Science.gov

Sample records for divergent human remodeling

  1. Retinal Remodeling in Human Retinitis Pigmentosa

    PubMed Central

    Jones, B.W.; Pfeiffer, R.L.; Ferrell, W. D.; Watt, C.B.; Marmor, M.; Marc, R.E.

    2016-01-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  2. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.

  3. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling.

    PubMed

    Afriat-Jurnou, Livnat; Jackson, Colin J; Tawfik, Dan S

    2012-08-07

    Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.

  4. Modeling and remodeling of human extraction sockets.

    PubMed

    Trombelli, Leonardo; Farina, Roberto; Marzola, Andrea; Bozzi, Leopoldo; Liljenberg, Birgitta; Lindhe, Jan

    2008-07-01

    The available studies on extraction wound repair in humans are affected by significant limitations and have failed to evaluate tissue alterations occurring in all compartments of the hard tissue defect. To monitor during a 6-month period the healing of human extraction sockets and include a semi-quantitative analysis of tissues and cell populations involved in various stages of the processes of modeling/remodeling. Twenty-seven biopsies, representative of the early (2-4 weeks, n=10), intermediate (6-8 weeks, n=6), and late phase (12-24 weeks, n=11) of healing, were collected and analysed. Granulation tissue that was present in comparatively large amounts in the early healing phase of socket healing, was in the interval between the early and intermediate observation phase replaced with provisional matrix and woven bone. The density of vascular structures and macrophages slowly decreased from 2 to 4 weeks over time. The presence of osteoblasts peaked at 6-8 weeks and remained almost stable thereafter; a small number of osteoclasts were present in a few specimens at each observation interval. The present findings demonstrated that great variability exists in man with respect to hard tissue formation within extraction sockets. Thus, whereas a provisional connective tissue consistently forms within the first weeks of healing, the interval during which mineralized bone is laid down is much less predictable.

  5. Common and Divergent Mechanisms in Developmental Neuronal Remodeling and Dying Back Neurodegeneration

    PubMed Central

    Yaron, Avraham; Schuldiner, Oren

    2016-01-01

    Cell death is an inherent process that is required for the proper wiring of the nervous system. In the last four decades, it has been found that in a parallel developmental pathway, axons and dendrite are eliminated without the death of the neuron. This developmentally regulated “axonal death” results in neuronal remodeling which is an essential mechanism to sculpt neuronal networks in both vertebrates and invertebrates. Studies across various organisms have demonstrated that a conserved strategy to form adult neuronal circuitry often involves generating too many connections that are later eliminated with high temporal and spatial resolution. Can neuronal remodeling can be perceived as developmentally and spatially regulated neurodegeneration? It has been previously speculated that injury induced degeneration (Wallerian degeneration) share molecular similarities with dying back neurodegenerative diseases. In this opinion piece, we examine the similarities and differences between the mechanisms regulating neuronal remodeling and those being perturbed in dying back neurodegenerative diseases. We focus primarily on ALS and peripheral neuropathies and highlight possible shared pathways and mechanisms. While mechanistic data is just beginning to emerge, and despite the inherent differences between disease oriented and developmental processes, we believe that some of the similarities between these developmental and disease-initiated degeneration warrant closer collaborations and cross talk between these different fields. PMID:27404258

  6. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma

    PubMed Central

    Rheinbay, Esther; Boulay, Gaylor; Suvà, Mario L.; Rossetti, Nikki E.; Boonseng, Wannaporn E.; Oksuz, Ozgur; Cook, Edward B.; Formey, Aurélie; Patel, Anoop; Gymrek, Melissa; Thapar, Vishal; Deshpande, Vikram; Ting, David T.; Hornicek, Francis J.; Nielsen, G. Petur; Stamenkovic, Ivan; Aryee, Martin J.

    2015-01-01

    Summary The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma yet its molecular function is incompletely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators, while activating oncogenes and new potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation. PMID:25453903

  7. Arrhythmogenic and metabolic remodelling of failing human heart

    PubMed Central

    Gloschat, C. R.; Koppel, A. C.; Aras, K. K.; Brennan, J. A.; Holzem, K. M.

    2016-01-01

    Abstract Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1–2% and incidence approaching 5–10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function – from structure and mechanics to metabolism and electrophysiology – leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β‐adrenergic remodelling and discusses promising new technologies for HF research. PMID:27019074

  8. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  9. Bone remodeling during prenatal morphogenesis of the human mental foramen.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Lajvardi, Souzan; Schneider, Richard A

    2004-08-01

    From a morphogenetic point of view, the mental foramen of the mandible is a highly suitable model to study the interactions of different tissues such as nerves, vessels, mesenchymal cells, cartilage, and bone. In previous work, we provided a three-dimensional description of the mental foramen at different developmental stages, and now we complement those studies with a three-dimensional visualization of different bone remodeling activities around the mental foramen. Histological serial sections of human embryos and fetuses, ranging in size from 25 to 117 mm crown-rump-length (CRL), were used to characterize the bone remodeling activity (apposition, inactivity, and resorption). We quantified and reconstructed this activity in three dimensions, and included information on the spatial relationship of the nerves, vessels, and dental primordia. In general, the mandible showed strong apposition at its outer surfaces. The brim of the mental foramen, however, displayed changing remodeling activity at different stages. In the depth of the bony gutter, which provides space for the nerve and the blood vessels, we found bone resorption beneath the inferior alveolar vein. Bone was also resorbed in proximity to the dental primordia. In future studies, we will relate gene expression data to these morphological findings in order to identify molecular mechanisms that regulate this complex system.

  10. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  11. The Divergence of Neandertal and Modern Human Y Chromosomes

    PubMed Central

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  12. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups.

  13. Rates of genomic divergence in humans, chimpanzees and their lice.

    PubMed

    Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R

    2014-02-22

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.

  14. Bone remodelling in humans is load-driven but not lazy.

    PubMed

    Christen, Patrik; Ito, Keita; Ellouz, Rafaa; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Chapurlat, Roland D; van Rietbergen, Bert

    2014-09-11

    During bone remodelling, bone cells are thought to add and remove tissue at sites with high and low loading, respectively. To predict remodelling, it was proposed that bone is removed below and added above certain thresholds of tissue loading and within these thresholds, called a 'lazy zone', no net change in bone mass occurs. Animal experiments linking mechanical loading with changes in bone density or microstructure support load-adaptive bone remodelling, while in humans the evidence for this relationship at the micro-scale is still lacking. Using new high-resolution CT imaging techniques and computational methods, we quantify microstructural changes and physiological tissue loading in humans. Here, we show that bone remodelling sites in healthy postmenopausal women strongly correlate with tissue loading following a linear relationship without a 'lazy zone' providing unbiased evidence for load-driven remodelling in humans. This suggests that human and animal bones both react to loading induced remodelling in a similar fashion.

  15. Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy

    PubMed Central

    Ahuja, Preeti; Wanagat, Jonathan; Wang, Zhihua; Wang, Yibin; Liem, David A.; Ping, Peipei; Antoshechkin, Igor A.; Margulies, Kenneth B.; MacLellan, W. Robb

    2014-01-01

    Background Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular (LV) failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. Methods and Results To characterize mt morphology, biogenesis and genomic integrity in human HF, we investigated LV tissue from non-failing (NF) hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared to ICM or NF hearts. Mt volume density and mtDNA copy number was increased by ~2-fold (P<0.001) in DCM hearts in comparison to ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 vs NF hearts, P<0.05 vs ICM). Conclusions In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a PGC-1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM. PMID:23589024

  16. Retinal Remodeling and Metabolic Alterations in Human AMD.

    PubMed

    Jones, Bryan W; Pfeiffer, Rebecca L; Ferrell, William D; Watt, Carl B; Tucker, James; Marc, Robert E

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease.

  17. Retinal Remodeling and Metabolic Alterations in Human AMD

    PubMed Central

    Jones, Bryan W.; Pfeiffer, Rebecca L.; Ferrell, William D.; Watt, Carl B.; Tucker, James; Marc, Robert E.

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease. PMID:27199657

  18. Transcriptional divergence and conservation of human and mouse erythropoiesis.

    PubMed

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C; Sankaran, Vijay G; Lodish, Harvey F

    2014-03-18

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease.

  19. Integrated remodeling-to-fracture finite element model of human proximal femur behavior.

    PubMed

    Hambli, Ridha; Lespessailles, Eric; Benhamou, Claude-Laurent

    2013-01-01

    The purpose of this work was to develop an integrated remodeling-to-fracture finite element model allowing for the combined simulation of (i) simulation of a human proximal femur remodeling under a given boundary conditions, (ii) followed by the simulation of its fracture behavior (force-displacement curve and fracture pattern) under quasi-static load. The combination of remodeling and fracture simulation into one unified model consists in considering that the femur properties resulting from the remodeling simulation correspond to the initial state for the fracture prediction. The remodeling model is based on phenomenological one based on a coupled strain and fatigue damage stimulus. The fracture model is based on continuum damage mechanics in order to predict the progressive fracturing process which allows to predict the fracture pattern and the complete force-displacement curve under quasi-static load. To prevent mesh-dependence that generally affects the damage propagation rate, regularization technique was applied in the current work. To investigate the potential of the proposed unified remodeling-to-fracture model, we performed remodeling simulations on a 3D proximal femur model for a duration of 365 days under five different daily loading conditions followed by a side fall fracture simulation reproducing previously published experimental tests (de Bakker et al. (2009), case C, male, 72 years old). We show here that the implementation of an integrated remodeling-to-fracture model provides more realistic prediction strategy to assess the bone remodeling effects on the fracture risk of bone.

  20. Segmenting the human genome based on states of neutral genetic divergence.

    PubMed

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  1. Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes

    PubMed Central

    2013-01-01

    Background Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a ‘differential loss’ hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species). Results In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the co-occurring EFL genes. Conclusions According to the known EF-1α/EFL distribution, the differential loss process should have occurred independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions. As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of EF-1α function took place in multiple branches in the tree of eukaryotes. PMID:23800323

  2. Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes.

    PubMed

    Kamikawa, Ryoma; Brown, Matthew W; Nishimura, Yuki; Sako, Yoshihiko; Heiss, Aaron A; Yubuki, Naoji; Gawryluk, Ryan; Simpson, Alastair G B; Roger, Andrew J; Hashimoto, Tetsuo; Inagaki, Yuji

    2013-06-26

    Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a 'differential loss' hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species). In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the co-occurring EFL genes. According to the known EF-1α/EFL distribution, the differential loss process should have occurred independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions. As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of EF-1α function took place in multiple branches in the tree of eukaryotes.

  3. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  4. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics

    PubMed Central

    Kadoch, Cigall; Crabtree, Gerald R.

    2015-01-01

    Over the past 4 years, nearly 100 exome sequencing studies have revealed the high frequency of mutations in the genes encoding the subunits of ATP-dependent chromatin remodelers in human cancer. Most of these mutations are within the genes encoding subunits of the BAF (Brg/Brahma-associated factors) or mSWI/SNF complex, which is one of two dozen predicted ATP-dependent chromatin remodeling complexes in mammals. Considering BAF complexes as a single entity, the 15 subunits encoded by 29 genes are mutated in >20% of human cancer, across a broad range of tumor types. These observations demonstrate that there is little redundancy in the oncogenic function of BAF complexes with the other remodeling complexes, underscoring their unique roles. Several important conclusions emerge from these genomic data: specific subunits appear to be mutated in specific cancers, highlighting tissue-specific protective roles; mutations can function as tumor suppressors or oncogenes; mutations can be homozygous or, more commonly, heterozygous, implying their dosage-sensitive roles in an unknown yet fundamental process used to suppress the genesis of cancer. These new human genetic findings paired with biochemical studies are challenging old ideas on how chromatin remodeling complexes function, generating new hypotheses with respect to their normal and oncogenic mechanisms and highlighting potential avenues for therapeutic intervention in human cancer. PMID:26601204

  5. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  6. Characterization of human cervical remodeling throughout pregnancy using in vivo Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Vargis, Elizabeth; Slaughter, Chris; Rudin, Amy P.; Herington, Jennifer L.; Bennett, Kelly A.; Reese, Jeff; Mahadevan-Jansen, Anita

    2015-02-01

    Globally, fifteen million babies are born preterm each year, affecting 1 in 8 pregnancies in the US alone. Cervical remodeling includes a biochemical cascade of changes that ultimately result in the thinning and dilation of the cervix for passage of a fetus. This process is poorly understood and is the focus of this study. Our group is utilizing Raman spectroscopy to evaluate biochemical changes occurring in the human cervix throughout pregnancy. This technique has high molecular specificity and can be performed in vivo, with the potential to unveil new molecular dynamics essential for cervical remodeling.

  7. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    SciTech Connect

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R. . E-mail: tsaneva@biochem.ucl.ac.uk

    2005-11-01

    TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.

  8. Large-scale microstructural simulation of load-adaptive bone remodeling in whole human vertebrae.

    PubMed

    Badilatti, Sandro D; Christen, Patrik; Levchuk, Alina; Marangalou, Javad Hazrati; van Rietbergen, Bert; Parkinson, Ian; Müller, Ralph

    2016-02-01

    Identification of individuals at risk of bone fractures remains challenging despite recent advances in bone strength assessment. In particular, the future degradation of the microstructure and load adaptation has been disregarded. Bone remodeling simulations have so far been restricted to small-volume samples. Here, we present a large-scale framework for predicting microstructural adaptation in whole human vertebrae. The load-adaptive bone remodeling simulations include estimations of appropriate bone loading of three load cases as boundary conditions with microfinite element analysis. Homeostatic adaptation of whole human vertebrae over a simulated period of 10 years is achieved with changes in bone volume fraction (BV/TV) of less than 5%. Evaluation on subvolumes shows that simplifying boundary conditions reduces the ability of the system to maintain trabecular structures when keeping remodeling parameters unchanged. By rotating the loading direction, adaptation toward new loading conditions could be induced. This framework shows the possibility of using large-scale bone remodeling simulations toward a more accurate prediction of microstructural changes in whole human bones.

  9. Finite element simulation of bone remodelling in human mandible around osseointegrated dental implant

    NASA Astrophysics Data System (ADS)

    Lian, Z. Q.; Guan, H.; Loo, Y. C.; Ivanovski, S.; Johnson, N. W.

    2010-06-01

    Modern dental implant is a biocompatible titanium device surgically placed into a jawbone to support a prosthetic tooth crown in order to replace missing teeth. Implants are superior to conventional prostheses, in both function and long-term predictability. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment through a process of remodelling. This study aims to predict the density distribution in human jawbone around osseointegrated dental implant. Based on two popular, yet distinctive theories for bone remodelling, a new remodelling algorithm is proposed. The proposed algorithm is verified by a two-dimensional (2D) plate model. Then, a 2D finite element model of implant and jawbone is studied. The effects of two parameters, viz the reference value of strain energy density (SED) and 'lazy zone' region, on density distribution, are also examined. This study has demonstrated that consideration of the lazy zone, is less important than consideration of the stress and strain (quantified as SED) induced within the bone. Taking into account both 'lazy zone' effect and self-organisational control process, the proposed bone remodelling algorithm has overcome the shortcomings of the two existing theories.

  10. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  11. Joint remodelling and the evolution of the human hand.

    PubMed Central

    Lewis, O J

    1977-01-01

    A funtional morphological study has been made of the joints of the primate hand, particular emphasis being placed upon the carpometacarpal and metacarpophalangeal joints. The presumptive evolutionary history of these joints has been charted by reference to a comparative series of mammals. It has been demonstrated that the human joints have been quite strikingly modified in a number of ways, and that these evolutionary changes may be logically correlated with the refined functional attributes of the human hand. The morphological background thus established has been applied in a preliminary study of the hand bones of various fossil hominids. Images Fig. 7 Fig. 8 Figs. 15 and 16 Figs. 17 and 18 Figs. 19 and 20 Fig. 21 Fig. 22 Fig. 23 Figs. 24 and 25 Figs. 26 and 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32 Fig. 33 Fig. 34 Fig. 35 Fig. 36 Fig. 37 Fig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42 Fig. 43 Fig. 44 Fig. 45 PMID:402345

  12. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    PubMed Central

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  13. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    PubMed Central

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-01-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery. PMID:26138914

  14. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    NASA Astrophysics Data System (ADS)

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-07-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery.

  15. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  16. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies.

    PubMed

    Cooper, W James; Wirgau, Rachel M; Sweet, Elly M; Albertson, R Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema (dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with "whole-mount in situ hybridization" labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and vertebrate evolution.

  17. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies

    PubMed Central

    Cooper, W. James; Wirgau, Rachel M.; Sweet, Elly M.; Albertson, R. Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema(dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with whole-mount in situ hybridization labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and evolution. PMID:24261444

  18. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Substance P Enhances Collagen Remodeling and MMP-3 Expression By Human Tenocytes

    PubMed Central

    Fong, Gloria; Backman, Ludvig J.; Hart, David A.; Danielson, Patrik; McCormack, Bob; Scott, Alex

    2014-01-01

    The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading. PMID:22836729

  20. Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure

    PubMed Central

    Lou, Qing; Fedorov, Vadim V.; Glukhov, Alexey V.; Moazami, Nader; Fast, Vladimir G.; Efimov, Igor R.

    2011-01-01

    Background Excitation-contraction (EC) coupling is altered in the end-stage heart failure (HF). However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective is to study functional remodeling of EC coupling and calcium handling in failing and nonfailing human hearts. Methods and Results We simultaneously optically mapped action potentials (AP) and calcium transients (CaT) in coronary-perfused left ventricular wedge preparations from nonfailing (n = 6) and failing (n = 5) human hearts. Our major findings are: (1) CaT duration minus AP duration was longer at sub-endocardium in failing compared to nonfailing hearts during bradycardia (40 beats/min). (2) The transmural gradient of CaT duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 beats/min). (3) CaT in failing hearts had a flattened plateau at the midmyocardium; and exhibited a “two-component” slow rise at sub-endocardium in three failing hearts. (4) CaT relaxation was slower at sub-endocardium than that at sub-epicardium in both groups. Protein expression of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) was lower at sub-endocardium than that at sub-epicardium in both nonfailing and failing hearts. SERCA2a protein expression at sub-endocardium was lower in hearts with ischemic cardiomyopathy compared with nonischemic cardiomyopathy. Conclusions For the first time, we present direct experimental evidence of transmural heterogeneity of EC coupling and calcium handling in human hearts. End-stage HF is associated with the heterogeneous remodeling of EC coupling and calcium handling. PMID:21502574

  1. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  2. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins.

    PubMed

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E; Watkins, Michael T; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-06-01

    Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Structural divergence between the human and chimpanzee genomes.

    PubMed

    Kehrer-Sawatzki, Hildegard; Cooper, David N

    2007-02-01

    The structural microheterogeneity evident between the human and chimpanzee genomes is quite considerable and includes inversions and duplications as well as deletions, ranging in size from a few base-pairs up to several megabases (Mb). Insertions and deletions have together given rise to at least 150 Mb of genomic DNA sequence that is either present or absent in humans as compared to chimpanzees. Such regions often contain paralogous sequences and members of multigene families thereby ensuring that the human and chimpanzee genomes differ by a significant fraction of their gene content. There is as yet no evidence to suggest that the large chromosomal rearrangements which serve to distinguish the human and chimpanzee karyotypes have influenced either speciation or the evolution of lineage-specific traits. However, the myriad submicroscopic rearrangements in both genomes, particularly those involving copy number variation, are unlikely to represent exclusively neutral changes and hence promise to facilitate the identification of genes that have been important for human-specific evolution.

  4. Cingulate cortex: diverging data from humans and monkeys.

    PubMed

    Cole, Michael W; Yeung, Nick; Freiwald, Winrich A; Botvinick, Matthew

    2009-11-01

    Cognitive neuroscience research relies, in part, on homologies between the brains of human and non-human primates. A quandary therefore arises when presumed anatomical homologues exhibit different functional properties. Such a situation has recently arisen in the case of the anterior cingulate cortex (ACC). In humans, numerous studies suggest a role for ACC in detecting conflicts in information processing. Studies of macaque monkey ACC, in contrast, have failed to find conflict-related responses. We consider several interpretations of this discrepancy, including differences in research methodology and cross-species differences in functional neuroanatomy. New directions for future research are outlined, emphasizing the importance of distinguishing illusory cross-species differences from the true evolutionary differences that make our species unique.

  5. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.

    PubMed

    Holzem, Katherine M; Efimov, Igor R

    2012-11-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm.

  6. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    PubMed

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  7. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research.

  8. Divergence and genotyping of human alpha-herpesviruses: an overview.

    PubMed

    Norberg, Peter

    2010-01-01

    Herpesviruses are large DNA viruses that are highly disseminated among animals. Of the eight herpesviruses identified in humans, three are classified into the alpha-herpesvirus subfamily: herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which are typically associated with mucocutaneous lesions, and varicella-zoster virus (VZV), which is the cause of chicken pox and herpes zoster. All three viruses establish lifelong infections and may also induce more severe symptoms, such as neurological manifestations and fatal neonatal infections. Despite thorough investigation of the genetic variability among circulating strains of each virus in recent decades, little is known about possible associations between the genetic setups of the viruses and clinical manifestations in human hosts. This review focuses mainly on evolutionary studies of and genotyping strategies for these three human alpha-herpesviruses, emphasizing the ambiguities induced by a high frequency of circulating recombinant strains. It also aims to shed light on the challenges of establishing a uniform genotyping strategy for all three viruses.

  9. Structural divergence of GPI-80 in activated human neutrophils.

    PubMed

    Nitto, Takeaki; Takeda, Yuji; Yoshitake, Hiroshi; Sendo, Fujiro; Araki, Yoshihiko

    2007-07-27

    GPI-80 is a glycosylphosphatidylinositol (GPI)-anchored protein that is mainly expressed in human neutrophils. Previous studies using 3H9, a monoclonal antibody (mAb) against GPI-80, suggested that GPI-80 regulates leukocyte adherence and migration through Mac-1. GPI-80, which is anchored at the plasma membrane in resting neutrophils, moves into the pseudopodia and is released from activated human neutrophils. Here, we demonstrate that neutrophil activation affects GPI-80 dynamics using a new anti-GPI-80 mAb, designated 4D4, which is directed against the form of GPI-80 found on resting human neutrophils. Similar to 3H9, 4D4 influences Mac-1-dependent neutrophil adhesion. Treatment of purified GPI-80 with periodic acid and trypsin indicated that 3H9 and 4D4 recognize peptide and carbohydrate moieties, respectively. Stimulation with fMLP decreased the binding of 4D4 to GPI-80 on the neutrophil surface but increased the overall expression of GPI-80, as visualized by the 3H9 signal. Confocal laser microscopy revealed the 4D4 signal mainly on cell bodies and at a low level on pseudopodia during migration toward increasing concentrations of fMLP, whereas the 3H9 signal was observed in both areas. In addition, soluble GPI-80 released from activated neutrophils did not bind 4D4. These results suggest that there are two populations of GPI-80 that differ in the ability to bind 4D4. The 4D4-recognized form may regulate Mac-1-dependent neutrophil adhesion, and may subsequently be converted to a 4D4-unrecognized form during neutrophil activation.

  10. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    PubMed Central

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  11. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest.

    PubMed

    Prescott, Sara L; Srinivasan, Rajini; Marchetto, Maria Carolina; Grishina, Irina; Narvaiza, Iñigo; Selleri, Licia; Gage, Fred H; Swigut, Tomek; Wysocka, Joanna

    2015-09-24

    cis-regulatory changes play a central role in morphological divergence, yet the regulatory principles underlying emergence of human traits remain poorly understood. Here, we use epigenomic profiling from human and chimpanzee cranial neural crest cells to systematically and quantitatively annotate divergence of craniofacial cis-regulatory landscapes. Epigenomic divergence is often attributable to genetic variation within TF motifs at orthologous enhancers, with a novel motif being most predictive of activity biases. We explore properties of this cis-regulatory change, revealing the role of particular retroelements, uncovering broad clusters of species-biased enhancers near genes associated with human facial variation, and demonstrating that cis-regulatory divergence is linked to quantitative expression differences of crucial neural crest regulators. Our work provides a wealth of candidates for future evolutionary studies and demonstrates the value of "cellular anthropology," a strategy of using in-vitro-derived embryonic cell types to elucidate both fundamental and evolving mechanisms underlying morphological variation in higher primates.

  12. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    PubMed Central

    Beres, Stephen B.; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J.; Zhu, Luchang; Flores, Anthony R.; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E.; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G.; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A.; Raiford, Annessa; Jenkins, Leslie

    2016-01-01

    ABSTRACT For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. PMID:27247229

  13. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    SciTech Connect

    Sichero, Laura; Simao Sobrinho, Joao; Lina Villa, Luisa

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular, we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.

  14. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  15. Human mobility patterns predict divergent epidemic dynamics among cities.

    PubMed

    Dalziel, Benjamin D; Pourbohloul, Babak; Ellner, Stephen P

    2013-09-07

    The epidemic dynamics of infectious diseases vary among cities, but it is unclear how this is caused by patterns of infectious contact among individuals. Here, we ask whether systematic differences in human mobility patterns are sufficient to cause inter-city variation in epidemic dynamics for infectious diseases spread by casual contact between hosts. We analyse census data on the mobility patterns of every full-time worker in 48 Canadian cities, finding a power-law relationship between population size and the level of organization in mobility patterns, where in larger cities, a greater fraction of workers travel to work in a few focal locations. Similarly sized cities also vary in the level of organization in their mobility patterns, equivalent on average to the variation expected from a 2.64-fold change in population size. Systematic variation in mobility patterns is sufficient to cause significant differences among cities in infectious disease dynamics-even among cities of the same size-according to an individual-based model of airborne pathogen transmission parametrized with the mobility data. This suggests that differences among cities in host contact patterns are sufficient to drive differences in infectious disease dynamics and provides a framework for testing the effects of host mobility patterns in city-level disease data.

  16. Human Adrenocortical Remodeling Leading to Aldosterone-Producing Cell Cluster Generation

    PubMed Central

    Hayashi, Yuichiro; Al-Eyd, Ghaith; Nakagawa, Ken; Morita, Shinya; Kosaka, Takeo; Oya, Mototsugu; Mitani, Fumiko; Suematsu, Makoto; Kabe, Yasuaki

    2016-01-01

    Background. The immunohistochemical detection of aldosterone synthase (CYP11B2) and steroid 11β-hydroxylase (CYP11B1) has enabled the identification of aldosterone-producing cell clusters (APCCs) in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time. Purposes. To investigate changes in human adrenocortical zonation with age. Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, %) and the number of APCCs (NOA, APCCs/mm2) were calculated by four examiners. Average values were used in statistical analyses. Results. Adrenals under 11 years old had layered zona glomerulosa (ZG) and zona fasciculata (ZF) without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative) layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals. Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults. PMID:27721827

  17. New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process

    PubMed Central

    Ortega, Ana; Tarazón, Estefanía; Triviño, Juan Carlos; Martínez-Dolz, Luis; González-Juanatey, José Ramón; Lago, Francisca; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    Background In dilated cardiomyopathy (DCM), cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV) dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development. Objectives This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes. Methods and Results Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13) undergoing heart transplantation and control donors (n = 10) for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all), not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both), were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05). Conclusions In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling. PMID:27936202

  18. The proteasome of the differently-diverged eukaryote Giardia lamblia and its role in remodeling of the microtubule-based cytoskeleton.

    PubMed

    Ray, Atrayee; Sarkar, Srimonti

    2016-12-30

    Giardia lamblia is the causative agent of the diarrheal disease giardiasis, against which only a limited number of drugs are currently available. Increasing reports of resistance to these drugs makes it necessary to identify new cellular targets for designing the next generation of anti-giardial drugs. Towards this goal, therapeutic agents that target the parasitic cellular machinery involved in the functioning of the unique microtubule-based cytoskeleton of the Giardia trophozoites are likely to be effective as microtubule function is not only important for the survival of trophozoites within the host, but also their extensive remodeling is necessary during the transition from trophozoites to cysts. Thus, drugs that affect microtubule remodeling have the potential to not only kill the disease-causing trophozoites, but also inhibit transmission of cysts in the community. Recent studies in other model organisms have indicated that the proteasome plays an integral role in the formation and remodeling of the microtubule-based cytoskeleton. This review draws attention to the various processes by which the giardial proteasome may impact the functioning of its microtubule cytoskeleton and highlights the possible differences of the parasitic proteasome and some of other cellular machinery involved in microtubule remodeling, compared to that of the higher eukaryotic host.

  19. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution.

    PubMed

    Medina-Carmona, Encarnación; Fuchs, Julian E; Gavira, Jose A; Mesa-Torres, Noel; Neira, Jose L; Salido, Eduardo; Palomino-Morales, Rogelio; Burgos, Miguel; Timson, David J; Pey, Angel L

    2017-09-15

    Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  20. Transforming growth factor-β plays divergent roles in modulating vascular remodeling, inflammation, and pulmonary fibrosis in a murine model of scleroderma.

    PubMed

    Tsujino, Kazuyuki; Reed, Nilgun Isik; Atakilit, Amha; Ren, Xin; Sheppard, Dean

    2017-01-01

    The efficacy and feasibility of targeting transforming growth factor-β (TGFβ) in pulmonary fibrosis and lung vascular remodeling in systemic sclerosis (SSc) have not been well elucidated. In this study we analyzed how blocking TGFβ signaling affects pulmonary abnormalities in Fos-related antigen 2 (Fra-2) transgenic (Tg) mice, a murine model that manifests three important lung pathological features of SSc: fibrosis, inflammation, and vascular remodeling. To interrupt TGFβ signaling in the Fra-2 Tg mice, we used a pan-TGFβ-blocking antibody, 1D11, and Tg mice in which TGFβ receptor type 2 (Tgfbr2) is deleted from smooth muscle cells and myofibroblasts (α-SMA-Cre(ER);Tgfbr2(flox/flox)). Global inhibition of TGFβ by 1D11 did not ameliorate lung fibrosis histologically or biochemically, whereas it resulted in a significant increase in the number of immune cells infiltrating the lungs. In contrast, 1D11 treatment ameliorated the severity of pulmonary vascular remodeling in Fra-2 Tg mice. Similarly, genetic deletion of Tgfbr2 from smooth muscle cells resulted in improvement of pulmonary vascular remodeling in the Fra-2 Tg mice, as well as a decrease in the number of Ki67-positive vascular smooth muscle cells, suggesting that TGFβ signaling contributes to development of pulmonary vascular remodeling by promoting the proliferation of vascular smooth muscle cells. Deletion of Tgfbr2 from α-smooth muscle actin-expressing cells had no effect on fibrosis or inflammation in this model. These results suggest that efforts to target TGFβ in SSc will likely require more precision than simply global inhibition of TGFβ function. Copyright © 2017 the American Physiological Society.

  1. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    PubMed

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  2. Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation

    PubMed Central

    McDowell, Kathleen S.; Vadakkumpadan, Fijoy; Blake, Robert; Blauer, Joshua; Plank, Gernot; MacLeod, Rob S.; Trayanova, Natalia A.

    2013-01-01

    Atrial fibrillation (AF), the most common arrhythmia in humans, is initiated when triggered activity from the pulmonary veins propagates into atrial tissue and degrades into reentrant activity. Although experimental and clinical findings show a correlation between atrial fibrosis and AF, the causal relationship between the two remains elusive. This study used an array of 3D computational models with different representations of fibrosis based on a patient-specific atrial geometry with accurate fibrotic distribution to determine the mechanisms by which fibrosis underlies the degradation of a pulmonary vein ectopic beat into AF. Fibrotic lesions in models were represented with combinations of: gap junction remodeling; collagen deposition; and myofibroblast proliferation with electrotonic or paracrine effects on neighboring myocytes. The study found that the occurrence of gap junction remodeling and the subsequent conduction slowing in the fibrotic lesions was a necessary but not sufficient condition for AF development, whereas myofibroblast proliferation and the subsequent electrophysiological effect on neighboring myocytes within the fibrotic lesions was the sufficient condition necessary for reentry formation. Collagen did not alter the arrhythmogenic outcome resulting from the other fibrosis components. Reentrant circuits formed throughout the noncontiguous fibrotic lesions, without anchoring to a specific fibrotic lesion. PMID:23790385

  3. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.

    PubMed

    Mash, Deborah C; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-11-14

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction.

  4. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    PubMed Central

    Liu, George E; Matukumalli, Lakshmi K; Sonstegard, Tad S; Shade, Larry L; Van Tassell, Curtis P

    2006-01-01

    Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence) were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site) for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9) change/site/year) was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9) change/site/year) was approximately half of the overall rate (1.9–2.0 × 10(-9) change/site/year). Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies. PMID:16759380

  5. Human-caused habitat fragmentation can drive rapid divergence of male genitalia

    PubMed Central

    Heinen-Kay, Justa L; Noel, Holly G; Layman, Craig A; Langerhans, R Brian

    2014-01-01

    The aim of this study rests on three premises: (i) humans are altering ecosystems worldwide, (ii) environmental variation often influences the strength and nature of sexual selection, and (iii) sexual selection is largely responsible for rapid and divergent evolution of male genitalia. While each of these assertions has strong empirical support, no study has yet investigated their logical conclusion that human impacts on the environment might commonly drive rapid diversification of male genital morphology. We tested whether anthropogenic habitat fragmentation has resulted in rapid changes in the size, allometry, shape, and meristics of male genitalia in three native species of livebearing fishes (genus: Gambusia) inhabiting tidal creeks across six Bahamian islands. We found that genital shape and allometry consistently and repeatedly diverged in fragmented systems across all species and islands. Using a model selection framework, we identified three ecological consequences of fragmentation that apparently underlie observed morphological patterns: decreased predatory fish density, increased conspecific density, and reduced salinity. Our results demonstrate that human modifications to the environment can drive rapid and predictable divergence in male genitalia. Given the ubiquity of anthropogenic impacts on the environment, future research should evaluate the generality of our findings and potential consequences for reproductive isolation. PMID:25558285

  6. Human Extravillous Trophoblasts Penetrate Decidual Veins and Lymphatics before Remodeling Spiral Arteries during Early Pregnancy

    PubMed Central

    He, Nannan; van Iperen, Liesbeth; de Jong, Danielle; Szuhai, Karoly; Helmerhorst, Frans M.; van der Westerlaken, Lucette A. J.; Chuva de Sousa Lopes, Susana M.

    2017-01-01

    In humans, the defective invasion of the maternal endometrium by fetal extravillous trophoblasts (EVTs) can lead to insufficient perfusion of the placenta, resulting in pregnancy complications that can put both mother and baby at risk. To study the invasion of maternal endometrium between (W)5.5–12 weeks of gestation by EVTs, we combined fluorescence in situ hybridization, immunofluorescence and immunohistochemistry to determine the presence of (male) EVTs in the vasculature of the maternal decidua. We observed that interstitial mononuclear EVTs directly entered decidual veins and lymphatics from W5.5. This invasion of decidual veins and lymphatics occurred long before endovascular EVTs remodelled decidual spiral arteries. This unexpected early entrance of interstitial mononuclear EVTs in the maternal circulation does not seem to contribute to the materno-placental vascular connection directly, but rather to establish (and expand) the materno-fetal interface through an alternative vascular route. PMID:28081266

  7. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    PubMed Central

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  8. Adverse Remodeling of the Electrophysiological Response to Ischemia-Reperfusion in Human Heart Failure Is Associated with Remodeling of Metabolic Gene Expression

    PubMed Central

    Ng, Fu Siong; Holzem, Katherine M.; Koppel, Aaron C.; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L.; Peters, Nicholas S.; Efimov, Igor R.

