two main P. pityusensis lineages 0.111-0.295 Ma. This suggests a mid-late Pleistocene intraspecific divergence, compared with an early Pleistocene divergence in P. lilfordi, and postdates some major increases in sea level between 0.4 and 0.6 Ma, which may have flooded Formentera. The program IMa2 provided a posterior divergence time of 0.089-0.221 Ma, which was similar to the multispecies coalescent tree estimate. More significantly, it indicated low but asymmetric effective gene copy migration rates, with higher migration from Formentera to Ibiza populations. Our findings suggest that much of the present-day diversity may have originated from a late Pleistocene colonization of one island group from the other, followed by allopatric divergence of these populations. Subsequent gene flow between these insular groups seems likely to be explained by recent human introductions. Two evolutionary significant units can be defined for P. pityusensis but these units would need to exclude the populations that have been the subjects of recent admixture. © 2013 John Wiley & Sons Ltd.
Mamos, Tomasz; Bącela-Spychalska, Karolina; Rewicz, Tomasz; Wattier, Remi A.
2017-01-01
Background The Balkans are a major worldwide biodiversity and endemism hotspot. Among the freshwater biota, amphipods are known for their high cryptic diversity. However, little is known about the temporal and paleogeographic aspects of their evolutionary history. We used paleogeography as a framework for understanding the onset of diversification in Gammarus roeselii: (1) we hypothesised that, given the high number of isolated waterbodies in the Balkans, the species is characterised by high level of cryptic diversity, even on a local scale; (2) the long geological history of the region might promote pre-Pleistocene divergence between lineages; (3) given that G. roeselii thrives both in lakes and rivers, its evolutionary history could be linked to the Balkan Neogene paleolake system; (4) we inspected whether the Pleistocene decline of hydrological networks could have any impact on the diversification of G. roeselii. Material and Methods DNA was extracted from 177 individuals collected from 26 sites all over Balkans. All individuals were amplified for ca. 650 bp long fragment of the mtDNA cytochrome oxidase subunit I (COI). After defining molecular operational taxonomic units (MOTU) based on COI, 50 individuals were amplified for ca. 900 bp long fragment of the nuclear 28S rDNA. Molecular diversity, divergence, differentiation and historical demography based on COI sequences were estimated for each MOTU. The relative frequency, geographic distribution and molecular divergence between COI haplotypes were presented as a median-joining network. COI was used also to reconstruct time-calibrated phylogeny with Bayesian inference. Probabilities of ancestors’ occurrence in riverine or lacustrine habitats, as well their possible geographic locations, were estimated with the Bayesian method. A Neighbour Joining tree was constructed to illustrate the phylogenetic relationships between 28S rDNA haplotypes. Results We revealed that G. roeselii includes at least 13 cryptic species or molecular operational taxonomic units (MOTUs), mostly of Miocene origin. A substantial Pleistocene diversification within-MOTUs was observed in several cases. We evidenced secondary contacts between very divergent MOTUs and introgression of nDNA. The Miocene ancestors could live in either lacustrine or riverine habitats yet their presumed geographic localisations overlapped with those of the Neogene lakes. Several extant riverine populations had Pleistocene lacustrine ancestors. Discussion Neogene divergence of lineages resulting in substantial cryptic diversity may be a common phenomenon in extant freshwater benthic crustaceans occupying areas that were not glaciated during the Pleistocene. Evolution of G. roeselii could be associated with gradual deterioration of the paleolakes. The within-MOTU diversification might be driven by fragmentation of river systems during the Pleistocene. Extant ancient lakes could serve as local microrefugia during that time. PMID:28265503
Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.
2013-01-01
Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140
Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphins
Cunha, Haydée A.; Moraes, Lucas C.; Medeiros, Bruna V.; Lailson-Brito, José; da Silva, Vera M. F.; Solé-Cava, Antonio M.; Schrago, Carlos G.
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using Bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin. PMID:22163290
Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins.
Cunha, Haydée A; Moraes, Lucas C; Medeiros, Bruna V; Lailson-Brito, José; da Silva, Vera M F; Solé-Cava, Antonio M; Schrago, Carlos G
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin.
Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos
2014-01-01
Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as PST/FST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171
Lithium ion beam divergence on SABRE extraction ion diode experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; Johnson, D.J.
Intense lithium beams are of particular interest for light ion inertial confinement fusion applications because lithium ions can be accelerated at high voltage in a single charge state (Li{sup +}) with a high mass-to-charge ratio and appropriate range for efficient focusing and heating of a hohlraum ICF target. Scaling to ion power densities adequate to drive high gain pellet implosions (600 TW at 30 MeV) will require a large number of beams transported, temporally bunched, and focused onto a target, with the necessary target standoff to ensure survival of the driver modules. For efficient long distance transport and focusing tomore » a small pellet, lithium beam divergence must be reduced to about 12 mrad or less (depending on the transport scheme). To support the eventual development of a light ion driver module for ICF applications, the authors are currently working to improve the composition, uniformity, and divergence of lithium ion beams produced by both passive LiF and active laser-generated lithium ion sources on extraction applied-B ion diodes on the SABRE accelerator (1 TW, 5 MV, 250 kA). While lithium beam divergence accounting and control are an essential goal of these experiments, divergence measurements for lithium beams present some unique problems not encountered to the same degree in divergence measurements on proton sources. To avoid these difficulties, the authors have developed a large aperture ion imaging diagnostic for time-resolved lithium divergence measurements. The authors will report on the operation of this lithium beam divergence diagnostic and on results of time-resolved divergence measurements in progress for passive LiF ion sources and laser-produced active lithium sources operated in diode configurations designed to control divergence growth. Comparisons will also be made with time-integrated divergence results obtained with small entrance aperture ultracompact pinhole cameras.« less
Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae.
Deng, Jia-bin; Drew, Bryan T; Mavrodiev, Evgeny V; Gitzendanner, Matthew A; Soltis, Pamela S; Soltis, Douglas E
2015-02-01
Saxifragaceae (Saxifragales) contain approximately 640 species and 33 genera, about half of which are monotypic. Due to factors such as morphological stasis, convergent morphological evolution, and disjunct distributions, relationships within Saxifragaceae have historically been troublesome. The family occurs primarily in mountainous regions of the Northern Hemisphere, with the highest generic and species diversity in western North America, but disjunct taxa are known from southern South America. Here, we integrate broad gene (56 loci) and taxon (223 species) sampling strategies, both the most comprehensive to date within Saxifragaceae, with fossil calibrations and geographical distribution data to address relationships, divergence times, and historical biogeography among major lineages of Saxifragaceae. Two previously recognized main clades, the heucheroids (eight groups+Saniculiphyllum) and saxifragoids (Saxifraga s.s.), were re-affirmed by our phylogenetic analyses. Relationships among the eight heucheroid groups, as well as the phylogenetic position of Saniculiphyllum within the heucheroids, were resolved with mostly high support. Divergence time estimates indicate that Saxifragaceae began to diversify ca. 38.37 million years ago (Mya; 95% HPD=30.99-46.11Mya) in the Mid-Late Eocene, and that the two major lineages, the heucheroids and saxifragoids, began to diversify approximately 30.04Mya (95% HPD=23.87-37.15Mya) and 30.85 Mya (95% HPD=23.47-39.33Mya), respectively. We reconstructed ancestral geographic areas using statistical dispersal-vicariance (S-DIVA). These analyses indicate several radiations within Saxifragaceae: one in eastern Asia and multiple radiations in western North America. Our results also demonstrate that large amounts of sequence data coupled with broad taxon sampling can help resolve clade relationships that have thus far seemed intractable. Copyright © 2014 Elsevier Inc. All rights reserved.
Liao, Pei-Chun; Tsai, Chi-Chu; Chou, Chang-Hung; Chiang, Yu-Chung
2012-01-01
The landrace strains of Momordica charantia are widely cultivated vegetables throughout the tropics and subtropics, but not in Taiwan, a continental island in Southeast Asia, until a few hundred years ago. In contrast, the related wild populations with smaller fruit sizes are native to Taiwan. Because of the introduction of cultivars for agricultural purposes, these two accessions currently exhibit a sympatric or parapatric distribution in Taiwan. In this study, the cultivars and wild samples from Taiwan, India, and Korea were collected for testing of their hybridization and evolutionary patterns. The cpDNA marker showed a clear distinction between accessions of cultivars and wild populations of Taiwan and a long divergence time. In contrast, an analysis of eight selectively neutral nuclear microsatellite loci did not reveal a difference between the genetic structures of these two accessions. A relatively short divergence time and frequent but asymmetric gene flows were estimated based on the isolation-with-migration model. Historical and current introgression from cultivars to wild populations of Taiwan was also inferred using MIGRATE-n and BayesAss analyses. Our results showed that these two accessions shared abundant common ancestral polymorphisms, and the timing of the divergence and colonization of the Taiwanese wild populations is consistent with the geohistory of the Taiwan Strait land bridge of the Last Glacial Maximum (LGM). Long-term and recurrent introgression between accessions indicated the asymmetric capacity to receive foreign genes from other accessions. The modern introduction of cultivars of M. charantia during the colonization of Taiwan by the Han Chinese ethnic group enhanced the rate of gene replacement in the native populations and resulted in the loss of native genes.
Liao, Pei-Chun; Tsai, Chi-Chu; Chou, Chang-Hung; Chiang, Yu-Chung
2012-01-01
The landrace strains of Momordica charantia are widely cultivated vegetables throughout the tropics and subtropics, but not in Taiwan, a continental island in Southeast Asia, until a few hundred years ago. In contrast, the related wild populations with smaller fruit sizes are native to Taiwan. Because of the introduction of cultivars for agricultural purposes, these two accessions currently exhibit a sympatric or parapatric distribution in Taiwan. In this study, the cultivars and wild samples from Taiwan, India, and Korea were collected for testing of their hybridization and evolutionary patterns. The cpDNA marker showed a clear distinction between accessions of cultivars and wild populations of Taiwan and a long divergence time. In contrast, an analysis of eight selectively neutral nuclear microsatellite loci did not reveal a difference between the genetic structures of these two accessions. A relatively short divergence time and frequent but asymmetric gene flows were estimated based on the isolation-with-migration model. Historical and current introgression from cultivars to wild populations of Taiwan was also inferred using MIGRATE-n and BayesAss analyses. Our results showed that these two accessions shared abundant common ancestral polymorphisms, and the timing of the divergence and colonization of the Taiwanese wild populations is consistent with the geohistory of the Taiwan Strait land bridge of the Last Glacial Maximum (LGM). Long-term and recurrent introgression between accessions indicated the asymmetric capacity to receive foreign genes from other accessions. The modern introduction of cultivars of M. charantia during the colonization of Taiwan by the Han Chinese ethnic group enhanced the rate of gene replacement in the native populations and resulted in the loss of native genes. PMID:22754378
Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea.
Garg, Kritika M; Chattopadhyay, Balaji; Wilton, Peter R; Malia Prawiradilaga, Dewi; Rheindt, Frank E
2018-08-01
Cyclical periods of global cooling have been important drivers of biotic differentiation throughout the Quaternary. Ice age-induced sea level fluctuations can lead to changing patterns of land connections, both facilitating and disrupting gene flow. In this study, we test if species with differing life histories are differentially affected by Quaternary land connections. We used genome-wide SNPs in combination with mitochondrial gene sequences to analyse levels of divergence and gene flow between two songbird complexes across two Wallacean islands that have been repeatedly connected during glaciations. Although the two bird complexes are similar in ecological attributes, the forest and edge-inhabiting golden whistler Pachycephala pectoralis is comparatively flexible in its diet and niche requirements as compared to the henna-tailed jungle-flycatcher Cyornis colonus, which is largely restricted to the forest interior. Using population-genomic and coalescent approaches, we estimated levels of gene flow, population differentiation and divergence time between the two island populations. We observed higher levels of differentiation, an approximately two to four times deeper divergence time and near-zero levels of gene flow between the two island populations of the more forest-dependent henna-tailed jungle-flycatcher as compared to the more generalist golden whistler. Our results suggest that Quaternary land bridges act as semipermeable agents of gene flow in Wallacea, allowing only certain taxa to connect between islands while others remain isolated. Quaternary land bridges do not accommodate all terrestrial species equally, differing in suitability according to life history and species biology. More generalist species are likely to use Quaternary land connections as a conduit for gene flow between islands whereas island populations of more specialist species may continue to be reproductively isolated even during periods of Quaternary land bridges. Copyright © 2018 Elsevier Inc. All rights reserved.
Nauheimer, Lars; Schley, Rowan J; Clements, Mark A; Micheneau, Claire; Nargar, Katharina
2018-06-02
Australia harbours a rich and highly endemic orchid flora, with c. 90 % of species endemic to the country. Despite that, the biogeographic history of Australasian orchid lineages is only poorly understood. Here we examined evolutionary relationships and the spatio-temporal evolution of the sun orchids (Thelymitra, 119 species), which display disjunct distribution patterns frequently found in Australasian orchid lineages. Phylogenetic analyses were conducted based on one nuclear (ITS) and three plastid markers (matK, psbJ-petA, ycf1) using Maximum Likelihood and Bayesian inference. Divergence time estimations were carried out with a relaxed molecular clock in a Bayesian framework. Ancestral ranges were estimated using the dispersal-extinction-cladogenesis model and an area coding based on major disjunctions. The phylogenetic analyses clarified intergeneric relationships within Thelymitrinae, with Epiblema being sister to Thelymitra plus Calochilus, both of which were well-supported. Within Thelymitra, eight major and several minor clades were retrieved in the nuclear and plastid phylogenetic reconstructions. Five major clades corresponded to species complexes previously recognized based on morphological characters, whereas other previously recognized species groups were found to be paraphyletic. Conflicting signals between the nuclear and plastid phylogenetic reconstructions provided support for hybridization and plastid capture events both in the deeper evolutionary history of the genus and more recently. Divergence time estimation placed the origin of Thelymitra in the late Miocene (c. 10.8 Ma) and the origin of the majority of the main clades within Thelymitra during the late Pliocene and early Pleistocene, with the majority of extant species arising during the Pleistocene. Ancestral range reconstruction revealed that the early diversification of the genus in the late Miocene and Pliocene took place predominantly in southwest Australia, where most species with highly restricted distributional ranges occur. Several long-distance dispersal events eastwards across the Nullarbor Plain were inferred, recurrently resulting in lineage divergence within the genus. The predominant eastwards direction of long-distance dispersal events in Thelymitra highlights the importance of the West Wind Drift for the present-day distribution of the genus, giving rise to the Thelymitra floras of Tasmania, New Zealand and New Caledonia, which were inferred to be of comparatively recent origin. Copyright © 2018. Published by Elsevier Inc.
Buonaccorsi, V P; McDowell, J R; Graves, J E
2001-05-01
Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.
NASA Astrophysics Data System (ADS)
Li, Jinyang; Shang, Pengjian
2018-07-01
Irreversibility is an important property of time series. In this paper, we propose the higher moments and multiscale Kullback-Leibler divergence to analyze time series irreversibility. The higher moments Kullback-Leibler divergence (HMKLD) can amplify irreversibility and make the irreversibility variation more obvious. Therefore, many time series whose irreversibility is hard to be found are also able to show the variations. We employ simulated data and financial stock data to test and verify this method, and find that HMKLD of stock data is growing in the form of fluctuations. As for multiscale Kullback-Leibler divergence (MKLD), it is very complex in the dynamic system, so that exploring the law of simulation and stock system is difficult. In conventional multiscale entropy method, the coarse-graining process is non-overlapping, however we apply a different coarse-graining process and obtain a surprising discovery. The result shows when the scales are 4 and 5, their entropy is nearly similar, which demonstrates MKLD is efficient to display characteristics of time series irreversibility.