    2014-01-01

    Background Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion (I-R), although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute I-R in heart failure, and its potential causes, including the remodeling of metabolic gene expression. Methods and Results We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to I-R, with greater action potential duration (APD) shortening (p<0.001 at 8 minutes ischemia; p=0.001 at 12 minutes ischemia) and greater conduction slowing during ischemia, delayed recovery of electrical excitability following reperfusion (F 4.8±1.8 vs. D 1.0±0 mins, p<0.05), and incomplete restoration of APD and conduction velocity early after reperfusion. Expression of 46 metabolic genes were probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. Conclusions We demonstrate, for the first time in human hearts, that the electrophysiological response to I-R in heart failure is accelerated during ischemia with slower recovery following reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. PMID:25114062

  9. Human erythropoietin gene delivery for cardiac remodeling of myocardial infarction in rats.

    PubMed

    Lee, Youngsook; McGinn, Arlo N; Olsen, Curtis D; Nam, Kihoon; Lee, Minhyung; Shin, Sug Kyun; Kim, Sung Wan

    2013-10-10

    Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling. We demonstrated that intramyocardial delivery of phEPO by an arginine-grafted poly(disulfide amine) (ABP) polymer in infarcted rats preserves cardiac geometry and systolic function. The reduced infarct size of phEPO/ABP delivery was followed by decrease in fibrosis, protection from cardiomyocyte loss, and down-regulation of apoptotic activity. In addition, the increased angiogenesis and decreased myofibroblast density in the border zone of the infarct support the beneficial effects of phEPO/ABP administration. Furthermore, phEPO/ABP delivery induced prominent suppression on Ang II and TGF-β activity in all subdivisions of cardiac tissues except for the central zone of infarct. These results of phEPO gene therapy delivered by a bioreducible ABP polymer provide insight into the lack of phEPO gene therapy translation in the treatment of acute MI to human trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Human Erythropoietin Gene Delivery for Cardiac Remodeling of Myocardial Infarction in Rats

    PubMed Central

    Lee, Youngsook; McGinn, Arlo N.; Olsen, Curtis D.; Nam, Kihoon; Lee, Minhyung; Shin, Sug Kyun; Kim, Sung Wan

    2013-01-01

    Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling. We demonstrated that intramyocardial delivery of phEPO by an arginine-grafted poly(disulfide amine) (ABP) polymer in infarcted rats preserves cardiac geometry and systolic function. The reduced infarct size of phEPO/ABP delivery was followed by decrease in fibrosis, protection from cardiomyocyte loss, and down-regulation of apoptotic activity. In addition, the increased angiogenesis and decreased myofibroblast density in the border zone of the infarct support the beneficial effects of phEPO/ABP administration. Furthermore, phEPO/ABP delivery induced prominent suppression on Ang II and TGF-β activity in all subdivisions of cardiac tissues except for the central zone of infarct. These results of phEPO gene therapy delivered by a bioreducible ABP polymer provide insight into the lack of phEPO gene therapy translation in the treatment of acute MI to human trials. PMID:23806842

  11. Revised timeline and distribution of the earliest diverged human maternal lineages in southern Africa.

    PubMed

    Chan, Eva K F; Hardie, Rae-Anne; Petersen, Desiree C; Beeson, Karen; Bornman, Riana M S; Smith, Andrew B; Hayes, Vanessa M

    2015-01-01

    The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149-199 kya), followed by L0k (∼159 kya, 95%CI: 136-183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72-116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76-112 kya). We concur the earliest emerging L0d1'2 sublineage L0d1b (∼49 kya, 95%CI:37-58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10-27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21-17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.

  12. Revised Timeline and Distribution of the Earliest Diverged Human Maternal Lineages in Southern Africa

    PubMed Central

    Chan, Eva K. F.; Hardie, Rae-Anne; Petersen, Desiree C.; Beeson, Karen; Bornman, Riana M. S.; Smith, Andrew B.; Hayes, Vanessa M.

    2015-01-01

    The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a. PMID:25807545

  13. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    PubMed

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  14. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy

    PubMed Central

    Millar, Neal L.; Akbar, Moeed; Campbell, Abigail L.; Reilly, James H.; Kerr, Shauna C.; McLean, Michael; Frleta-Gilchrist, Marina; Fazzi, Umberto G.; Leach, William J.; Rooney, Brian P.; Crowe, Lindsay A. N.; Murrell, George A. C.; McInnes, Iain B.

    2016-01-01

    Increasingly, inflammatory mediators are considered crucial to the onset and perpetuation of tendinopathy. We sought evidence of interleukin 17A (IL-17A) expression in early human tendinopathy and thereafter, explored mechanisms whereby IL-17A mediated inflammation and tissue remodeling in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing ‘early pathology’) along with control biopsies were collected from patients undergoing shoulder surgery. Markers of inflammation and IL-17A were quantified by RT-PCR and immunohistochemistry. Human tendon cells were derived from hamstring tendon obtained during ACL reconstruction. In vitro effects of IL-17A upon tenocytes were measured using RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining. Increased expression of IL-17A was detected in ‘early tendinopathy’ compared to both matched samples and non-matched control samples (p < 0.01) by RT-PCR and immunostaining. Double immunofluoresence staining revealed IL-17A expression in leukocyte subsets including mast cells, macrophages and T cells. IL-17A treated tenocytes exhibited increased production of proinflammatory cytokines (p < 0.001), altered matrix regulation (p < 0.01) with increased Collagen type III and increased expression of several apoptosis related factors. We propose IL-17A as an inflammatory mediator within the early tendinopathy processes thus providing novel therapeutic approaches in the management of tendon disorders. PMID:27263531

  15. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.

    PubMed

    Eyerich, Stefanie; Eyerich, Kilian; Pennino, Davide; Carbone, Teresa; Nasorri, Francesca; Pallotta, Sabatino; Cianfarani, Francesca; Odorisio, Teresa; Traidl-Hoffmann, Claudia; Behrendt, Heidrun; Durham, Stephen R; Schmidt-Weber, Carsten B; Cavani, Andrea

    2009-12-01

    Th subsets are defined according to their production of lineage-indicating cytokines and functions. In this study, we have identified a subset of human Th cells that infiltrates the epidermis in individuals with inflammatory skin disorders and is characterized by the secretion of IL-22 and TNF-alpha, but not IFN-gamma, IL-4, or IL-17. In analogy to the Th17 subset, cells with this cytokine profile have been named the Th22 subset. Th22 clones derived from patients with psoriasis were stable in culture and exhibited a transcriptome profile clearly separate from those of Th1, Th2, and Th17 cells; it included genes encoding proteins involved in tissue remodeling, such as FGFs, and chemokines involved in angiogenesis and fibrosis. Primary human keratinocytes exposed to Th22 supernatants expressed a transcriptome response profile that included genes involved in innate immune pathways and the induction and modulation of adaptive immunity. These proinflammatory Th22 responses were synergistically dependent on IL-22 and TNF-alpha. Furthermore, Th22 supernatants enhanced wound healing in an in vitro injury model, which was exclusively dependent on IL-22. In conclusion, the human Th22 subset may represent a separate T cell subset with a distinct identity with respect to gene expression and function, present within the epidermal layer in inflammatory skin diseases. Future strategies directed against the Th22 subset may be of value in chronic inflammatory skin disorders.

  16. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    PubMed

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  17. Mapping of chimpanzee full-length cDNAs onto the human genome unveils large potential divergence of the transcriptome.

    PubMed

    Sakate, Ryuichi; Suto, Yumiko; Imanishi, Tadashi; Tanoue, Tetsuya; Hida, Munetomo; Hayasaka, Ikuo; Kusuda, Jun; Gojobori, Takashi; Hashimoto, Katsuyuki; Hirai, Momoki

    2007-09-01

    The genetic basis of the phenotypic difference between human and chimpanzee is one of the most actively pursued issues in current genomics. Although the genomic divergence between the two species has been described, the transcriptomic divergence has not been well documented. Thus, we newly sequenced and analyzed chimpanzee full-length cDNAs (FLcDNAs) representing 87 protein-coding genes. The number of nucleotide substitutions and sites of insertions/deletions (indels) was counted as a measure of sequence divergence between the chimpanzee FLcDNAs and the human genome onto which the FLcDNAs were mapped. Difference in transcription start/termination sites (TSSs/TTSs) and alternative splicing (AS) exons was also counted as a measure of structural divergence between the chimpanzee FLcDNAs and their orthologous human transcripts (NCBI RefSeq). As a result, we found that transposons (Alu) and repetitive segments caused large indels, which strikingly increased the average amount of sequence divergence up to more than 2% in the 3'-UTRs. Moreover, 20 out of the 87 transcripts contained more than 10% structural divergence in length. In particular, two-thirds of the structural divergence was found in the 3'-UTRs, and variable transcription start sites were conspicuous in the 5'-UTRs. As both transcriptional and translational efficiency were supposed to be related to 5'- and 3'-UTR sequences, these results lead to the idea that the difference in gene regulation can be a major cause of the difference in phenotype between human and chimpanzee.

  18. Generation of the dominant-negative mutant of hArpNbeta: a component of human SWI/SNF chromatin remodeling complex.

    PubMed

    Choi, E Y; Park, J A; Sung, Y H; Kwon, H

    2001-11-15

    hArpNbeta, an actin-related protein located within the nucleus, is a subunit of the human SWI/SNF chromatin remodeling complex. hArpNbeta has been proposed to regulate the assembly and activity of the hSWI/SNF complex. Sequence comparisons of the potential ArpN homologs with beta-actin showed that the ArpNs have the divergent subdomains Ib and IIb in addition to the unique N-terminal short insert, MS(G/A)-(V/L)YGG. Since the proposed function of hArpNbeta requires more than two distinct but concurrently operating surfaces, we examined whether the disruption of one operating surface of hArpNbeta results in dominant-negative phenotype. When overexpressed in HeLa or 293T cells, the subdomain Ib or IIb hybrids, in which the subdomain Ib or IIb of hArpNbeta was replaced with that of beta-actin, respectively, showed no effect on cell survival. On the other hand, the overexpression of the N-terminal deletion mutant of hArpNbeta resulted in cell death probably through apoptotic process. These results indicate that the proper function of hArpNbeta is essential for cell survival in human cells. Furthermore, they suggests the possibility that the N-terminal short sequence is indispensable for the chromatin remodeling activity or the assembly of the hSWI/SNF complex after the binding of hArpNbeta with functionally essential partner proteins. Copyright 2001 Academic Press.

  19. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence

    PubMed Central

    Bilgin Sonay, Tugce; Carvalho, Tiago; Robinson, Mark D.; Greminger, Maja P.; Krützen, Michael; Comas, David; Highnam, Gareth; Mittelman, David; Sharp, Andrew; Marques-Bonet, Tomàs; Wagner, Andreas

    2015-01-01

    Tandem repeats (TRs) are stretches of DNA that are highly variable in length and mutate rapidly. They are thus an important source of genetic variation. This variation is highly informative for population and conservation genetics. It has also been associated with several pathological conditions and with gene expression regulation. However, genome-wide surveys of TR variation in humans and closely related species have been scarce due to technical difficulties derived from short-read technology. Here we explored the genome-wide diversity of TRs in a panel of 83 human and nonhuman great ape genomes, in a total of six different species, and studied their impact on gene expression evolution. We found that population diversity patterns can be efficiently captured with short TRs (repeat unit length, 1–5 bp). We examined the potential evolutionary role of TRs in gene expression differences between humans and primates by using 30,275 larger TRs (repeat unit length, 2–50 bp). Genes that contained TRs in the promoters, in their 3′ untranslated region, in introns, and in exons had higher expression divergence than genes without repeats in the regions. Polymorphic small repeats (1–5 bp) had also higher expression divergence compared with genes with fixed or no TRs in the gene promoters. Our findings highlight the potential contribution of TRs to human evolution through gene regulation. PMID:26290536

  20. Ultrastructural Analysis of the Human Lens Fiber Cell Remodeling Zone and the Initiation of Cellular Compaction

    PubMed Central

    Costello, M. Joseph; Mohamed, Ashik; Gilliland, Kurt O.; Fowler, W. Craig; Johnsen, Sönke

    2013-01-01

    The purpose is to determine the nature of the cellular rearrangements occurring through the remodeling zone (RZ) in human donor lenses, identified previously by confocal microscopy to be about 100 µm from the capsule. Human donor lenses were fixed with 10% formalin followed by 4% paraformaldehyde prior to processing for transmission electron microscopy. Of 27 fixed lenses, ages 22, 55 and 92 years were examined in detail. Overview electron micrographs confirmed the loss of cellular organization present in the outer cortex (80 µm thick) as the cells transitioned into the RZ. The transition occurred within a few cell layers and fiber cells in the RZ completely lost their classical hexagonal cross-sectional appearance. Cell interfaces became unusually interdigitated and irregular even though the radial cell columns were retained. Gap junctions appeared to be unaffected. After the RZ (40 µm thick), the cells were still irregular but more recognizable as fiber cells with typical interdigitations and the appearance of undulating membranes. Cell thickness was irregular after the RZ with some cells compacted, while others were not, up to the zone of full compaction in the adult nucleus. Similar dramatic cellular changes were observed within the RZ for each lens regardless of age. Because the cytoskeleton controls cell shape, dramatic cellular rearrangements that occur in the RZ most likely are due to alterations in the associations of crystallins to the lens-specific cytoskeletal beaded intermediate filaments. It is also likely that cytoskeletal attachments to membranes are altered to allow undulating membranes to develop. PMID:24183661

  1. Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription.

    PubMed

    Ma, Zhendong; Shah, Reesha C; Chang, Mi Jung; Benveniste, Etty N

    2004-06-01

    Transcriptional activation of eukaryotic genes depends on the precise and ordered recruitment of activators, chromatin modifiers/remodelers, coactivators, and general transcription factors to the promoters of target genes. Using the human matrix metalloproteinase 9 (MMP-9) gene as a model system, we investigated the sequential assembly and dynamic formation of transcription complexes on a human promoter under the influence of mitogen signaling. We find that, coincident with activation of the MMP-9 gene, activators, chromatin remodeling complexes, and coactivators are recruited to the preassembled MMP-9 promoter in a stepwise and coordinated order, which is dependent on activation of MEK-1/extracellular signal-regulated kinase and NF-kappa B signaling pathways. Conversely, corepressor complexes are released from the MMP-9 promoter after transcriptional activation. Histone modifications shift from repressive to permissive modifications concurrent with activation of the MMP-9 gene. Chromatin remodeling induced by Brg-1 is required for MMP-9 gene transcription, which is concomitant with initiation of transcription. Therefore, coordination of cell signaling, chromatin remodeling, histone modifications, and stepwise recruitment of transcription regulators is critical to precisely regulate MMP-9 gene transcription in a temporally and spatially dependent manner. Given the important role of MMP-9 in both normal development and pathological conditions, understanding MMP-9 gene regulation is of great relevance.

  2. Inequality in Landownership, the Emergence of Human-Capital Promoting Institutions, and the Great Divergence

    PubMed Central

    GALOR, ODED; MOAV, OMER; VOLLRATH, DIETRICH

    2013-01-01

    This paper suggests that inequality in the distribution of landownership adversely affected the emergence of human-capital promoting institutions (e.g. public schooling), and thus the pace and the nature of the transition from an agricultural to an industrial economy, contributing to the emergence of the great divergence in income per capita across countries. The prediction of the theory regarding the adverse effect of the concentration of landownership on education expenditure is established empirically based on evidence from the beginning of the 20th century in the U.S. PMID:23946551

  3. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome

    PubMed Central

    Bertioli, David J.; Vidigal, Bruna; Nielen, Stephan; Ratnaparkhe, Milind B.; Lee, Tae-Ho; Leal-Bertioli, Soraya C. M.; Kim, Changsoo; Guimarães, Patricia M.; Seijo, Guillermo; Schwarzacher, Trude; Paterson, Andrew H.; Heslop-Harrison, Pat; Araujo, Ana C. G.

    2013-01-01

    Background and Aims Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes. Methods The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues. Key Results BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity. Conclusions A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome

  4. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome.

    PubMed

    Bertioli, David J; Vidigal, Bruna; Nielen, Stephan; Ratnaparkhe, Milind B; Lee, Tae-Ho; Leal-Bertioli, Soraya C M; Kim, Changsoo; Guimarães, Patricia M; Seijo, Guillermo; Schwarzacher, Trude; Paterson, Andrew H; Heslop-Harrison, Pat; Araujo, Ana C G

    2013-08-01

    Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes. The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues. BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity. A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A

  5. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    PubMed

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-07

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits.

  6. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury.

    PubMed

    Slotkin, Jonathan R; Pritchard, Christopher D; Luque, Brian; Ye, Janice; Layer, Richard T; Lawrence, Mathew S; O'Shea, Timothy M; Roy, Roland R; Zhong, Hui; Vollenweider, Isabel; Edgerton, V Reggie; Courtine, Grégoire; Woodard, Eric J; Langer, Robert

    2017-04-01

    Tissue loss significantly reduces the potential for functional recovery after spinal cord injury. We previously showed that implantation of porous scaffolds composed of a biodegradable and biocompatible block copolymer of Poly-lactic-co-glycolic acid and Poly-l-lysine improves functional recovery and reduces spinal cord tissue injury after spinal cord hemisection injury in rats. Here, we evaluated the safety and efficacy of porous scaffolds in non-human Old-World primates (Chlorocebus sabaeus) after a partial and complete lateral hemisection of the thoracic spinal cord. Detailed analyses of kinematics and muscle activity revealed that by twelve weeks after injury fully hemisected monkeys implanted with scaffolds exhibited significantly improved recovery of locomotion compared to non-implanted control animals. Twelve weeks after injury, histological analysis demonstrated that the spinal cords of monkeys with a hemisection injury implanted with scaffolds underwent appositional healing characterized by a significant increase in remodeled tissue in the region of the hemisection compared to non-implanted controls. The number of glial fibrillary acidic protein immunopositive astrocytes was diminished within the inner regions of the remodeled tissue layer in treated animals. Activated macrophage and microglia were present diffusely throughout the remodeled tissue and concentrated at the interface between the preserved spinal cord tissue and the remodeled tissue layer. Numerous unphosphorylated neurofilament H and neuronal growth associated protein positive fibers and myelin basic protein positive cells may indicate neural sprouting inside the remodeled tissue layer of treated monkeys. These results support the safety and efficacy of polymer scaffolds in a primate model of acute spinal cord injury. A device substantially similar to the device described here is the subject of an ongoing human clinical trial.

  7. Conduction Remodeling in Human End-Stage Non-Ischemic Left Ventricular Cardiomyopathy

    PubMed Central

    Glukhov, Alexey V.; Fedorov, Vadim V.; Kalish, Paul W.; Ravikumar, Vinod K.; Lou, Qing; Janks, Deborah; Schuessler, Richard B.; Moazami, Nader; Efimov, Igor R.

    2012-01-01

    Background Several arrhythmogenic mechanisms have been inferred from animal heart failure (HF) models. However, the translation of these hypotheses is difficult due to lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage non-ischemic cardiomyopathy. Methods and Results We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage non-ischemic cardiomyopathy (HF, n=10) and non-failing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. HF produced heterogeneous prolongation of action potential duration (APD) resulting in the decrease of transmural APD dispersion (64±12 ms vs 129±15 ms in NF, P<0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39±3 cm/s versus 49±2 cm/s in NF, P=0.008) to the epicardium (28±3 cm/s versus 40±2 cm/s in NF, P=0.008). Conduction slowing was likely due to Cx43 downregulation, decreased colocalization of Cx43 with N-cadherin (40±2% versus 52±5% in NF, P=0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wavebreaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in HF 16.4±7.7 versus 9.9±1.4% in NF, P=0.02). Conclusions Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with non-ischemic cardiomyopathy. PMID:22412072

  8. Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans.

    PubMed

    Arnason, U; Gullberg, A; Burguete, A S; Janke, A

    2000-01-01

    The concept of recent hominoid divergences has been a mainstay in molecular primatology since the 1970's. However, the ages allocated to the calibration points used to establish these divergence times and the estimates resulting from their application, notably the commonly accepted divergence between Pan (chimpanzees) and Homo 5 million years before present (MYBP), are now palaeontologically refutable. Here we estimate the ages of various primate divergences using three references with a more detailed fossil record than any of the traditional primate calibration points. Our findings suggest that the latter yield datings that are too recent by a factor of about two. For example, our estimates place the divergence between Pan and Homo 10.5-13 MYBP. The revised estimates of primate divergence times suggest a new hypothesis for primate evolution and dispersal: that the divergence between strepsirhines (lorises, lemurs) and anthropoids was contemporary with the break-up of Southern continents about 90 MYBP, with strepsirhines becoming isolated on Madagascar and later dispersing to Africa (and Asia) and anthropoids evolving in South America and subsequently colonizing Africa (and Asia), or possibly North America. In addition we present a new hypothesis, which accommodates the strikingly similar coalescence times for human mitochondrial DNA and the Y-chromosome. This hypothesis posits a common mitochondrial and Y-chromosome bottleneck about 400,000 years ago, associated with the origination of the human 2n = 46 karyotype, obstructing genetic exchange with the 2n = 48 Homo contemporaries.

  9. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.

  10. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase.

    PubMed

    Prieto, P A; Mukerji, P; Kelder, B; Erney, R; Gonzalez, D; Yun, J S; Smith, D F; Moremen, K W; Nardelli, C; Pierce, M

    1995-12-08

    The mammary gland is a unique biosynthetic tissue that produces a variety of species-specific glycoconjugates, but the factors regulating the production of specific glycoconjugates are not well understood. To explore the underlying regulation, a fusion gene containing a cDNA encoding the human alpha 1,2-fucosyltransferase (alpha 1,2FT), which generates the H-blood group antigen, flanked by the murine whey acidic protein promoter and a polyadenylation signal, was introduced into mice. Milk samples from transgenic animals contained soluble forms of the alpha 1,2FT, as revealed by Western blots of milk samples using an anti-alpha 1,2FT antiserum and by the demonstration of alpha 1,2FT enzyme activity. Milk from transgenic animals also contained large quantities of 2'-fucosyllactose (Fuc alpha 1-2Gal beta 1-4Glc) and modified glycoproteins containing the H-antigen, whereas milk from control animals lacked these glycoconjugates. Expression levels of 2'-fucosyllactose were high in most animals and represented 1/3 to nearly 1/2 of the total milk oligosaccharides. These results demonstrate that heterologous transgenic expression of a glycosyltransferase can result in the expression of both the transgene and its secondary gene products and that the structures of milk oligosaccharides can be remodeled depending on expression of the appropriate enzyme. Furthermore, these results suggest that the lactating mammary gland may be a unique biosynthetic reactor for the production of biologically active oligosaccharides and glycoconjugates.

  11. CD24 tracks divergent pluripotent states in mouse and human cells

    PubMed Central

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  12. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy.

  13. Sequence divergence and chromosomal rearrangements during the evolution of human pseudoautosomal genes and their mouse homologs

    SciTech Connect

    Ellison, J.; Li, X.; Francke, U.

    1994-09-01

    The pseudoautosomal region (PAR) is an area of sequence identity between the X and Y chromosomes and is important for mediating X-Y pairing during male meiosis. Of the seven genes assigned to the human PAR, none of the mouse homologs have been isolated by a cross-hybridization strategy. Two of these homologs, Csfgmra and II3ra, have been isolated using a functional assay for the gene products. These genes are quite different in sequence from their human homologs, showing only 60-70% sequence similarity. The Csfgmra gene has been found to further differ from its human homolog in being isolated not on the sex chromosomes, but on a mouse autosome (chromosome 19). Using a mouse-hamster somatic cell hybrid mapping panel, we have mapped the II3ra gene to yet another mouse autosome, chromosome 14. Attempts to clone the mouse homolog of the ANT3 locus resulted in the isolation of two related genes, Ant1 and Ant2, but failed to yield the Ant3 gene. Southern blot analysis of the ANT/Ant genes showed the Ant1 and Ant2 sequences to be well-conserved among all of a dozen mammals tested. In contrast, the ANT3 gene only showed hybridization to non-rodent mammals, suggesting it is either greatly divergent or has been deleted in the rodent lineage. Similar experiments with other human pseudoautosomal probes likewise showed a lack of hybridization to rodent sequences. The results show a definite trend of extensive divergence of pseudoautosomal sequences in addition to chromosomal rearrangements involving X;autosome translocations and perhaps gene deletions. Such observations have interesting implications regarding the evolution of this important region of the sex chromosomes.

  14. Divergence and rewiring of regulatory networks for neural development between human and other species.

    PubMed

    Wang, Ping; Zhao, Dejian; Rockowitz, Shira; Zheng, Deyou

    2016-01-01

    Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.

  15. INDUCED REMODELING OF PORCINE TENDONS TO HUMAN ANTERIOR CRUCIATE LIGAMENTS BY α-GAL EPITOPE REMOVAL AND PARTIAL CROSSLINKING.

    PubMed

    Stone, Kevin Robert; Walgenbach, Ann; Galili, Uri

    2017-01-09

    This review describes a novel method developed for processing porcine tendon and other ligament implants which enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECM) which provide post-operative ortho-biologic support (i.e. augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a pre-clinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes- This epitope which is abundant in pigs (as in other non-primate mammals) binds the natural anti-Gal antibody which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial crosslinking of porcine tendon with glutaraldehyde- This crosslinking generates covalent bonds in the ECM which slow infiltration of macrophages into the implant. Anti-non gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non gal antibodies bind to the implant ECM, recruit macrophages and induce the implant destruction by directing proteolytic activity of macrophages. Partial crosslinking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts which follow the infiltrating macrophages. These

  16. Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.

    PubMed

    Eidem, Haley R; McGary, Kriston L; Rokas, Antonis

    2015-06-01

    Reduced metabolic efficiency, toxic intermediate accumulation, and deficits of molecular building blocks, which all stem from disruptions of flux through metabolic pathways, reduce organismal fitness. Although these represent shared selection pressures across organisms, the genetic signatures of the responses to them may differ. In fungi, a frequently observed signature is the physical linkage of genes from the same metabolic pathway. In contrast, human metabolic genes are rarely tightly linked; rather, they tend to show tissue-specific coexpression. We hypothesized that the physical linkage of fungal metabolic genes and the tissue-specific coexpression of human metabolic genes are divergent yet analogous responses to the range of selective pressures imposed by disruptions of flux. To test this, we examined the degree to which the human homologs of physically linked metabolic genes in fungi (fungal linked homologs or FLOs) are coexpressed across six human tissues. We found that FLOs are significantly more correlated in their expression profiles across human tissues than other metabolic genes. We obtained similar results in analyses of the same six tissues from chimps, gorillas, orangutans, and macaques. We suggest that when selective pressures remain stable across large evolutionary distances, evidence of selection in a given evolutionary lineage can become a highly reliable predictor of the signature of selection in another, even though the specific adaptive response in each lineage is markedly different.

  17. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer

    PubMed Central

    Yamamoto, Keisuke; Tateishi, Keisuke; Kudo, Yotaro; Hoshikawa, Mayumi; Tanaka, Mariko; Nakatsuka, Takuma; Fujiwara, Hiroaki; Miyabayashi, Koji; Takahashi, Ryota; Tanaka, Yasuo; Ijichi, Hideaki; Nakai, Yousuke; Isayama, Hiroyuki; Morishita, Yasuyuki; Aoki, Taku; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi; Koike, Kazuhiko

    2016-01-01

    Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-β pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-β–dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC. PMID:27528027

  18. Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech.

    PubMed

    Baranzini, Nicolò; Pedrini, Edoardo; Girardello, Rossana; Tettamanti, Gianluca; de Eguileor, Magda; Taramelli, Roberto; Acquati, Francesco; Grimaldi, Annalisa

    2017-01-09

    In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68(+) and HmAIF-1(+) macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.

  19. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer.

    PubMed

    Yamamoto, Keisuke; Tateishi, Keisuke; Kudo, Yotaro; Hoshikawa, Mayumi; Tanaka, Mariko; Nakatsuka, Takuma; Fujiwara, Hiroaki; Miyabayashi, Koji; Takahashi, Ryota; Tanaka, Yasuo; Ijichi, Hideaki; Nakai, Yousuke; Isayama, Hiroyuki; Morishita, Yasuyuki; Aoki, Taku; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi; Koike, Kazuhiko

    2016-09-20

    Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-β pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-β-dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC.

  20. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  1. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling.

    PubMed

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M B; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-24

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step "Catch-Load-Launch" manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic "robotic pump". Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  2. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.

    PubMed

    Jubb, Alasdair W; Young, Robert S; Hume, David A; Bickmore, Wendy A

    2016-01-15

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species.

  3. Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages

    PubMed Central

    Hume, David A; Bickmore, Wendy A

    2015-01-01

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the glucocorticoid receptor (GR) detected by ChIP-Seq correlated with induction, but not repression, of target genes in both species, occured at distal regulatory sites not promoters, and were strongly enriched for the consensus GR binding motif. Turnover of GR binding between mouse and human was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection and therefore these loci may be important for the subset of responses to GC that is shared between species. PMID:26663721

  4. Deep genetic structure and ecological divergence in a widespread human commensal toad

    PubMed Central

    Wogan, Guinevere O. U.; Stuart, Bryan L.; Iskandar, Djoko T.; McGuire, Jimmy A.

    2016-01-01

    The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequence variation, and predictive species distribution modelling, unexpectedly recovered three distinct evolutionary lineages that differ genetically and ecologically, corresponding to the Asian mainland, coastal Myanmar and the Sundaic islands. The persistence of these three divergent lineages, despite ample opportunities for recent human-mediated and geological dispersal, suggests that D. melanostictus actually consists of multiple species, each having narrower geographical ranges and ecological niches, and higher conservation value, than is currently recognized. These findings also have implications for the invasion potential of this human commensal elsewhere, such as in its recently introduced ranges on the islands of Borneo, Sulawesi, Seram and Madagascar. PMID:26763213

  5. Deep genetic structure and ecological divergence in a widespread human commensal toad.

    PubMed

    Wogan, Guinevere O U; Stuart, Bryan L; Iskandar, Djoko T; McGuire, Jimmy A

    2016-01-01

    The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequence variation, and predictive species distribution modelling, unexpectedly recovered three distinct evolutionary lineages that differ genetically and ecologically, corresponding to the Asian mainland, coastal Myanmar and the Sundaic islands. The persistence of these three divergent lineages, despite ample opportunities for recent human-mediated and geological dispersal, suggests that D. melanostictus actually consists of multiple species, each having narrower geographical ranges and ecological niches, and higher conservation value, than is currently recognized. These findings also have implications for the invasion potential of this human commensal elsewhere, such as in its recently introduced ranges on the islands of Borneo, Sulawesi, Seram and Madagascar. © 2016 The Author(s).

  6. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters.

    PubMed

    Core, Leighton J; Waterfall, Joshua J; Lis, John T

    2008-12-19

    RNA polymerases are highly regulated molecular machines. We present a method (global run-on sequencing, GRO-seq) that maps the position, amount, and orientation of transcriptionally engaged RNA polymerases genome-wide. In this method, nuclear run-on RNA molecules are subjected to large-scale parallel sequencing and mapped to the genome. We show that peaks of promoter-proximal polymerase reside on approximately 30% of human genes, transcription extends beyond pre-messenger RNA 3' cleavage, and antisense transcription is prevalent. Additionally, most promoters have an engaged polymerase upstream and in an orientation opposite to the annotated gene. This divergent polymerase is associated with active genes but does not elongate effectively beyond the promoter. These results imply that the interplay between polymerases and regulators over broad promoter regions dictates the orientation and efficiency of productive transcription.

  7. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    PubMed Central

    Hughes, Jennifer F.; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A.; van Daalen, Saskia K. M.; Minx, Patrick J.; Fulton, Robert S.; McGrath, Sean D.; Locke, Devin P.; Friedman, Cynthia; Trask, Barbara J.; Mardis, Elaine R.; Warren, Wesley C.; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K.; Page, David C.

    2013-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome1,2. Little is known about the Y chromosome’s recent evolution because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis3,4. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes5-8, but they have not been tested in older, highly evolved Y chromosomes like that of humans. We therefore finished sequencing the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. We then compared the MSYs of the two species and found that they differ radically in sequence structure and gene content, implying rapid evolution during the past 6 million years. The chimpanzee MSY harbors twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the MSY’s prominent role in sperm production, genetic hitchhiking effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behavior. While genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the ongoing evolution of chimpanzee, human, and perhaps other older MSYs. PMID:20072128

  8. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content.

    PubMed

    Hughes, Jennifer F; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A; van Daalen, Saskia K M; Minx, Patrick J; Fulton, Robert S; McGrath, Sean D; Locke, Devin P; Friedman, Cynthia; Trask, Barbara J; Mardis, Elaine R; Warren, Wesley C; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K; Page, David C

    2010-01-28

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.

  9. Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats

    PubMed Central

    Kang, Kyu-Tae; Coggins, Matthew; Xiao, Chunyang; Rosenzweig, Anthony

    2013-01-01

    Cell-based therapies to restore heart function after infarction have been tested in pre-clinical models and clinical trials with mixed results, and will likely require both contractile cells and a vascular network to support them. We and others have shown that human endothelial colony forming cells (ECFC) combined with mesenchymal progenitor cells (MPC) can be used to “bio-engineer” functional human blood vessels. Here we investigated whether ECFC + MPC form functional vessels in ischemic myocardium and whether this affects cardiac function or remodeling. Myocardial ischemia/reperfusion injury (IRI) was induced in 12-week-old immunodeficient rats by ligation of the left anterior descending coronary artery. After 40 min, myocardium was reperfused and ECFC + MPC (2 × 106 cells, 2:3 ratio) or PBS was injected. Luciferase assays after injection of luciferase-labeled ECFC + MPC showed that 1,500 ECFC were present at day 14. Human ECFC-lined perfused vessels were directly visualized by femoral vein injection of a fluorescently-tagged human-specific lectin in hearts injected with ECFC + MPC but not PBS alone. While infarct size at day 1 was no different, LV dimensions and heart weight to tibia length ratios were lower in cell-treated hearts compared with PBS at 4 months, suggesting post-infarction remodeling was ameliorated by local cell injection. Fractional shortening, LV wall motion score, and fibrotic area were not different between groups at 4 months. However, pressure–volume loops demonstrated improved cardiac function and reduced volumes in cell-treated animals. These data suggest that myocardial delivery of ECFC + MPC at reperfusion may provide a therapeutic strategy to mitigate LV remodeling and cardiac dysfunction after IRI. PMID:23666122

  10. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals

    PubMed Central

    Lonstein, Joseph S.; Lévy, Frédéric; Fleming, Alison S.

    2015-01-01

    Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal “models” do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing the behavior. PMID:26122301

  11. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals.

    PubMed

    Lonstein, Joseph S; Lévy, Frédéric; Fleming, Alison S

    2015-07-01

    Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.

  12. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans.

    PubMed

    Shi, Lei; Li, Ming; Lin, Qiang; Qi, Xuebin; Su, Bing

    2013-05-22

    One of the key genes that regulate human brain size, MCPH1 has evolved under strong Darwinian positive selection during the evolution of primates. During this evolution, the divergence of MCPH1 protein sequences among primates may have caused functional changes that contribute to brain enlargement. To test this hypothesis, we used co-immunoprecipitation and reporter gene assays to examine the activating and repressing effects of MCPH1 on a set of its down-stream genes and then compared the functional outcomes of a series of mutant MCPH1 proteins that carry mutations at the human- and great-ape-specific sites. The results demonstrate that the regulatory effects of human MCPH1 and rhesus macaque MCPH1 are different in three of eight down-stream genes tested (p73, cyclinE1 and p14ARF), suggesting a functional divergence of MCPH1 between human and non-human primates. Further analyses of the mutant MCPH1 proteins indicated that most of the human-specific mutations could change the regulatory effects on the down-stream genes. A similar result was also observed for one of the four great-ape-specific mutations. Collectively, we propose that during primate evolution in general and human evolution in particular, the divergence of MCPH1 protein sequences under Darwinian positive selection led to functional modifications, providing a possible molecular mechanism of how MCPH1 contributed to brain enlargement during primate evolution and human origin.

  13. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans

    PubMed Central

    2013-01-01

    Background One of the key genes that regulate human brain size, MCPH1 has evolved under strong Darwinian positive selection during the evolution of primates. During this evolution, the divergence of MCPH1 protein sequences among primates may have caused functional changes that contribute to brain enlargement. Results To test this hypothesis, we used co-immunoprecipitation and reporter gene assays to examine the activating and repressing effects of MCPH1 on a set of its down-stream genes and then compared the functional outcomes of a series of mutant MCPH1 proteins that carry mutations at the human- and great-ape-specific sites. The results demonstrate that the regulatory effects of human MCPH1 and rhesus macaque MCPH1 are different in three of eight down-stream genes tested (p73, cyclinE1 and p14ARF), suggesting a functional divergence of MCPH1 between human and non-human primates. Further analyses of the mutant MCPH1 proteins indicated that most of the human-specific mutations could change the regulatory effects on the down-stream genes. A similar result was also observed for one of the four great-ape-specific mutations. Conclusions Collectively, we propose that during primate evolution in general and human evolution in particular, the divergence of MCPH1 protein sequences under Darwinian positive selection led to functional modifications, providing a possible molecular mechanism of how MCPH1 contributed to brain enlargement during primate evolution and human origin. PMID:23697381

  14. Divergences of Two Coupled Human and Natural Systems on the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2014-12-01

    Central to the concept of coupled natural and human (CNH) systems is that humans and nature are organized in interacting sub-systems that make a cohesive whole at multiple spatial and temporal scales. Following an overview of the challenges in implementing the CNH concept at the regional level, we used widely available measures of states in the social, economic, and ecological systems, including gross domestic product, population size, net primary productivity, and livestock and their ratios, to examine the CNH dynamics on the Mongolian Plateau during 1981-2010. Our cross-border analysis of the coupled dynamics over the past three decades demonstrated striking contrasts between Inner Mongolia (IM) and Mongolia (MG), with policies playing shifting roles on the above measures. For prioritizing future research on the CNH concept, we propose the hypothesis that while the divergence of IM and MG for 1981-2010 was largely driven by market economic reforms, the importance of socioeconomic forces relative to climate changes will gradually decrease in IM while they remain important in MG.

  15. Human xylosyltransferases – mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy

    PubMed Central

    Faust, Isabel; Traut, Philipp; Nolting, Frank; Petschallies, Jan; Neumann, Elena; Kunisch, Elke; Kuhn, Joachim; Knabbe, Cornelius; Hendig, Doris

    2015-01-01

    Total knee replacement (TKR) is a common therapeutic option to restore joint functionality in chronic inflammatory joint diseases. Subsequent arthrofibrotic remodeling occurs in 10%, but the underlying pathomechanisms remain unclear. We evaluated the association of xylosyltransferases (XT), fibrotic mediators catalyzing glycosaminoglycan biosynthesis, leading to arthrofibrosis as well as the feasibility of using serum XT activity as a diagnostic marker. For this purpose, synovial fibroblasts (SF) were isolated from arthrofibrotic and control synovial biopsies. Basal α-smooth muscle actin expression revealed a high fibroblast-myofibroblast transition rate in arthrofibrotic fibroblasts. Fibrotic remodeling marked by enhanced XT activity, α-SMA protein expression as well as xylosyltransferase-I, collagen type III-alpha-1 and ACTA2 mRNA expression was stronger in arthrofibrotic than in control fibroblasts treated with transforming growth factor-β1 (TGF-β1). Otherwise, no differences between serum levels of XT-I activity or common fibrosis markers (galectin-3 and growth differentiation factor-15 levels (GDF-15)) were found between 95 patients with arthrofibrosis and 132 controls after TKR. In summary, XT-I was initially investigated as a key cellular mediator of arthrofibrosis and a target for therapeutic intervention. However, the blood-synovial-barrier makes arthrofibrotic molecular changes undetectable in serum. Future studies on monitoring or preventing arthrofibrotic remodeling should therefore rely on local instead of systemic parameters. PMID:26219087

  16. Human xylosyltransferases--mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy.

    PubMed

    Faust, Isabel; Traut, Philipp; Nolting, Frank; Petschallies, Jan; Neumann, Elena; Kunisch, Elke; Kuhn, Joachim; Knabbe, Cornelius; Hendig, Doris

    2015-07-28

    Total knee replacement (TKR) is a common therapeutic option to restore joint functionality in chronic inflammatory joint diseases. Subsequent arthrofibrotic remodeling occurs in 10%, but the underlying pathomechanisms remain unclear. We evaluated the association of xylosyltransferases (XT), fibrotic mediators catalyzing glycosaminoglycan biosynthesis, leading to arthrofibrosis as well as the feasibility of using serum XT activity as a diagnostic marker. For this purpose, synovial fibroblasts (SF) were isolated from arthrofibrotic and control synovial biopsies. Basal α-smooth muscle actin expression revealed a high fibroblast-myofibroblast transition rate in arthrofibrotic fibroblasts. Fibrotic remodeling marked by enhanced XT activity, α-SMA protein expression as well as xylosyltransferase-I, collagen type III-alpha-1 and ACTA2 mRNA expression was stronger in arthrofibrotic than in control fibroblasts treated with transforming growth factor-β1 (TGF-β1). Otherwise, no differences between serum levels of XT-I activity or common fibrosis markers (galectin-3 and growth differentiation factor-15 levels (GDF-15)) were found between 95 patients with arthrofibrosis and 132 controls after TKR. In summary, XT-I was initially investigated as a key cellular mediator of arthrofibrosis and a target for therapeutic intervention. However, the blood-synovial-barrier makes arthrofibrotic molecular changes undetectable in serum. Future studies on monitoring or preventing arthrofibrotic remodeling should therefore rely on local instead of systemic parameters.

  17. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees.

    PubMed

    Bauernfeind, Amy L; Soderblom, Erik J; Turner, Meredith E; Moseley, M Arthur; Ely, John J; Hof, Patrick R; Sherwood, Chet C; Wray, Gregory A; Babbitt, Courtney C

    2015-07-10

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels.

  18. Diverging biological roles among human monocyte subsets in the context of tuberculosis infection.

    PubMed

    Balboa, Luciana; Barrios-Payan, Jorge; González-Domínguez, Erika; Lastrucci, Claire; Lugo-Villarino, Geanncarlo; Mata-Espinoza, Dulce; Schierloh, Pablo; Kviatcovsky, Denise; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Sasiain, María del Carmen; Hernández-Pando, Rogelio

    2015-08-01

    Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.

  19. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees

    PubMed Central

    Bauernfeind, Amy L.; Soderblom, Erik J.; Turner, Meredith E.; Moseley, M. Arthur; Ely, John J.; Hof, Patrick R.; Sherwood, Chet C.; Wray, Gregory A.; Babbitt, Courtney C.

    2015-01-01

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels. PMID:26163674

  20. Myocardial microRNAs associated with reverse remodeling in human heart failure

    PubMed Central

    Sucharov, Carmen C.; Kao, David P.; Port, J. David; Karimpour-Fard, Anis; Quaife, Robert A.; Minobe, Wayne; Nunley, Karin; Lowes, Brian D.; Gilbert, Edward M.; Bristow, Michael R.

    2017-01-01

    BACKGROUND. In dilated cardiomyopathies (DCMs) changes in expression of protein-coding genes are associated with reverse remodeling, and these changes can be regulated by microRNAs (miRs). We tested the general hypothesis that dynamic changes in myocardial miR expression are predictive of β-blocker–associated reverse remodeling. METHODS. Forty-three idiopathic DCM patients (mean left ventricular ejection fraction 0.24 ± 0.09) were treated with β-blockers. Serial ventriculography and endomyocardial biopsies were performed at baseline, and after 3 and 12 months of treatment. Changes in RT-PCR (candidate miRs) or array-measured miRs were compared based on the presence (R) or absence (NR) of a reverse-remodeling response, and a miR-mRNA-function pathway analysis (PA) was performed. RESULTS. At 3 months, 2 candidate miRs were selectively changed in Rs, decreases in miR-208a-3p and miR-591. PA revealed changes in miR-mRNA interactions predictive of decreased apoptosis and myocardial cell death. At 12 months, 5 miRs exhibited selective changes in Rs (decreases in miR-208a-3p, -208b-3p, 21-5p, and 199a-5p; increase in miR-1-3p). PA predicted decreases in apoptosis, cardiac myocyte cell death, hypertrophy, and heart failure, with increases in contractile and overall cardiac functions. CONCLUSIONS. In DCMs, myocardial miRs predict the time-dependent reverse-remodeling response to β-blocker treatment, and likely regulate the expression of remodeling-associated miRs. TRIAL REGISTRATION. ClinicalTrials.gov NCT01798992. FUNDING. NIH 2R01 HL48013, 1R01 HL71118 (Bristow, PI); sponsored research agreements from Glaxo-SmithKline and AstraZeneca (Bristow, PI); NIH P20 HL101435 (Lowes, Port multi-PD/PI); sponsored research agreement from Miragen Therapeutics (Port, PI). PMID:28138556

  1. Large Tandem, Higher Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between Human and Chimpanzee Y Chromosomes

    NASA Astrophysics Data System (ADS)

    Paar, Vladimir; Glunčić, Matko; Basar, Ivan; Rosandić, Marija; Paar, Petar; Cvitković, Mislav

    2011-01-01

    Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human-chimpanzee difference, revealing rapid evolution after human-chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human-chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human--chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.

  2. Large tandem, higher order repeats and regularly dispersed repeat units contribute substantially to divergence between human and chimpanzee Y chromosomes.

    PubMed

    Paar, Vladimir; Glunčić, Matko; Basar, Ivan; Rosandić, Marija; Paar, Petar; Cvitković, Mislav

    2011-01-01

    Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human-chimpanzee difference, revealing rapid evolution after human-chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human-chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human-chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.

  3. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC “contractile” phenotype to the “synthetic” phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  4. Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans

    PubMed Central

    Gopalacharyulu, Peddinti; Tang, Jing; Rodriguez-Cuenca, Sergio; Maciejewski, Arkadiusz; Naukkarinen, Jussi; Ruskeepää, Anna-Liisa; Niemelä, Perttu S.; Yetukuri, Laxman; Tan, Chong Yew; Velagapudi, Vidya; Castillo, Sandra; Nygren, Heli; Hyötyläinen, Tuulia; Rissanen, Aila; Kaprio, Jaakko; Yki-Järvinen, Hannele; Vattulainen, Ilpo; Vidal-Puig, Antonio; Orešič, Matej

    2011-01-01

    Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect. PMID:21666801

  5. Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum

    PubMed Central

    Murphy, Sean C.; Fernandez-Pol, Sebastian; Chung, Paul H.; Prasanna Murthy, S. N.; Milne, Stephen B.; Salomao, Marcela; Brown, H. Alex; Lomasney, Jon W.; Mohandas, Narla

    2007-01-01

    Studies of detergent-resistant membrane (DRM) rafts in mature erythrocytes have facilitated identification of proteins that regulate formation of endovacuolar structures such as the parasitophorous vacuolar membrane (PVM) induced by the malaria parasite Plasmodium falciparum. However, analyses of raft lipids have remained elusive because detergents interfere with lipid detection. Here, we use primaquine to perturb the erythrocyte membrane and induce detergent-free buoyant vesicles, which are enriched in cholesterol and major raft proteins flotillin and stomatin and contain low levels of cytoskeleton, all characteristics of raft microdomains. Lipid mass spectrometry revealed that phosphatidylethanolamine and phosphatidylglycerol are depleted in endovesicles while phosphoinositides are highly enriched, suggesting raft-based endovesiculation can be achieved by simple (non–receptor-mediated) mechanical perturbation of the erythrocyte plasma membrane and results in sorting of inner leaflet phospholipids. Live-cell imaging of lipid-specific protein probes showed that phosphatidylinositol (4,5) bisphosphate (PIP2) is highly concentrated in primaquine-induced vesicles, confirming that it is an erythrocyte raft lipid. However, the malarial PVM lacks PIP2, although another raft lipid, phosphatidylserine, is readily detected. Thus, different remodeling/sorting of cytoplasmic raft phospholipids may occur in distinct endovacuoles. Importantly, erythrocyte raft lipids recruited to the invasion junction by mechanical stimulation may be remodeled by the malaria parasite to establish blood-stage infection. PMID:17526861

  6. Prenatal development of the human mandible. 3D reconstructions, morphometry and bone remodelling pattern, sizes 12-117 mm CRL.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Klarkowski, Marie C

    2003-10-01

    Human embryos and fetuses ( n=25) ranging from 12 to 117 mm CRL (crown-rump-length) were serially sectioned and the mandibles were reconstructed in 3D. In addition, characteristic areas of apposition, resorption and resting zones were projected onto the surface of the mandibular reconstructions after histological evaluation of the remodeling processes. Furthermore, morphometric data were taken to describe growth processes in horizontal views. In this way the changing outlines as seen in 3D could be correlated with the remodeling patterns and with the changes in growth. In these stages the mandible showed a general appositional growth, but resorption areas were found at the posterior margins of the mental foramen and at the lateral and medial posterior bony planes at concave surfaces. The bulging of bone underneath and over Meckel's cartilage could be recognized as active appositional growth areas. Meckel's cartilage itself lay in a trough which could be characterized by less apposition and even resorption. Questions were raised in how much the gap between our present knowledge of genetic expression of signaling molecules and the precise morphologic description of the mandibles can be bridged.

  7. Inhibition of Histone Deacetylase Activity in Human Endometrial Stromal Cells Promotes Extracellular Matrix Remodelling and Limits Embryo Invasion

    PubMed Central

    Atkinson, Stuart P.; Quiñonero, Alicia; Martínez, Sebastián; Pellicer, Antonio; Simón, Carlos

    2012-01-01

    Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy. Gene expression is post-transcriptionally regulated by histone deacetylases (HDACs) that unpacks condensed chromatin activating gene expression. In this study we analyze the effect of histone acetylation on the expression of tissue remodeling enzymes and activity of human endometrial stromal cells (hESCs) related to trophoblast invasion control. Treatment of hESCs with the HDAC inhibitor trichostatin A (TSA) increased the expression of TIMP-1 and TIMP-3 while decreased MMP-2, MMP-9 and uPA and have an inhibitory effect on trophoblast invasion. Moreover, histone acetylation is detected at the promoters of TIMP-1 and TIMP-3 genes in TSA-treated. In addition, in an in vitro decidualized hESCs model, the increase of TIMP-1 and TIMP-3 expression is associated with histone acetylation at the promoters of these genes. Our results demonstrate that histone acetylation disrupt the balance of ECM modulators provoking a restrain of trophoblast invasion. These findings are important as an epigenetic mechanism that can be used to control trophoblast invasion. PMID:22291969

  8. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    PubMed Central

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-01-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases. PMID:28233788

  9. Human Mesenchymal Stem Cell Delivery System Modulates Ischemic Cardiac Remodeling With an Increase of Coronary Artery Blood Flow.

    PubMed

    Lee, Young Sook; Joo, Wan Seok; Kim, Hyun Soo; Kim, Sung Wan

    2016-04-01

    Ways for extending the longevity of stem cells are imperative to attain diverse expected therapeutic effects. Here, we constructed a three-dimentional (3D) scaffold system for human mesenchymal stem cell (hMSC) delivery. Intramyocardial injections of porous PEI1.8k blended with poly(lactic-co-glycolic acid) (PLGA) (PLGA/PEI1.8k) (PPP) microparticles by physical electrostatic conjugation and structural entrapment of hMSCs demonstrated enhanced functional and geometric improvements on post-infarct cardiac remodeling in rats. In the hMSC-loaded PPP delivery, increases of coronary artery blood flow rate and in vivo engraftment rate as well as time-dependent functional, geometric, and pathologic findings reversing post-infarct cardiac remodeling account for improved left ventricular (LV) systolic function up to the level of sham thoracotomy group. This study expands our understanding by proving that increase of coronary artery blood flow augmented functional recovery of hMSC-loaded PPP delivery system after myocardial infarction (MI).

  10. Human Mesenchymal Stem Cell Delivery System Modulates Ischemic Cardiac Remodeling With an Increase of Coronary Artery Blood Flow

    PubMed Central

    Lee, Young Sook; Joo, Wan Seok; Kim, Hyun Soo; Kim, Sung Wan

    2016-01-01

    Ways for extending the longevity of stem cells are imperative to attain diverse expected therapeutic effects. Here, we constructed a three-dimentional (3D) scaffold system for human mesenchymal stem cell (hMSC) delivery. Intramyocardial injections of porous PEI1.8k blended with poly(lactic-co-glycolic acid) (PLGA) (PLGA/PEI1.8k) (PPP) microparticles by physical electrostatic conjugation and structural entrapment of hMSCs demonstrated enhanced functional and geometric improvements on post-infarct cardiac remodeling in rats. In the hMSC-loaded PPP delivery, increases of coronary artery blood flow rate and in vivo engraftment rate as well as time-dependent functional, geometric, and pathologic findings reversing post-infarct cardiac remodeling account for improved left ventricular (LV) systolic function up to the level of sham thoracotomy group. This study expands our understanding by proving that increase of coronary artery blood flow augmented functional recovery of hMSC-loaded PPP delivery system after myocardial infarction (MI). PMID:26782638

  11. High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling

    PubMed Central

    Santiago, Jon-Jon; McNaughton, Leslie J.; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E.; Fandrich, Robert R.; Wigle, Jeffrey T.; Freed, Darren H.; Arora, Rakesh C.; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  12. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    PubMed

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  13. Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone.

    PubMed

    Rolvien, Tim; Krause, Matthias; Jeschke, Anke; Yorgan, Timur; Püschel, Klaus; Schinke, Thorsten; Busse, Björn; Demay, Marie B; Amling, Michael

    2017-10-01

    Osteocytes are the most abundant bone cells and are highly regulated by external stimuli. Vitamin D and osteocytes cooperatively regulate bone remodeling as well as phosphate and calcium homeostasis. However, it is unclear if vitamin D regulates osteocyte number, connectivity or size in the setting of altered bone formation or impaired mineralization. Sixty iliac crest biopsies of patients with varying vitamin D levels were examined to analyze osteocyte number, osteocyte connectivity and osteocyte viability using high-resolution imaging. Osteocyte parameters were also quantified in mice lacking the vitamin D receptor (Vdr-/-) and in wildtype littermates. The cortical and cancellous bone of patients with vitamin D deficiency exhibited a significant decrease in the number of viable osteocytes, as well as increased osteocyte apoptosis and impaired osteocyte connectivity, based on evaluation of the canalicular network. The number of osteocytes was also decreased in Vdr-deficient mice, in comparison to wildtype controls, and this was accompanied by enlargement of osteocyte lacunae. A high calcium diet normalized the osteocyte lacunar area in Vdr-deficient mice, but failed to normalize osteocyte number. Thus, a diet-independent decrease in osteocyte number in Vdr-deficient mice suggests a mechanism that is directly dependent on the VDR, since vitamin D may promote the transition from osteoblasts to osteocytes. The increase in lacunar area the in Vdr-deficient mice, which is normalized by the high calcium diet suggests this phenotype is due to osteocytic osteolysis. These investigations demonstrate that vitamin D plays a role in the regulation of osteocyte number and perilacunar remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation

    PubMed Central

    Parsons-Wingerter, Patricia; Reinecker, Hans-Christian

    2014-01-01

    Challenges to long-duration space exploration and colonization in microgravity and cosmic radiation environments by humans include poorly understood risks for gastrointestinal function and cancer. Nonetheless, constant remodeling of the intestinal microvasculature is critical for tissue viability, healthy wound healing, and successful prevention or recovery from vascular-mediated inflammatory or ischemic diseases such as cancer. Currently no automated image analysis programs provide quantitative assessments of the complex structure of the mucosal vascular system that are necessary for tracking disease development and tissue recovery. Increasing abnormalities to the microvascular network geometry were therefore mapped with VESsel GENeration Analysis (VESGEN) software from 3D tissue reconstructions of developing intestinal inflammation in a dextran sulfate sodium (DSS) mouse model. By several VESGEN parameters and a novel vascular network linking analysis, inflammation strongly disrupted the regular, lattice-like geometry that defines the normal microvascular network, correlating positively with the increased recruitment of dendritic cells during mucosal defense responses. PMID:25143705

  15. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties.

    PubMed

    Strömberg, Anna; Rullman, Eric; Jansson, Eva; Gustafsson, Thomas

    2017-05-01

    Multipotent cells have received great interest because of their potential capacity to repair and remodel peripheral tissues. We examined the effect of an acute exercise bout on the number of circulating cells with known remodeling properties and the level of factors in plasma and skeletal muscle tissue with potential to recruit these cells. Twenty healthy male subjects performed a 60-min cycling exercise. Blood samples for flow cytometry were drawn from 10 subjects (group 1) before and up to 2 h after exercise, and absolute cell counts of the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)), and nonclassical (CD14(+)CD16(++)) monocyte (MO) subpopulations and of CD45(dim)CD34(+)VEGFR2(+) endothelial progenitor cells (EPCs) were measured by bead-based determination. Plasma samples and vastus lateralis muscle biopsies were obtained from the other 10 subjects (group 2). In group 1, all MO subsets were increased directly after exercise, with CD14(+)CD16(++) MOs showing the greatest fold increase. After 2 h, only CD14(++)CD16(-) MOs were increased compared with resting levels. The number of EPCs showed a trend toward increasing with exercise (P = 0.08). In group 2, the mRNA levels of the endothelial adhesion molecules ICAM-1, VCAM-1, and E-selectin increased in the skeletal muscle tissue. VEGF-A increased in exercised skeletal muscle and stimulated the expression of VCAM-1 and E-selectin in human umbilical vein endothelial cells. In conclusion, exercise increases MO subsets with different temporal patterns and enhances the capacity of skeletal muscle tissue to recruit circulating cells as shown by increased expression of endothelial adhesion molecules.NEW & NOTEWORTHY In the present study we showed for the first time that the adhesion molecules ICAM-1, VCAM-1, and E-selectin, known to be able to recruit circulating cells to the peripheral tissue, increased in exercised human skeletal muscle concurrently with increased circulating levels of cells shown to have

  16. Increased Cardiac Myocyte PDE5 Levels in Human and Murine Pressure Overload Hypertrophy Contribute to Adverse LV Remodeling

    PubMed Central

    Vandenwijngaert, Sara; Pokreisz, Peter; Hermans, Hadewich; Gillijns, Hilde; Pellens, Marijke; Bax, Noortje A. M.; Coppiello, Giulia; Oosterlinck, Wouter; Balogh, Agnes; Papp, Zoltan; Bouten, Carlijn V. C.; Bartunek, Jozef; D'hooge, Jan; Luttun, Aernout; Verbeken, Erik; Herregods, Marie Christine; Herijgers, Paul; Bloch, Kenneth D.; Janssens, Stefan

    2013-01-01

    Background The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro. Conclusions/Significance Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target. PMID:23527037

  17. [Weightlessness or weightlessness simulation and vascular remodeling].

    PubMed

    Yue, Yong; Yao, Yong-jie; Sun, Xi-qing; Wu, Xing-yu

    2003-04-01

    Weightlessness is inavoidable during spaceflight. It brings profound physiological effects on human body. Vascular remodeling is one of the important changes of cardiovascular system caused by weightlessness or simulated weightlessness. The paper summarized the studies on the effects of weightlessness or weightlessness simulation on vascular remodeling in recent years. The emergence and development of the concept of vascular remodeling were briefly reviewed. The advances of study on vascular remodeling in recent years was briefly discussed with the points focused on the effects of weightlessness or weightlessness simulation on cardiovascular remodeling and its mechanism. It is proposed that cardiovascular remodeling might be important in studying the causes of orthostatic intolerance after spaceflight.

  18. Divergent Regulation of Ryr2 Calcium Release Channels by Arrhythmogenic Human Calmodulin Missense Mutants

    PubMed Central

    Hwang, Hyun-Seok; Nitu, Florentin R; Yang, Yi; Walweel, Kafa; Pereira, Laetitia; Johnson, Christopher N; Faggioni, Michela; Chazin, Walter J; Laver, Derek; George, Alfred L; Cornea, Razvan L; Bers, Donald M; Knollmann, Björn C

    2014-01-01

    Rationale Calmodulin (CaM) mutations are associated with an autosomal-dominant syndrome of ventricular arrhythmia and sudden death that can present with divergent clinical features of catecholaminergic polymorphic ventricular tachycardia (CPVT)or long QT syndrome (LQTS).CaM binds to and inhibits RyR2 Ca release channels in the heart, but whether arrhythmogenic CaM mutants alter RyR2 function is not known. Objective To gain mechanistic insight into how human CaM mutations affect RyR2 Ca channels. Methods and Results We studied recombinant CaM mutants associated with CPVT (N54I, N98S) or LQTS (D96V, D130G, F142L). As a group, all LQTS-associated CaM mutants(LQTS-CaMs) exhibited reduced Ca affinity, whereas CPVT-associated CaM mutants(CPVT-CaMs) had either normal or modestly lower Ca affinity. In permeabilized ventricular myocytes, CPVT-CaMs at a physiological intracellular concentration (100nM) promoted significantly higher spontaneous Ca wave and spark activity, a typical cellular phenotype of CPVT. Compared to wild-type (WT) CaM, CPVT-CaMs caused greater RyR2 single channel open probability and showed enhanced binding affinity to RyR2. Even a 1:8 mixture of CPVT-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. By contrast, LQTS-CaMs did not promote Ca waves and exhibited either normal regulation of RyR2 single channels (D96V) or lower RyR2 binding affinity (D130G, F142L). None of the CaM mutants altered Ca/CaM binding to CaM-kinase II. Conclusions A small proportion of CPVT-CaM is sufficient to evoke arrhythmogenic Ca disturbances, whereas LQTS-CaMs do not. Our findings explain the clinical presentation and autosomal dominant inheritance of CPVT-CaM mutations and suggest that RyR2-interactions are unlikely to explain arrhythmogenicity of LQTS-CaM mutations. PMID:24563457

  19. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  20. Predicting functional and regulatory divergence of a drug resistance transporter gene in the human malaria parasite.

    PubMed

    Siwo, Geoffrey H; Tan, Asako; Button-Simons, Katrina A; Samarakoon, Upeka; Checkley, Lisa A; Pinapati, Richard S; Ferdig, Michael T

    2015-02-22

    The paradigm of resistance evolution to chemotherapeutic agents is that a key coding mutation in a specific gene drives resistance to a particular drug. In the case of resistance to the anti-malarial drug chloroquine (CQ), a specific mutation in the transporter pfcrt is associated with resistance. Here, we apply a series of analytical steps to gene expression data from our lab and leverage 3 independent datasets to identify pfcrt-interacting genes. Resulting networks provide insights into pfcrt's biological functions and regulation, as well as the divergent phenotypic effects of its allelic variants in different genetic backgrounds. To identify pfcrt-interacting genes, we analyze pfcrt co-expression networks in 2 phenotypic states - CQ-resistant (CQR) and CQ-sensitive (CQS) recombinant progeny clones - using a computational approach that prioritizes gene interactions into functional and regulatory relationships. For both phenotypic states, pfcrt co-expressed gene sets are associated with hemoglobin metabolism, consistent with CQ's expected mode of action. To predict the drivers of co-expression divergence, we integrate topological relationships in the co-expression networks with available high confidence protein-protein interaction data. This analysis identifies 3 transcriptional regulators from the ApiAP2 family and histone acetylation as potential mediators of these divergences. We validate the predicted divergences in DNA mismatch repair and histone acetylation by measuring the effects of small molecule inhibitors in recombinant progeny clones combined with quantitative trait locus (QTL) mapping. This work demonstrates the utility of differential co-expression viewed in a network framework to uncover functional and regulatory divergence in phenotypically distinct parasites. pfcrt-associated co-expression in the CQ resistant progeny highlights CQR-specific gene relationships and possible targeted intervention strategies. The approaches outlined here can be

  1. Osteocyte apoptosis and absence of bone remodeling in human auditory ossicles and scleral ossicles of lower vertebrates: a mere coincidence or linked processes?

    PubMed

    Palumbo, Carla; Cavani, Francesco; Sena, Paola; Benincasa, Marta; Ferretti, Marzia

    2012-03-01

    Considering the pivotal role as bone mechanosensors ascribed to osteocytes in bone adaptation to mechanical strains, the present study analyzed whether a correlation exists between osteocyte apoptosis and bone remodeling in peculiar bones, such as human auditory ossicles and scleral ossicles of lower vertebrates, which have been shown to undergo substantial osteocyte death and trivial or no bone turnover after cessation of growth. The investigation was performed with a morphological approach under LM (by means of an in situ end-labeling technique) and TEM. The results show that a large amount of osteocyte apoptosis takes place in both auditory and scleral ossicles after they reach their final size. Additionally, no morphological signs of bone remodeling were observed. These facts suggest that (1) bone remodeling is not necessarily triggered by osteocyte death, at least in these ossicles, and (2) bone remodeling does not need to mechanically adapt auditory and scleral ossicles since they appear to be continuously submitted to stereotyped stresses and strains; on the contrary, during the resorption phase, bone remodeling might severely impair the mechanical resistance of extremely small bony segments. Thus, osteocyte apoptosis could represent a programmed process devoted to make stable, when needed, bone structure and mechanical resistance.

  2. Uterine Spiral Artery Remodeling: The Role of Uterine Natural Killer Cells and Extravillous Trophoblasts in Normal and High-Risk Human Pregnancies.

    PubMed

    Tessier, Daniel R; Yockell-Lelièvre, Julien; Gruslin, Andrée

    2015-07-01

    The process of uterine spiral artery remodeling in the first trimester of human pregnancy is an essential part of establishing adequate blood perfusion of the placenta that will allow optimal nutrient/waste exchange to meet fetal demands during later development. Key regulators of spiral artery remodeling are the uterine natural killer cells and the invasive extravillous trophoblasts. The functions of these cells as well as regulation of their activation states and temporal regulation of their localization within the uterine tissue are beginning to be known. In this review, we discuss the roles of these two cell lineages in arterial remodeling events, their interaction/influence on one another and the outcomes of altered temporal, and spatial regulation of these cells in pregnancy complications.

  3. Methylation specific targeting of a chromatin remodeling complex from sponges to humans

    PubMed Central

    Cramer, Jason M.; Pohlmann, Deborah; Gomez, Fernando; Mark, Leslie; Kornegay, Benjamin; Hall, Chelsea; Siraliev-Perez, Edhriz; Walavalkar, Ninad M.; Sperlazza, M. Jeannette; Bilinovich, Stephanie; Prokop, Jeremy W.; Hill, April L.; Williams Jr., David C.

    2017-01-01

    DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution. PMID:28094816

  4. Methylation specific targeting of a chromatin remodeling complex from sponges to humans.

    PubMed

    Cramer, Jason M; Pohlmann, Deborah; Gomez, Fernando; Mark, Leslie; Kornegay, Benjamin; Hall, Chelsea; Siraliev-Perez, Edhriz; Walavalkar, Ninad M; Sperlazza, M Jeannette; Bilinovich, Stephanie; Prokop, Jeremy W; Hill, April L; Williams, David C

    2017-01-17

    DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution.

  5. Mild oxidation promotes and advanced oxidation impairs remodeling of human high-density lipoprotein in vitro.

    PubMed

    Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-02-29

    High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by exerting antioxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (which preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis, and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and with lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid redistribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions.

  6. Mild Oxidation Promotes and Advanced Oxidation Impairs Remodeling of Human High-Density Lipoprotein in vitro

    PubMed Central

    Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-01-01

    SUMMARY High-density lipoproteins (HDL) prevent atherosclerosis by removing cholesterol from macrophages and by exerting anti-oxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (that preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid re-distribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions. PMID:18190928

  7. SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans.

    PubMed

    Mathies, Laura D; Blackwell, GinaMari G; Austin, Makeda K; Edwards, Alexis C; Riley, Brien P; Davies, Andrew G; Bettinger, Jill C

    2015-03-10

    Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.

  8. Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells.

    PubMed

    Rebillard, Amélie; Jouan-Lanhouet, Sandrine; Jouan, Elodie; Legembre, Patrick; Pizon, Mathieu; Sergent, Odile; Gilot, David; Tekpli, Xavier; Lagadic-Gossmann, Dominique; Dimanche-Boitrel, Marie-Thérèse

    2010-05-01

    In human colon cancer cells, cisplatin-induced apoptosis involves the Fas death receptor pathway independent of Fas ligand. The present study explores the role of ezrin and actin cytoskeleton in relation with Fas receptor in this cell death pathway. In response to cisplatin treatment, a rapid and transient actin reorganisation is observed at the cell membrane by fluorescence microscopy after Phalloidin-FITC staining. This event is dependent on the membrane fluidification studied by electron paramagnetic resonance and necessary for apoptosis induction. Moreover, early after the onset of cisplatin treatment, ezrin co-localised with Fas at the cell membrane was visualised by membrane microscopy and was redistributed with Fas, FADD and procaspase-8 into membrane lipid rafts as shown on Western blots. In fact, cisplatin exposure results in an early small GTPase RhoA activation demonstrated by RhoA-GTP pull down, Rho kinase (ROCK)-dependent ezrin phosphorylation and actin microfilaments remodelling. Pretreatment with latrunculin A, an inhibitor of actin polymerisation, or specific extinction of ezrin or ROCK by RNA interference prevents both cisplatin-induced actin reorganisation and apoptosis. Interestingly, specific extinction of Fas receptor by RNA interference abrogates cisplatin-induced ROCK-dependent ezrin phosphorylation, actin reorganisation and apoptosis suggesting that Fas is a key regulator of cisplatin-induced actin remodelling and is indispensable for apoptosis. Thus, these findings show for the first time that phosphorylation of ezrin by ROCK via Fas receptor is involved in the early steps of cisplatin-induced apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss

    PubMed Central

    Lang, Hainan; Nishimoto, Eishi; Xing, Yazhi; Brown, LaShardai N; Noble, Kenyaria V; Barth, Jeremy L; LaRue, Amanda C; Ando, Kiyoshi; Schulte, Bradley A

    2016-01-01

    The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear. PMID:27600399

  10. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    PubMed

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

  11. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model

    PubMed Central

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to “hot–wet” (40°C, 80% relative humidity [RH]) or “cold–dry” (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot–wet and cold–dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold–dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment. PMID:28243135

  12. Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects.