Van Belleghem, Steven M; Baquero, Margarita; Papa, Riccardo; Salazar, Camilo; McMillan, W Owen; Counterman, Brian A; Jiggins, Chris D; Martin, Simon H
2018-03-22
Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a "large-X" effect, genome scans between recently diverged populations and species pairs often identify distinct patterns of divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster divergence on the sex chromosome, that is "faster-X", barriers to gene flow on the sex chromosome. However, demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used 224 whole-genome sequences representing 36 populations from two Heliconius butterfly clades (H. erato and H. melpomene) to explore patterns of Z chromosome divergence. We show that increased divergence compared to equilibrium expectations can in many cases be explained by demographic change. Among Heliconius erato populations, for instance, population size increase in the ancestral population can explain increased absolute divergence measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in parapatric or sympatric species comparisons that imply postzygotic reproductive barriers. Using simulations, we show that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of incompatibilities. Our work demonstrates the importance of taking demography into account to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z chromosome as a strong barrier to gene flow in incipient Heliconius butterfly species. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Estimating Divergence Parameters With Small Samples From a Large Number of Loci
Wang, Yong; Hey, Jody
2010-01-01
Most methods for studying divergence with gene flow rely upon data from many individuals at few loci. Such data can be useful for inferring recent population history but they are unlikely to contain sufficient information about older events. However, the growing availability of genome sequences suggests a different kind of sampling scheme, one that may be more suited to studying relatively ancient divergence. Data sets extracted from whole-genome alignments may represent very few individuals but contain a very large number of loci. To take advantage of such data we developed a new maximum-likelihood method for genomic data under the isolation-with-migration model. Unlike many coalescent-based likelihood methods, our method does not rely on Monte Carlo sampling of genealogies, but rather provides a precise calculation of the likelihood by numerical integration over all genealogies. We demonstrate that the method works well on simulated data sets. We also consider two models for accommodating mutation rate variation among loci and find that the model that treats mutation rates as random variables leads to better estimates. We applied the method to the divergence of Drosophila melanogaster and D. simulans and detected a low, but statistically significant, signal of gene flow from D. simulans to D. melanogaster. PMID:19917765
Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalén, Love
2015-06-01
The origin of domestic dogs is poorly understood [1-15], with suggested evidence of dog-like features in fossils that predate the Last Glacial Maximum [6, 9, 10, 14, 16] conflicting with genetic estimates of a more recent divergence between dogs and worldwide wolf populations [13, 15, 17-19]. Here, we present a draft genome sequence from a 35,000-year-old wolf from the Taimyr Peninsula in northern Siberia. We find that this individual belonged to a population that diverged from the common ancestor of present-day wolves and dogs very close in time to the appearance of the domestic dog lineage. We use the directly dated ancient wolf genome to recalibrate the molecular timescale of wolves and dogs and find that the mutation rate is substantially slower than assumed by most previous studies, suggesting that the ancestors of dogs were separated from present-day wolves before the Last Glacial Maximum. We also find evidence of introgression from the archaic Taimyr wolf lineage into present-day dog breeds from northeast Siberia and Greenland, contributing between 1.4% and 27.3% of their ancestry. This demonstrates that the ancestry of present-day dogs is derived from multiple regional wolf populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).
da Silva, M N; Patton, J L
1993-09-01
Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.
Carvalho, Fabrício Lopes; Magalhães, Célio; Mantelatto, Fernando Luis
2014-01-01
Abstract Palaemon carteri (Gordon, 1935) and Palaemon ivonicus (Holthuis, 1950) are morphologically similar species of South American freshwater shrimps. Past studies have questioned the taxonomic status of both species, which are supposed to have partially sympatric geographic distributions in the Amazon basin. We analyzed a 550 bp fragment of the mitochondrial 16S rRNA gene from these Amazonian Palaemon species as well as from 11 palaemonids as the outgroup. Additionally, we checked diagnostic characters of the genus and family as well as other morphological characters that have been little explored before. Palaemon carteri and Palaemon ivonicus are allocated in two sister lineages, with wide genetic divergence and little morphological differentiation. The divergence time between these lineages was estimated as approximately 10 million years ago. Both molecular and morphological data support the taxonomic validity of both Palaemon carteri and Palaemon ivonicus, refuting the hypothesis of synonymy. In addition, a new species, Palaemon yuna sp. n., closely related to Palaemon ivonicus, is described. Our findings indicate that these species can be differentiated using the projection of the anterolateral margin and anterolateral spine of the first antennular segment, shape of the rostrum, and relative size of the appendix masculina. PMID:25561832
Bae, Seung Eun; Kim, Hanna; Choi, Seok-Gwan; Kim, Jin-Koo
2018-01-12
Competitive overexploitation of the slender armorhead, Pentaceros wheeleri, a deep-sea fish inhabiting the Emperor Seamount Chain caused a serious population decline. Therefore, it is urgently necessary to clarify its genetic diversity and connectivity among populations of P. wheeleri for appropriate stock management. For this, we compared 677 base pairs (bp) of mitochondrial (mt) DNA control region (CR) sequences of 80 individuals from three seamounts (the Milwaukee, Kinmei, and Koko Seamounts) in the southern part of the Emperor Seamount Chain. Contrary to our expectation, the three seamount populations showed high genetic diversity, not yet reflecting effects from the recent population decline or due to mixed two clades. Analysis of molecular variance indicated no significant genetic differentiation between seamount populations, however, the neighbour-joining tree and minimum spanning network showed significant separation into two clades (K2P distance= 1.2-3.2%, ϕ st = 0.5739, p < .05) regardless of seamount. The divergence time between the two clades was estimated to be 0.3-0.8 Mya, during the period of Pleistocene glacial cycles, suggesting that associated environmental changes and the unique life history traits of Pentaceros spp. might have resulted in the initiation of divergence between these clades.
Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J
2015-09-28
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.
Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.
2015-01-01
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391
Guo, Peng; Liu, Qin; Zhu, Fei; Zhong, Guang H; Chen, Xin; Myers, Edward A; Che, Jing; Zhang, Liang; Ziegler, Thomas; Nguyen, Truong Q; Burbrink, Frank T
2016-06-01
Viridovipera stejnegeri is one of the most common pit vipers in Asia, with a wide distribution in southern China and Vietnam. We investigated historical demography and explored how the environment and climatic factors have shaped genetic diversity and the evolutionary history of this venomous snake. A total of 171 samples from 47 localities were sequenced and analysed for two mitochondrial gene fragments and three nuclear genes. Gene trees reveal the existence of two well-supported clades (Southwest China and Southeast China) with seven distinct and strongly supported, geographically structured subclades within V. stejnegeri. Estimation of divergence time and ancestral area suggests that V. stejnegeri originated at ~6.0 Ma in the late Miocene on the Yunnan-Guizhou Plateau. The estimated date of origin and divergence of the island populations of Taiwan and Hainan closely matches the geological origin of the both islands. The mtDNA gene tree reveals the presence of west-east diversification in V. stejnegeri populations. Complex orogenesis and heterogeneous habitats, as well as climate-mediated habitat differentiation including glacial cycles, all have influenced population structure and the distribution of this taxon. The validity of V. stejnegeri chenbihuii is questionable, and this subspecies most probably represents an invalid taxon. © 2016 John Wiley & Sons Ltd.
A Late Cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus.