    PubMed

    Razumnikova, Olga M

    2004-05-27

    This study examined the gender-related differences in EEG patterns during the experimental condition of divergent thinking. The EEG of 36 males and 27 females was recorded from 16 scalp electrodes in rest and while students were solving a creative problem. The spectral power density along with EEG coherence estimates were analyzed in each of the six frequency bands in the 4-30 Hz range. Gender-related differences in the EEG patterns were found during successful divergent thinking. Creative men were characterized by massive increases of amplitude and interhemispheric coherence in the beta2 whereas creative women showed more local increases of the beta2 power and coherence. On the contrary, the task-induced desynchronization of the alpha1 rhythm in creative women was topographically more expanded as compared with men who demonstrated greater interhemispheric coherence than women did. Our results propose a different hemispheric organization in men and women during creative thinking. Copyright 2004 Elsevier Ireland Ltd.

  13. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction

    PubMed Central

    Becker, Matthias M. M.; Lapouge, Karine; Segnitz, Bernd; Wild, Klemens; Sinning, Irmgard

    2017-01-01

    Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway. PMID:27899666

  14. Lipoprotein remodeling generates lipid-poor apolipoprotein A-I particles in human interstitial fluid

    PubMed Central

    Olszewski, Waldemar L.; Hattori, Hiroaki; Miller, Irina P.; Kujiraoka, Takeshi; Oka, Tomoichiro; Iwasaki, Tadao; Nanjee, M. Nazeem

    2013-01-01

    Although much is known about the remodeling of high density lipoproteins (HDLs) in blood, there is no information on that in interstitial fluid, where it might have a major impact on the transport of cholesterol from cells. We incubated plasma and afferent (prenodal) peripheral lymph from 10 healthy men at 37°C in vitro and followed the changes in HDL subclasses by nondenaturing two-dimensional crossed immunoelectrophoresis and size-exclusion chromatography. In plasma, there was always initially a net conversion of small pre-β-HDLs to cholesteryl ester (CE)-rich α-HDLs. By contrast, in lymph, there was only net production of pre-β-HDLs from α-HDLs. Endogenous cholesterol esterification rate, cholesteryl ester transfer protein (CETP) concentration, CE transfer activity, phospholipid transfer protein (PLTP) concentration, and phospholipid transfer activity in lymph averaged 5.0, 10.4, 8.2, 25.0, and 82.0% of those in plasma, respectively (all P < 0.02). Lymph PLTP concentration, but not phospholipid transfer activity, was positively correlated with that in plasma (r = +0.63, P = 0.05). Mean PLTP-specific activity was 3.5-fold greater in lymph, reflecting a greater proportion of the high-activity form of PLTP. These findings suggest that cholesterol esterification rate and PLTP specific activity are differentially regulated in the two matrices in accordance with the requirements of reverse cholesterol transport, generating lipid-poor pre-β-HDLs in the extracellular matrix for cholesterol uptake from neighboring cells and converting pre-β-HDLs to α-HDLs in plasma for the delivery of cell-derived CEs to the liver. PMID:23233540

  15. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  16. Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum.

    PubMed

    Nio-Kobayashi, Junko; Narayanan, Rachna; Giakoumelou, Sevasti; Boswell, Lyndsey; Hogg, Kirsten; Duncan, W Colin

    2013-02-01

    Members of the transforming growth factor-β (TGF-β) superfamily are likely to have major roles in the regulation of tissue and vascular remodelling in the corpus luteum (CL). There are four inhibitor-of-differentiation (ID1-4) genes that are regulated by members of the TGF-β superfamily and are involved in the transcriptional regulation of cell growth and differentiation. We studied their expression, localization and regulation in dated human corpora lutea from across the luteal phase (n = 22) and after human chorionic gonadotrophin (hCG) administration in vivo (n = 5), and in luteinized granulosa cells (LGCs), using immunohistochemistry and quantitative RT-PCR. ID1-4 can be localized to multiple cell types in the CL across the luteal phase. Endothelial cell ID3 (P < 0.05) and ID4 (P < 0.05) immunostaining intensities peak at the time of angiogenesis but overall ID1 (P < 0.05) and ID3 (P < 0.05) expression peaks at the time of luteolysis, and luteal ID3 expression is inhibited by hCG in vivo (P < 0.01). In LGC cultures in vitro, hCG had no effect on ID1, down-regulated ID3 (P < 0.001), and up-regulated ID2 (P < 0.001) and ID4 (P < 0.01). Bone morphogenic proteins (BMPs) had no effect on ID4 expression but up-regulated ID1 (P < 0.01 to P < 0.005). BMP up-regulation of ID2 (P < 0.05) was additive to the hCG up-regulation of ID2 expression (P < 0.001), while BMP cancelled out the down regulative effect of hCG on ID3 regulation. As well as documenting regulation patterns specific for ID1, ID2, ID3 and ID4, we have shown that IDs are located and differentially regulated in the human CL, suggesting a role in the transcriptional regulation of luteal cells during tissue and vascular remodelling.

  17. Spatially Directed Proteomics of the Human Lens Outer Cortex Reveals an Intermediate Filament Switch Associated With the Remodeling Zone

    PubMed Central

    Wenke, Jamie L.; McDonald, W. Hayes; Schey, Kevin L.

    2016-01-01

    Purpose To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. Methods Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to isolate tissue from four distinct regions of human lens outer cortex: differentiating zone (DF), RZ, transition zone (TZ), and inner cortex (IC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the plasma membrane fraction from three lenses (21-, 22-, and 27-year) revealed changes in major cytoskeletal proteins including vimentin, filensin, and phakinin. Peptides from proteins of interest were quantified using multiple reaction monitoring (MRM) mass spectrometry and isotopically-labeled internal peptide standards. Results Results revealed an intermediate filament switch from vimentin to beaded filament proteins filensin and phakinin that occurred at the RZ. Several other cytoskeletal proteins showed significant changes between regions, while most crystallins remained unchanged. Targeted proteomics provided accurate, absolute quantification of these proteins and confirmed vimentin, periplakin, and periaxin decrease from the DF to the IC, while filensin, phakinin, and brain acid soluble protein 1 (BASP1) increase significantly at the RZ. Conclusions Mass spectrometry-compatible fixation and morphology directed laser capture enabled proteomic analysis of narrow regions in the human lens outer cortex. Results reveal dramatic cytoskeletal protein changes associated with the RZ, suggesting that one role of these proteins is in membrane deformation and/or the establishment of ball and socket joints in the human RZ. PMID:27537260

  18. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling.

    PubMed

    Liuzzi, Anna Rita; Kift-Morgan, Ann; Lopez-Anton, Melisa; Friberg, Ida M; Zhang, Jingjing; Brook, Amy C; Roberts, Gareth W; Donovan, Kieron L; Colmont, Chantal S; Toleman, Mark A; Bowen, Timothy; Johnson, David W; Topley, Nicholas; Moser, Bernhard; Fraser, Donald J; Eberl, Matthias

    2016-09-15

    The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2(+) γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response. Copyright © 2016 The Authors.

  19. Hypoxia Does neither Stimulate Pulmonary Artery Endothelial Cell Proliferation in Mice and Rats with Pulmonary Hypertension and Vascular Remodeling nor in Human Pulmonary Artery Endothelial Cells

    PubMed Central

    Yu, Lunyin; Hales, Charles A.

    2011-01-01

    Background Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. Methods We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. Results and Conclusion We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling. PMID:21691120

  20. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    PubMed

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development.

  1. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: Relevance for human studies

    PubMed Central

    Porcu, Patrizia; Morrow, A. Leslie

    2014-01-01

    Rationale Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily GABAA receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. Objectives This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice and humans. Results GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. Conclusions Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids. PMID:24770626

  2. Divergent evolution of part of the involucrin gene in the hominoids: Unique intragenic duplications in the gorilla and human

    SciTech Connect

    Teumer, J.; Green, H. )

    1989-02-01

    The gene for involucrin, an epidermal protein, has been remodeled in the higher primates. Most of the coding region of the human gene consists of a modern segment of repeats derived from a 10-codon sequence present in the ancestral segment of the gene. The modern segment can be divided into early, middle, and late regions. The authors report here the nucleotide sequence of three alleles of the gorilla involucrin gene. Each possesses a modern segment homologous to that of the human and consisting of 10-codon repeats. The early and middle regions are similar to the corresponding regions of the human allele and are nearly identical among the different gorilla alleles. The late region consists of recent duplications whose pattern is unique in each of the gorilla alleles and in the human allele. The early region is located in what is now the 3{prime} third of the modern segment, and the late, polymorphic region is located in what is now the 5{prime} third. Therefore, as the modern segment expanded during evolution, its 3{prime} end became stabilized, and continuing duplications became confined to its 5{prime} end. The expansion of the involucrin coding region, which began long before the separation of the gorilla and human, has continued in both species after their separation.

  3. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    PubMed

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube.

  4. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra

    PubMed Central

    Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    2016-01-01

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization (“opening zipper”) opens the solid urethral plate into a groove, and fusion (“closing zipper”) closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal “cords”. Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. PMID:27397682

  5. Divergent RNA-Binding Proteins, DAZL and VASA, Induce Meiotic Progression in Human Germ Cells Derived In Vitro

    PubMed Central

    Medrano, Jose v.; Ramathal, Cyril; Nguyen, Ha N.; Simon, Carlos; Pera, Renee A. Reijo

    2013-01-01

    Our understanding of human germ cell development is limited in large part due to inaccessibility of early human development to molecular genetic analysis. Pluripotent human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been shown to differentiate to cells of all three embryonic germ layers, as well as germ cells in vitro, and thus may provide a model for the study of the genetics and epigenetics of human germline. Here, we examined whether intrinsic germ cell translational, rather than transcriptional, factors might drive germline formation and/or differentiation from human pluripotent stem cells in vitro. We observed that, with overexpression of VASA (DDX4) and/or DAZL (Deleted in Azoospermia Like), both hESCs and iPSCs differentiated to primordial germ cells, and maturation and progression through meiosis was enhanced. These results demonstrate that evolutionarily unrelated and divergent RNA-binding proteins can promote meiotic progression of human-derived germ cells in vitro. These studies describe an in vitro model for exploring specifics of human meiosis, a process that is remarkably susceptible to errors that lead to different infertility-related diseases. PMID:22162380

  6. Right ventricular arrhythmogenesis in failing human heart: the role of conduction and repolarization remodeling

    PubMed Central

    Lou, Qing; Janks, Deborah L.; Holzem, Katherine M.; Lang, Di; Onal, Birce; Ambrosi, Christina M.; Fedorov, Vadim V.; Wang, I-Wen

    2012-01-01

    Increased dispersion of repolarization has been suggested to underlie increased arrhythmogenesis in human heart failure (HF). However, no detailed repolarization mapping data were available to support the presence of increased dispersion of repolarization in failing human heart. In the present study, we aimed to determine the existence of enhanced repolarization dispersion in the right ventricular (RV) endocardium from failing human heart and examine its association with arrhythmia inducibility. RV free wall preparations were dissected from five failing and five nonfailing human hearts, cannulated and coronary perfused. RV endocardium was optically mapped from an ∼6.3 × 6.3 cm2 field of view. Action potential duration (APD), dispersion of APD, and conduction velocity (CV) were quantified for basic cycle lengths (BCL) ranging from 2,000 ms to the functional refractory period. We found that RV APD was significantly prolonged within the failing group compared with the nonfailing group (560 ± 44 vs. 448 ± 39 ms, at BCL = 2,000 ms, P < 0.05). Dispersion of APD was increased in three failing hearts (161 ± 5 vs. 86 ± 19 ms, at BCL = 2,000 ms). APD alternans were induced by rapid pacing in these same three failing hearts. CV was significantly reduced in the failing group compared with the nonfailing group (81 ± 11 vs. 98 ± 8 cm/s, at BCL = 2,000 ms). Arrhythmias could be induced in two failing hearts exhibiting an abnormally steep CV restitution and increased dispersion of repolarization due to APD alternans. Dispersion of repolarization is enhanced across the RV endocardium in the failing human heart. This dispersion, together with APD alternans and abnormal CV restitution, could be responsible for the arrhythmia susceptibility in human HF. PMID:23042951

  7. Right ventricular arrhythmogenesis in failing human heart: the role of conduction and repolarization remodeling.

    PubMed

    Lou, Qing; Janks, Deborah L; Holzem, Katherine M; Lang, Di; Onal, Birce; Ambrosi, Christina M; Fedorov, Vadim V; Wang, I-Wen; Efimov, Igor R

    2012-12-15

    Increased dispersion of repolarization has been suggested to underlie increased arrhythmogenesis in human heart failure (HF). However, no detailed repolarization mapping data were available to support the presence of increased dispersion of repolarization in failing human heart. In the present study, we aimed to determine the existence of enhanced repolarization dispersion in the right ventricular (RV) endocardium from failing human heart and examine its association with arrhythmia inducibility. RV free wall preparations were dissected from five failing and five nonfailing human hearts, cannulated and coronary perfused. RV endocardium was optically mapped from an ∼6.3 × 6.3 cm(2) field of view. Action potential duration (APD), dispersion of APD, and conduction velocity (CV) were quantified for basic cycle lengths (BCL) ranging from 2,000 ms to the functional refractory period. We found that RV APD was significantly prolonged within the failing group compared with the nonfailing group (560 ± 44 vs. 448 ± 39 ms, at BCL = 2,000 ms, P < 0.05). Dispersion of APD was increased in three failing hearts (161 ± 5 vs. 86 ± 19 ms, at BCL = 2,000 ms). APD alternans were induced by rapid pacing in these same three failing hearts. CV was significantly reduced in the failing group compared with the nonfailing group (81 ± 11 vs. 98 ± 8 cm/s, at BCL = 2,000 ms). Arrhythmias could be induced in two failing hearts exhibiting an abnormally steep CV restitution and increased dispersion of repolarization due to APD alternans. Dispersion of repolarization is enhanced across the RV endocardium in the failing human heart. This dispersion, together with APD alternans and abnormal CV restitution, could be responsible for the arrhythmia susceptibility in human HF.

  8. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii.

    PubMed

    Lan, Lisa; Xu, Jianping

    2006-05-01

    Candida guilliermondii is a haploid opportunistic pathogen accounting for about 2 % of human blood yeast infections. Recent analyses using multilocus enzyme electrophoresis and karyotyping suggest that strains from human sources traditionally designated C. guilliermondii in fact include at least two species, C. guilliermondii and Candida fermentati. However, the patterns of molecular variation within and between these two species remain largely unknown. In this study, DNA fragments were sequenced from five genes for each of 37 strains collected from Canada, China, the Philippines and Tanzania. The analyses identified significant sequence differences between C. guilliermondii and C. fermentati. The five gene genealogies showed no apparent incongruence, suggesting a predominantly clonal reproductive structure for both species in nature. Indeed, two large clones of C. guilliermondii were identified, with one from Ontario, Canada, and the other from China. Interestingly, the results indicate that strains currently designated C. guilliermondii may contain additional divergent lineages. On the practical side, the results revealed several diagnostic molecular markers that can be used in clinical microbiology laboratories to distinguish C. guilliermondii and C. fermentati. The multiple gene genealogical analyses conducted here revealed significant divergence and clonal dispersal in this important pathogenic yeast complex.

  9. Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling.

    PubMed

    Gouk, Sok-Siam; Lim, Tit-Meng; Teoh, Swee-Hin; Sun, Wendell Q

    2008-01-01

    AlloDerm, a processed acellular human tissue matrix, is used in a number of surgical applications for tissue repair and regeneration. In the present work, AlloDerm serves as a model system for studying gamma radiation-induced changes in tissue structure and stability as well as the effect of such changes on the cell-matrix interactions, including cell repopulation and matrix remodeling. AlloDerm tissue matrix was treated with 2-30 kGy gamma irradiation at room temperature. Gamma irradiation reduced the swelling of tissue matrix upon rehydration and caused significant structural modifications, including collagen condensation and hole formation in collagen fibres. The tensile strength of AlloDerm increased at low gamma dose but decreased with increasing gamma dosage. The elasticity of irradiated AlloDerm was reduced significantly. Calorimetric study showed that gamma irradiation destabilized the tissue matrix, resulting in greater susceptibility to proteolytic enzyme degradation. Although gamma irradiation did not affect in vitro proliferation of fibroblast cells, it promoted tissue degradation upon cell repopulation and influenced synthesis and deposition of new collagen.

  10. Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells.

    PubMed

    Doroudian, Golnar; Curtis, Matthew W; Gang, Anjulie; Russell, Brenda

    2013-01-18

    Human bone marrow-derived mesenchymal stem cell (hMSCs) function depends on chemical factors and also on the physical cues of the microenvironmental niche. Here, this physical microenvironment is recapitulated with controlled modes of mechanical strain applied to substrata containing three-dimensional features in order to analyze the effects on cell morphology, focal adhesion distribution, and gene expression. Ten percentage of strain at 1 Hz is delivered for 48 h to hMSCs cultured on flat surfaces, or on substrata with 15 μm-high microtopographic posts spaced 75 μm apart. Adding strain to microtopography produced stable semicircular focal adhesions, and actin spanning from post to post. Strain dominated over microtopography for expression of genes for the cytoskeleton (caldesmon-1 and calponin 3), cell adhesion (integrin-α2, vinculin, and paxillin), and extracellular matrix remodeling (MMP13) (p<0.05). Overall, attention to external mechanical stimuli is necessary for optimizing the stem cell niche for regenerative medicine.

  11. Intestinal mucosa remodeling by recombinant human epidermal growth factor(1-48) in neonates with severe necrotizing enterocolitis.

    PubMed

    Sullivan, Peter B; Lewindon, Peter J; Cheng, Carmen; Lenehan, Peter F; Kuo, Bo-Sheng; Haskins, Jeffrey R; Goodlad, Robert A; Wright, Nicholas A; de la Iglesia, Felix A; dela Iglesia, Felix A

    2007-03-01

    Neonatal necrotizing enterocolitis (NEC) is a common and serious acquired gastrointestinal tract condition. This clinical study assessed the potential clinical efficacy and microscopic effects of recombinant human epidermal growth factor 1-48 (EGF(1-48)) in neonates with NEC. This prospective, double-blind, randomized controlled study included 8 neonates with NEC. The study compared the effects of a 6-day continuous intravenous infusion of EGF(1-48) at 100 ng kg(-1) h(-1) against placebo. Clinical outcomes and morphological evaluation of serial rectal mucosal biopsies were assessed at baseline and 4, 7, and 14 days after starting EGF infusions. There was no difference between the clinical safety outcomes recorded for EGF(1-48) or placebo patients. Quantitative morphologic differences in the rectal mucosa biopsies were noted with EGF(1-48) treatment compared with baseline or placebo and included a statistically significant increase in the number of mitoses per mucosal crypt on study day 4, significantly increased thickness of rectal mucosa from baseline on study days 4 and 7, and increased crypt surface area of rectal mucosa in parallel with increased mucosa thickness on day 14. This study of EGF(1-48) in neonates with severe NEC showed that growth factor treatment was well tolerated and produced positive and measurable remodeling trophic effects on the gastrointestinal mucosa.

  12. Remodeling of Oxidative Energy Metabolism by Galactose Improves Glucose Handling and Metabolic Switching in Human Skeletal Muscle Cells

    PubMed Central

    Kase, Eili Tranheim; Nikolić, Nataša; Bakke, Siril Skaret; Bogen, Kaja Kamilla; Aas, Vigdis; Thoresen, G. Hege; Rustan, Arild Christian

    2013-01-01

    Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments. PMID:23560061

  13. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling

    PubMed Central

    Hu, Zu-Quan; Xue, Hui; Long, Jin-Hua; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Wen, Zong-Yao; Yao, Wei-Juan; Zeng, Zhu

    2016-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors. PMID:27809226

  14. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling.

    PubMed

    Hu, Zu-Quan; Xue, Hui; Long, Jin-Hua; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Wen, Zong-Yao; Yao, Wei-Juan; Zeng, Zhu

    2016-10-31

    Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors.

  15. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling.

    PubMed

    Ozen, Gulsev; Daci, Armond; Norel, Xavier; Topal, Gokce

    2015-11-05

    Obesity is one of the major risk factors for the development of cardiovascular diseases. It is characterized by excessive or abnormal accumulation of adipose tissue, including depots which surround the blood vessels named perivascular adipose tissue (PVAT). PVAT plays endocrine and paracrine roles by producing large numbers of metabolically vasoactive adipokines. The present review outlines our current understanding of the beneficial roles of PVAT in vascular tone and remodeling in healthy subjects supported by clinical studies, highlighting different factors or mechanisms that could mediate protective effects of PVAT on vascular function. Most studies in humans show that adiponectin is the best candidate for the advantageous effect of PVAT. However, in pathological conditions especially obesity-related cardiovascular diseases, the beneficial effects of PVAT on vascular functions are impaired and transform into detrimental roles. This change is defined as PVAT dysfunction. In the current review, the contribution of PVAT dysfunction to obesity-related cardiovascular diseases has been discussed with a focus on possible mechanisms including an imbalance between beneficial and detrimental adipokines (commonly described as decreased levels of adiponectin and increased levels of leptin or tumor necrosis factor-alpha (TNFα)), increased quantity of adipose tissue, inflammation, cell proliferation and endothelial dysfunction. Finally, novel pharmacotherapeutic targets for the treatment of cardiovascular and metabolic disorders are addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment.

    PubMed

    Guo, Bin; Huang, Xinxin; Cooper, Scott; Broxmeyer, Hal E

    2017-03-06

    Efficient hematopoietic stem cell (HSC) homing is important for hematopoietic cell transplantation (HCT), especially when HSC numbers are limited, as in the use of cord blood (CB). In a screen of small-molecule compounds, we identified glucocorticoid (GC) hormone signaling as an activator of CXCR4 expression in human CB HSCs and hematopoietic progenitor cells (HPCs). Short-term GC pretreatment of human CB HSCs and HPCs promoted SDF-1-CXCR4-axis-mediated chemotaxis, homing, and long-term engraftment when these cells were transplanted into primary- and secondary-recipient NSG mice. Mechanistically, activated glucocorticoid receptor binds directly to a glucocorticoid response element in the CXCR4 promoter and recruits the SRC-1-p300 complex to promote H4K5 and H4K16 histone acetylation, facilitating transcription of CXCR4. These results suggest a new and readily available means to enhance the clinical efficacy of CB HCT.

  17. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle.

    PubMed

    Benziane, Boubacar; Burton, Timothy J; Scanlan, Brendan; Galuska, Dana; Canny, Benedict J; Chibalin, Alexander V; Zierath, Juleen R; Stepto, Nigel K

    2008-12-01

    Endurance training represents one extreme in the continuum of skeletal muscle plasticity. The molecular signals elicited in response to acute and chronic exercise and the integration of multiple intracellular pathways are incompletely understood. We determined the effect of 10 days of intensified cycle training on signal transduction in nine inactive males in response to a 1-h acute bout of cycling at the same absolute workload (164 +/- 9 W). Muscle biopsies were taken at rest and immediately and 3 h after the acute exercise. The metabolic signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), demonstrated divergent regulation by exercise after training. AMPK phosphorylation increased in response to exercise ( approximately 16-fold; P < 0.05), which was abrogated posttraining (P < 0.01). In contrast, mTOR phosphorylation increased in response to exercise ( approximately 2-fold; P < 0.01), which was augmented posttraining (P < 0.01) in the presence of increased mTOR expression (P < 0.05). Exercise elicited divergent effects on mitogen-activated protein kinase (MAPK) pathways after training, with exercise-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation being abolished (P < 0.01) and p38 MAPK maintained. Finally, calmodulin kinase II (CaMKII) exercise-induced phosphorylation and activity were maintained (P < 0.01), despite increased expression ( approximately 2-fold; P < 0.05). In conclusion, 10 days of intensified endurance training attenuated AMPK, ERK1/2, and mTOR, but not CaMKII and p38 MAPK signaling, highlighting molecular pathways important for rapid functional adaptations and maintenance in response to intensified endurance exercise and training.

  18. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction.

    PubMed

    Koch, Matthias; Spillmann, Frank; Dendorfer, Andreas; Westermann, Dirk; Altmann, Christine; Sahabi, Merdad; Linthout, Sophie Van; Bader, Michael; Walther, Thomas; Schultheiss, Heinz-Peter; Tschöpe, Carsten

    2006-11-21

    Bradykinin coronary outflow, left ventricular performance and left ventricular dimensions of transgenic rats harboring the human tissue kallikrein-1 gene TGR(hKLK1) were investigated under basal and ischemic conditions. Bradykinin content in the coronary outflow of buffer-perfused, isolated hearts of controls and TGR(hKLK1) was measured by specific radioimmunoassay before and after global ischemia. Left ventricular function and left ventricular dimensions were determined in vivo using a tip catheter and echocardiography 6 days and 3 weeks after induction of myocardial infarction. Left ventricular type I collagen mRNA expression was analyzed by RNase protection assay. Compared to controls, basal bradykinin outflow was 3.5 fold increased in TGR(hKLK1). Ischemia induced an increase of bradykinin coronary outflow in controls but did not induce a further increase in TGR(hKLK1). However, despite similar unchanged infarction sizes, left ventricular function and remodeling improved in TGR(hKLK1) after myocardial infarction, indicated by an increase in left ventricular pressure (+34%; P<0.05), contractility (dp/dt max. +25%; P<0.05), and in ejection fraction (+20%; P<0.05) as well as by a reduction in left ventricular enddiastolic pressure (-49%, P<0.05), left ventricular enddiastolic diameter (-20%, P<0.05), and collagen mRNA expression (-15%, P<0.05) compared to controls. A chronically activated transgenic kallikrein kinin system with expression of human kallikrein-1 gene counteracts the progression of left ventricular contractile dysfunction after experimental myocardial infarction. Further studies have to show whether these results can be caused by other therapeutically options. Long acting bradykinin receptor agonists might be an alternative option to improve ischemic heart disease.

  19. The remodeling pattern of human mandibular alveolar bone during prenatal formation from 19 to 270mm CRL.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Tsengelsaikhan, Nyamdorj; Schuster, Felix; Zimmermann, Camilla A

    2016-05-01

    The underlying mechanisms of human bone morphogenesis leading to a topologically specific shape remain unknown, despite increasing knowledge of the basic molecular aspects of bone formation and its regulation. The formation of the alveolar bone, which houses the dental primordia, and later the dental roots, may serve as a model to approach general questions of bone formation. Twenty-five heads of human embryos and fetuses (Radlanski-Collection, Berlin) ranging from 19mm to 270mm (crown-rump-length) CRL were prepared as histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia with their surrounding bone. Special focus was given to recording the bone-remodeling pattern, as diagnosed from the histological sections. In early stages (19-31mm CRL) developing bone was characterized by appositional only. At 41, in the canine region, mm CRL bony extensions were found forming on the bottom of the trough. Besides general apposition, regions with resting surfaces were also found. At a fetal size of 53mm CRL, septa have developed and led to a compartment for canine development. Furthermore, one shared compartment for the incisor primordia and another shared compartment for the molars also developed. Moreover, the inner surfaces of the dental crypts showed resorption of bone. From this stage on, a general pattern became established such that the compartmentalizing ridges and septa between all of the dental primordia and the brims of the crypts were noted, and were due to appositional growth of bone, while the crypts enlarged on their inner surfaces by resorption. By 160mm CRL, the dental primordia were larger, and all of the bony septa had become reduced in size. The primordia for the permanent teeth became visible at 225mm CRL and shared the crypts of their corresponding deciduous primordia.

  20. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro

    PubMed Central

    Ekwueme, Emmanuel C.; Shah, Jay V.; Mohiuddin, Mahir; Ghebes, Corina A.; Crispim, João F.; Saris, Daniël B.F.; Fernandes, Hugo A.M.; Freeman, Joseph W.

    2016-01-01

    Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/ turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies. PMID:26308651

  1. Divergent fates of the medical humanities in psychiatry and internal medicine: should psychiatry be rehumanized?

    PubMed

    Rutherford, Bret R; Hellerstein, David J

    2008-01-01

    To determine the degree to which the medical humanities have been integrated into the fields of internal medicine and psychiatry, the authors assessed the presence of medical humanities articles in selected psychiatry and internal medicine journals from 1950 to 2000. The journals searched were the three highest-ranking psychiatry and internal medicine journals on the Institute for Scientific Information's Impact Factor rankings that were published in English and aimed at a clinical audience. Operationalized criteria defining the medical humanities allowed the percentage of text in the selected journals constituting medical humanities to be quantified. Journals were hand searched at 10-year intervals from 1950 to 2000. Mixed effects models were used to describe the change in medical humanities over time. The percentage of text within psychiatry journals meeting the criteria for medical humanities declined from a peak of 17% in 1970 to a low of 2% in 2000, while the percentage of humanities articles in internal medicine journals roughly doubled from 5% to 11% over the same time period. A linear model increasing over time best fit the medical humanities in the internal medicine journals, while a cubic model decreasing over time best fit the psychiatry humanities data. Humanities articles in medical journals had a greater breadth and diversity than those in psychiatry journals. Medical humanities publications dramatically decreased over time in psychiatry journals while they more than doubled in internal medicine journals. These data suggest the need for further empirical research and discussion of the potential roles of the humanities in psychiatry.

  2. The interplay between DNA methylation and sequence divergence in recent human evolution

    PubMed Central

    Hernando-Herraez, Irene; Heyn, Holger; Fernandez-Callejo, Marcos; Vidal, Enrique; Fernandez-Bellon, Hugo; Prado-Martinez, Javier; Sharp, Andrew J.; Esteller, Manel; Marques-Bonet, Tomas

    2015-01-01

    Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated. We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation. PMID:26170231

  3. Age effect on myocellular remodeling: response to exercise and nutrition in humans

    PubMed Central

    Robinson, Matthew M.

    2011-01-01

    Aging is associated with decline in muscle mass and muscle functions. Muscle strength declines disproportionate to the decline in muscle mass indicating that muscle quality or protein quality also declines with age. Human studies have shown a progressive decline in muscle protein synthesis including proteins in the contractile apparatus and mitochondria with age. However, the decline in muscle protein synthesis is disproportionate to the decline in muscle mass that occurs with age prompting to hypothesize that muscle protein degradation also declines with age. A decline in mitochondrial capacity to synthesize ATP is likely a limiting factor of both synthesis and degradation, which are ATP dependent processes. In support of the above hypothesis, several studies have shown a decline in whole body protein turnover (synthesis and degradation). The timely and efficient degradation of irreversibly damaged or modified proteins is critical to maintain the quality of protein. It is proposed that a failure to degrade the damaged proteins and replacing them with newly synthesized proteins contribute to age related decline in muscle mass and quality of muscle proteins. The underlying molecular mechanism of these age related changes in human muscle needs further investigation. PMID:22085885

  4. Age effect on myocellular remodeling: response to exercise and nutrition in humans.

    PubMed

    Irving, Brian A; Robinson, Matthew M; Nair, K Sreekumaran

    2012-07-01

    Aging is associated with decline in muscle mass and muscle functions. Muscle strength declines disproportionate to the decline in muscle mass indicating that muscle quality or protein quality also declines with age. Human studies have shown a progressive decline in muscle protein synthesis including proteins in the contractile apparatus and mitochondria with age. However, the decline in muscle protein synthesis is disproportionate to the decline in muscle mass that occurs with age prompting to hypothesize that muscle protein degradation also declines with age. A decline in mitochondrial capacity to synthesize ATP is likely a limiting factor of both synthesis and degradation, which are ATP dependent processes. In support of the above hypothesis, several studies have shown a decline in whole body protein turnover (synthesis and degradation). The timely and efficient degradation of irreversibly damaged or modified proteins is critical to maintain the quality of protein. It is proposed that a failure to degrade the damaged proteins and replacing them with newly synthesized proteins contribute to age related decline in muscle mass and quality of muscle proteins. The underlying molecular mechanism of these age related changes in human muscle needs further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex

    PubMed Central

    Willhoft, Oliver; Bythell-Douglas, Rohan; McCormack, Elizabeth A.; Wigley, Dale B.

    2016-01-01

    We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding. PMID:27257055

  6. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages.

    PubMed

    Palopoli, Michael F; Fergus, Daniel J; Minot, Samuel; Pei, Dorothy T; Simison, W Brian; Fernandez-Silva, Iria; Thoemmes, Megan S; Dunn, Robert R; Trautwein, Michelle

    2015-12-29

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement.

  7. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

    PubMed Central

    Palopoli, Michael F.; Fergus, Daniel J.; Minot, Samuel; Pei, Dorothy T.; Simison, W. Brian; Fernandez-Silva, Iria; Thoemmes, Megan S.; Dunn, Robert R.; Trautwein, Michelle

    2015-01-01

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  8. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors.

    PubMed

    Brown, Stephanie; Teo, Adrian; Pauklin, Siim; Hannan, Nicholas; Cho, Candy H-H; Lim, Bing; Vardy, Leah; Dunn, N Ray; Trotter, Matthew; Pedersen, Roger; Vallier, Ludovic

    2011-08-01

    Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions. Copyright © 2011 AlphaMed Press.

  9. *Induced Remodeling of Porcine Tendons to Human Anterior Cruciate Ligaments by α-GAL Epitope Removal and Partial Cross-Linking

    PubMed Central

    Stone, Kevin R.; Walgenbach, Ann

    2017-01-01

    This review describes a novel method developed for processing porcine tendon and other ligament implants that enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECMs) that provide postoperative orthobiological support (i.e., augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a preclinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non-gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes—this epitope that is abundant in pigs (as in other nonprimate mammals) binds the natural anti-Gal antibody, which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial cross-linking of porcine tendon with glutaraldehyde—this cross-linking generates covalent bonds in the ECM, which slow infiltration of macrophages into the implant. Anti-non-gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non-gal antibodies bind to the implant ECM, recruit macrophages, and induce the implant destruction by directing proteolytic activity of macrophages. Partial cross-linking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts that follow the infiltrating macrophages. These

  10. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury

    PubMed Central

    Murray, Lynda M.; Knikou, Maria

    2017-01-01

    Interventions that can produce targeted brain plasticity after human spinal cord injury (SCI) are needed for restoration of impaired movement in these patients. In this study, we tested the effects of repetitive cervicothoracic transspinal stimulation in one person with cervical motor incomplete SCI on cortical and corticospinal excitability, which were assessed via transcranial magnetic stimulation with paired and single pulses, respectively. We found that repetitive cervicothoracic transspinal stimulation potentiated intracortical facilitation in flexor and extensor wrist muscles, recovered intracortical inhibition in the more impaired wrist flexor muscle, increased corticospinal excitability bilaterally, and improved voluntary muscle strength. These effects may have been mediated by improvements in cortical integration of ascending sensory inputs and strengthening of corticospinal connections. Our novel therapeutic intervention opens new avenues for targeted brain neuromodulation protocols in individuals with cervical motor incomplete SCI. PMID:28265259

  11. Arrhythmogenic Remodeling of β2 versus β1 Adrenergic Signaling in the Human Failing Heart

    PubMed Central

    Lang, Di; Holzem, Katherine; Kang, Chaoyi; Xiao, Mengqian; Hwang, Hye Jin; Ewald, Gregory A.; Yamada, Kathryn A.; Efimov, Igor R.

    2015-01-01

    Background Arrhythmia is the major cause of death in patients with heart failure, for which β-adrenergic receptor (AR) blockers are a mainstay therapy. But the role of β-adrenergic signaling in electrophysiology and arrhythmias has never been studied in human ventricles. Methods and Results We used optical imaging of action potentials (AP) and [Ca2+]i transients (CaT) to compare the β1- and β2-adrenergic responses in left ventricular wedge preparations of human donor and failing hearts. β1-stimulation significantly increased conduction velocity (CV), shortened AP duration (APD), CaT duration (CaD) in donor but not failing hearts, due to desensitization of β1-AR in heart failure. In contrast, β2-stimulation increased CV in both donor and failing hearts but shortened APD only in failing hearts. β2-stimulation also affected transmural heterogeneity in APD but not in CaD. Both β1- and β2-stimulation augmented the vulnerability and frequency of ectopic activity and enhanced substrates for ventricular tachycardia in failing, but not donor, hearts. Both β1- and β2-stimulation enhanced Purkinje fiber automaticity, while only β2-stimulation promoted Ca-mediated premature ventricular contractions in heart failure. Conclusions During end-stage heart failure, β2-stimulation creates arrhythmogenic substrates via CV regulation and transmurally heterogeneous repolarization. β2-stimulation is, therefore, more arrhythmogenic than β1-stimulation. In particular, β2-stimulation increases the transmural difference between CaD and APD, which facilitates the formation of delayed afterdepolarizations. PMID:25673629

  12. Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling

    PubMed Central

    Pastel, E; Joshi, S; Knight, B; Liversedge, N; Ward, R; Kos, K

    2016-01-01

    BACKGROUND/OBJECTIVES: Subjects with type-2 diabetes are typically obese with dysfunctional adipose tissue (AT). Glucagon-like peptide-1 (GLP-1) analogues are routinely used to improve glycaemia. Although, they also aid weight loss that improves AT function, their direct effect on AT function is unclear. To explore GLP-1 analogues' influence on human AT's cytokine and extracellular matrix (ECM) regulation, we therefore obtained and treated omental (OMAT) and subcutaneous (SCAT) AT samples with Exendin-4, an agonist of the GLP-1 receptor (GLP-1R). SUBJECTS/METHODS: OMAT and abdominal SCAT samples obtained from women during elective surgery at the Royal Devon & Exeter Hospital (UK) were treated with increasing doses of Exendin-4. Changes in RNA expression of adipokines, inflammatory cytokines, ECM components and their regulators were assessed and protein secretion analysed by ELISA. GLP-1R protein accumulation was compared in paired AT depot samples. RESULTS: Exendin-4 induced an increase in OMAT adiponectin (P=0.02) and decrease in elastin expression (P=0.03) in parallel with reduced elastin secretion (P=0.04). In contrast to OMAT, we did not observe an effect on SCAT. There was no change in the expression of inflammatory markers (CD14, TNFA, MCP-1), collagens, TGFB1 or CTGF. GLP-1R accumulation was higher in SCAT. CONCLUSIONS: Independently of weight loss, which may bias findings of in vivo studies, GLP-1 analogues modify human OMAT physiology favourably by increasing the insulin-sensitising cytokine adiponectin. However, the reduction of elastin and no apparent effect on AT's inflammatory cytokines suggest that GLP-1 analogues may be less beneficial to AT function, especially if there is no associated weight loss. PMID:27941938

  13. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    SciTech Connect

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E.; Peers, C.

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires the cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.

  14. NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model

    PubMed Central

    Horenstein, Alberto L.; Chillemi, Antonella; Quarona, Valeria; Zito, Andrea; Roato, Ilaria; Morandi, Fabio; Marimpietri, Danilo; Bolzoni, Marina; Toscani, Denise; Oldham, Robert J.; Cuccioloni, Massimiliano; Sasser, A. Kate; Pistoia, Vito; Giuliani, Nicola; Malavasi, Fabio

    2015-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo. PMID:26393653

  15. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    SciTech Connect

    Salsman, Jayme; Wang Xueqi; Frappier, Lori

    2011-06-05

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  16. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE PAGES

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; ...

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  17. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    SciTech Connect

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.

  18. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    PubMed Central

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-01-01

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal. PMID:26350214

  19. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    NASA Astrophysics Data System (ADS)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  20. Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodelling

    PubMed Central

    Valiuliene, Giedre; Stirblyte, Ieva; Cicenaite, Dovile; Kaupinis, Algirdas; Valius, Mindaugas; Navakauskiene, Ruta

    2015-01-01

    Epigenetic changes play a significant role in leukaemia pathogenesis, therefore histone deacetylases (HDACis) are widely accepted as an attractive strategy for acute promyelocytic leukaemia (APL) treatment. Belinostat (Bel, PXD101), a hydroxamate-type HDACi, has proved to be a promising cure in clinical trials for solid tumours and haematological malignancies. However, insight into molecular effects of Bel on APL, is still lacking. In this study, we investigated the effect of Bel alone and in combination with differentiation inducer retinoic acid (RA) on human promyelocytic leukaemia NB4 and HL-60 cells. We found that treatment with Bel, depending on the dosage used, inhibits cell proliferation, whereas in combination with RA enhances and accelerates granulocytic leukaemia cell differentiation. We also evaluated the effect of used treatments with Bel and RA on certain epigenetic modifiers (HDAC1, HDAC2, PCAF) as well as cell cycle regulators (p27) gene expression and protein level modulation. We showed that Bel in combination with RA up-regulates basal histone H4 hyperacetylation level more strongly compared to Bel or RA alone. Furthermore, chromatin immunoprecipitation assay indicated that Bel induces the accumulation of hyperacetylated histone H4 at the p27 promoter region. Mass spectrometry analysis revealed that in control NB4 cells, hyperacetylated histone H4 is mainly found in association with proteins involved in DNA replication and transcription, whereas after Bel treatment it is found with proteins implicated in pro-apoptotic processes, in defence against oxidative stress and tumour suppression. Summarizing, our study provides some novel insights into the molecular mechanisms of HDACi Bel action on APL cells. PMID:25864732

  1. Immunological and structural remodeling in human papillomavirus-induced warts and Bowen disease.

    PubMed

    Iwatsuki, Keiji; Nakayama, Yumi; Hamada, Toshihisa; Nakanishi, Gen; Shirafuji, Yoshinori; Morizane, Shin

    2013-04-30

    Human papillomavirus-associated warts (HPV-warts) are persistent, evading host immune surveillance. However, these warts sometimes disappear spontaneously, following inflammation. Non-inflamed HPV-warts demonstrated decreased numbers of epidermal Langerhans cells (LCs), low expression levels of MIP3α and E-cadherin, and no apoptotic cells. In the inflamed HPV-warts, on the other hand, various dendritic cell (DC) subsets and many CD8+ cytotoxic T lymphocytes (CTLs) were recruited in association with epidermal MIP3α expression. Many apoptotic keratinocytes were observed in the dermo-epidermal junction. Cellular events were different in HPV-induced Bowen disease (HPV-Bowen): a few LCs were retained in the lesional epidermis, and considerable numbers of B-cells and plasma cells were also observed in the infiltrates, with little or no infiltration of plasmacytoid DCs or dermal/mature DCs. Multiple HPV16-Bowen diseases in the same individuals showed the presence of different sizes of E6/E7-containing cellular transcripts, which indicated that HPV genomes were integrated into the different sites of chromosomes. Toll-like receptor (TLR) 3 was expressed by the lesional keratinocytes even in the non-inflamed HPV-warts, and type 1 interferons (IFNs) were produced in cultured keratinocytes by TLR3 stimulation. HPV-warts are protected from host immune responses and apoptotic signals because they are surrounded by LC-depleted epidermal walls, and viral anti-apoptotic molecules. The up-regulation of epidermal TLR3 signaling might inhibit further HPV spreading.

  2. Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodelling.

    PubMed

    Valiuliene, Giedre; Stirblyte, Ieva; Cicenaite, Dovile; Kaupinis, Algirdas; Valius, Mindaugas; Navakauskiene, Ruta

    2015-07-01

    Epigenetic changes play a significant role in leukaemia pathogenesis, therefore histone deacetylases (HDACis) are widely accepted as an attractive strategy for acute promyelocytic leukaemia (APL) treatment. Belinostat (Bel, PXD101), a hydroxamate-type HDACi, has proved to be a promising cure in clinical trials for solid tumours and haematological malignancies. However, insight into molecular effects of Bel on APL, is still lacking. In this study, we investigated the effect of Bel alone and in combination with differentiation inducer retinoic acid (RA) on human promyelocytic leukaemia NB4 and HL-60 cells. We found that treatment with Bel, depending on the dosage used, inhibits cell proliferation, whereas in combination with RA enhances and accelerates granulocytic leukaemia cell differentiation. We also evaluated the effect of used treatments with Bel and RA on certain epigenetic modifiers (HDAC1, HDAC2, PCAF) as well as cell cycle regulators (p27) gene expression and protein level modulation. We showed that Bel in combination with RA up-regulates basal histone H4 hyperacetylation level more strongly compared to Bel or RA alone. Furthermore, chromatin immunoprecipitation assay indicated that Bel induces the accumulation of hyperacetylated histone H4 at the p27 promoter region. Mass spectrometry analysis revealed that in control NB4 cells, hyperacetylated histone H4 is mainly found in association with proteins involved in DNA replication and transcription, whereas after Bel treatment it is found with proteins implicated in pro-apoptotic processes, in defence against oxidative stress and tumour suppression. Summarizing, our study provides some novel insights into the molecular mechanisms of HDACi Bel action on APL cells.

  3. Divergent Fates of the Medical Humanities in Psychiatry and Internal Medicine: Should Psychiatry Be Rehumanized?

    ERIC Educational Resources Information Center

    Rutherford, Bret R.; Hellerstein, David J.

    2008-01-01

    Objective: To determine the degree to which the medical humanities have been integrated into the fields of internal medicine and psychiatry, the authors assessed the presence of medical humanities articles in selected psychiatry and internal medicine journals from 1950 to 2000. Methods: The journals searched were the three highest-ranking…

  4. Divergent Fates of the Medical Humanities in Psychiatry and Internal Medicine: Should Psychiatry Be Rehumanized?

    ERIC Educational Resources Information Center

    Rutherford, Bret R.; Hellerstein, David J.

    2008-01-01

    Objective: To determine the degree to which the medical humanities have been integrated into the fields of internal medicine and psychiatry, the authors assessed the presence of medical humanities articles in selected psychiatry and internal medicine journals from 1950 to 2000. Methods: The journals searched were the three highest-ranking…

  5. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke.

    PubMed

    Zhao, Qiuchen; Hu, Jinxia; Xiang, Jie; Gu, Yuming; Jin, Peisheng; Hua, Fang; Zhang, Zunsheng; Liu, Yonghai; Zan, Kun; Zhang, Zuohui; Zu, Jie; Yang, Xinxin; Shi, Hongjuan; Zhu, Jienan; Xu, Yun; Cui, Guiyun; Ye, Xinchun

    2015-10-22

    Stem cell-based treatments have been reported to be a potential strategy for stroke. However, tumorigenic potential and low survival rates of transplanted cells could attenuate the efficacy of the stem cell-based treatments. The application of stem cell-condition medium (CM) may be a practicable approach to conquer these limitations. In this study, we investigated whether intranasal administration of human umbilical cord mesenchymal stem cells (hUCMSCs)-CM has the therapeutic effects in rats after stroke. Adult male rats were subjected to middle cerebral artery occlusion (MCAo) and were treated by intranasal routine with or without hUCMSCs-CM (1 ml/kg/d), starting 24h after MCAo and daily for 14 days. Neurological functional tests, blood brain barrier (BBB) leakage, were measured. Angiogenesis and angiogenic factor expression were measured by immunohistochemistry, and Western blot, respectively. hUCMSCs-CM treatment of stroke by intranasal routine starting 24h after MCAo in rats significantly enhances BBB functional integrity and promotes functional outcome but does not decrease lesion volume compared to rats in DMEM/F12 medium control group and saline control group. Treatment of ischemic rats with hUCMSCs-CM by intranasal routine also significantly decreases the levels of Ang2 and increases the levels of both Ang1 and Tie2 in the ischemic brain. To take together, increased expression of Ang1 and Tie2 and decreased expression of Ang2, induced by hUCMSCs-CM treatment, contribute to vascular remodeling in the ischemic brain which plays an important role in functional outcome after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote

    PubMed Central

    Ward, Pauline; Equinet, Leila; Packer, Jeremy; Doerig, Christian

    2004-01-01

    Background Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles in most cellular processes; hence malarial ePKS represent potential drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all ePKs in this organism. Results Using a variety of bioinformatics tools, we identified 65 malarial ePK sequences and constructed a phylogenetic tree to position these sequences relative to the seven established ePK groups. Predominant features of the tree were: (i) that several malarial sequences did not cluster within any of the known ePK groups; (ii) that the CMGC group, whose members are usually involved in the control of cell proliferation, had the highest number of malarial ePKs; and (iii) that no malarial ePK clustered with the tyrosine kinase (TyrK) or STE groups, pointing to the absence of three-component MAPK modules in the parasite. A novel family of 20 ePK-related sequences was identified and called FIKK, on the basis of a conserved amino acid motif. The FIKK family seems restricted to Apicomplexa, with 20 members in P. falciparum and just one member in some other Apicomplexan species. Conclusion The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the kinome of malaria parasites and that of yeast or mammalian cells. PMID:15479470

  7. Divergent effects of central melanocortin signalling on fat and sucrose preference in humans

    PubMed Central

    van der Klaauw, Agatha A.; Keogh, Julia M.; Henning, Elana; Stephenson, Cheryl; Kelway, Sarah; Trowse, Victoria M.; Subramanian, Naresh; O'Rahilly, Stephen; Fletcher, Paul C.; Farooqi, I. Sadaf

    2016-01-01

    Melanocortin-4-receptor (MC4R)-expressing neurons modulate food intake and preference in rodents but their role in human food preference is unknown. Here we show that compared with lean and weight-matched controls, MC4R deficient individuals exhibited a markedly increased preference for high fat, but a significantly reduced preference for high sucrose food. These effects mirror those in Mc4r null rodents and provide evidence for a central molecular circuit influencing human macronutrient preference. PMID:27701398

  8. Convergence and divergence of tumor-suppressor and proto-oncogenes in chimpanzee from human chromosome 17

    SciTech Connect

    Verma, R.S.; Ramesh, K.H.

    1994-09-01

    Due to the emergence of molecular technology, the phylogenetic evolution of the human genome via apes has become a saltatory even. In the present investigation, cosmid probes for P53, Charcot-Marie-Tooth [CMTIA], HER-2/NEU and myeloperoxidase [MPO] were used. Probes mapping to these genetic loci are well-defined on human chromosome 17 [HSA 17]. We localized these genes on chimpanzee [Pan troglodyte] chromosomes by FISH technique employing two different cell lines. Our results indicate that chimpanzee chromosome 19 [PTR 19] differs from HSA 17 by a pericentric inversion. The P53 gene assigned to HSA 17p13.1 is localized on PTR 19p15 and the MPO sequence of HSA 17q21.3-23 hybridized to PTR 19q23. Perplexing enough, HER-2/NEU assigned to HSA 17q11.2 localized to PTR 19p12. Obviously, there is convergence of P53 and MPO regions and distinctive divergence of HER-2/NEU and CMT1A regions of human and chimpanzee. This investigation has demonstrated the pronounced genetic shuffling which occurred during the origin of HSA 17. Molecular markers should serve as evolutionary punctuations in defining the precise sequence of genetic events that led to the evolution of other chromosomes whose genomic synteny, although similar, have surprisingly evolved through different mechanisms.

  9. Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species.

    PubMed

    Divis, Paul C S; Singh, Balbir; Anderios, Fread; Hisam, Shamilah; Matusop, Asmad; Kocken, Clemens H; Assefa, Samuel A; Duffy, Craig W; Conway, David J

    2015-05-01

    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.

  10. LncRNA profiling of human lymphoid progenitors reveals transcriptional divergence of B and T lineages

    PubMed Central

    Casero, David; Sandoval, Salemiz; Seet, Christopher S.; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M.

    2015-01-01

    To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus. PMID:26502406

  11. Pseudogenization of testis-specific Lfg5 predates human/Neanderthal divergence.

    PubMed

    Mariotti, Marco; Smith, Temple F; Sudmant, Peter H; Goldberger, Gabriel

    2014-05-01

    Recent reviews discussed the critical roles of apoptosis in human spermatogenesis and infertility. These reviews highlight the FasL-induced caspase cascade in apoptosis lending importance to our discovery of the pseudogene status of the Lfg5 gene in modern humans, Neanderthal and the Denisovan. This gene is a member of the ancient and highly conserved apoptosis Lifeguard family. This pseudogenization is the result of a premature stop codon at the 3'-end of exon 8 not found in any other ortholog. With the current exception of the domesticated bovine and buffalo, Lfg5's expression in mammals is testis-specific. A full analysis of this gene, its phylogenetic context and its recent hominin changes suggest its inactivation was likely under selection in human evolution.

  12. Mutation-Driven Divergence and Convergence Indicate Adaptive Evolution of the Intracellular Human-Restricted Pathogen, Bartonella bacilliformis

    PubMed Central

    Paul, Sandip; Minnick, Michael F.; Chattopadhyay, Sujay

    2016-01-01

    Among all species of Bartonella, human-restricted Bartonella bacilliformis is the most virulent but harbors one of the most reduced genomes. Carrión’s disease, the infection caused by B. bacilliformis, has been afflicting poor rural populations for centuries in the high-altitude valleys of the South American Andes, where the pathogen’s distribution is probably restricted by its sand fly vector’s range. Importantly, Carrión’s disease satisfies the criteria set by the World Health Organization for a disease amenable to elimination. However, to date, there are no genome-level studies to identify potential footprints of B. bacilliformis (patho)adaptation. Our comparative genomic approach demonstrates that the evolution of this intracellular pathogen is shaped predominantly via mutation. Analysis of strains having publicly-available genomes shows high mutational divergence of core genes leading to multiple sub-species. We infer that the sub-speciation event might have happened recently where a possible adaptive divergence was accelerated by intermediate emergence of a mutator phenotype. Also, within a sub-species the pathogen shows inter-clonal adaptive evolution evidenced by non-neutral accumulation of convergent amino acid mutations. A total of 67 non-recombinant core genes (over-representing functional categories like DNA repair, glucose metabolic process, ATP-binding and ligase) were identified as candidates evolving via adaptive mutational convergence. Such convergence, both at the level of genes and their encoded functions, indicates evolution of B. bacilliformis clones along common adaptive routes, while there was little diversity within a single clone. PMID:27167125

  13. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels.

    PubMed

    Schultz, Kelly M; Kyburz, Kyle A; Anseth, Kristi S

    2015-07-21

    Biomaterials that mimic aspects of the extracellular matrix by presenting a 3D microenvironment that cells can locally degrade and remodel are finding increased applications as wound-healing matrices, tissue engineering scaffolds, and even substrates for stem cell expansion. In vivo, cells do not simply reside in a static microenvironment, but instead, they dynamically reengineer their surroundings. For example, cells secrete proteases that degrade extracellular components, attach to the matrix through adhesive sites, and can exert traction forces on the local matrix, causing its spatial reorganization. Although biomaterials scaffolds provide initially well-defined microenvironments for 3D culture of cells, less is known about the changes that occur over time, especially local matrix remodeling that can play an integral role in directing cell behavior. Here, we use microrheology as a quantitative tool to characterize dynamic cellular remodeling of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels that degrade in response to cell-secreted matrix metalloproteinases (MMPs). This technique allows measurement of spatial changes in material properties during migration of encapsulated cells and has a sensitivity that identifies regions where cells simply adhere to the matrix, as well as the extent of local cell remodeling of the material through MMP-mediated degradation. Collectively, these microrheological measurements provide insight into microscopic, cellular manipulation of the pericellular region that gives rise to macroscopic tracks created in scaffolds by migrating cells. This quantitative and predictable information should benefit the design of improved biomaterial scaffolds for medically relevant applications.

  14. Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species

    PubMed Central

    Divis, Paul C. S.; Singh, Balbir; Anderios, Fread; Hisam, Shamilah; Matusop, Asmad; Kocken, Clemens H.; Assefa, Samuel A.; Duffy, Craig W.; Conway, David J.

    2015-01-01

    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. PMID:26020959

  15. Actin Family Proteins in the Human INO80 Chromatin Remodeling Complex Exhibit Functional Roles in the Induction of Heme Oxygenase-1 with Hemin

    PubMed Central

    Takahashi, Yuichiro; Murakami, Hirokazu; Akiyama, Yusuke; Katoh, Yasutake; Oma, Yukako; Nishijima, Hitoshi; Shibahara, Kei-ichi; Igarashi, Kazuhiko; Harata, Masahiko

    2017-01-01

    Nuclear actin family proteins, comprising of actin and actin-related proteins (Arps), are essential functional components of the multiple chromatin remodeling complexes. The INO80 chromatin remodeling complex, which is evolutionarily conserved and has roles in transcription, DNA replication and repair, consists of actin and actin-related proteins Arp4, Arp5, and Arp8. We generated Arp5 knockout (KO) and Arp8 KO cells from the human Nalm-6 pre-B cell line and used these KO cells to examine the roles of Arp5 and Arp8 in the transcriptional regulation mediated by the INO80 complex. In both of Arp5 KO and Arp8 KO cells, the oxidative stress-induced expression of HMOX1 gene, encoding for heme oxygenase-1 (HO-1), was significantly impaired. Consistent with these observations, chromatin immunoprecipitation (ChIP) assay revealed that oxidative stress caused an increase in the binding of the INO80 complex to the regulatory sites of HMOX1 in wild-type cells. The binding of INO80 complex to chromatin was reduced in Arp8 KO cells compared to that in the wild-type cells. On the other hand, the binding of INO80 complex to chromatin in Arp5 KO cells was similar to that in the wild-type cells even under the oxidative stress condition. However, both remodeling of chromatin at the HMOX1 regulatory sites and binding of a transcriptional activator to these sites were impaired in Arp5 KO cells, indicating that Arp5 is required for the activation of the INO80 complex. Collectively, these results suggested that these nuclear Arps play indispensable roles in the function of the INO80 chromatin remodeling complex. PMID:28270832

  16. Actin Family Proteins in the Human INO80 Chromatin Remodeling Complex Exhibit Functional Roles in the Induction of Heme Oxygenase-1 with Hemin.

    PubMed

    Takahashi, Yuichiro; Murakami, Hirokazu; Akiyama, Yusuke; Katoh, Yasutake; Oma, Yukako; Nishijima, Hitoshi; Shibahara, Kei-Ichi; Igarashi, Kazuhiko; Harata, Masahiko

    2017-01-01

    Nuclear actin family proteins, comprising of actin and actin-related proteins (Arps), are essential functional components of the multiple chromatin remodeling complexes. The INO80 chromatin remodeling complex, which is evolutionarily conserved and has roles in transcription, DNA replication and repair, consists of actin and actin-related proteins Arp4, Arp5, and Arp8. We generated Arp5 knockout (KO) and Arp8 KO cells from the human Nalm-6 pre-B cell line and used these KO cells to examine the roles of Arp5 and Arp8 in the transcriptional regulation mediated by the INO80 complex. In both of Arp5 KO and Arp8 KO cells, the oxidative stress-induced expression of HMOX1 gene, encoding for heme oxygenase-1 (HO-1), was significantly impaired. Consistent with these observations, chromatin immunoprecipitation (ChIP) assay revealed that oxidative stress caused an increase in the binding of the INO80 complex to the regulatory sites of HMOX1 in wild-type cells. The binding of INO80 complex to chromatin was reduced in Arp8 KO cells compared to that in the wild-type cells. On the other hand, the binding of INO80 complex to chromatin in Arp5 KO cells was similar to that in the wild-type cells even under the oxidative stress condition. However, both remodeling of chromatin at the HMOX1 regulatory sites and binding of a transcriptional activator to these sites were impaired in Arp5 KO cells, indicating that Arp5 is required for the activation of the INO80 complex. Collectively, these results suggested that these nuclear Arps play indispensable roles in the function of the INO80 chromatin remodeling complex.

  17. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  18. Effects of Divergent Selection for Fear of Humans on Behaviour in Red Junglefowl

    PubMed Central

    Agnvall, Beatrix; Jensen, Per

    2016-01-01

    Domestication has caused a range of similar phenotypic changes across taxa, relating to physiology, morphology and behaviour. It has been suggested that this recurring domesticated phenotype may be a result of correlated responses to a central trait, namely increased tameness. We selected Red Junglefowl, the ancestors of domesticated chickens, during five generations for reduced fear of humans. This caused a marked and significant response in tameness, and previous studies have found correlated effects on growth, metabolism, reproduction, and some behaviour not directly selected for. Here, we report the results from a series of behavioural tests carried out on the initial parental generation (P0) and the fifth selected generation (S5), focusing on behaviour not functionally related to tameness, in order to study any correlated effects. Birds were tested for fear of humans, social reinstatement tendency, open field behaviour at two different ages, foraging/exploration, response to a simulated aerial predator attack and tonic immobility. In S5, there were no effects of selection on foraging/exploration or tonic immobility, while in the social reinstatement and open field tests there were significant interactions between selection and sex. In the aerial predator test, there were significant main effects of selection, indicating that fear of humans may represent a general wariness towards predators. In conclusion, we found only small correlated effects on behaviours not related to the tameness trait selected for, in spite of them showing high genetic correlations to fear of humans in a previous study on the same population. This suggests that species-specific behaviour is generally resilient to changes during domestication. PMID:27851792

  19. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    PubMed Central

    Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.

    2017-01-01

    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538

  20. Divergent Effects of Genetic Variation in Endocannabinoid Signaling on Human Threat- and Reward-Related Brain Function

    PubMed Central

    Hariri, Ahmad R.; Gorka, Adam; Hyde, Luke W.; Kimak, Mark; Halder, Indrani; Ducci, Francesca; Ferrell, Robert E.; Goldman, David; Manuck, Stephen B.

    2011-01-01

    Background Fatty acid amide hydrolase (FAAH) is a key enzyme in regulating endocannabinoid (eCB) signaling. A common single nucleotide polymorphism (C385A) in the human FAAH gene has been associated with increased risk for addiction and obesity. Methods Using imaging genetics in 82 healthy adult volunteers, we examined the effects of FAAH C385A on threat- and reward-related human brain function. Results Carriers of FAAH 385A, associated with reduced enzyme and, possibly, increased eCB signaling, had decreased threat-related amygdala reactivity but increased reward-related ventral striatal reactivity in comparison to C385 homozygotes. Similar divergent effects of FAAH C385A genotype were manifest at the level of brain-behavior relationships. 385A carriers showed decreased correlation between amygdala reactivity and trait anxiety but increased correlation between ventral striatal reactivity and delay discounting, an index of impulsivity. Conclusions Our results parallel pharmacologic and genetic dissection of eCB signaling, are consistent with the psychotropic effects of Δ9-tetrahydrocannabinol and highlight specific neural mechanisms through which variability in eCB signaling impacts complex behavioral processes related to risk for addiction and obesity. PMID:19103437

  1. Genetic divergence of human pathogens Nanophyetus spp. (Trematoda: Troglotrematidae) on the opposite sides of the Pacific Rim.

    PubMed

    Voronova, A N; Chelomina, G N; Besprozvannykh, V V; Tkach, V V

    2017-04-01

    Human and animal nanophyetiasis is caused by intestinal flukes belonging to the genus Nanophyetus distributed on both North American and Eurasian coasts of Northern Pacific. In spite of the wide geographical distribution and medical and veterinary importance of these flukes, the intra-generic taxonomy of Nanophyetus spp. remains unresolved. The two most widely distributed nominal species, Nanophyetus salmincola and Nanophyetus schikhobalowi, both parasitizing humans and carnivorous mammals, were described from North America and eastern Eurasia, respectively. However, due to their high morphological similarity their interrelationships remained unclear and taxonomic status unstable. In this study, we explored genetic diversity of Nanophyetus spp. from the Southern Russian Far East in comparison with that of samples from North America based on the sequence variation of the nuclear ribosomal gene family (18S, internal transcribed spacers, ITS1-5·8S-ITS2 and 28S). High levels of genetic divergence in each rDNA region (nucleotide substitutions, indels, alterations in the secondary structures of the ITS1 and ITS2 transcripts) as well as results of phylogenetic analysis provided strong support for the status of N. salmincola and N. schikhobalowi as independent species.

  2. Rapid human-induced divergence of life-history strategies in Bahamian livebearing fishes (family Poeciliidae).

    PubMed

    Riesch, Rüdiger; Easter, Tara; Layman, Craig A; Langerhans, Randall Brian

    2015-11-01

    Human-induced rapid environmental change (HIREC) can have dramatic impacts on ecosystems, leading to rapid trait changes in some organisms and extinction in others. Such changes in traits signify that human actions can lead to cases of increased phenotypic diversity and consequently can strongly impact population-, community- and ecosystem-level dynamics. Here, we examine whether the ecological consequences of habitat fragmentation have led to changes in the life histories of three native species of mosquitofish (Gambusia spp.) inhabiting tidal creeks on six different Bahamian islands. We address two important questions: (i) How predictable and parallel are life-history changes in response to HIREC across islands and species, and (ii) what is the relative importance of shared (i.e. parallel) responses to fragmentation, differences between species or islands and species- or island-specific responses to fragmentation? Phenotypic differences between fragmentation regimes were as great or greater than differences between species or islands. While some adult life histories (lean weight and fat content) showed strong, shared responses to fragmentation, offspring-related life histories (embryo fat and fecundity) exhibited idiosyncratic, island-specific responses. While shared responses to fragmentation appeared largely driven by a reduction in piscivorous fish density, increased conspecific density and changes in salinity, we found some evidence that among-population variation in male reproductive investment and embryo fat content may have arisen via variation in conspecific density. Our results suggest that phenotypic responses to HIREC can be complex, with the predictability of response varying across traits. We therefore emphasize the need for more theoretical and empirical work to better understand the predictability of phenotypic responses to human-induced disturbances. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    PubMed Central

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier

    2014-01-01

    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  4. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate.

    PubMed

    Trottier, J; Perreault, M; Rudkowska, I; Levy, C; Dallaire-Theroux, A; Verreault, M; Caron, P; Staels, B; Vohl, M-C; Straka, R J; Barbier, O

    2013-10-01

    Glucuronidation, catalyzed by uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic bile acids (BAs). We aimed to (i) characterize the circulating BA-glucuronide (BA-G) pool composition in humans, (ii) determine how sex and UGT polymorphisms influence this composition, and (iii) analyze the effects of the lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and postfenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G (CDCA-3G) concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of five BA-G species, including CDCA-3G, and upregulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrated that fenofibrate stimulates BA glucuronidation in humans and thus reduces BA toxicity in the liver.

  5. Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing.

    PubMed

    Rouleau, Michèle; Tourancheau, Alan; Girard-Bock, Camille; Villeneuve, Lyne; Vaucher, Jonathan; Duperré, Anne-Marie; Audet-Delage, Yannick; Gilbert, Isabelle; Popa, Ion; Droit, Arnaud; Guillemette, Chantal

    2016-09-27

    Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes.

  6. Structurally divergent human T cell receptor. gamma. proteins encoded by distinct C. gamma. genes

    SciTech Connect

    Krangel, M.S.; Band, H.; Hata, S.; McLean, J.; Brenner, M.B.

    1987-07-03

    The human T cell receptor (TCR) ..gamma.. polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR ..gamma.. genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR ..gamma.. correlates with the use of the C..gamma..1 and C..gamma..2 constant-region gene segments, respectively. Variability in TCR ..gamma.. polypeptide and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus, C..gamma..1 and C..gamma..2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR ..gamma.. and delta peptides in the nondisulfide-linked form are distinct.

  7. Chemically modified tetracyclines (CMT-3 and CMT-8) enable control of the pathologic remodellation of human aortic valve stenosis via MMP-9 and VEGF inhibition.

    PubMed

    Salo, Tuula; Soini, Ylermi; Oiva, Jani; Kariylitalo; Nissinen, Antti; Biancari, Fausto; Juvonen, Tatu; Satta, Jari

    2006-08-28

    Tetracycline derivatives affect many cellular functions relevant to chronic cardiovascular pathologies, including cell proliferation, migration and matrix remodelling. Accordingly, we sought to determine whether they may modulate the pathologic characteristics known to be significantly involved in human aortic valve stenosis, such as gelatinase production, apoptosis, expression of vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-alpha). The effects of tetracycline derivatives (tetracycline and CMTs-3, -5, -8) on MMP-2 and -9 and their endogenous tissue inhibitor (TIMP-1 and -2) production profiles in explanted human aortic valve pieces were examined by means of gelatine zymography and reverse zymography. Chemiluminescent ELISA was performed to assess VEGF and TNF-alpha concentrations in the medium, and in order to evaluate programmed cell death, in situ labelling of the 3'-ends of the DNA fragments generated by apoptosis-associated endonucleases was performed. CMT-3 and -8 lowered the MMP-9 and VEGF levels significantly in a drug-, dose-, and time-dependent manner. MMP-2 and TIMPs remained unchanged, emphasizing the specificity of CMTs to MMP-9 production on the one hand and restoring the beneficial equilibrium of MMP-9 and TIMPs on the other. Tetracycline was the only drug with a significant impact on net gelatinolytic activity, suggesting that the effect of tetracycline is more extensive concerning total MMP activity. Tetracycline derivatives may have therapeutic effects on the pathologic remodellation of advanced human aortic stenosis through the inhibition of MMP-9 and VEGF production.

  8. Balanced caloric macronutrient composition downregulates immunological gene expression in human blood cells-adipose tissue diverges.

    PubMed

    Brattbakk, Hans-Richard; Arbo, Ingerid; Aagaard, Siv; Lindseth, Inge; de Soysa, Ann Kristin Hjelle; Langaas, Mette; Kulseng, Bård; Lindberg, Fedon; Johansen, Berit

    2013-01-01

    Cardiovascular disease, obesity, and type 2 diabetes are conditions characterized by low-grade systemic inflammation, strongly influenced by lifestyle, but the mechanisms that link these characteristics are poorly understood. Our first objective was to investigate if a normocaloric diet with a calorically balanced macronutrient composition influenced immunological gene expression. Findings regarding the suitability of blood as biological material in nutrigenomics and gene expression profiling have been inconclusive. Our second objective was to compare blood and adipose tissue sample quality in terms of adequacy for DNA-microarray analyses, and to determine tissue-specific gene expression patterns. Blood and adipose tissue samples were collected for gene expression profiling from three obese men before, during, and after a 28-day normocaloric diet intervention where each meal contained an approximately equal caloric load of macronutrients. Time series analyses of blood gene expression revealed a cluster of downregulated genes involved in immunological processes. Blood RNA quality and yield were satisfactory, and DNA-microarray analysis reproducibility was similar in blood and adipose tissue. Gene expression correlation between blood and adipose tissue varied according to gene function, and was especially low for genes involved in immunological and metabolic processes. This suggests that diet composition is of importance in inflammatory processes in blood cells. The findings also suggest that a systems biology approach, in which tissues are studied in parallel, should be employed to fully understand the impact of dietary challenges on the human body.

  9. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism.

    PubMed

    Vastag, Livia; Koyuncu, Emre; Grady, Sarah L; Shenk, Thomas E; Rabinowitz, Joshua D

    2011-07-01

    Viruses rely on the metabolic network of the host cell to provide energy and macromolecular precursors to fuel viral replication. Here we used mass spectrometry to examine the impact of two related herpesviruses, human cytomegalovirus (HCMV) and herpes simplex virus type-1 (HSV-1), on the metabolism of fibroblast and epithelial host cells. Each virus triggered strong metabolic changes that were conserved across different host cell types. The metabolic effects of the two viruses were, however, largely distinct. HCMV but not HSV-1 increased glycolytic flux. HCMV profoundly increased TCA compound levels and flow of two carbon units required for TCA cycle turning and fatty acid synthesis. HSV-1 increased anapleurotic influx to the TCA cycle through pyruvate carboxylase, feeding pyrimidine biosynthesis. Thus, these two related herpesviruses drive diverse host cells to execute distinct, virus-specific metabolic programs. Current drugs target nucleotide metabolism for treatment of both viruses. Although our results confirm that this is a robust target for HSV-1, therapeutic interventions at other points in metabolism might prove more effective for treatment of HCMV.