Martínez, Camila; Carvalho, Mónica R; Madriñán, Santiago; Jaramillo, Carlos A
2015-02-01
Documented fossil floras in the neotropics are sparse, yet their records provide evidence on the spatial and temporal occurrence of taxa, allowing for testing of biogeographical and diversification scenarios on individual lineages. A new fossil Piper from the Late Cretaceous of Colombia is described here, and its importance for assessing diversification patterns in the genus is addressed. Leaf architecture of 32 fossil leaf compressions from the Guaduas Formation was compared with that of 294 extant angiosperm species. The phylogenetic position of the fossil named Piper margaritae sp. nov. was established based on leaf traits and a molecular scaffold of Piper. The age of the fossil was independently used as a calibration point for divergence time estimations. Natural affinities of P. margaritae to the Schilleria clade of Piper indicate that the genus occurred in tropical America by the Late Cretaceous. Estimates of age divergence and lineage accumulation reveal that most of the extant diversity of the genus accrued during the last ∼30 Myr. The recent radiation of Piper is coeval with both the Andean uplift and the emergence of Central America, which have been proposed as important drivers of diversity. This pattern could exemplify a recurrent theme among many neotropical plant lineages. © 2015 Botanical Society of America, Inc.
Genomic patterns of species diversity and divergence in Eucalyptus.
Hudson, Corey J; Freeman, Jules S; Myburg, Alexander A; Potts, Brad M; Vaillancourt, René E
2015-06-01
We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology. © 2015 University of Tasmania New Phytologist © 2015 New Phytologist Trust.
Costa, Wilson J E M; Amorim, Pedro F; Mattos, José Leonardo O
2017-11-01
The rich biological diversity of South America has motivated a series of studies associating evolution of endemic taxa with the dramatic geologic and climatic changes that occurred during the Cainozoic. The organism here studied is the killifish tribe Cynolebiini, a group of seasonal fishes uniquely inhabiting temporary pools formed during the rainy seasons. The Cynolebiini are found in open vegetation areas inserted in the main tropical and subtropical South American phytogeographical regions east of the Andes. Here, we present the first molecular phylogeny sampling all the eight genera of the Cynolebiini, using fragments of two mitochondrial and four nuclear genes for 35 species of Cynolebiini plus 19 species as outgroups. The dataset, 4448bp, was analysed under Bayesian and maximum likelihood approaches, providing a relatively well solved tree, which retrieves high support values for the Cynolebiini and most included clades. The resulting tree was used to estimate the time of divergence in included lineages using two cyprinodontiform fossils to calibrate the tree. We further investigated historical biogeography through the likelihood-based DEC model. Our estimates indicate that divergence between the clades comprising New World and Old World aplocheiloids occurred during the Eocene, about 50Mya, much more recent than the Gondwanan fragmentation scenario assumed in previous studies. This estimation is nearly synchronous to estimated splits involving other South American and African vertebrate clades, which have been explained by transoceanic dispersal through an ancient Atlantic island chain during the Palaeogene. We estimate that Cynolebiini split from its sister group Cynopoecilini in the Oligocene, about 25Mya and that Cynolebiini started to diversify giving origin to the present genera during the Miocene, about 20-14Mya. The Cynolebiini had an ancestral origin in the Atlantic Forest and probably were not present in the open vegetation formations of central and northeastern South America until the Middle Miocene, when expansion of dry open vegetation was favoured by cool temperatures and strike seasonality. Initial splitting between the genera Cynolebias and Simpsonichthys during the Miocene (about 14Mya) is attributed to the uplift of the Central Brazilian Plateau. Copyright © 2017 Elsevier Inc. All rights reserved.
Control of linear uncertain systems utilizing mismatched state observers
NASA Technical Reports Server (NTRS)
Goldstein, B.
1972-01-01
The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.
NASA Astrophysics Data System (ADS)
Davison, John; Ho, Simon Y. W.; Bray, Sarah C.; Korsten, Marju; Tammeleht, Egle; Hindrikson, Maris; Østbye, Kjartan; Østbye, Eivind; Lauritzen, Stein-Erik; Austin, Jeremy; Cooper, Alan; Saarma, Urmas
2011-02-01
This review provides an up-to-date synthesis of the matrilineal phylogeography of a uniquely well-studied Holarctic mammal, the brown bear. We extend current knowledge by presenting a DNA sequence derived from one of the earliest known fossils of a polar bear (dated to 115 000 years before present), a species that shares a paraphyletic mitochondrial association with brown bears. A molecular clock analysis of 140 mitochondrial DNA sequences, including our new polar bear sequence, provides novel insights into the times of origin for different brown bear clades. We propose a number of regional biogeographic scenarios based on genetic data, divergence time estimates and paleontological records. The case of the brown bear provides an example for researchers working with less well-studied taxa: it shows clearly that phylogeographic models based on patterns of modern genetic variation alone can be substantially improved by including data on historical patterns of genetic diversity in the form of ancient DNA sequences derived from accurately dated samples and by using an approach to divergence-time estimation that suits the data under analysis. Using such approaches it has been possible to (i) establish that the processes shaping modern genetic diversity in brown bears acted recently, within the last three glacial cycles; (ii) distinguish among hypotheses concerning species' responses to climatic oscillations in accordance with the lack of phylogeographic structure that existed in brown bears prior to the last glacial maximum (LGM); (iii) reassess theories linking monophyletic brown bear populations to particular LGM refuge areas; and (iv) identify vicariance events and track analogous patterns of migration by brown bears out of Eurasia to North America and Japan.
Galván-Quesada, Sesángari; Doadrio, Ignacio; Alda, Fernando; Perdices, Anabel; Reina, Ruth Gisela; García Varela, Martín; Hernández, Natividad; Campos Mendoza, Antonio; Bermingham, Eldredge; Domínguez-Domínguez, Omar
2016-01-01
Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and β-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes. PMID:27074006
THOMAS J. BRANDEIS; MARIA DEL ROCIO SUAREZ ROZO
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Perry, G M L; Audet, C; Bernatchez, L
2005-09-01
The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.
Gut microbiota may predict host divergence time during Glires evolution.
Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen
2017-03-01
The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Garzón-Orduña, Ivonne J; Menchaca-Armenta, Imelda; Contreras-Ramos, Atilano; Liu, Xingyue; Winterton, Shaun L
2016-09-20
The last time the phylogenetic relationships among members of the family Hemerobiidae were studied quantitatively was over 12 years ago and based exclusively on morphology. Our study builds upon this morphological evidence by adding sequence data from three gene loci to provide a total evidence phylogeny of brown lacewings (Neuroptera: Hemerobiidae). Thirty-seven species representing nineteen Hemerobiidae genera were compared with outgroups from the families Ithonidae, Psychopsidae and Chrysopidae in Bayesian and parsimony analyses using a single nuclear gene (CAD) and two mitochondrial (16S rDNA and Cytochrome Oxidase I) genes. We compare divergence time estimates of Hemerobiidae cladogenesis under the two most commonly used relaxed clock models and discuss the evolution of wing venation in the family. We recovered a phylogeny largely incongruent with previously published morphological studies, although all but two subfamilies (i.e., Notiobiellinae and Drepanacrinae) were recovered as monophyletic. We found the subfamily Drepanacrinae paraphyletic with respect to Psychobiellinae, and Notiobiellinae to be polyphyletic. We thus offer a revised concept of Notiobiellinae, comprising only Notiobiella Banks, and erect a new subfamily Zachobiellinae including the remaining genera previously placed in Notiobiellinae. Psychobiellinae is synonymized with Drepanacrinae. Unlike the previous hypothesis that proposed a remarkably laddered topology, our tree suggests that hemerobiids diverged as three main clades. Moreover, in contrast to the vein proliferation hypothesis, we found that hemerobiids have instead undergone multiple reductions in the number of radial veins, this scenario questions the relevance of this character as diagnostic of various subfamilies Our phylogenetic hypothesis and divergence times analysis suggest that extant hemerobiids originated around the end of the Triassic and evolved as three distinct clades that diverged from one another during the Late Jurassic to Early Cretaceous. Contrary to earlier phylogenetic hypotheses, Carobius Banks (Carobiinae) is sister to the previously unplaced genus Notherobius New in a clade more closely related to Sympherobiinae, Megalominae and Zachobiellinae subfam. nov. The addition of taxa which are not available for DNA sequencing should be the focus of future studies, especially Adelphohemerobius Oswald, which is particularly important to test our inferences regarding the evolution of wing venation in Hemerobiidae.