  10. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study.

    PubMed

    Yun, In Sik; Jeon, Yeo Reum; Lee, Won Jai; Lee, Jae Wook; Rah, Dong Kyun; Tark, Kwan Chul; Lew, Dae Hyun

    2012-10-01

    Adipose-derived stem cells (ASCs) have positive effects in the wound healing process. To clarify whether ASCs positively mitigate scar formation in the wound remodeling process. Full-thickness skin defects were created on the dorsal skin of Yorkshire pigs. After the defects were transformed into early scars, ASCs were injected, and the same amount of phosphate buffered saline (PBS) was injected in the control group. Clinical and histologic examinations were performed. In the experimental group, the areas of scars were smaller than those of control groups. The color of scars was more similar to that of the surrounding normal tissue, and scar pliability was better. The number of mast cells decreased, and more-mature collagen arrangement was noted. In the early period of scar remodeling, the expression of transforming growth factor beta (TGF-β)3 and matrix metalloproteinase 1 (MMP1) was greater in the experimental group than in control group. In the late period, the level of alpha smooth muscle actin and tissue inhibitor of metalloproteinase 1 were dramatically less, although the level of MMP1 was lower in the experimental group than in control group. Local injection of ASCs decreases scar size and provides better color quality and scar pliability. It decreases the activity of mast cells and inhibits the action of TGF-β against fibroblasts and positively stimulates scar remodeling through greater expression of MMP molecules. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  11. Density of Stromal Cells and Macrophages Associated With Collagen Remodeling in the Human Cervix in Preterm and Term Birth.

    PubMed

    Dubicke, Aurelija; Ekman-Ordeberg, Gunvor; Mazurek, Patricia; Miller, Lindsay; Yellon, Steven M

    2016-05-01

    Remodeling of the cervix occurs in advance of labor both at term and at preterm birth. Morphological characteristics associated with remodeling in rodents were assessed in cervix biopsies from women at term (39 weeks' gestation) and preterm (<33 weeks' gestation). Collagen I and III messenger RNA and hydroxyproline concentrations declined in cervix biopsies from women in labor at term and preterm compared to that in the cervix from nonlaboring women. Extracellular collagen was more degraded in sections of cervix from women at term, based on optical density of picrosirius red stain, versus that in biopsies from nonpregnant women. However, collagen structure was unchanged in the cervix from women at preterm labor versus the nonpregnant group. As an indication of inflammation, cell nuclei density was decreased in cervix biopsies from pregnant women irrespective of labor compared to the nonpregnant group. Moreover, CD68-stained macrophages increased to an equivalent extent in cervix subepithelium and stroma from groups in labor, both at term and preterm, as well as in women not in labor at term. Evidence for a similar inflammatory process in the remodeled cervix of women at term and preterm birth parallels results in rodent models. Thus, a conserved final common mechanism involving macrophages and inflammation may characterize the transition to a ripe cervix before birth at term and in advance of premature birth. © The Author(s) 2015.

  12. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification*

    PubMed Central

    Ogawa, Nozomi; Kurokawa, Tatsuki; Fujiwara, Kenji; Polat, Onur Kerem; Badr, Heba; Takahashi, Nobuaki; Mori, Yasuo

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function. PMID:26702055

  13. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification.

    PubMed

    Ogawa, Nozomi; Kurokawa, Tatsuki; Fujiwara, Kenji; Polat, Onur Kerem; Badr, Heba; Takahashi, Nobuaki; Mori, Yasuo

    2016-02-19

    Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function.

  14. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes

    PubMed Central

    Hur, Stella K.; Freschi, Andrea; Ideraabdullah, Folami; Thorvaldsen, Joanne L.; Luense, Lacey J.; Weller, Angela H.; Berger, Shelley L.; Cerrato, Flavia; Riccio, Andrea; Bartolomei, Marisa S.

    2016-01-01

    Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19+/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS. PMID:27621468

  15. An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence.

    PubMed

    Yu, GongXin

    2009-01-01

    Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons with ExonVar identified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A "less-is-more" model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.

  16. Heart remodeling induced by adjuvant trastuzumab-containing chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2: a prospective study.

    PubMed

    Piotrowski, Grzegorz; Gawor, Rafał; Bourge, Robert C; Stasiak, Arkadiusz; Potemski, Piotr; Gawor, Zenon; Nanda, Navin C; Banach, Maciej

    2013-12-01

    We aimed to investigate the cardiac changes in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer treated with trastuzumab in an adjuvant setting. Two hundred and fifty-three women with HER2-positive breast cancer were included. The assessment of cardiovascular system and echocardiography were performed and compared at baseline, at the termination of trastuzumab therapy and 6 months latter. Left heart remodeling was defined arbitrary as the change in at least one of the analyzed echocardiographic parameters of ≥standard deviation (SD) (in model I) or ≥2×SD (in model II) after 6-month follow-up. After 6-month follow-up 39 (31.7%), 27 (22%), 14 (11.4%), 10 (8.1%), 5 (4.1%) and 1 (0.8%), women had at least one parameter with a change exceeding mean difference ≥SD, respectively; and 30 (24.4%), 9 (7.5%), 3 (2.4%), 2 (1.6%) 1 (0.8%) exceeding mean difference ≥2SD. In stepwise multivariate regression analysis sedentary life style (OR16.7, p=0.003), positive cardiovascular family history (OR 6,9; p=0.013) and left ventricular ejection fraction change after 3 months (OR 1.2; p=0.007) were independent predictors of left heart remodeling in model I, whereas hypertension (OR 5.6; p=0.06) and positive cardiovascular family history (OR 3.9; p=0.032) were independent predictors of heart remodeling in model II. In conclusion, trastuzumab induces LV and left atrial cavity dilatation together with LV systolic function impairment.

  17. Remodelling chromatin to shape development of plants.

    PubMed

    Gentry, Matthew; Hennig, Lars

    2014-02-01

    Establishment and dynamic regulation of a higher order chromatin structure is an essential component of development. Chromatin remodelling complexes such as the SWI2/SNF2 family of ATP-dependent chromatin remodellers can alter chromatin architecture by changing nucleosome positioning or substituting histones with histone variants. These remodellers often act in concert with chromatin modifiers such as the polycomb group proteins which confer repressive states through modification of histone tails. These mechanisms are highly conserved across the eukaryotic kingdom although in plants, owing to the maintenance of dedifferentiated cell states that allow for post-embyronic changes in development, strict control of chromatin remodelling is even more paramount. Recent and ongoing studies in the model plant Arabidopsis thaliana have found that while the major families of the SWI2/SNF2 ATPase chromatin remodellers are represented, a number of redundancies and divergent functions have emerged that show a break from the roles of their metazoan counterparts. This review focusses on the SNF2 and CHD families of ATP-dependent remodellers and their roles in plant development. © 2013 Published by Elsevier Inc.

  18. Effects of a 3D segmental prosthetic system for tricuspid valve annulus remodelling on the right coronary artery: a human cadaveric coronary angiography study.

    PubMed

    Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad

    2017-09-01

    A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation.

  19. Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines

    PubMed Central

    Sherif, Zaki A.; Sultan, Ahmed S.

    2013-01-01

    Li-Fraumeni syndrome (LFS) is primarily characterized by development of tumors exhibiting germ-line mutations in the p53 gene. Cell lines developed from patients of a LFS family have decreased p53 activity as evidenced by the absence of apoptosis upon etoposide treatment. To test our hypothesis that changes in gene expression beyond p53 per se are contributing to the development of tumors, we compared gene expression in non-cancerous skin fibroblasts of LFS-affected (p53 heterozygous) vs. non-affected (p53 wild-type homozygous) family members. Expression analysis showed that several genes were differentially regulated in the p53 homozygous and heterozygous cell lines. We were particularly intrigued by the decreased expression (~88%) of a putative tumor-suppressor protein, caveolin-1 (Cav-1), in the p53-mutant cells. Decreased expression of Cav-1 was also seen in both p53-knockout and p21-knockout HTC116 cells suggesting that p53 controls Cav-1 expression through p21 and leading to the speculation that p53, Cav-1 and p21 may be part of a positive auto-regulatory feedback loop. The direct relationship between p53 and Cav-1 was also tested with HeLa cells (containing inactive p53), which expressed a significantly lower Cav-1 protein. A panel of nonfunctional and p53-deficient colon and epithelial breast cancer cell lines showed undetectable expression of Cav-1 supporting the role of p53 in the control of Cav-1. However, in two aggressively metastasizing breast cancer cell lines, Cav-1 was strongly expressed suggesting a possible role in tumor metastasis. Thus, there is a divergent control of Cav-1 expression as evidenced in non-cancerous Li-Fraumeni syndrome and some aggressive human cancer cell lines. PMID:23114650

  20. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation.

    PubMed

    Attema, Joanne L; Reeves, Raymond; Murray, Vincent; Levichkin, Ilya; Temple, Mark D; Tremethick, David J; Shannon, M Frances

    2002-09-01

    Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.

  1. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  2. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    PubMed

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.

  3. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans

    PubMed Central

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R.

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219

  4. Rapid Remodeling of Tight Junctions During Paracellular Diapedesis in a Human Model of the Blood-Brain Barrier

    PubMed Central

    Winger, Ryan C.; Koblinski, Jennifer E.; Kanda, Takashi; Ransohoff, Richard M.; Muller, William A.

    2014-01-01

    Leukocyte transendothelial migration (TEM; diapedesis) is a critical event in immune surveillance and inflammation. Most TEM occurs at endothelial cell borders (paracellular). However, there is indirect evidence to suggest that at the tight junctions of the blood-brain barrier (BBB), leukocytes migrate directly through the endothelial cell body (transcellular). Why leukocytes migrate through the endothelial cell body rather than the cell borders is unknown. To test the hypothesis that the tightness of endothelial cell junctions influences the pathway of diapedesis, we developed an in vitro model of the BBB that possessed ten-fold higher electrical resistance than standard culture conditions and strongly expressed the BBB tight junction proteins claudin-5 and claudin-3. We found that paracellular TEM was still the predominant pathway (≥98%) and TEM was dependent on PECAM-1 and CD99. We show that endothelial tight junctions expressing claudin-5 are dynamic and undergo rapid remodeling during TEM. Membrane from the endothelial lateral border recycling compartment (LBRC) is mobilized to the exact site of tight junction remodeling. This preserves the endothelial barrier by sealing the intercellular gaps with membrane and engaging the migrating leukocyte with unligated adhesion molecules (PECAM-1 and CD99) as it crosses the cell border. These findings provide new insights into leukocyte-endothelial interactions at the BBB and suggest that tight junctions are more dynamic than previously appreciated. PMID:25063869

  5. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier.

    PubMed

    Winger, Ryan C; Koblinski, Jennifer E; Kanda, Takashi; Ransohoff, Richard M; Muller, William A

    2014-09-01

    Leukocyte transendothelial migration (TEM; diapedesis) is a critical event in immune surveillance and inflammation. Most TEM occurs at endothelial cell borders (paracellular). However, there is indirect evidence to suggest that, at the tight junctions of the blood-brain barrier (BBB), leukocytes migrate directly through the endothelial cell body (transcellular). Why leukocytes migrate through the endothelial cell body rather than the cell borders is unknown. To test the hypothesis that the tightness of endothelial cell junctions influences the pathway of diapedesis, we developed an in vitro model of the BBB that possessed 10-fold higher electrical resistance than standard culture conditions and strongly expressed the BBB tight junction proteins claudin-5 and claudin-3. We found that paracellular TEM was still the predominant pathway (≥98%) and TEM was dependent on PECAM-1 and CD99. We show that endothelial tight junctions expressing claudin-5 are dynamic and undergo rapid remodeling during TEM. Membrane from the endothelial lateral border recycling compartment is mobilized to the exact site of tight junction remodeling. This preserves the endothelial barrier by sealing the intercellular gaps with membrane and engaging the migrating leukocyte with unligated adhesion molecules (PECAM-1 and CD99) as it crosses the cell border. These findings provide new insights into leukocyte-endothelial interactions at the BBB and suggest that tight junctions are more dynamic than previously appreciated. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  7. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts with Post-Infarct LV Remodeling

    PubMed Central

    Chen, Yong; Ye, Lei; Zhong, Jia; Li, Xin; Yan, Chen; Chandler, Margaret P.; Calvin, Steve; Xiao, Feng; Negia, Mesfin; Low, Walter C.; Zhang, Jianyi; Yu, Xin

    2015-01-01

    Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardium infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvement are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of post-infarct remodeling. Human non-hematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts ten months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac function of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in post-infarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect that occurred with the cellular therapy. PMID:24332083

  8. Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle.

    PubMed

    Franchi, Martino V; Wilkinson, Daniel J; Quinlan, Jonathan I; Mitchell, William K; Lund, Jonathan N; Williams, John P; Reeves, Neil D; Smith, Kenneth; Atherton, Philip J; Narici, Marco V

    2015-11-01

    We recently reported that the greatest distinguishing feature between eccentric (ECC) and concentric (CON) muscle loading lays in architectural adaptations: ECC favors increases in fascicle length (Lf), associated with distal vastus lateralis muscle (VL) hypertrophy, and CON increases in pennation angle (PA). Here, we explored the interactions between structural and morphological remodeling, assessed by ultrasound and dual x-ray absorptiometry (DXA), and long-term muscle protein synthesis (MPS), evaluated by deuterium oxide (D2O) tracing technique. Ten young males (23 ± 4 years) performed unilateral resistance exercise training (RET) three times/week for 4 weeks; thus, one-leg trained concentrically while the contralateral performed ECC exercise only at 80% of either CON or ECC one repetition maximum (1RM). Subjects consumed an initial bolus of D2O (150 mL), while a 25-mL dose was thereafter provided every 8 days. Muscle biopsies from VL midbelly (MID) and distal myotendinous junction (MTJ) were collected at 0 and 4-weeks. MPS was then quantified via GC-pyrolysis-IRMS over the 4-week training period. Expectedly, ECC and CON RET resulted in similar increases in VL muscle thickness (MT) (7.5% vs. 8.4%, respectively) and thigh lean mass (DXA) (2.3% vs. 3%, respectively), albeit through distinct remodeling: Lf increasing more after ECC (5%) versus CON (2%) and PA increasing after CON (7% vs. 3%). MPS did not differ between contractile modes or biopsy sites (MID-ECC: 1.42 vs. 1.4% day(-1); MTJ-ECC: 1.38 vs. 1.39% day(-1)). Muscle thickness at MID site increased similarly following ECC and CON RET, reflecting a tendency for a contractile mode-independent correlation between MPS and MT (P = 0.07; R(2) = 0.18). We conclude that, unlike MT, distinct structural remodeling responses to ECC or CON are not reflected in MPS; the molecular mechanisms of distinct protein deposition, and/or the role of protein breakdown in mediating these responses remain to be defined

  9. Cardiac Remodeling in Obesity

    PubMed Central

    ABEL, E. DALE; LITWIN, SHELDON E.; SWEENEY, GARY

    2010-01-01

    The dramatic increase in the prevalence of obesity and its strong association with cardiovascular disease have resulted in unprecedented interest in understanding the effects of obesity on the cardiovascular system. A consistent, but puzzling clinical observation is that obesity confers an increased susceptibility to the development of cardiac disease, while at the same time affording protection against subsequent mortality (termed the obesity paradox). In this review we focus on evidence available from human and animal model studies and summarize the ways in which obesity can influence structure and function of the heart. We also review current hypotheses regarding mechanisms linking obesity and various aspects of cardiac remodeling. There is currently great interest in the role of adipokines, factors secreted from adipose tissue, and their role in the numerous cardiovascular complications of obesity. Here we focus on the role of leptin and the emerging promise of adiponectin as a cardioprotective agent. The challenge of understanding the association between obesity and heart failure is complicated by the multifaceted interplay between various hemodynamic, metabolic, and other physiological factors that ultimately impact the myocardium. Furthermore, the end result of obesity-associated changes in the myocardial structure and function may vary at distinct stages in the progression of remodeling, may depend on the individual pathophysiology of heart failure, and may even remain undetected for decades before clinical manifestation. Here we summarize our current knowledge of this complex yet intriguing topic. PMID:18391168

  10. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non

  11. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.

    PubMed

    Boyle, Christopher; Kim, Il Yong

    2011-03-15

    The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Anti-CD3 and concanavalin A-induced human T cell proliferation is associated with an increased rate of arachidonate-phospholipid remodeling. Lack of involvement of group IV and group VI phospholipase A2 in remodeling and increased susceptibility of proliferating T cells to CoA-independent transacyclase inhibitor-induced apoptosis.

    PubMed

    Boilard, E; Surette, M E

    2001-05-18

    In this study arachidonate-phospholipid remodeling was investigated in resting and proliferating human T lymphocytes. Lymphocytes induced to proliferate with either the mitogen concanavalin A or with anti-CD3 (OKT3) in combination with interleukin 2 (OKT3/IL-2) showed a greatly accelerated rate of [3H]arachidonate-phospholipid remodeling compared with resting lymphocytes or with lymphocytes stimulated with OKT3 or IL-2 alone. The concanavalin A-stimulated cells showed a 2-fold increase in the specific activity of CoA-independent transacylase compared with unstimulated cells, indicating that this enzyme is inducible. Stimulation with OKT3 resulted in greatly increased quantities of the group VI calcium-independent phospholipase A2 but not of the quantity of group IV cytosolic phospholipase A2. However, group IV phospholipase A2 became phosphorylated in OKT3-stimulated cells, as determined by decreased electrophoretic mobility. Incubation of cells with the group VI phospholipase A2 inhibitor, bromoenol lactone, or the dual group IV/group VI phospholipase A2 inhibitor, methyl arachidonyl fluorophosphonate, did not block arachidonate-phospholipid remodeling resting or proliferating T cells, suggesting that these phospholipases A2 were not involved in arachidonate-phospholipid remodeling. The incubation of nonproliferating human lymphocytes with inhibitors of CoA-independent transacylase had little impact on cell survival. In contrast, OKT3/IL-2-stimulated T lymphocytes were very sensitive to apoptosis induced by CoA-independent transacylase inhibitors. Altogether these results indicate that increased arachidonate-phospholipid remodeling is associated with T cell proliferation and that CoA-independent transacylase may be a novel therapeutic target for proliferative disorders.

  13. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  14. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  15. A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects.

    PubMed

    Johnstone, Karen A; DuBose, Amanda J; Futtner, Christopher R; Elmore, Michael D; Brannan, Camilynn I; Resnick, James L

    2006-02-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.

  16. Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model.

    PubMed

    Chattha, Kuldeep S; Vlasova, Anastasia N; Kandasamy, Sukumar; Rajashekara, Gireesh; Saif, Linda J

    2013-09-01

    Rotaviruses (RVs) are a leading cause of childhood diarrhea. Current oral vaccines are not effective in impoverished countries where the vaccine is needed most. Therefore, alternative affordable strategies are urgently needed. Probiotics can alleviate diarrhea in children and enhance specific systemic and mucosal Ab responses, but the T cell responses are undefined. In this study, we elucidated the T cell and cytokine responses to attenuated human RV (AttHRV) and virulent human RV (HRV) in gnotobiotic pigs colonized with probiotics (Lactobacillus rhamnosus strain GG [LGG] and Bifidobacterium lactis Bb12 [Bb12]), mimicking gut commensals in breastfed infants. Neonatal gnotobiotic pigs are the only animal model susceptible to HRV diarrhea. Probiotic colonized and nonvaccinated (Probiotic) pigs had lower diarrhea and reduced virus shedding postchallenge compared with noncolonized and nonvaccinated pigs (Control). Higher protection in the Probiotic group coincided with higher ileal T regulatory cells (Tregs) before and after challenge, and higher serum TGF-β and lower serum and biliary proinflammatory cytokines postchallenge. Probiotic colonization in vaccinated pigs enhanced innate serum IFN-α, splenic and circulatory IFN-γ-producing T cells, and serum Th1 cytokines, but reduced serum Th2 cytokines compared with noncolonized vaccinated pigs (Vac). Thus, LGG+Bb12 induced systemic Th1 immunostimulatory effects on oral AttHRV vaccine that coincided with lower diarrhea severity and reduced virus shedding postchallenge in Vac+Pro compared with Vac pigs. Previously unreported intestinal CD8 Tregs were induced in vaccinated groups postchallenge. Thus, probiotics LGG+Bb12 exert divergent immunomodulating effects, with enhanced Th1 responses to oral AttHRV vaccine, whereas inducing Treg responses to virulent HRV.

  17. Divergent Immunomodulating Effects of Probiotics on T Cell Responses to Oral Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Infection in a Neonatal Gnotobiotic Piglet Disease Model

    PubMed Central

    Chattha, Kuldeep S.; Vlasova, Anastasia N.; Kandasamy, Sukumar; Rajashekara, Gireesh; Saif, Linda J.

    2014-01-01

    Rotaviruses (RVs) are a leading cause of childhood diarrhea. Current oral vaccines are not effective in impoverished countries where the vaccine is needed most. Therefore, alternative affordable strategies are urgently needed. Probiotics can alleviate diarrhea in children and enhance specific systemic and mucosal Ab responses, but the T cell responses are undefined. In this study, we elucidated the T cell and cytokine responses to attenuated human RV (AttHRV) and virulent human RV (HRV) in gnotobiotic pigs colonized with probiotics (Lactobacillus rhamnosus strain GG [LGG] and Bifidobacterium lactis Bb12 [Bb12]), mimicking gut commensals in breastfed infants. Neonatal gnotobiotic pigs are the only animal model susceptible to HRV diarrhea. Probiotic colonized and nonvaccinated (Probiotic) pigs had lower diarrhea and reduced virus shedding postchallenge compared with noncolonized and nonvaccinated pigs (Control). Higher protection in the Probiotic group coincided with higher ileal T regulatory cells (Tregs) before and after challenge, and higher serum TGF-β and lower serum and biliary proinflammatory cytokines postchallenge. Probiotic colonization in vaccinated pigs enhanced innate serum IFN-α, splenic and circulatory IFN-γ−producing T cells, and serum Th1 cytokines, but reduced serum Th2 cytokines compared with noncolonized vaccinated pigs (Vac). Thus, LGG+Bb12 induced systemic Th1 immunostimulatory effects on oral AttHRV vaccine that coincided with lower diarrhea severity and reduced virus shedding postchallenge in Vac+Pro compared with Vac pigs. Previously unreported intestinal CD8 Tregs were induced in vaccinated groups postchallenge. Thus, probiotics LGG+Bb12 exert divergent immunomodulating effects, with enhanced Th1 responses to oral AttHRV vaccine, whereas inducing Treg responses to virulent HRV. PMID:23918983

  18. Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells.

    PubMed

    Yu, Qian; Li, Minchao

    2017-01-25

    Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1Hz frequency, with stretching for 0.5h, 1h, 1.5h and 2h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca(2+) levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca(2+) fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca(2+) fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca(2+) and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.

    PubMed

    Park, Eun-Jung; Hur, Shin-Kyoung; Kwon, Jongbum

    2010-10-15

    Recent studies have shown that the SWI/SNF family of ATP-dependent chromatin-remodelling complexes play important roles in DNA repair as well as in transcription. The INO80 complex, the most recently described member of this family, has been shown in yeast to play direct role in DNA DSB (double-strand break) repair without affecting the expression of the genes involved in this process. However, whether this function of the INO80 complex is conserved in higher eukaryotes has not been investigated. In the present study, we found that knockdown of hINO80 (human INO80) confers DNA-damage hypersensitivity and inefficient DSB repair. Microarray analysis and other experiments have identified the Rad54B and XRCC3 (X-ray repair complementing defective repair in Chinese-hamster cells 3) genes, implicated in DSB repair, to be repressed by hINO80 deficiency. Chromatin immunoprecipitation studies have shown that hINO80 binds to the promoters of the Rad54B and XRCC3 genes. Re-expression of the Rad54B and XRCC3 genes rescues the DSB repair defect in hINO80-deficient cells. These results suggest that hINO80 assists DSB repair by positively regulating the expression of the Rad54B and XRCC3 genes. Therefore, unlike yeast INO80, hINO80 can contribute to DSB repair indirectly via gene expression, suggesting that the mechanistic role of this chromatin remodeller in DSB repair is evolutionarily diversified.

  20. Regeneration and Remodeling of Materials

    DTIC Science & Technology

    2012-08-01

    Turchyn (Chem) Brett Krull (MatSE) Concepts and Motivation Regeneration and Remodeling in biology: Tree skink lizard Linckia starfish Human Bone...Damage Fill Pumping Regime Microchannels in Specimen Overhead Camera Damage Regeneration Setup 45mm 2mm Pressurized Delivery 5.0 mm gap with bi...phase resin 4.0 mm gap (PDMS healing system) 3.5 mm gap (PDMS healing system) Damage Filling Results Maximum Fill Size PDMS Pre-mixed Epoxy 3mm

  1. Glucocorticoid regulation of mouse and human dual specificity phosphatase 1 (DUSP1) genes: unusual cis-acting elements and unexpected evolutionary divergence.

    PubMed

    Tchen, Carmen R; Martins, Joana R S; Paktiawal, Nasren; Perelli, Roberta; Saklatvala, Jeremy; Clark, Andrew R

    2010-01-22

    Anti-inflammatory effects of glucocorticoids (GCs) are partly mediated by up-regulation of DUSP1 (dual specificity phosphatase 1), which dephosphorylates and inactivates mitogen-activated protein kinases. We identified putative GC-responsive regions containing GC receptor (GR) binding site consensus sequences that are well conserved between human and mouse DUSP1 loci in position, orientation, and sequence (at least 11 of 15 positions identical) and lie within regions of extended sequence conservation (minimum 65% identity over at least 100 bp). These were located approximately 29, 28, 24, 4.6, and 1.3 kb upstream of the DUSP1 transcription start site. The homology-based approach successfully identified four cis-acting regions that mediated transcriptional responses to dexamethasone. However, there was surprising interspecies divergence in site usage. This could not be explained by variations of the GR binding sites themselves. Instead, variations in flanking sequences appear to have driven the evolutionary divergence in mechanisms of regulation of mouse and human DUSP1 genes. There was a good correlation between the ability of cis-acting elements to respond to GC in transiently transfected reporter constructs and their ability to recruit GR in the context of intact chromatin. We propose that divergence of gene regulation has involved the loss or gain of binding sites for accessory transcription factors that assist in GR recruitment. Finally, a novel GC-responsive region of the human DUSP1 gene contains a highly unusual element, in which three closely spaced GR half-sites are required for potent transcriptional activation by GC.

  2. A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J▿ †

    PubMed Central

    Tatematsu, Kanako; Tanaka, Yasuhito; Kurbanov, Fuat; Sugauchi, Fuminaka; Mano, Shuhei; Maeshiro, Tatsuji; Nakayoshi, Tomokuni; Wakuta, Moriaki; Miyakawa, Yuzo; Mizokami, Masashi

    2009-01-01

    Hepatitis B virus (HBV) of a novel genotype (J) was recovered from an 88-year-old Japanese patient with hepatocellular carcinoma who had a history of residing in Borneo during the World War II. It was divergent from eight human (A to H) and four ape (chimpanzee, gorilla, gibbon, and orangutan) HBV genotypes, as well as from a recently proposed ninth human genotype I, by 9.9 to 16.5% of the entire genomic sequence and did not have evidence of recombination with any of the nine human genotypes and four nonhuman genotypes. Based on a comparison of the entire nucleotide sequence against 1,440 HBV isolates reported, HBV/J was nearest to the gibbon and orangutan genotypes (mean divergences of 10.9 and 10.7%, respectively). Based on a comparison of four open reading frames, HBV/J was closer to gibbon/orangutan genotypes than to human genotypes in the P and large S genes and closest to Australian aboriginal strains (HBV/C4) and orangutan-derived strains in the S gene, whereas it was closer to human than ape genotypes in the C gene. HBV/J shared a deletion of 33 nucleotides at the start of preS1 region with C4 and gibbon genotypes, had an S-gene sequence similar to that of C4, and expressed the ayw subtype. Efficient infection, replication, and antigen expression by HBV/J were experimentally established in two chimeric mice with the liver repopulated for human hepatocytes. The HBV DNA sequence recovered from infected mice was identical to that in the inoculum. Since HBV/J is positioned phylogenetically in between human and ape genotypes, it may help to trace the origin of HBV and merits further epidemiological surveys. PMID:19640977

  3. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J.

    PubMed

    Tatematsu, Kanako; Tanaka, Yasuhito; Kurbanov, Fuat; Sugauchi, Fuminaka; Mano, Shuhei; Maeshiro, Tatsuji; Nakayoshi, Tomokuni; Wakuta, Moriaki; Miyakawa, Yuzo; Mizokami, Masashi

    2009-10-01

    Hepatitis B virus (HBV) of a novel genotype (J) was recovered from an 88-year-old Japanese patient with hepatocellular carcinoma who had a history of residing in Borneo during the World War II. It was divergent from eight human (A to H) and four ape (chimpanzee, gorilla, gibbon, and orangutan) HBV genotypes, as well as from a recently proposed ninth human genotype I, by 9.9 to 16.5% of the entire genomic sequence and did not have evidence of recombination with any of the nine human genotypes and four nonhuman genotypes. Based on a comparison of the entire nucleotide sequence against 1,440 HBV isolates reported, HBV/J was nearest to the gibbon and orangutan genotypes (mean divergences of 10.9 and 10.7%, respectively). Based on a comparison of four open reading frames, HBV/J was closer to gibbon/orangutan genotypes than to human genotypes in the P and large S genes and closest to Australian aboriginal strains (HBV/C4) and orangutan-derived strains in the S gene, whereas it was closer to human than ape genotypes in the C gene. HBV/J shared a deletion of 33 nucleotides at the start of preS1 region with C4 and gibbon genotypes, had an S-gene sequence similar to that of C4, and expressed the ayw subtype. Efficient infection, replication, and antigen expression by HBV/J were experimentally established in two chimeric mice with the liver repopulated for human hepatocytes. The HBV DNA sequence recovered from infected mice was identical to that in the inoculum. Since HBV/J is positioned phylogenetically in between human and ape genotypes, it may help to trace the origin of HBV and merits further epidemiological surveys.

  4. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells

    DTIC Science & Technology

    2006-08-01

    in human breast cancer. Endocrine-Related Cancer 2003; 10:517-536. 10. Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen...positive breast cancers? Invasion and Metastasis 1995; 14:329-36. 22. Price JE, Polyzos A, Zhang RD, Daniels MD. Tumorigenicity and metastasis of...Oesterreich S. Estrogen receptor corepressors—a role in human breast cancer. Endocr Relat Cancer 2003;10:517–36. 10. Shiau AK, Barstad D, Loria PM, et

  5. Peroxisome Proliferator–Activated Receptor-γ Agonists Prevent In Vivo Remodeling of Human Artery Induced by Alloreactive T Cells

    PubMed Central

    Tobiasova, Zuzana; Zhang, Lufeng; Yi, Tai; Qin, Linfeng; Manes, Thomas D.; Kulkarni, Sanjay; Lorber, Marc I.; Rodriguez, Frederick C.; Choi, Je-Min; Tellides, George; Pober, Jordan S.; Kawikova, Ivana; Bothwell, Alfred L.M.

    2012-01-01

    Background Ligands activating the transcription factor peroxisome proliferator–activated receptor-γ (PPARγ) have antiinflammatory effects. Vascular rejection induced by allogeneic T cells can be responsible for acute and chronic graft loss. Studies in rodents suggest that PPARγ agonists may inhibit graft vascular rejection, but human T-cell responses to allogeneic vascular cells differ from those in rodents, and the effects of PPARγ in human transplantation are unknown. Methods and Results We tested the effects of PPARγ agonists on human vascular graft rejection using a model in which human artery is interposed into the abdominal aorta of immunodeficient mice, followed by adoptive transfer of allogeneic (to the artery donor) human peripheral blood mononuclear cells. Interferon-γ–dependent rejection ensues within 4 weeks, characterized by intimal thickening, T-cell infiltrates, and vascular cell activation, a response resembling clinical intimal arteritis. The PPARγ agonists 15-deoxy-prostaglandin-J2, ciglitazone, and pioglitazone reduced intimal expansion, intimal infiltration of CD45RO+ memory T cells, and plasma levels of inflammatory cytokines. The PPARγ antagonist GW9662 reversed the protective effects of PPARγ agonists, confirming the involvement of PPARγ-mediated pathways. In vitro, pioglitazone inhibited both alloantigen-induced proliferation and superantigen-induced transendothelial migration of memory T cells, indicating the potential mechanisms of PPARγ effects. Conclusion Our results suggest that PPARγ agonists inhibit allogeneic human memory T cell responses and may be useful for the treatment of vascular graft rejection. PMID:21690493

  6. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  7. Deep Haplotype Divergence and Long-Range Linkage Disequilibrium at Xp21.1 Provide Evidence That Humans Descend From a Structured Ancestral Population

    PubMed Central

    Garrigan, Daniel; Mobasher, Zahra; Kingan, Sarah B.; Wilder, Jason A.; Hammer, Michael F.

    2005-01-01

    Fossil evidence links human ancestry with populations that evolved from modern gracile morphology in Africa 130,000–160,000 years ago. Yet fossils alone do not provide clear answers to the question of whether the ancestors of all modern Homo sapiens comprised a single African population or an amalgamation of distinct archaic populations. DNA sequence data have consistently supported a single-origin model in which anatomically modern Africans expanded and completely replaced all other archaic hominin populations. Aided by a novel experimental design, we present the first genetic evidence that statistically rejects the null hypothesis that our species descends from a single, historically panmictic population. In a global sample of 42 X chromosomes, two African individuals carry a lineage of noncoding 17.5-kb sequence that has survived for >1 million years without any clear traces of ongoing recombination with other lineages at this locus. These patterns of deep haplotype divergence and long-range linkage disequilibrium are best explained by a prolonged period of ancestral population subdivision followed by relatively recent interbreeding. This inference supports human evolution models that incorporate admixture between divergent African branches of the genus Homo. PMID:15937130

  8. Effects of Bio-Oss(®) and Cerasorb(®) dental M on the expression of bone-remodeling mediators in human monocytes.

    PubMed

    de Assis Gonzaga, Filipe; de Miranda, Tatiana Teixeira; Magalhães, Luisa Mourão Dias; Dutra, Walderez Ornelas; Gollob, Kenneth John; Souza, Paulo Eduardo Alencar; Horta, Martinho Campolina Rebello

    2017-10-01

    In contribution to diverse techniques of bone reconstruction involving biomaterials in contemporary dentistry, this study aimed to evaluate the effect of the bone-grafting materials Bio-Oss(®) and Cerasorb(®) Dental M on the expression of cytokines associated with bone remodeling by human monocytes in vitro. Bio-Oss(®) and Cerasorb(®) Dental M were incubated in separate culture media, and their supernatants were added to mononuclear cells of human peripheral blood, some of which had been stimulated with Porphyromonas gingivalis. The frequency of total monocytes and CD14(+) monocytes producing cytokines interleukin 6 (IL-6), IL-8, IL-10, IL-12, and tumor necrosis factor alpha (TNF-α) were determined by flow cytometry. One-way analysis of variance with repeated measures, followed by Tukey's post hoc test, revealed that stimulation with P. gingivalis increased the expression of IL-6 and IL-8 and reduced the expression of TNF-α compared to effects demonstrated in the control group (p < 0.05). Adding biomaterial supernatants did not significantly affect the expression of any cytokine evaluated, however, either in the absence or in the presence of bacterial stimulation. Our data suggest that Bio-Oss(®) and Cerasorb(®) Dental M neither stimulate cytokine production in human monocytes nor interfere with mechanisms of cell communication mediated by cytokines evaluated during stimulation with P. gingivalis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2066-2073, 2017. © 2016 Wiley Periodicals, Inc.

  9. Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells.

    PubMed

    Prasinou, Paraskevi; Dafnis, Ioannis; Giacometti, Giorgia; Ferreri, Carla; Chroni, Angeliki; Chatgilialoglu, Chryssostomos

    2017-10-01

    Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease. Copyright © 2017. Published by Elsevier B.V.

  10. Molecular Basis of Histone Tail Recognition by Human TIP5 PHD Finger and Bromodomain of the Chromatin Remodeling Complex NoRC

    PubMed Central

    Tallant, Cynthia; Valentini, Erica; Fedorov, Oleg; Overvoorde, Lois; Ferguson, Fleur M.; Filippakopoulos, Panagis; Svergun, Dmitri I.; Knapp, Stefan; Ciulli, Alessio

    2015-01-01

    Summary Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex. PMID:25533489

  11. The Effective Mutation Rate at Y Chromosome Short Tandem Repeats, with Application to Human Population-Divergence Time

    PubMed Central

    Zhivotovsky, Lev A.; Underhill, Peter A.; Cinnioğlu, Cengiz; Kayser, Manfred; Morar, Bharti; Kivisild, Toomas; Scozzari, Rosaria; Cruciani, Fulvio; Destro-Bisol, Giovanni; Spedini, Gabriella; Chambers, Geoffrey K.; Herrera, Rene J.; Yong, Kiau Kiun; Gresham, David; Tournev, Ivailo; Feldman, Marcus W.; Kalaydjieva, Luba

    2004-01-01

    We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9×10-4 per 25 years, with a standard deviation across loci of 5.7×10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria. PMID:14691732

  12. Limitations of TaqMan PCR for Detecting Divergent Viral Pathogens Illustrated by Hepatitis A, B, C, and E Viruses and Human Immunodeficiency Virus

    PubMed Central

    Gardner, Shea N.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A.; Slezak, Tom R.

    2003-01-01

    Recent events illustrate the imperative to rapidly and accurately detect and identify pathogens during disease outbreaks, whether they are natural or engineered. Particularly for our primary goal of detecting bioterrorist releases, detection techniques must be both species-wide (capable of detecting all known strains of a given species) and species specific. Due to classification restrictions on the publication of data for species that may pose a bioterror threat, we illustrate the challenges of finding such assays using five nonthreat organisms that are nevertheless of public health concern: human immunodeficiency virus (HIV) and four species of hepatitis viruses. Fluorogenic probe-based PCR assays (TaqMan; Perkin-Elmer Corp., Applied Biosystems, Foster City, Calif.) may be sensitive, fast methods for the identification of species in which the genome is conserved among strains, such as hepatitis A virus. For species such as HIV, however, the strains are highly divergent. We use computational methods to show that nine TaqMan primer and probe sequences, or signatures, are needed to ensure that all strains will be detected, but this is an unfeasible number, considering the cost of TaqMan probes. Strains of hepatitis B, C, and E viruses show intermediate divergence, so that two to three TaqMan signatures are required to detect all strains of each virus. We conclude that for species such as hepatitis A virus with high levels of sequence conservation among strains, signatures can be found computationally for detection by the TaqMan assay, which is a sensitive, rapid, and cost-effective method. However, for species such as HIV with substantial genetic divergence among strains, the TaqMan assay becomes unfeasible and alternative detection methods may be required. We compare the TaqMan assay with some of the alternative nucleic acid-based detection techniques of microarray, chip, and bead technologies in terms of sensitivity, speed, and cost. PMID:12791858

  13. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  14. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3

    SciTech Connect

    Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard; Graham, Charles H.; Markert, Udo R.

    2009-06-10

    The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lower phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.

  15. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  16. Disorders of Bone Remodeling

    PubMed Central

    Feng, Xu; McDonald, Jay M.

    2013-01-01

    The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937

  17. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis

    PubMed Central

    García-Alonso, Verónica; Titos, Esther; Alcaraz-Quiles, Jose; Rius, Bibiana; Lopategi, Aritz; López-Vicario, Cristina; Jakobsson, Per-Johan; Delgado, Salvadora; Lozano, Juanjo; Clària, Joan

    2016-01-01

    Obesity induces white adipose tissue (WAT) dysfunction characterized by unremitting inflammation and fibrosis, impaired adaptive thermogenesis and increased lipolysis. Prostaglandins (PGs) are powerful lipid mediators that influence the homeostasis of several organs and tissues. The aim of the current study was to explore the regulatory actions of PGs in human omental WAT collected from obese patients undergoing laparoscopic bariatric surgery. In addition to adipocyte hypertrophy, obese WAT showed remarkable inflammation and total and pericellular fibrosis. In this tissue, a unique molecular signature characterized by altered expression of genes involved in inflammation, fibrosis and WAT browning was identified by microarray analysis. Targeted LC-MS/MS lipidomic analysis identified increased PGE2 levels in obese fat in the context of a remarkable COX-2 induction and in the absence of changes in the expression of terminal prostaglandin E synthases (i.e. mPGES-1, mPGES-2 and cPGES). IPA analysis established PGE2 as a common top regulator of the fibrogenic/inflammatory process present in this tissue. Exogenous addition of PGE2 significantly reduced the expression of fibrogenic genes in human WAT explants and significantly down-regulated Col1α1, Col1α2 and αSMA in differentiated 3T3 adipocytes exposed to TGF-β. In addition, PGE2 inhibited the expression of inflammatory genes (i.e. IL-6 and MCP-1) in WAT explants as well as in adipocytes challenged with LPS. PGE2 anti-inflammatory actions were confirmed by microarray analysis of human pre-adipocytes incubated with this prostanoid. Moreover, PGE2 induced expression of brown markers (UCP1 and PRDM16) in WAT and adipocytes, but not in pre-adipocytes, suggesting that PGE2 might induce the trans-differentiation of adipocytes towards beige/brite cells. Finally, PGE2 inhibited isoproterenol-induced adipocyte lipolysis. Taken together, these findings identify PGE2 as a regulator of the complex network of interactions

  18. Cyclic mechanical strain induces NO production in human patellar tendon fibroblasts--a possible role for remodelling and pathological transformation.

    PubMed

    van Griensven, Martijn; Zeichen, Johannes; Skutek, Michael; Barkhausen, Tanja; Krettek, Christian; Bosch, Ulrich

    2003-03-01

    The mechanism by which tendon fibroblasts can detect strain forces and respond to them is fairly unknown. Nitric oxide (NO) is a messenger molecule that among others can respond to shear stress in endothelial cells. Therefore, it was investigated whether cyclic mechanical strain induces NO in vitro in human patellar tendon fibroblasts. Human patellar tendon fibroblasts were cultured from remnants of patellar tendon transplants after reconstructive surgery. Fibroblasts were cultured on elastic silicone dishes. The cells were longitudinally strained (5%, 1 Hz) for 15' or 60'. As a control, no strain was applied. The experiments were finished after 0', 5', 15', and 30'. NO was determined using the Griess reaction. 15' strain showed at 0' and 5' 200% activation, which thereafter at 15' and 30' returned to normal levels. 60' strain showed a biphasic pattern. At 5' and 30', NO levels were increased to 175%. At 15', NO measurement displayed 120% increased levels. Mechanical strain induces NO production by tendon fibroblasts. Therefore, NO produced by tendon fibroblasts, as a response to alteration in their mechanical microenvironment, could modulate fibroblast function. The results of our study suggests that strain-related adaptive changes may, at least in part, be controlled by a process in which strain-related NO production from the fibroblast network may play a pivotal role. Moreover, these are basic findings that are important for further unravelling pathophysiology of tendon diseases.

  19. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.

  20. Metabolic Remodeling of Human Skeletal Myocytes by Cocultured Adipocytes Depends on the Lipolytic State of the System

    PubMed Central

    Kovalik, Jean-Paul; Slentz, Dorothy; Stevens, Robert D.; Kraus, William E.; Houmard, Joseph A.; Nicoll, James B.; Lea-Currie, Y. Renee; Everingham, Karen; Kien, C. Lawrence; Buehrer, Benjamin M.; Muoio, Deborah M.

    2011-01-01

    OBJECTIVE Adipocyte infiltration of the musculoskeletal system is well recognized as a hallmark of aging, obesity, and type 2 diabetes. Intermuscular adipocytes might serve as a benign storage site for surplus lipid or play a role in disrupting energy homeostasis as a result of dysregulated lipolysis or secretion of proinflammatory cytokines. This investigation sought to understand the net impact of local adipocytes on skeletal myocyte metabolism. RESEARCH DESIGN AND METHODS Interactions between these two tissues were modeled using a coculture system composed of primary human adipocytes and human skeletal myotubes derived from lean or obese donors. Metabolic analysis of myocytes was performed after coculture with lipolytically silent or activated adipocytes and included transcript and metabolite profiling along with assessment of substrate selection and insulin action. RESULTS Cocultured adipocytes increased myotube mRNA expression of genes involved in oxidative metabolism, regardless of the donor and degree of lipolytic activity. Adipocytes in the basal state sequestered free fatty acids, thereby forcing neighboring myotubes to rely more heavily on glucose fuel. Under this condition, insulin action was enhanced in myotubes from lean but not obese donors. In contrast, when exposed to lipolytically active adipocytes, cocultured myotubes shifted substrate use in favor of fatty acids, which was accompanied by intracellular accumulation of triacylglycerol and even-chain acylcarnitines, decreased glucose oxidation, and modest attenuation of insulin signaling. CONCLUSIONS The effects of cocultured adipocytes on myocyte substrate selection and insulin action depended on the metabolic state of the system. These findings are relevant to understanding the metabolic consequences of intermuscular adipogenesis. PMID:21602515

  1. Divergent invariant natural killer T-cell response to sepsis of abdominal vs. non-abdominal origin in human beings.

    PubMed

    Young, John S; Monaghan, Sean F; Chung, Chun S; Cioffi, William G; Ayala, Alfred; Heffernan, Daithi S

    2015-02-01

    The etiology of sepsis is broad. The peritoneal cavity displays compartmentalization with respect to inflammatory responses, so peripheral blood responses to sepsis of abdominal vs. non-abdominal origin are expected to be divergent. Lymphocytes and invariant natural killer T (iNKT) cells play important roles in survival from sepsis, as they dampen the neutrophil and macrophage responses. We assessed whether circulating iNKT cells display distinct phenotypic profiles depending on the presence of abdominal vs. non-abdominal infection with sepsis. Patients with sepsis, defined as infection confirmed microbiologically with a systemic inflammatory response syndrome (SIRS), were enrolled prospectively. They were categorized as having either exclusively sepsis of abdominal or exclusively non-abdominal origin. The white blood cell (WBC) count was recorded. Whole-blood staining with monoclonal antibodies to CD3, V-alpha-24 (to identify iNKT cells), and CD69 (marker of early activation) was applied. Of the 53 enrolled patients, 18 had abdominal infection. Pneumonia was the most common non-abdominal type. There was no difference in gender, age, Acute Physiology and Chronic Health Evaluation (APACHE) II score, WBC count, or CD3(+) T cells (7.1%±1.6% vs. 6.5%±0.9%; p=0.75) in the two groups. Patients with abdominal infection had a higher proportion of iNKT cells (2.7%±1.1% vs. 0.89%±0.14%; p=0.032). Correcting for WBC count, this translated into a higher absolute number of iNKT cells (3.4±1.8×10(7)/L vs. 0.74±0.15×10(7)/L; p=0.03). Patients with sepsis of abdominal origin had a lower percentage of CD69(+) iNKT cells (9.1%±3.1% vs. 27.2%±5.8%; p=0.028). In patients in shock vs. those who were not, patients with non-abdominal infection exhibited a greater number of iNKT cells (1.47±0.3 v. 0.62±0.1×10(7)/L; p=0.022) and percentage of activated iNKT cells (53±14.5% vs. 17.9±4.8%; p=0.04). Patients with non-abdominal infection who died had a lower absolute number of

  2. Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans.

    PubMed

    Rönn, Monika; Lind, Lars; van Bavel, Bert; Salihovic, Samira; Michaëlsson, Karl; Lind, Pia Monica

    2011-10-01

    Environmental contaminants have recently been implicated in the pathogenesis of obesity. To explore relations between persistent organic pollutants (POPs) and fat mass independently of body stature, using a cross-sectional design. In the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), fat mass was determined in 70-year-old subjects (n=890) by dual-energy X-ray absorptiometry (DXA). The plasma levels of 21 POPs (including 16 PCB congeners, 3 OC pesticides, 1 BDE47, and 1 dioxin) were measured by high resolution chromatography coupled with high resolution mass spectrometry (HRGC/HRMS). Lipid-standardized plasma concentrations of octachlorodibenzo-p-dioxin (OCDD), the PCBs 74, 99, 105 and 118, and the pesticides HCB, TNK, and DDE were all positively related to fat mass (p=0.03-0.0001). Subjects in the fifth quintile for PCB 105 showed a mean fat mass that was 4.8 kg more than subjects in the first quintile. On the other hand, the PCBs 156, 157, 169, 170, 180, 189, 194, 206, and 209 were negatively related to fat mass (p=0.0001). For PCB 194, subjects in the fifth quintile showed a mean fat mass that was 10.8 kg less than subjects in the first quintile. Following adjustment for smoking, physical activity, education level, height, lean mass, and gender, these results remained significant (p=0.01-0.0001) except for the PCBs 74 and 99. For some PCBs, the associations vs. fat mass were more pronounced in women than in men. Plasma concentrations of some pesticides are positively related to fat mass, while divergent associations are seen for the PCBs. These results implicate a complex role of POPs in obesity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Human INO80/YY1 chromatin remodeling complex transcriptionally regulates the BRCA2- and CDKN1A-interacting protein (BCCIP) in cells.

    PubMed

    Su, Jiaming; Sui, Yi; Ding, Jian; Li, Fuqiang; Shen, Shuang; Yang, Yang; Lu, Zeming; Wang, Fei; Cao, Lingling; Liu, Xiaoxia; Jin, Jingji; Cai, Yong

    2016-10-01

    The BCCIP (BRCA2- and CDKN1A-interacting protein) is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP) experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.

  4. Versatile reporter systems show that transactivation by human T-cell leukemia virus type 1 Tax occurs independently of chromatin remodeling factor BRG1.

    PubMed

    Zhang, Ling; Liu, Meihong; Merling, Randall; Giam, Chou-Zen

    2006-08-01

    Potent activation of human T-cell leukemia virus type 1 (HTLV-1) gene expression is mediated by the virus-encoded transactivator protein Tax and three imperfect 21-bp repeats in the viral long terminal repeats. Each 21-bp repeat contains a cAMP-responsive-element core flanked by 5' G-rich and 3' C-rich sequences. Tax alone does not bind DNA. Rather, it interacts with basic domain-leucine zipper transcription factors CREB and ATF-1 to form ternary complexes with the 21-bp repeats. In the context of the ternary complexes, Tax contacts the G/C-rich sequences and recruits transcriptional coactivators CREB-binding protein (CBP)/p300 to effect potent transcriptional activation. Using an easily transduced and chromosomally integrated reporter system derived from a self-inactivating lentivirus vector, we showed in a BRG1- and BRM1-deficient adrenal carcinoma cell line, SW-13, that Tax- and 21-bp repeat-mediated transactivation does not require BRG1 or BRM1 and is not enhanced by BRG1. With a similar reporter system, we further demonstrated that Tax- and tumor necrosis factor alpha-induced NF-kappaB activation occurs readily in SW-13 cells in the absence of BRG1 and BRM1. These results suggest that the assembly of stable multiprotein complexes containing Tax, CREB/ATF-1, and CBP/p300 on the 21-bp repeats is the principal mechanism employed by Tax to preclude nucleosome formation at the HTLV-1 enhancer/promoter. This most likely bypasses the need for BRG1-containing chromatin-remodeling complexes. Likewise, recruitment of CBP/p300 by NF-kappaB may be sufficient to disrupt histone-DNA interaction for the initiation of transcription.

  5. Retinal remodeling in inherited photoreceptor degenerations.

    PubMed

    Marc, Robert E; Jones, Bryan W

    2003-10-01

    Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

  6. Divergent Patterns of Recent Retroviral Integrations in the Human and Chimpanzee Genomes: Probable Transmissions between Other Primates and Chimpanzees†

    PubMed Central

    Jern, Patric; Sperber, Göran O.; Blomberg, Jonas

    2006-01-01

    The human genome is littered by endogenous retrovirus sequences (HERVs), which constitute up to 8% of the total genomic sequence. The sequencing of the human (Homo sapiens) and chimpanzee (Pan troglodytes) genomes has facilitated the evolutionary study of ERVs and related sequences. We screened both the human genome (version hg16) and the chimpanzee genome (version PanTro1) for ERVs and conducted a phylogenetic analysis of recent integrations. We found a number of recent integrations within both genomes. They segregated into four groups. Two larger gammaretrovirus-like groups (PtG1 and PtG2) occurred in chimpanzees but not in humans. The PtG sequences were most similar to two baboon ERVs and a macaque sequence but neither to other chimpanzee ERVs nor to any human gammaretrovirus-like ERVs. The pattern was consistent with cross-species transfer via predation. This appears to be an example of horizontal transfer of retroviruses with occasional fixation in the germ line. PMID:16415014

  7. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    PubMed

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional

  8. Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis

    PubMed Central

    Ma, Liang; Huang, Da-Wei; Cuomo, Christina A.; Sykes, Sean; Fantoni, Giovanna; Das, Biswajit; Sherman, Brad T.; Yang, Jun; Huber, Charles; Xia, Yun; Davey, Emma; Kutty, Geetha; Bishop, Lisa; Sassi, Monica; Lempicki, Richard A.; Kovacs, Joseph A.

    2013-01-01

    Pneumocystis jirovecii is an important opportunistic pathogen associated with AIDS and other immunodeficient conditions. Currently, very little is known about its nuclear and mitochondrial genomes. In this study, we sequenced the complete mitochondrial genome (mtDNA) of this organism and its closely related species Pneumocystis carinii and Pneumocystis murina by a combination of sequencing technologies. Our study shows that P. carinii and P. murina mtDNA share a nearly identical number and order of genes in a linear configuration, whereas P. jirovecii has a circular mtDNA containing nearly the same set of genes but in a different order. Detailed studies of the mtDNA terminal structures of P. murina and P. carinii suggest a unique replication mechanism for linear mtDNA. Phylogenetic analysis supports a close association of Pneumocystis species with Taphrina, Saitoella, and Schizosaccharomyces, and divergence within Pneumocystis species, with P. murina and P. carinii being more closely related to each other than either is to P. jirovecii. Comparative analysis of four complete P. jirovecii mtDNA sequences in this study and previously reported mtDNA sequences for diagnosing and genotyping suggests that the current diagnostic and typing methods can be improved using the complete mtDNA data. The availability of the complete P. jirovecii mtDNA also opens the possibility of identifying new therapeutic targets.—Ma, L., Huang, D. W., Cuomo, C. A., Sykes, S., Fantoni, G., Das, B., Sherman, B. T., Yang, J., Huber, C., Xia, Y., Davey, E., Kutty, G., Bishop, L., Sassi, M., Lempicki, R. A., Kovacs, J. A. Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis. PMID:23392351

  9. Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells

    PubMed Central

    Novo, E; Marra, F; Zamara, E; Bonzo, L Valfrè di; Caligiuri, A; Cannito, S; Antonaci, C; Colombatto, S; Pinzani, M; Parola, M

    2006-01-01

    Background and aim Activated myofibroblast‐like cells, originating from hepatic stellate cells (HSC/MFs) or other cellular sources, play a key profibrogenic role in chronic liver diseases (CLDs) that, as suggested by studies in animal models or rat HSC/MFs, may be modulated by reactive oxygen intermediates (ROI). In this study, human HSC/MFs, exposed to different levels of superoxide anion (O2•−) and, for comparison, hydrogen peroxide (H2O2), were analysed in terms of cytotoxicity, proliferative response, and migration. Methods Cultured human HSC/MFs were exposed to controlled O2•− generation by hypoxanthine/xanthine oxidase systems or to a range of H2O2 concentrations. Induction of cell death, proliferation, and migration were investigated using morphology, molecular biology, and biochemical techniques. Results Human HSC/MFs were shown to be extremely resistant to induction of cell death by O2•− and only high rates of O2•− generation induced either necrotic or apoptotic cell death. Non‐cytotoxic low levels of O2•−, able to upregulate procollagen type I expression (but not tissue inhibitor of metalloproteinase 1 and 2), stimulated migration of human HSC/MFs in a Ras/extracellular regulated kinase (ERK) dependent, antioxidant sensitive way, without affecting basal or platelet derived growth factor (PDGF) stimulated cell proliferation. Non‐cytotoxic levels of H2O2 did not affect Ras/ERK or proliferative response. A high rate of O2•− generation or elevated levels of H2O2 induced cytoskeletal alterations, block in motility, and inhibition of PDGF dependent DNA synthesis. Conclusions Low non‐cytotoxic levels of extracellularly generated O2•− may stimulate selected profibrogenic responses in human HSC/MFs without affecting proliferation. PMID:16041064

  10. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus)

    PubMed Central

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-01-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44–48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. PMID:26382075

  11. Divergent selection on, but no genetic conflict over, female and male timing and rate of reproduction in a human population

    PubMed Central

    Bolund, Elisabeth; Bouwhuis, Sandra; Pettay, Jenni E.; Lummaa, Virpi

    2013-01-01

    The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution. PMID:24107531

  12. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.

    PubMed

    Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

    2010-08-01

    This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment.

  13. Divergent selection on, but no genetic conflict over, female and male timing and rate of reproduction in a human population.

    PubMed

    Bolund, Elisabeth; Bouwhuis, Sandra; Pettay, Jenni E; Lummaa, Virpi

    2013-12-07

    The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution.

  14. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    PubMed

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  15. Vessel remodelling, pregnancy hormones and extravillous trophoblast function.

    PubMed

    Chen, Jessie Z-J; Sheehan, Penelope M; Brennecke, Shaun P; Keogh, Rosemary J

    2012-02-26

    During early human pregnancy, extravillous trophoblast (EVT) cells from the placenta invade the uterine decidual spiral arterioles and mediate the remodelling of these vessels such that a low pressure, high blood flow can be supplied to the placenta. This is essential to facilitate normal growth and development of the foetus. Defects in remodelling can manifest as the serious pregnancy complication pre-eclampsia. During the period of vessel remodelling three key pregnancy-associated hormones, human chorionic gonadotrophin (hCG), progesterone (P(4)) and oestradiol (E(2)), are found in high concentrations at the maternal-foetal interface. Potentially these hormones may control EVT movement and thus act as regulators of vessel remodelling. This review will discuss what is known about how these hormones affect EVT proliferation, migration and invasion during vascular remodelling and the potential relationship between hCG, P(4), E(2) and the development of pre-eclampsia.

  16. The Chd Family of Chromatin Remodelers

    PubMed Central

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease. PMID:17350655

  17. The medaka FoxP2, a homologue of human language gene FOXP2, has a diverged structure and function.

    PubMed

    Itakura, Tatsuo; Chandra, Abhishek; Yang, Zhi; Xue, Xiaodong; Wang, Bo; Kimura, Wataru; Hikosaka, Keisuke; Inohaya, Keiji; Kudo, Akira; Uezato, Tadayoshi; Miura, Naoyuki

    2008-03-01

    Forkhead box (Fox) genes are involved in organogenesis and cell differentiation. A mutation of FOXP2 was discovered in patients with severe defects in speech and language. The medaka FoxP2 was cloned in order to clarify the molecular evolution and difference in the protein structure and function by comparing human/mouse and medaka genes. The result showed that medaka FoxP2 had a 73.7% homology to the human and mouse counterparts, and its zinc finger, leucine zipper and forkhead domain structures were conserved. However, medaka FoxP2 lacked a long polyglutamine repeat and had two insertions of unique amino acid sequences. FoxP2 expression was found in the epiphysis and retina, in addition to the midbrain and cerebellum. The transcriptional assay revealed that medaka FoxP2 showed a very weak repressive activity to the CC10 promoter while mouse Foxp2 exhibited a strong repressive activity. Mutational analyses of medaka FoxP2 showed that the three amino acids of forkhead domain were responsible for the weak repressive activity. These results suggest that medaka FoxP2 may play a different function in the development of the medaka fish.

  18. Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1

    PubMed Central

    Cookson, Adrian L.; Campbell, Donald M.; Duncan, Gail E.; Prattley, Deborah; Carter, Philip; Besser, Thomas E.; Shringi, Smriti; Hathaway, Steve; Marshall, Jonathan C.; French, Nigel P.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans. PMID:25568924

  19. Divergent signaling pathways regulate IL-12 production induced by different species of Lactobacilli in human dendritic cells.

    PubMed

    Amar, Yacine; Rizzello, Valeria; Cavaliere, Riccardo; Campana, Stefania; De Pasquale, Claudia; Barberi, Chiara; Oliveri, Daniela; Pezzino, Gaetana; Costa, Gregorio; Meddah, Aicha Tirtouil; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-07-01

    Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases.

  20. Divergence in enzyme regulation between Caenorhabditis elegans and human tyrosine hydroxylase, the key enzyme in the synthesis of dopamine.

    PubMed

    Calvo, Ana C; Pey, Angel L; Miranda-Vizuete, Antonio; Døskeland, Anne P; Martinez, Aurora

    2011-02-15

    TH (tyrosine hydroxylase) is the rate-limiting enzyme in the synthesis of catecholamines. The cat-2 gene of the nematode Caenorhabditis elegans is expressed in mechanosensory dopaminergic neurons and has been proposed to encode a putative TH. In the present paper, we report the cloning of C. elegans full-length cat-2 cDNA and a detailed biochemical characterization of the encoded CAT-2 protein. Similar to other THs, C. elegans CAT-2 is composed of an N-terminal regulatory domain followed by a catalytic domain and a C-terminal oligomerization domain and shows high substrate specificity for L-tyrosine. Like hTH (human TH), CAT-2 is tetrameric and is phosphorylated at Ser35 (equivalent to Ser40 in hTH) by PKA (cAMP-dependent protein kinase). However, CAT-2 is devoid of characteristic regulatory mechanisms present in hTH, such as negative co-operativity for the cofactor, substrate inhibition or feedback inhibition exerted by catecholamines, end-products of the pathway. Thus TH activity in C. elegans displays a weaker regulation in comparison with the human orthologue, resembling a constitutively active enzyme. Overall, our data suggest that the intricate regulation characteristic of mammalian TH might have evolved from more simple models to adjust to the increasing complexity of the higher eukaryotes neuroendocrine systems.

  1. CD34 and CD49f Double-Positive and Lineage Marker-Negative Cells Isolated from Human Myometrium Exhibit Stem Cell-Like Properties Involved in Pregnancy-Induced Uterine Remodeling.

    PubMed

    Ono, Masanori; Kajitani, Takashi; Uchida, Hiroshi; Arase, Toru; Oda, Hideyuki; Uchida, Sayaka; Ota, Kuniaki; Nagashima, Takashi; Masuda, Hirotaka; Miyazaki, Kaoru; Asada, Hironori; Hida, Naoko; Mabuchi, Yo; Morikawa, Satoru; Ito, Mamoru; Bulun, Serdar E; Okano, Hideyuki; Matsuzaki, Yumi; Yoshimura, Yasunori; Maruyama, Tetsuo

    2015-08-01

    Repeated and dramatic pregnancy-induced uterine enlargement and remodeling throughout reproductive life suggests the existence of uterine smooth muscle stem/progenitor cells. The aim of this study was to isolate and characterize stem/progenitor-like cells from human myometrium through identification of specific surface markers. We here identify CD49f and CD34 as markers to permit selection of the stem/progenitor cell-like population from human myometrium and show that human CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells exhibit stem cell-like properties. These include side population phenotypes, an undifferentiated status, high colony-forming ability, multilineage differentiation into smooth muscle cells, osteoblasts, adipocytes, and chondrocytes, and in vivo myometrial tissue reconstitution following xenotransplantation. Furthermore, CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells proliferate under hypoxic conditions in vitro and, compared with the untreated nonpregnant myometrium, show greater expansion in the estrogen-treated nonpregnant myometrium and further in the pregnant myometrium in mice upon xenotransplantation. These results suggest that the newly identified myometrial stem/progenitor-like cells influenced by hypoxia and sex steroids may participate in pregnancy-induced uterine enlargement and remodeling, providing novel insights into human myometrial physiology. © 2015 by the Society for the Study of Reproduction, Inc.

  2. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  3. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    SciTech Connect

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. )

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  4. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL.

    PubMed

    Gao, Xuan; Yuan, Shujun; Jayaraman, Shobini; Gursky, Olga

    2012-06-12

    High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.

  5. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    PubMed

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-04

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  6. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.

    PubMed

    Zile, Melanie A; Trayanova, Natalia A

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and action potential voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart

  7. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study

    PubMed Central

    Zile, Melanie A.

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and APV-ALT, the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart-failure-induced electrical and mechanical

  8. Divergences in holographic complexity

    NASA Astrophysics Data System (ADS)

    Reynolds, Alan; Ross, Simon F.

    2017-05-01

    We study the UV divergences in the action of the ‘Wheeler-de Witt patch’ in asymptotically AdS spacetimes, which has been conjectured to be dual to the computational complexity of the state of the dual field theory on a spatial slice of the boundary. We show that including a surface term in the action on the null boundaries which ensures invariance under coordinate transformations has the additional virtue of removing a stronger than expected divergence, making the leading divergence proportional to the proper volume of the boundary spatial slice. We compare the divergences in the action to divergences in the volume of a maximal spatial slice in the bulk, finding that the qualitative structure is the same, but subleading divergences have different relative coefficients in the two cases.

  9. Quantum skew divergence

    SciTech Connect

    Audenaert, Koenraad M. R.

    2014-11-15

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  10. Quantum skew divergence

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad M. R.

    2014-11-01

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  11. Constitutive expression of cathepsin K in the human intervertebral disc: new insight into disc extracellular matrix remodeling via cathepsin K and receptor activator of nuclear factor-κB ligand

    PubMed Central

    2011-01-01

    Introduction Cathepsin K is a recently discovered cysteine protease which cleaves the triple helical domains of type I to II collagen. It has been shown to be up-regulated in synovial tissue from osteoarthritic and rheumatoid patients, and is a component in normal and nonarthritic cartilage, where it increases with aging. Studies on heart valve development have recently shown that receptor activator of nuclear factor-κB ligand (RANKL) acts during valve remodeling to promote cathepsin K expression. Since extracellular matrix remodeling is a critical component of disc structure and biomechanical function, we hypothesized that cathepsin K and RANKL may be present in the human intervertebral disc. Methods Studies were performed following approval of the authors' Human Subjects Institutional Review Board. Six annulus specimens from healthier Thompson grade I to II discs, and 12 specimens from more degenerate grade III to IV discs were utilized in microarray analysis of RANKL and cathepsin K gene expression. Immunohistochemistry was also performed on 15 additional disc specimens to assess the presence of RANKL and cathepsin K. Results Cathepsin K gene expression was significantly greater in more degenerated grade III to IV discs compared to healthier grade I to II discs (P = 0.001). RANKL was also identified with immunohistochemistry and molecular analyses. RANKL gene expression was also significantly greater in more degenerated discs compared to healthier ones (P = 0.0001). A significant linear positive correlation was identified between expression of cathepsin K and RANKL (r2 = 92.2; P < 0.0001). Conclusions Extracellular matrix remodeling is a key element of disc biology. Our use of an appropriate antibody and gene expression studies showed that cathepsin K is indeed present in the human intervertebral disc. Immunolocalization and molecular analyses also confirmed that RANKL is present in the human disc. Expression of RANKL was found to be significantly greater in

  12. Two genetically-related multidrug-resistant Mycobacterium tuberculosis strains induce divergent outcomes of infection in two human macrophage models.

    PubMed

    Yokobori, Noemí; López, Beatriz; Geffner, Laura; Sabio y García, Carmen; Schierloh, Pablo; Barrera, Lucía; de la Barrera, Silvia; Sakai, Shunsuke; Kawamura, Ikuo; Mitsuyama, Masao; Ritacco, Viviana; Sasiain, María del Carmen

    2013-06-01

    Mycobacterium tuberculosis has a considerable degree of genetic variability resulting in different epidemiology and disease outcomes. We evaluated the pathogen-host cell interaction of two genetically closely-related multidrug-resistant M. tuberculosis strains of the Haarlem family, namely the strain M, responsible for an extensive multidrug-resistant tuberculosis outbreak, and its kin strain 410 which caused a single case in two decades. Intracellular growth and cytokine responses were evaluated in human monocyte-derived macrophages and dU937 macrophage-like cells. In monocyte-derived macrophages, strain M grew more slowly and induced lower levels of TNF-α and IL-10 than 410, contrasting with previous studies with other strains, where a direct correlation was observed between increased intracellular growth and epidemiological success. On the other hand, in dU937 cells, no difference in growth was observed between both strains, and strain M induced significantly higher TNF-α levels than strain 410. We found that both cell models differed critically in the expression of receptors for M. tuberculosis entry, which might explain the different infection outcomes. Our results in monocyte-derived macrophages suggest that strain M relies on a modest replication rate and cytokine induction, keeping a state of quiescence and remaining rather unnoticed by the host. Collectively, our results underscore the impact of M. tuberculosis intra-species variations on the outcome of host cell infection and show that results can differ depending on the in vitro infection model.

  13. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  14. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  15. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  16. Divergent regulation of the human atrial natriuretic peptide gene by c-jun and c-fos.

    PubMed Central

    Kovacic-Milivojević, B; Gardner, D G

    1992-01-01

    Employing transient transfection analysis in neonatal rat cardiocytes, we have demonstrated that overexpression of c-jun results in a dose-dependent induction of the human atrial natriuretic peptide (hANP) gene promoter. Studies using a series of mutations in the hANP gene promoter identified a TRE-like, cis-acting regulatory sequence which conferred c-jun sensitivity. This same region was shown to interact with the c-jun/c-fos complex in an in vitro gel mobility shift assay. Selective mutation of this site suppressed basal activity of the hANP promoter and significantly reduced c-jun-dependent activation. Overexpression of c-fos had a biphasic effect on hANP gene promoter activity. At low levels, in concert with c-jun, it activated, while at higher levels it suppressed, transcription from the hANP gene promoter. This inhibition was both cell and promoter specific. hANP gene promoter sequences which mediate c-fos-dependent inhibition appear to be separable from those responsible for the induction. In addition, the protein domains on c-fos responsible for transcriptional activation and repression can be segregated topographically, with the inhibitory activity being localized to the carboxy-terminal domain. Thus, c-fos can activate or repress hANP gene expression through two separate functional domains that act on distinct regulatory elements in the hANP gene promoter. These data imply that the ANP gene may be a physiological target for c-fos- and c-jun-dependent activity in the heart and suggest a potential mechanism linking environmental stimuli to its expression. Images PMID:1530876

  17. Distinguishing features of an infectious molecular clone of the highly divergent and noncytopathic human immunodeficiency virus type 2 UC1 strain.