Non-Fickian dispersion of groundwater age
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2014-01-01
We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model. PMID:24976651
Divergence and codon usage bias of Betanodavirus, a neurotropic pathogen in fish.
He, Mei; Teng, Chun-Bo
2015-02-01
Betanodavirus is a small bipartite RNA virus of global economical significance that can cause severe neurological disorders to an increasing number of marine fish species. Herein, to further the understanding of the evolution of betanodavirus, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of their RNA polymerase and coat protein genes. Similar moderate nucleotide substitution rates were then estimated for the two genes. According to age calculations, the divergence of the two genes into the four genotypes initiated nearly simultaneously at ∼700 years ago, despite the different scenarios, whereas the seven analyzed chimeric isolates might be the outcomes of a single genetic reassortment event taking place in the early 1980s in Southern Europe. Furthermore, codon usage bias analyses indicated that each gene had influences in addition to mutational bias and codon choice of betanodavirus was not completely complied with that of fish host. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.
1981-01-01
By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.
A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica
Westbury, Michael; Baleka, Sina; Barlow, Axel; Hartmann, Stefanie; Paijmans, Johanna L.A.; Kramarz, Alejandro; Forasiepi, Analía M; Bond, Mariano; Gelfo, Javier N.; Reguero, Marcelo A.; López-Mendoza, Patricio; Taglioretti, Matias; Scaglia, Fernando; Rinderknecht, Andrés; Jones, Washington; Mena, Francisco; Billet, Guillaume; de Muizon, Christian; Aguilar, José Luis; MacPhee, Ross D.E.; Hofreiter, Michael
2017-01-01
The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of ∼66 Ma (95% credibility interval, 56.64–77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. PMID:28654082
Mammal madness: is the mammal tree of life not yet resolved?
Foley, Nicole M.; Springer, Mark S.
2016-01-01
Most molecular phylogenetic studies place all placental mammals into four superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchontoglires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters) and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these clades last shared a common ancestor 90–110 million years ago. This phylogeny has provided a framework for numerous functional and comparative studies. Despite the high level of congruence among most molecular studies, questions still remain regarding the position and divergence time of the root of placental mammals, and certain ‘hard nodes’ such as the Laurasiatheria polytomy and Paenungulata that seem impossible to resolve. Here, we explore recent consensus and conflict among mammalian phylogenetic studies and explore the reasons for the remaining conflicts. The question of whether the mammal tree of life is or can be ever resolved is also addressed. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325836
Evolution of nuclear rDNA ITS sequences in the Cladophora albida/sericea clade (Chlorophyta).
Bakker, F T; Olsen, J L; Stam, W T
1995-06-01
Ribosomal DNA ITS sequences were compared among 13 different species and biogeographic isolates from the monophyletic "albida/sericea clade" in the green algal genus Cladophora. Six distinct ITS sequence types were found, characterized by multiple insertions and deletions and high levels of nucleotide substitution. Conserved domains within the ITS regions indicate the presence of ITS secondary structure. Low transition/transversion ratios among the six types and nearly symmetrical tree-length frequency distributions indicate some saturation, and low phylogenetic signal. Although branching order among five of the six ITS sequence types could not be resolved, estimates of ITS sequence divergence as compared with 18S divergence in a subset of the taxa suggests that the origin of the different ITS types is probably in the mid-Miocene (12 Ma ago) but that biogeographic isolates within a single ITS type (including both Pacific and Atlantic representatives) have probably dispersed on a time scale of thousands rather than millions of years.
Jančúchová-Lásková, Jitka; Landová, Eva; Frynta, Daniel
2015-01-01
Hybridization between distinct species of animals and subsequent genetic introgression plays a considerable role in the speciation process and the emergence of adaptive characters. Fitness of between-species hybrids usually sharply decreases with the divergence time of the concerned species and the divergence depth, which still allows for a successful crossing differs among principal clades of vertebrates. Recently, a review of hybridization events among distinct lizard species revealed that lizards belong to vertebrates with a highly developed ability to hybridize. In spite of this, reliable reports of experimental hybridizations between genetically fairly divergent species are only exceptional. Here, we show the results of the crossing of two distinct allopatric species of eyelid geckos possessing temperature sex determination and lacking sex chromosomes: Eublepharis macularius distributed in Pakistan/Afghanistan area and E. angramainyu, which inhabits Mesopotamia and adjacent areas. We demonstrated that F1 hybrids were viable and fertile, and the introgression of E. angramainyu genes into the E. macularius genome can be enabled via a backcrossing. The examined hybrids (except those of the F2 generation) displayed neither malformations nor a reduced survival. Analyses of morphometric and coloration traits confirmed phenotypic distinctness of both parental species and their F1 hybrids. These findings contrast with long-term geographic and an evolutionary separation of the studied species. Thus, the occurrence of fertile hybrids of comparably divergent species, such as E. angramainyu and E. macularius, may also be expected in other taxa of squamates. This would violate the current estimates of species diversity in lizards. PMID:26633648
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
Estimating evolutionary rates in giant viruses using ancient genomes
Duchêne, Sebastián
2018-01-01
Abstract Pithovirus sibericum is a giant (610 Kpb) double-stranded DNA virus discovered in a purportedly 30,000-year-old permafrost sample. A closely related virus, Pithovirus massiliensis, was recently isolated from a sewer in southern France. An initial comparison of these two virus genomes assumed that P. sibericum was directly ancestral to P. massiliensis and gave a maximum evolutionary rate of 2.60 × 10−5 nucleotide substitutions per site per year (subs/site/year). If correct, this would make pithoviruses among the fastest-evolving DNA viruses, with rates close to those seen in some RNA viruses. To help determine whether this unusually high rate is accurate we utilized the well-known negative association between evolutionary rate and genome size in DNA microbes. This revealed that a more plausible rate estimate for Pithovirus evolution is ∼2.23 × 10−6 subs/site/year, with even lower estimates obtained if evolutionary rates are assumed to be time-dependent. Hence, we estimate that Pithovirus has evolved at least an order of magnitude more slowly than previously suggested. We then used our new rate estimates to infer a time-scale for Pithovirus evolution. Strikingly, this suggests that these viruses could have diverged at least hundreds of thousands of years ago, and hence have evolved over longer time-scales than previously suggested. We propose that the evolutionary rate and time-scale of pithovirus evolution should be reconsidered in the light of these observations and that future estimates of the rate of giant virus evolution should be carefully examined in the context of their biological plausibility. PMID:29511572
Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish.
Ingley, Spencer J; Johnson, Jerald B
2016-03-01
How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time. © 2016 The Author(s).
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila
2010-07-16
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees
Weaver, Timothy D.; Stringer, Chris B.
2015-01-01
A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on. PMID:26468243
Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea).
Jong, Rienk DE
2017-05-25
Fossil butterflies are extremely rare. Yet, they are the only direct evidence of the first appearance of particular characters and as such, they are crucial for calibrating a molecular clock, from which divergence ages are estimated. In turn, these estimates, in combination with paleogeographic information, are most important in paleobiogeographic considerations. The key issue here is the correct allocation of fossils on the phylogenetic tree from which the molecular clock is calibrated.The allocation of a fossil on a tree should be based on an apomorphic character found in a tree based on extant species, similar to the allocation of a new extant species. In practice, the latter is not done, at least not explicitly, on the basis of apomorphy, but rather on overall similarity or on a phylogenetic analysis, which is not possible for most butterfly fossils since they usually are very fragmentary. Characters most often preserved are in the venation of the wings. Therefore, special attention is given to possible apomorphies in venational characters in extant butterflies. For estimation of divergence times, not only the correct allocation of the fossil on the tree is important, but also the tree itself influences the outcome as well as the correct determination of the age of the fossil. These three aspects are discussed. All known butterfly fossils, consisting of 49 taxa, are critically reviewed and their relationship to extant taxa is discussed as an aid for correctly calibrating a molecular clock for papilionoid Lepidoptera. In this context some aspects of age estimation and biogeographic conclusions are briefly mentioned in review. Specific information has been summarized in four appendices.
2010-01-01
Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033
Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.
Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N
2016-06-01
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mourning dove population trend estimates from Call-Count and North American Breeding Bird Surveys
Sauer, J.R.; Dolton, D.D.; Droege, S.
1994-01-01
The mourning dove (Zenaida macroura) Callcount Survey and the North American Breeding Bird Survey provide information on population trends of mourning doves throughout the continental United States. Because surveys are an integral part of the development of hunting regulations, a need exists to determine which survey provides precise information. We estimated population trends from 1966 to 1988 by state and dove management unit, and assessed the relative efficiency of each survey. Estimates of population trend differ (P lt 0.05) between surveys in 11 of 48 states; 9 of 11 states with divergent results occur in the Eastern Management Unit. Differences were probably a consequence of smaller sample sizes in the Callcount Survey. The Breeding Bird Survey generally provided trend estimates with smaller variances than did the Callcount Survey. Although the Callcount Survey probably provides more withinroute accuracy because of survey methods and timing, the Breeding Bird Survey has a larger sample size of survey routes and greater consistency of coverage in the Eastern Unit.
Neopolyploidy and diversification in Heuchera grossulariifolia
Oswald, Benjamin P.; Nuismer, Scott L.
2013-01-01
Newly formed polyploid lineages must contend with several obstacles to avoid extinction, including minority cytotype exclusion, competition, and inbreeding depression. If polyploidization results in immediate divergence of phenotypic characters these hurdles may be reduced and establishment made more likely. In addition, if polyploidization alters the phenotypic and genotypic associations between traits, i.e. the P and G matrices, polyploids may be able to explore novel evolutionary paths, facilitating their divergence and successful establishment. Here we report results from a study of the perennial plant Heuchera grossulariifolia in which the phenotypic divergence and changes in phenotypic and genotypic covariance matrices caused by neopolyploidization have been estimated. Our results reveal that polyploidization causes immediate divergence for traits relevant to establishment and results in significant changes in the structure of the phenotypic covariance matrix. In contrast, our results do not provide evidence that polyploidization results in immediate and substantial shifts in the genetic covariance matrix. PMID:21143472
Almeida, Pedro; Barbosa, Raquel; Bensasson, Douda; Gonçalves, Paula; Sampaio, José Paulo
2017-04-01
In Saccharomyces cerevisiae, the main yeast in wine fermentation, the opportunity to examine divergence at the molecular level between a domesticated lineage and its wild counterpart arose recently due to the identification of the closest relatives of wine strains, a wild population associated with Mediterranean oaks. As genomic data are available for a considerable number of representatives belonging to both groups, we used population genomics to estimate the degree and distribution of nucleotide variation between wine yeasts and their closest wild relatives. We found widespread genomewide divergence, particularly at noncoding sites, which, together with above average divergence in trans-acting DNA binding proteins, may suggest an important role for divergence at the level of transcriptional regulation. Nine outlier regions putatively under strong divergent selection were highlighted by a genomewide scan under stringent conditions. Several cases of introgressions, originating in the sibling species Saccharomyces paradoxus, were also identified in the Mediterranean oak population. FZF1 and SSU1, mostly known for conferring sulphite resistance in wine yeasts, were among the introgressed genes, although not fixed. Because the introgressions detected in our study are not found in wine strains, we hypothesize that ongoing divergent ecological selection segregates the two forms between the different niches. Together, our results provide a first insight into the extent and kind of divergence between wine yeasts and their closest wild relatives. © 2017 John Wiley & Sons Ltd.
Genetic divergence of common bean cultivars.
Veloso, J S; Silva, W; Pinheiro, L R; Dos Santos, J B; Fonseca, N S; Euzebio, M P
2015-09-22
The aim of this study was to evaluate genetic divergence in the 'Carioca' (beige with brown stripes) common bean cultivar used by different institutions and in 16 other common bean cultivars used in the Rede Cooperativa de Pesquisa de Feijão (Cooperative Network of Common Bean Research), by using simple sequence repeats associated with agronomic traits that are highly distributed in the common bean genome. We evaluated 22 polymorphic loci using bulks containing DNA from 30 plants. There was genetic divergence among the Carioca cultivar provided by the institutions. Nevertheless, there was lower divergence among them than among the other cultivars. The cultivar used by Instituto Agronômico do Paraná was the most divergent in relation to the Carioca samples. The least divergence was observed among the samples used by Universidade Federal de Lavras and by Embrapa Arroz e Feijão. Of all the cultivars, 'CNFP 10104' and 'BRSMG Realce' showed the greatest dissimilarity. The cultivars were separated in two groups of greatest similarity using the Structure software. Genetic variation among cultivars was greater than the variation within or between the groups formed. This fact, together with the high estimate of heterozygosity observed and the genetic divergence of the samples of the Carioca cultivar in relation to the original provided by Instituto Agronômico de Campinas, indicates a mixture of cultivars. The high divergence among cultivars provides potential for the utilization of this genetic variability in plant breeding.
Total Bregman Divergence and its Applications to Shape Retrieval.
Liu, Meizhu; Vemuri, Baba C; Amari, Shun-Ichi; Nielsen, Frank
2010-01-01
Shape database search is ubiquitous in the world of biometric systems, CAD systems etc. Shape data in these domains is experiencing an explosive growth and usually requires search of whole shape databases to retrieve the best matches with accuracy and efficiency for a variety of tasks. In this paper, we present a novel divergence measure between any two given points in [Formula: see text] or two distribution functions. This divergence measures the orthogonal distance between the tangent to the convex function (used in the definition of the divergence) at one of its input arguments and its second argument. This is in contrast to the ordinate distance taken in the usual definition of the Bregman class of divergences [4]. We use this orthogonal distance to redefine the Bregman class of divergences and develop a new theory for estimating the center of a set of vectors as well as probability distribution functions. The new class of divergences are dubbed the total Bregman divergence (TBD). We present the l 1 -norm based TBD center that is dubbed the t-center which is then used as a cluster center of a class of shapes The t-center is weighted mean and this weight is small for noise and outliers. We present a shape retrieval scheme using TBD and the t-center for representing the classes of shapes from the MPEG-7 database and compare the results with other state-of-the-art methods in literature.
Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci
Chambers, Emily V.; Bickmore, Wendy A.; Semple, Colin A.
2013-01-01
Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution. PMID:23592965
Divergent phenological response to hydroclimate variability in forested mountain watersheds.
Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P
2014-08-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.
A three-stage colonization model for the peopling of the Americas.
Kitchen, Andrew; Miyamoto, Michael M; Mulligan, Connie J
2008-02-13
We evaluate the process by which the Americas were originally colonized and propose a three-stage model that integrates current genetic, archaeological, geological, and paleoecological data. Specifically, we analyze mitochondrial and nuclear genetic data by using complementary coalescent models of demographic history and incorporating non-genetic data to enhance the anthropological relevance of the analysis. Bayesian skyline plots, which provide dynamic representations of population size changes over time, indicate that Amerinds went through two stages of growth approximately 40,000 and approximately 15,000 years ago separated by a long period of population stability. Isolation-with-migration coalescent analyses, which utilize data from sister populations to estimate a divergence date and founder population sizes, suggest an Amerind population expansion starting approximately 15,000 years ago. These results support a model for the peopling of the New World in which Amerind ancestors diverged from the Asian gene pool prior to 40,000 years ago and experienced a gradual population expansion as they moved into Beringia. After a long period of little change in population size in greater Beringia, Amerinds rapidly expanded into the Americas approximately 15,000 years ago either through an interior ice-free corridor or along the coast. This rapid colonization of the New World was achieved by a founder group with an effective population size of approximately 1,000-5,400 individuals. Our model presents a detailed scenario for the timing and scale of the initial migration to the Americas, substantially refines the estimate of New World founders, and provides a unified theory for testing with future datasets and analytic methods.
First North American fossil monkey and early Miocene tropical biotic interchange
NASA Astrophysics Data System (ADS)
Bloch, Jonathan I.; Woodruff, Emily D.; Wood, Aaron R.; Rincon, Aldo F.; Harrington, Arianna R.; Morgan, Gary S.; Foster, David A.; Montes, Camilo; Jaramillo, Carlos A.; Jud, Nathan A.; Jones, Douglas S.; MacFadden, Bruce J.
2016-05-01
New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.
First North American fossil monkey and early Miocene tropical biotic interchange.
Bloch, Jonathan I; Woodruff, Emily D; Wood, Aaron R; Rincon, Aldo F; Harrington, Arianna R; Morgan, Gary S; Foster, David A; Montes, Camilo; Jaramillo, Carlos A; Jud, Nathan A; Jones, Douglas S; MacFadden, Bruce J
2016-05-12
New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.
Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien
2011-01-01
Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
Jiménez, Rosa Alicia
2016-01-01
The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evidence of historical or current introgression as their plumage colour variation might suggest. We also analysed the role of past and present climatic events in promoting genetic introgression and species diversification. We collected mitochondrial DNA (mtDNA) sequence data and microsatellite loci scores for populations throughout the range of the three Amazilia species, as well as morphological and ecological data. Haplotype network, Bayesian phylogenetic and divergence time inference, historical demography, palaeodistribution modelling, and niche divergence tests were used to reconstruct the evolutionary history of this Amazilia species complex. An isolation-with-migration coalescent model and Bayesian assignment analysis were assessed to determine historical introgression and current genetic admixture. mtDNA haplotypes were geographically unstructured, with haplotypes from disparate areas interdispersed on a shallow tree and an unresolved haplotype network. Assignment analysis of the nuclear genome (nuDNA) supported three genetic groups with signs of genetic admixture, corresponding to: (1) A. beryllina populations located west of the Isthmus of Tehuantepec; (2) A. cyanura populations between the Isthmus of Tehuantepec and the Nicaraguan Depression (Nuclear Central America); and (3) A. saucerottei populations southeast of the Nicaraguan Depression. Gene flow and divergence time estimates, and demographic and palaeodistribution patterns suggest an evolutionary history of introgression mediated by Quaternary climatic fluctuations. High levels of gene flow were indicated by mtDNA and asymmetrical isolation-with-migration, whereas the microsatellite analyses found evidence for three genetic clusters with distributions corresponding to isolation by the Isthmus of Tehuantepec and the Nicaraguan Depression and signs of admixture. Historical levels of migration between genetically distinct groups estimated using microsatellites were higher than contemporary levels of migration. These results support the scenario of secondary contact and range contact during the glacial periods of the Pleistocene and strongly imply that the high levels of structure currently observed are a consequence of the limited dispersal of these hummingbirds across the isthmus and depression barriers. PMID:26788433
Schwentner, Martin; Timms, Brian V; Richter, Stefan
2012-01-01
Temporary water bodies are important freshwater habitats in the arid zone of Australia. They harbor a distinct fauna and provide important feeding and breeding grounds for water birds. This paper assesses, on the basis of haplotype networks, analyses of molecular variation and relaxed molecular clock divergence time estimates, the phylogeographic history, and population structure of four common temporary water species of the Australian endemic clam shrimp taxon Limnadopsis in eastern and central Australia (an area of >1,350,000 km2). Mitochondrial cytochrome c oxidase subunit I sequences of 413 individuals and a subset of 63 nuclear internal transcribed spacer 2 sequences were analyzed. Genetic differentiation was observed between populations inhabiting southeastern and central Australia and those inhabiting the northern Lake Eyre Basin and Western Australia. However, over large parts of the study area and across river drainage systems in southeastern and central Australia (the Murray–Darling Basin, Bulloo River, and southern Lake Eyre Basin), no evidence of population subdivision was observed in any of the four Limnadopsis species. This indicates recent gene flow across an area of ∼800,000 km2. This finding contrasts with patterns observed in other Australian arid zone taxa, particularly freshwater species, whose populations are often structured according to drainage systems. The lack of genetic differentiation within the area in question may be linked to the huge number of highly nomadic water birds that potentially disperse the resting eggs of Limnadopsis among temporary water bodies. Genetically undifferentiated populations on a large geographic scale contrast starkly with findings for many other large branchiopods in other parts of the world, where pronounced genetic structure is often observed even in populations inhabiting pools separated by a few kilometers. Due to its divergent genetic lineages (up to 5.6% uncorrected p-distance) and the relaxed molecular clock divergence time estimates obtained, Limnadopsis parvispinus is assumed to have inhabited the Murray–Darling Basin continuously since the mid-Pliocene (∼4 million years ago). This means that suitable temporary water bodies would have existed in this area throughout the wet–dry cycles of the Pleistocene. PMID:22957166
Kittel, Rebecca N; Austin, Andrew D; Klopfstein, Seraina
2016-08-01
Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov.), variously treated by previous authors, is proposed as a junior synonym of Chelonus Jurine; the following subgenera of Microchelonus - Baculonus Braet & van Achterberg (syn. nov.), Carinichelonus Tobias (syn. nov.) and Scabrichelonus He, Chen & van Achterberg (syn. nov.), are proposed as junior synonyms of Chelonus; a number of new species names are proposed due to homonyms resulting from the above changes and these are listed in the paper. Copyright © 2016 Elsevier Inc. All rights reserved.
Myopia Glasses and Optical Power Estimation: An Easy Experiment
ERIC Educational Resources Information Center
Ribeiro, Jair Lúcio Prados
2015-01-01
Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.
Myopia Glasses and Optical Power Estimation: An Easy Experiment
NASA Astrophysics Data System (ADS)
Ribeiro, Jair Lúcio Prados
2015-02-01
Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.
2014-01-01
Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation (‘neutral speciation’). PMID:24524661
Welch, Andreanna J; Yoshida, Allison A; Fleischer, Robert C
2011-04-01
Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100,000 generations and that they diverged relatively recently, approximately 550,000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male-biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction. © 2011 Blackwell Publishing Ltd.
Determining the Effect of Natural Selection on Linked Neutral Divergence across Species
Phung, Tanya N.; Lohmueller, Kirk E.
2016-01-01
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation. PMID:27508305
Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.
Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E
2016-08-01
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation.
Soularue, J-P; Kremer, A
2014-01-01
The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan
2016-11-01
The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.
Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae)
Gardner, Elliot M.; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T.
2017-01-01
Abstract Background and Aims The breadfruit genus (Artocarpus, Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus, to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. Methods To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Key Results Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus, with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Conclusions Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot. PMID:28073771
Koch, Rachel A; Wilson, Andrew W; Séné, Olivier; Henkel, Terry W; Aime, M Catherine
2017-01-25
Armillaria is a globally distributed mushroom-forming genus composed primarily of plant pathogens. Species in this genus are prolific producers of rhizomorphs, or vegetative structures, which, when found, are often associated with infection. Because of their importance as plant pathogens, understanding the evolutionary origins of this genus and how it gained a worldwide distribution is of interest. The first gasteroid fungus with close affinities to Armillaria-Guyanagaster necrorhizus-was described from the Neotropical rainforests of Guyana. In this study, we conducted phylogenetic analyses to fully resolve the relationship of G. necrorhizus with Armillaria. Data sets containing Guyanagaster from two collecting localities, along with a global sampling of 21 Armillaria species-including newly collected specimens from Guyana and Africa-at six loci (28S, EF1α, RPB2, TUB, actin-1 and gpd) were used. Three loci-28S, EF1α and RPB2-were analyzed in a partitioned nucleotide data set to infer divergence dates and ancestral range estimations for well-supported, monophyletic lineages. The six-locus phylogenetic analysis resolves Guyanagaster as the earliest diverging lineage in the armillarioid clade. The next lineage to diverge is that composed of species in Armillaria subgenus Desarmillaria. This subgenus is elevated to genus level to accommodate the exannulate mushroom-forming armillarioid species. The final lineage to diverge is that composed of annulate mushroom-forming armillarioid species, in what is now Armillaria sensu stricto. The molecular clock analysis and ancestral range estimation suggest the most recent common ancestor to the armillarioid lineage arose 51 million years ago in Eurasia. A new species, Guyanagaster lucianii sp. nov. from Guyana, is described. The armillarioid lineage evolved in Eurasia during the height of tropical rainforest expansion about 51 million years ago, a time marked by a warm and wet global climate. Species of Guyanagaster and Desarmillaria represent extant taxa of these early diverging lineages. Desarmillaria represents an armillarioid lineage that was likely much more widespread in the past. Guyanagaster likely evolved from a gilled mushroom ancestor and could represent a highly specialized endemic in the Guiana Shield. Armillaria species represent those that evolved after the shift in climate from warm and tropical to cool and arid during the late Eocene. No species in either Desarmillaria or Guyanagaster are known to produce melanized rhizomorphs in nature, whereas almost all Armillaria species are known to produce them. The production of rhizomorphs is an adaptation to harsh environments, and could be a driver of diversification in Armillaria by conferring a competitive advantage to the species that produce them.
Vanden Broeck, An; Van Landuyt, Wouter; Cox, Karen; De Bruyn, Luc; Gyselings, Ralf; Oostermeijer, Gerard; Valentin, Bertille; Bozic, Gregor; Dolinar, Branko; Illyés, Zoltán; Mergeay, Joachim
2014-07-07
Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.
2014-01-01
Background Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. Results We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) ‘outlier’ loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. Conclusions The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe. PMID:24998243
Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène
2015-01-01
Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603
Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang
2015-07-01
In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.
Lukoschek, V; Waycott, M; Keogh, J S
2008-07-01
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.
Social selection parapatry in Afrotropical sunbirds.
McEntee, Jay P; Peñalba, Joshua V; Werema, Chacha; Mulungu, Elia; Mbilinyi, Maneno; Moyer, David; Hansen, Louis; Fjeldså, Jon; Bowie, Rauri C K
2016-06-01
The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche-conserved lineages predisposed to limit each others' ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song-learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Foote, Andrew D; Morin, Phillip A; Durban, John W; Willerslev, Eske; Orlando, Ludovic; Gilbert, M Thomas P
2011-01-01
Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous.
Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE)
Parkinson, Christopher L.; Daza, Juan M.; Wüster, Wolfgang
2017-01-01
The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species’ distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus. PMID:29176806
Lin, Gonghua; Li, Qian; Chen, Jiarui; Qin, Wen; Su, Jianping; Zhang, Tongzuo
2017-01-01
The primary host of plague in the Qinghai-Tibet Plateau (QTP), China, is Marmota himalayana, which plays an essential role in the maintenance, transmission, and prevalence of plague. To achieve a more clear insight into the differentiation of M. himalayana, complete cytochrome b (cyt b) gene and 11 microsatellite loci were analyzed for a total of 423 individuals from 43 localities in the northeast of the QTP. Phylogenetic analyses with maximum likelihood and Bayesian inference methods showed that all derived haplotypes diverged into two primary well-supported monophyletic lineages, I and II, which corresponded to the referential sequences of two recognized subspecies, M. h. himalayana and M. h. robusta, respectively. The divergence between the two lineages was estimated to be at about 1.03 million years ago, nearly synchronously with the divergence between M. baibacina and M. kastschenkoi and much earlier than that between M. vancouverensis and M. caligata. Genetic structure analyses based on the microsatellite dataset detected significant admixture between the two lineages in the mixed region, which verified the intraspecies level of the differentiation between the two lineages. Our results for the first time demonstrated the coexistence of M. h. himalayana and M. h. robusta, and also, determined the distribution range of the two subspecies in the northeast of QTP. We provided fundamental information for more effective plague control in the QTP. PMID:28809943
Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE).
Saldarriaga-Córdoba, Mónica; Parkinson, Christopher L; Daza, Juan M; Wüster, Wolfgang; Sasa, Mahmood
2017-01-01
The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species' distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus.
Morcillo, Felipe; Ornelas-García, Claudia Patricia; Alcaraz, Lourdes; Matamoros, Wilfredo A; Doadrio, Ignacio
2016-01-01
Freshwater fishes of Profundulidae, which until now was composed of two subgenera, represent one of the few extant fish families endemic to Mesoamerica. In this study we investigated the phylogenetic relationships and evolutionary history of the eight recognized extant species (from 37 populations) of Profundulidae using three mitochondrial and one nuclear gene markers (∼2.9 Kbp). We applied a Bayesian species delimitation method as a first approach to resolving speciation patterns within Profundulidae considering two different scenarios, eight-species and twelve-species models, obtained in a previous phylogenetic analysis. Based on our results, each of the two subgenera was resolved as monophyletic, with a remarkable molecular divergence of 24.5% for mtDNA and 7.8% for nDNA uncorrected p distances, and thus we propose that they correspond to separate genera. Moreover, we propose a conservative taxonomic hypothesis with five species within Profundulus and three within Tlaloc, although both eight-species and twelve-species models were highly supported by the bayesian species delimitation analysis, providing additional evidence of higher taxonomic diversity than currently recognized in this family. According to our divergence time estimates, the family originated during the Upper Oligocene 26 Mya, and Profundulus and Tlaloc diverged in the Upper Oligocene or Lower Miocene about 20 Mya. Copyright © 2015 Elsevier Inc. All rights reserved.
Biogeographic Dating of Speciation Times Using Paleogeographically Informed Processes.
Landis, Michael J
2017-03-01
Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of Earth's history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts are available for use with RevBayes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ramos-Fregonezi, Aline M C; Fregonezi, Jeferson N; Cybis, Gabriela B; Fagundes, Nelson J R; Bonatto, Sandro L; Freitas, Loreta B
2015-05-20
Quaternary climatic changes led to variations in sea level and these variations played a significant role in the generation of marine terrace deposits in the South Atlantic Coastal Plain. The main consequence of the increase in sea level was local extinction or population displacement, such that coastal species would be found around the new coastline. Our main goal was to investigate the effects of sea level changes on the geographical structure and variability of genetic lineages from a Petunia species endemic to the South Atlantic Coastal Plain. We employed a phylogeographic approach based on plastid sequences obtained from individuals collected from the complete geographic distribution of Petunia integrifolia ssp. depauperata and its sister group. We used population genetics tests to evaluate the degree of genetic variation and structure among and within populations, and we used haplotype network analysis and Bayesian phylogenetic methods to estimate divergence times and population growth. We observed three major genetic lineages whose geographical distribution may be related to different transgression/regression events that occurred in this region during the Pleistocene. The divergence time between the monophyletic group P. integrifolia ssp. depauperata and its sister group (P. integrifolia ssp. integrifolia) was compatible with geological estimates of the availability of the coastal plain. Similarly, the origin of each genetic lineage is congruent with geological estimates of habitat availability. Diversification of P. integrifolia ssp. depauperata possibly occurred as a consequence of the marine transgression/regression cycles during the Pleistocene. In periods of high sea level, plants were most likely restricted to a refuge area corresponding to fossil dunes and granitic hills, from which they colonized the coast once the sea level came down. The modern pattern of lineage geographical distribution and population variation was established by a range expansion with serial founder effects conditioned on soil availability.
New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds.
Johnson, Ned K; Cicero, Carla
2004-05-01
The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.