    PubMed Central

    Barnett, S W; Quiroga, M; Werner, A; Dina, D; Levy, J A

    1993-01-01

    A full-length infectious molecular clone was derived from the noncytopathic human immunodeficiency virus type 2 UC1 strain (HIV-2UC1) that was originally recoverd from an individual from the Ivory Coast. Like the parental isolate, the molecularly cloned virus (HIV-2UC1mc or UC1 mc) demonstrates a reduced ability to induce syncytium formation, to kill cells, and to down-modulate the cell surface CD4 receptor in infected cells. Phylogenetic analysis of the DNA sequence of UC1mc revealed that it is the first full-length infectious molecular clone in the second HIV-2 subgroup previously identified by partial sequence analysis of the HIV-2D205 and HIV-2GH-2 strains. These highly divergent HIV-2 strains appear to be genetically equidistant from other HIV-2 and simian immunodeficiency virus SIVmac/sm strains. UC1mc is unlike any other HIV-2 or SIVmac/sm strain in that it lacks a cysteine residue at the proposed signal peptide cleavage site in Env. However, site-directed mutagenesis experiments indicate that this missing cysteine is not alone important in the noncytopathic phenotype of UC1mc. Like other HIV-2 and SIV strains, the UC1mc Env transmembrane protein (gp43) is mutated to a truncated form (gp34) after passage in certain T-cell lines. The UC1 molecular clone should be helpful in determining the genetic sequences associated with HIV-2 cytopathicity. Images PMID:8419635

  18. Human fascia lata ECM scaffold augmented with immobilized hyaluronan: inflammatory response and remodeling in the canine body wall and shoulder implantation sites.

    PubMed

    Leigh, Diane R; Kim, Myung-Sun; Kovacevic, David; Baker, Andrew R; Tan, Carmela D; Calabro, Anthony; Derwin, Kathleen A

    2015-01-01

    We postulate that immobilization of tyramine-substituted hyaluronan (THA) into an extracellular matrix (ECM) scaffold may be a strategy to promote an anti-inflammatory response to the ECM. Further, we posit that the implantation site could influence the inflammatory response and remodeling of an ECM scaffold. Eight beagles underwent implantation of fascia ECM grafts, treated with either immobilized low molecular weight (57 kDa) THA or water only, in both the shoulder injury and body wall sites. Dogs were euthanized at 12 weeks and fascia grafts harvested en bloc for histology. Grafts implanted at the body wall had significantly higher inflammatory cell infiltrate and vascularity, and significantly lower retardance (collagen density), than grafts at the shoulder, suggestive of a more intense, persistent, and perhaps degradative inflammatory and remodeling response at the body wall than shoulder injury site in the canine model. However, the presence of immobilized low MW THA had no effect on the inflammation response or remodeling of fascia ECM compared to water-treated controls. Importantly, these results suggest that the inflammatory response and remodeling of biomaterial implants depends on the location of implantation and therefore our animal models need to be carefully chosen. Further, the potential anti-inflammatory advantages of hyaluronan (HA) in wound healing do not appear to be realized when presenting it to the host as non-degradable hydrogel even if its capacity for binding HA binding protein is maintained. Further study treating ECM with uncross-linked (free) HA or immobilized low MW THA as a means to deliver free HA or other biomolecules to a surgical repair site is warranted.

  19. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  20. Humanized SFTPA1 and SFTPA2 Transgenic Mice Reveal Functional Divergence of SP-A1 and SP-A2

    PubMed Central

    Wang, Guirong; Guo, Xiaoxuan; DiAngelo, Susan; Thomas, Neal J.; Floros, Joanna

    2010-01-01

    Surfactant protein A (SP-A) plays a role in lung innate immunity and surfactant-related functions. Two functional genes, SP-A1 (SFTPA1) and SP-A2 (SFTPA2), are present in humans and primates (rodents have one gene). Single gene SP-A1 or SP-A2 proteins expressed in vitro are functional. To study their role in vivo, we generated humanized transgenic (hTG) C57BL/6 mice, SP-A1(6A4) and SP-A2(1A3). The SP-A cDNA in experimental constructs was driven by the 3.7-kb SP-C promoter. Positive hTG mice were bred with SP-A knock-out mice to generate F8 offspring for study. Epithelial alveolar type II cells were SP-A-positive, and Clara cells were negative by immunohistochemistry in hTG mice. The levels of SP-A in lungs of two hTG lines used were comparable with those in human lungs. Southern blot analysis indicated that two cDNA copies of either SP-A1(6A4) or SP-A2(1A3) were integrated as a concatemer into the genome of each of the two hTG lines. Electron microscopy analysis revealed that hTG mice with a single SP-A1(6A4) or SP-A2(1A3) gene product lacked tubular myelin (TM), but hTG mice carrying both had TM. Furthermore, TM was observed in human bronchoalveolar lavage fluid only if both SP-A1 and SP-A2 gene products were present and not in those containing primarily (>99.7%) either SP-A1 or SP-A2 gene products. In vivo rescue study confirmed that TM can only be restored after administering exogenous SP-A containing both SP-A1 and SP-A2 into the lungs of SP-A knock-out mice. These observations indicate that SP-A1 and SP-A2 diverged functionally at least in terms of TM formation. PMID:20048345

  1. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  2. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  3. New Highly Divergent rRNA Sequence among Biodiverse Genotypes of Enterocytozoon bieneusi Strains Isolated from Humans in Gabon and Cameroon▿

    PubMed Central

    Breton, Jacques; Bart-Delabesse, Emmanuelle; Biligui, Sylvestre; Carbone, Alessandra; Seiller, Xavier; Okome-Nkoumou, Madeleine; Nzamba, Chantal; Kombila, Maryvonne; Accoceberry, Isabelle; Thellier, Marc

    2007-01-01

    Intestinal microsporidiosis due to Enterocytozoon bieneusi is a leading cause of chronic diarrhea in severely immunocompromised human immunodeficiency virus (HIV)-positive patients. It may be a public health problem in Africa due to the magnitude of the HIV pandemic and to poor sanitary conditions. We designed two prevalence studies of E. bieneusi in Central Africa, the first with HIV-positive patients from an urban setting in Gabon and the second with a nonselected rural population in Cameroon. Stool samples were analyzed by an immunofluorescence antibody test and PCR. Twenty-five out of 822 HIV-positive patients from Gabon and 22 out of 758 villagers from Cameroon were found to be positive for E. bieneusi. The prevalence rates of the two studies were surprisingly similar (3.0% and 2.9%). Genotypic analysis of the internal transcribed spacer region of the rRNA gene showed a high degree of diversity in samples from both countries. In Gabon, 15 isolates showed seven different genotypes: the previously reported genotypes A, D, and K along with four new genotypes, referred to as CAF1, CAF2, CAF3, and CAF4. In Cameroon, five genotypes were found in 20 isolates: the known genotypes A, B, D, and K and the new genotype CAF4. Genotypes A and CAF4 predominated in Cameroon, whereas K, CAF4, and CAF1 were more frequent in Gabon, suggesting that different genotypes present differing risks of infection associated with immune status and living conditions. Phylogenetic analysis of the new genotype CAF4, identified in both HIV-negative and HIV-positive subjects, indicates that it represents a highly divergent strain. PMID:17537939

  4. Highly divergent molecular variants of human T-lymphotropic virus type I from isolated populations in Papua New Guinea and the Solomon Islands.

    PubMed Central

    Gessian, A; Yanagihara, R; Franchini, G; Garruto, R M; Jenkins, C L; Ajdukiewicz, A B; Gallo, R C; Gajdusek, D C

    1991-01-01

    To determine the molecular genetic relationship between Melanesian strains of human T-lymphotropic virus type I (HTLV-I) and cosmopolitan prototype HTLV-I, we amplified by PCR, then cloned, and sequenced a 522-base-pair region of the HTLV-I env gene in DNA extracted from uncultured (fresh) and cultured peripheral blood mononuclear cells obtained from six seropositive Melanesian Papua New Guineans and Solomon Islanders, including a Solomon Islander with HTLV-I myeloneuropathy. Unlike isolates of HTLV-I from Japan, the West Indies, the Americas, and Africa, which share greater than or equal to 97% sequence homology, the Melanesian strains of HTLV-I were only 91.8%-92.5% identical with a prototype Japanese HTLV-IATK-1. The nucleotide sequence of proviral DNA from the Solomon Islander with HTLV-I myeloneuropathy also diverged markedly from that of HTLV-I isolated from Japanese patients with HTLV-I-associated myelopathy and from Jamaican patients with tropical spastic paraparesis, suggesting that these variant viruses are capable of causing disease. The HTLV-I variants from Papua New Guineans, in turn, differed by nearly 4% from the Melanesian variants from Solomon Islanders, indicating the existence of another HTLV-I quasi-species. By contrast, HTLV-I strains from two residents of Bellona Island, a Polynesian Outlier within the Solomon Islands, were closely related to cosmopolitan prototype HTLV-I (greater than or equal to 97% sequence identity), suggesting recent introduction, possibly during this century. These findings are consistent with a proto-Melanesian HTLV-I strain of archaic presence, which evolved independently of contemporary cosmopolitan strains, and pose new questions about the origin and global dissemination of HTLV-I. Images PMID:1881912

  5. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  6. Immune modulation of resistance artery remodelling.

    PubMed

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  7. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.

  8. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling.

    PubMed

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity.

  9. Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling

    PubMed Central

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202

  10. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  11. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction.

    PubMed

    Bhatt, Ankeet S; Ambrosy, Andrew P; Velazquez, Eric J

    2017-08-01

    The purpose of this review it to summarize the current literature on remodeling after myocardial infarction, inclusive of pathophysiological considerations, imaging modalities, treatment strategies, and future directions. As patients continue to live longer after myocardial infarction (MI), the prevalence of post-MI heart failure continues to rise. Changes in the left ventricle (LV) after MI involve complex interactions between cellular and extracellular components, under neurohormonal regulation. Treatments to prevent adverse LV remodeling and promote reverse remodeling in the post-MI setting include early revascularization, pharmacotherapy aimed at neurohormonal blockade, and device-based therapies that address ventricular dyssynchrony. Despite varying definitions of adverse LV remodeling examined across multiple imaging modalities, the presence of an enlarged LV cavity and/or reduced ejection fraction is consistently associated with poor clinical outcomes. Advances in our knowledge of the neurohormonal regulation of adverse cardiac remodeling have been instrumental in generating therapies aimed at arresting adverse remodeling and promoting reserve remodeling. Further investigation into other specific mechanisms of adverse LV remodeling and pathways to disrupt these mechanisms is ongoing and may provide incremental benefit to current evidence-based therapies.

  12. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  13. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  14. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.

    PubMed

    Neubauer, Oliver; Sabapathy, Surendran; Ashton, Kevin J; Desbrow, Ben; Peake, Jonathan M; Lazarus, Ross; Wessner, Barbara; Cameron-Smith, David; Wagner, Karl-Heinz; Haseler, Luke J; Bulmer, Andrew C

    2014-02-01

    Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.

  15. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  16. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  17. Balancing chromatin remodeling and histone modifications in transcription

    PubMed Central

    Petty, Emily; Pillus, Lorraine

    2013-01-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive cross-talk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relationships between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the ISWI and CHD1 chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast. PMID:23870137

  18. FSTL1 PROMOTES ASTHMATIC AIRWAY REMODELING BY INDUCING ONCOSTATIN M

    PubMed Central

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H.

    2016-01-01

    Chronic asthma is associated with airway remodeling and decline in lung function. Here we show that follistatin like 1 (Fstl1), a mediator not previously associated with asthma is highly expressed by macrophages in the lungs of severe human asthmatics. Chronic allergen challenged Lys-Cretg/Fstl1Δ/Δ mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM) a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, while administration of an anti-OSM antibody blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/oncostatin M pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  19. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  20. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  1. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  2. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  3. Understanding the chromatin remodeling code.

    PubMed

    Ha, Misook

    2013-10-01

    Remodeling a chromatin structure enables the genetic elements stored in a genome to function in a condition-specific manner and predisposes the interactions between cis-regulatory elements and trans-acting factors. A chromatin signature can be an indicator of the activity of the underlying genetic elements. This paper reviews recent studies showing that the combination and arrangements of chromatin remodeling marks play roles as chromatin code affecting the activity of genetic elements. This paper also reviews recent studies inferring the primary DNA sequence contexts associated with chromatin remodeling that suggest interactions between genetic and epigenetic factors. We conclude that chromatin remodeling, which provides accurate models of gene expression and morphological variations, may help to find the biological marks that cannot be detected by genome-wide association study or genetic study. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Remodeling and Repair in Rhinosinusitis.

    PubMed

    Watelet, Jean-Baptiste; Dogne, Jean-Michel; Mullier, François

    2015-06-01

    Remodeling refers to the development of specific but potentially irreversible structural changes in tissue. Caucasian eosinophilic chronic rhinosinusitis (CRS) with polyps associated or not with cystic fibrosis was discriminated by edema from CRS without nasal polyps, characterized by extensive fibrotic fields. However, changes in epithelial and extracellular matrix structures are common findings in all types of chronic inflammatory diseases of upper airways, but rarely specific and highly variable in extend. Recent studies have shown that remodeling in CRS appears to occur in parallel, rather than purely subsequent to inflammation. Furthermore, some preferential remodeling associations can be recognized. Tremendous efforts have been put in research on coagulation factors, cytokines, growth factors, and proteases supporting all phases of upper airway remodeling. The current exploration of other CRS sub-groups and of the particular link with concomitant asthma aims to optimize the classification of CRS and its staging modes and to develop novel therapies.

  5. Building and Remodeling Synapses

    PubMed Central

    Benson, Deanna L.; Huntley, George W.

    2011-01-01

    Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity. PMID:20882551

  6. Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1997-01-01

    The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

  7. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis

    PubMed Central

    Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.; Hall-Glenn, Faith; Fields, Aaron J.; Bale, Hrishikesh A.; Ritchie, Robert O.; Lotz, Jeffrey C.; Vail, Thomas P.; Alliston, Tamara

    2017-01-01

    Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. Here, we find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causing degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Thus, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis. PMID:28327602

  8. Tight junctions as regulators of tissue remodelling.

    PubMed

    Balda, Maria S; Matter, Karl

    2016-10-01

    Formation of tissue barriers by epithelial and endothelial cells requires neighbouring cells to interact via intercellular junctions, which includes tight junctions. Tight junctions form a semipermeable paracellular diffusion barrier and act as signalling hubs that guide cell behaviour and differentiation. Components of tight junctions are also expressed in cell types not forming tight junctions, such as cardiomyocytes, where they associate with facia adherens and/or gap junctions. This review will focus on tight junction proteins and their importance in tissue homeostasis and remodelling with a particular emphasis on what we have learned from animal models and human diseases. Copyright © 2016. Published by Elsevier Ltd.

  9. Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence

    PubMed Central

    Fellows, Christopher R.; Williams, Rebecca; Davies, Iwan R.; Gohil, Kajal; Baird, Duncan M.; Fairclough, John; Rooney, Paul; Archer, Charles W.; Khan, Ilyas M.

    2017-01-01

    In recent years it has become increasingly clear that articular cartilage harbours a viable pool of progenitor cells and interest has focussed on their role during development and disease. Analysis of progenitor numbers using fluorescence-activated sorting techniques has resulted in wide-ranging estimates, which may be the result of context-dependent expression of cell surface markers. We have used a colony-forming assay to reliably determine chondroprogenitor numbers in normal and osteoarthritic cartilage where we observed a 2-fold increase in diseased tissue (P  < 0.0001). Intriguingly, cell kinetic analysis of clonal isolates derived from single and multiple donors of osteoarthritic cartilage revealed the presence of a divergent progenitor subpopulation characterised by an early senescent phenotype. Divergent sub-populations displayed increased senescence-associated β–galactosidase activity, lower average telomere lengths but retained the capacity to undergo multi-lineage differentiation. Osteoarthritis is an age-related disease and cellular senescence is predicted to be a significant component of the pathological process. This study shows that although early senescence is an inherent property of a subset of activated progenitors, there is also a pool of progenitors with extended viability and regenerative potential residing within osteoarthritic cartilage. PMID:28150695

  10. Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence.

    PubMed

    Fellows, Christopher R; Williams, Rebecca; Davies, Iwan R; Gohil, Kajal; Baird, Duncan M; Fairclough, John; Rooney, Paul; Archer, Charles W; Khan, Ilyas M

    2017-02-02

    In recent years it has become increasingly clear that articular cartilage harbours a viable pool of progenitor cells and interest has focussed on their role during development and disease. Analysis of progenitor numbers using fluorescence-activated sorting techniques has resulted in wide-ranging estimates, which may be the result of context-dependent expression of cell surface markers. We have used a colony-forming assay to reliably determine chondroprogenitor numbers in normal and osteoarthritic cartilage where we observed a 2-fold increase in diseased tissue (P  < 0.0001). Intriguingly, cell kinetic analysis of clonal isolates derived from single and multiple donors of osteoarthritic cartilage revealed the presence of a divergent progenitor subpopulation characterised by an early senescent phenotype. Divergent sub-populations displayed increased senescence-associated β-galactosidase activity, lower average telomere lengths but retained the capacity to undergo multi-lineage differentiation. Osteoarthritis is an age-related disease and cellular senescence is predicted to be a significant component of the pathological process. This study shows that although early senescence is an inherent property of a subset of activated progenitors, there is also a pool of progenitors with extended viability and regenerative potential residing within osteoarthritic cartilage.

  11. Cardiac remodelling and RAS inhibition

    PubMed Central

    Ferrario, Carlos M.

    2016-01-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin–angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  12. Evolutionary Divergence of Aggregatibacter actinomycetemcomitans.

    PubMed

    Kittichotirat, W; Bumgarner, R E; Chen, C

    2016-01-01

    Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e' (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e' isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved

  13. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.

    PubMed

    Tai, Wanbo; Wang, Yufei; Fett, Craig A; Zhao, Guangyu; Li, Fang; Perlman, Stanley; Jiang, Shibo; Zhou, Yusen; Du, Lanying

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. Here, we constructed four recombinant RBD (rRBD) proteins with single or multiple mutations detected in representative human MERS-CoV strains from the 2012, 2013, 2014, and 2015 outbreaks, respectively, and one rRBD protein with multiple changes derived from camel MERS-CoV strains. Like the RBD of prototype EMC2012 (EMC-RBD), all five RBDs maintained good antigenicity and functionality, the ability to bind RBD-specific neutralizing monoclonal antibodies (MAbs) and the DPP4 receptor, and high immunogenicity, able to elicit S-specific antibodies. They induced potent neutralizing antibodies cross-neutralizing 17 MERS pseudoviruses expressing S proteins of representative human and camel MERS-CoV strains identified during the 2012-2015 outbreaks, 5 MAb escape MERS-CoV mutants, and 2 live human MERS-CoV strains. We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains.

  14. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual

  15. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  16. Nasomaxillary remodeling and facial form in robust Australopithecus: a reassessment.

    PubMed

    McCollum, Melanie A

    2008-01-01

    In a previous study of the patterns of facial growth remodeling characteristic of early hominid taxa, Bromage (1989) demonstrated that the nasoalveolar clivus of A. robustus was resorptive throughout ontogeny. Based upon the remodeling information provided by small samples (n=6 each) of chimpanzees and modern humans, he concluded that the clival resorption pattern characteristic of robust Australopithecus differed significantly from that of chimpanzees and was instead somewhat convergent upon that of modern humans, in that it served to emphasize a downward facial growth vector. The present study used the SEM/replica technique to assess nasomaxillary remodeling in larger, more age-varied samples of chimpanzee (n=33) and modern human crania (n=22). Results indicate far more intraspecific variability in nasomaxillary remodeling than suggested by Bromage's earlier study. In particular, results from an expanded sample demonstrate that the nasoalveolar clivus of chimpanzees is frequently resorptive, especially at later stages of ontogeny. However, the pattern of clival remodeling observed in chimpanzees is unlike that typical of robust Australopithecus, in which clival resorption occurs throughout ontogeny and in expansive fields that cover the entire clival surface. Although Bromage (1989) considered the pattern of nasomaxillary remodeling observed in robust Australopithecus to have been a byproduct of an extreme maxillary growth rotation, the failure of A. africanus to display a similar pattern suggests that some other factor(s) may have been involved. Regardless, it is unlikely that clival resorption in robust Australopithecus would have significantly impacted the overall vector of facial growth. Instead, the primary morphogenetic effect of this pattern of clival resorption would have been one of local surface sculpting.

  17. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability.

    PubMed

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2 kb and -1.0 kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex.

  18. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability

    PubMed Central

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2kb and -1.0kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex. PMID:26340092

  19. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling

    PubMed Central

    Hashimoto, Tomoki; Meng, Hui; Young, William L.

    2009-01-01

    Abnormal vascular remodeling mediated by inflammatory cells has been identified as a key pathologic component of various vascular diseases, including abdominal aortic aneurysms, brain arteriovenous malformations and atherosclerosis. Based on findings from observational studies that analysed human intracranial aneurysms and experimental studies that utilized animal models, an emerging concept suggests that a key component of the pathophysiology of intracranial aneurysms is sustained abnormal vascular remodeling coupled with inflammation. This concept may provide a new treatment strategy to utilize agents to inhibit inflammation or cytokines produced by inflammatory cells such as matrix metalloproteinases. Such an approach would aim to stabilize these vascular lesions and prevent future expansion or rupture. PMID:16759441

  20. Remodeling of cell-cell junctions in arrhythmogenic cardiomyopathy.

    PubMed

    Asimaki, Angeliki; Saffitz, Jeffrey E

    2014-02-01

    Arrhythmogenic cardiomyopathy (AC) is a primary myocardial disorder characterized by a high incidence of ventricular arrhythmias often preceding the onset of ventricular remodeling and dysfunction. Approximately 50% of patients diagnosed with AC have one or more mutations in genes encoding desmosomal proteins, although non-desmosomal genes have also been associated with the disease. Increasing evidence implicates remodeling of intercalated disk proteins reflecting abnormal responses to mechanical load and aberrant cell signaling pathways in the pathogenesis of AC. This review summarizes recent advances in understanding disease mechanisms in AC that have come from studies of human myocardium and experimental models.

  1. Complete nucleotide sequence of a highly divergent human T-cell leukemia (lymphotropic) virus type I (HTLV-I) variant from melanesia: genetic and phylogenetic relationship to HTLV-I strains from other geographical regions.

    PubMed Central

    Gessain, A; Boeri, E; Yanagihara, R; Gallo, R C; Franchini, G

    1993-01-01

    The high prevalences of antibodies against human T-cell leukemia (lymphotropic) virus type I (HTLV-I) reported for remote populations in Papua New Guinea and the Solomon Islands and for some aboriginal populations in Australia have been verified by virus isolation. Limited genetic analysis of the transmembrane portion (gp21) of the envelope gene of these viruses indicates the existence of highly divergent HTLV-I strains in Melanesia. Here, we report the complete nucleotide sequence of an HTLV-I isolate (designated HTLV-IMEL5) from the Solomon Islands. The overall nucleotide divergence of HTLV-IMEL5 from the prototype HTLV-IATK was approximately 8.5%. The degree of variability in the amino acid sequences of structural genes ranged between 3 and 11% and was higher (8.5 to 25%) for the regulatory (tax and rex) genes and the other genes encoded by the pX region. Since HTLV-IMEL5 was as distantly related to HTLV-II as to the other known HTLV-I strains, it could not have arisen from a reocmbinational event involving HTLV-II but rather might be an example of independent viral evolution in this remote population. These data provide important insights and raise new questions about the origin and global dissemination of HTLV-I. PMID:8419636

  2. Gene transfection with human hepatocyte growth factor complementary DNA plasmids attenuates cardiac remodeling after acute myocardial infarction in goat hearts implanted with ventricular assist devices.

    PubMed

    Shirakawa, Yukitoshi; Sawa, Yoshiki; Takewa, Yoshiaki; Tatsumi, Eisuke; Kaneda, Yasufumi; Taenaka, Yoshiyuki; Matsuda, Hikaru

    2005-09-01

    Although a left ventricular assist device is often used to provide circulatory support until transplantation in severe heart failure, the mortality of long-term use of left ventricular assist devices remains high. We have shown that hepatocyte growth factor causes angiogenesis, antifibrosis, and antiapoptosis in the myocardium. Therefore, gene therapy with hepatocyte growth factor-complementary DNA plasmids may enhance the chance of "bridge to recovery." In this study, we performed gene therapy with hepatocyte growth factor in the impaired goat heart with a left ventricular assist device. Cardiac impairment was induced in 6 adult goats (56-65 kg) by ligation of the coronary artery, and ventricular assist devices were installed. The hepatocyte growth factor group (HGF; n = 3) was administered human hepatocyte growth factor-complementary DNA plasmid (2.0 mg) in the myocardium. The control group (n = 3) was similarly administered beta-galactosidase plasmid. Four weeks after gene transfection, we attempted to wean all goats from the ventricular assist device. The myocardia transfected with human hepatocyte growth factor-complementary DNA contained human hepatocyte growth factor protein at levels as high as 1.0 +/- 0.3 ng/g tissue 3 days after transfection. After weaning from the ventricular assist device, the HGF group showed good hemodynamics, whereas the control group showed deterioration. The percentage of fractional shortening was significantly higher in the HGF group than the control group (HGF vs control, 37.9% +/- 1.7% vs 26.4% +/- 0.3%, respectively; P < .01). Left ventricular dilatation associated with myocyte hypertrophy and fibrotic changes was detected in the control group but not in the HGF group. Vascular density was markedly increased in the HGF group. These results suggest that gene therapy with human hepatocyte growth factor may enhance the chance of bridge to recovery in the impaired heart supported with a ventricular assist device.

  3. Mutation of Neuron-Specific Chromatin Remodeling Subunit BAF53b: Rescue of Plasticity and Memory by Manipulating Actin Remodeling

    ERIC Educational Resources Information Center

    Ciernia, Annie Vogel; Kramár, Enikö A.; Matheos, Dina P.; Havekes, Robbert; Hemstedt, Thekla J.; Magnan, Christophe N.; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M.; Post, Rebecca J.; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A.

    2017-01-01

    Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic…

  4. Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes

    PubMed Central

    Glukhov, Alexey V.; Balycheva, Marina; Sanchez-Alonso, Jose L.; Ilkan, Zeki; Alvarez-Laviada, Anita; Bhogal, Navneet; Diakonov, Ivan; Schobesberger, Sophie; Sikkel, Markus B.; Bhargava, Anamika; Faggian, Giuseppe; Punjabi, Prakash P.; Houser, Steven R.

    2015-01-01

    Background— Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs). Methods and Results— Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈40% greater current. Optical mapping of Ca2+ transients revealed that rat AMs presented ≈3-fold as many spontaneous Ca2+ release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca2+ transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈30% whole-cell ICa,L reduction. Heart failure (16 weeks post–myocardial infarction) in rats resulted in a T-tubule degradation (by ≈40%) and significant elevation of spontaneous Ca2+ release events. Although heart failure did not affect LTCC occurrence, it led to ≈25% decrease in T-tubule LTCC amplitude. Conclusions— We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner. PMID:26450916

  5. Chromatin remodeling: from transcription to cancer.

    PubMed

    Yaniv, Moshe

    2014-09-01

    In this short review article, I have tried to trace the path that led my laboratory from the early studies of the structure of papova minichromosomes and transcription control to the investigation of chromatin remodeling complexes of the SWI/SNF family. I discuss briefly the genetic and biochemical studies that lead to the discovery of the SWI/SNF complex in yeast and drosophila and summarize some of the studies on the developmental role of the murine complex. The discovery of the tumor suppressor function of the SNF5/INI1/SMARCB1 gene in humans and the identification of frequent mutations in other subunits of this complex in different human tumors opened a fascinating field of research on this epigenetic regulator. The hope is to better understand tumor development and to develop novel treatments.

  6. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes

    SciTech Connect

    Neckelmann, N.; Li, K.; Wade, R.P.; Shuster, R.; Wallace, D.C.

    1987-11-01

    The authors have characterized a 1400-nucleotide cDNA for the human skeletal muscle ADP/ATP translocator. The deduced amino acid sequence is 94% homologous to the beef heart ADP/ATP translocator protein and contains only a single additional amino-terminal methionine. This implies that the human translocator lacks an amino-terminal targeting peptide, a conclusion substantiated by measuring the molecular weight of the protein synthesized in vitro. A 1400-nucleotide transcript encoding the skeletal muscle translocator was detected on blots of total RNA from human heart, kidney, skeletal muscle, and HeLa cells by hybridization with oligonucleotide probes homologous to the coding region and 3' noncoding region of the cDNA. However, the level of this mRNA varied substantially among tissues. Comparison of our skeletal muscle translocator sequence with that of a recently published human fibroblast translocator cognate revealed that the two proteins are 88% identical and diverged about 275 million years ago. Hence, tissues vary both in the level of expression of individual translocator genes and in differential expression of cognate translocator genes. Comparison of the base substitution rates of the ADP/ATP translocator and the oxidative phosphorylation genes encoded by mitochondrial DNA revealed that the mitochondrial DNA genes fix 10 times more synonymous substitutions and 12 times more replacement substitutions; yet, these nuclear and cytoplasmic respiration genes experience comparable evolutionary constraints. This suggest that the mitochondrial DNA genes are highly prone to deleterious mutations.

  7. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    PubMed Central

    Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera

    2007-01-01

    Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549

  8. Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis.

    PubMed

    Prestigiacomo, Vincenzo; Weston, Anna; Messner, Simon; Lampart, Franziska; Suter-Dick, Laura

    2017-01-01

    Currently most liver fibrosis research is performed in vivo, since suitable alternative in vitro systems which are able to recapitulate the cellular events leading to liver fibrosis are lacking. Here we aimed at generating a system containing cells representing the three key players of liver fibrosis (hepatocyte, Kupffer cells and stellate cells) and assess their response to pro-fibrotic compounds such as TGF-β1, methotrexate (MTX) and thioacetamide (TAA). Human cell lines representing hepatocytes (HepaRG), Kupffer cell (THP-1 macrophages) and stellate cells (hTERT-HSC) were co-cultured using the InSphero hanging drop technology to generate scaffold-free 3D microtissues, that were treated with pro-fibrotic compounds (TGF-β1, MTX, TAA) for up to 14 days. The response of the microtissues was evaluated by determining the expression of cytokines (TNF-α, TGF-β1 and IL6), the deposition and secretion of ECM proteins and induction of gene expression of fibrosis biomarkers (e.g. αSMA). Induction of Nrf2 and Keap1, as key player of defence mechanism, was also evaluated. We could demonstrate that the multicellular 3D microtissue cultures could be maintained in a non-activated status, based on the low expression levels of activation markers. Macrophages were activated by stimulation with LPS and hTERT-HSC showed activation by TGF-β1. In addition, MTX and TAA elicited a fibrotic phenotype, as assessed by gene-expression and protein-deposition of ECM proteins such as collagens and fibronectin. An involvement of the antioxidant pathway upon stimulation with pro-fibrotic compounds was also observed. Here, for the first time, we demonstrate the in vitro recapitulation of key molecular and cellular events leading to liver fibrosis: hepatocellular injury, antioxidant defence response, activation of Kupffer cells and activation of HSC leading to deposition of ECM.

  9. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    PubMed Central

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  10. Retinoic acid remodels extracellular matrix (ECM) of cultured human fetal palate mesenchymal cells (hFPMCs) through down-regulation of TGF-β/Smad signaling.

    PubMed

    Li, Xing; Zhang, Lin; Yin, Xinjuan; Gao, Zhan; Zhang, Huanhuan; Liu, Xiaozhuan; Pan, Xinjuan; Li, Ning; Yu, Zengli

    2014-03-03

    The regulation of extracellular matrix (ECM) by retinoic acid (RA) is interesting in light of the fact that the ECM plays an essential role in morphogenesis and palatal shelf elevation. In the current study, we explored the effect of RA overexposure on ECM and the probable mechanisms in cultured human fetal palate mesenchymal cells (hFPMCs). RA dose-dependently inhibited cell proliferation and mRNA and protein levels of ECM components fibronectin, tenascin C and fibrillin-2. Zymography revealed that MMP-2 activity was suppressed by RA. Further analysis revealed that mRNA levels of MMP2 and TIMP2 were decreased, while the MMP2/TIMP2 mRNA ratio was increased, which might facilitate the ECM degradation. Because of the pivotal role of TGF-β/Smad pathway in palatogenesis we therefore checked the effect of RA on TGF-β/Smad signaling. The results indicated RA treatment increased Smad7 expression and decreased the levels of TGF-β1, TGF-β3, TGF-β type II receptor (TβRII) and phosphorylated Smad2 and Smad3. Activation of the Smad pathways by either exogenous TGF-β3 or recombinant adenoviruses for Smad3 attenuated RA-induced inhibition of cell proliferation and ECM components and rescued the RA-altered MMP2/TIMP2 mRNA ratio. In conclusion, these findings suggested that RA overexposure inhibited cell proliferation and disrupted the ECM network through down-regulation of TGF-β/Smad pathway.

  11. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

    PubMed

    Langdahl, Bente; Ferrari, Serge; Dempster, David W

    2016-12-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  12. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis

    PubMed Central

    Langdahl, Bente; Ferrari, Serge; Dempster, David W.

    2016-01-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20–30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  13. Divergent human and mouse orthologs of a novel gene (WBSCR15/Wbscr15) reside within the genomic interval commonly deleted in Williams syndrome.

    PubMed

    Doyle, J L; DeSilva, U; Miller, W; Green, E D

    2000-01-01

    Williams syndrome (WS) is a contiguous gene deletion disorder resulting in complex and intriguing clinical features. Detailed molecular characterization studies of the genomic segment on human chromosome 7q11.23 commonly deleted in WS have uncovered numerous genes, each of which is being actively studied for its possible role in the etiology of the syndrome. Our efforts have focused on the comparative mapping and sequencing of the WS region in human and mouse. In previous studies, we uncovered important differences in the long-range organization of these human and mouse genomic regions; in particular, the notable absence of large duplicated blocks of DNA in mouse that are present in human. Aided by available genomic sequence data, we have used a combination of gene-prediction programs and cDNA isolation to identify the human and mouse orthologs of a novel gene (WBSCR15 and Wbscr15, respectively) residing within the genomic segment commonly deleted in WS. Unlike the flanking genes, which are closely related in human and mouse, WBSCR15 and Wbscr15 are strikingly different with respect to their cDNA and corresponding protein sequences as well as tissue-expression pattern. Neither the WBSCR15- nor Wbscr15-encoded amino acid sequence shows a statistically significant similarity to any characterized protein. These findings reveal another interesting evolutionary difference between the human and mouse WS regions and provide an additional candidate gene to evaluate with respect to its possible role in the pathogenesis of WS. Copyright 2000 S. Karger AG, Basel.

  14. Excess mechanical stress and hydrogen peroxide remodel extracellular matrix of cultured human uterosacral ligament fibroblasts by disturbing the balance of MMPs/TIMPs via the regulation of TGF‑β1 signaling pathway.

    PubMed

    Zhang, Qifan; Liu, Cheng; Hong, Shasha; Min, Jie; Yang, Qing; Hu, Ming; Zhao, Yang; Hong, Li

    2017-01-01

    The regulation of the extracellular matrix (ECM) by mechanical stress is of interest as the ECM is essential in the development of pelvic organ prolapse. In the present study, the effect of overexposure to mechanical stress on the ECM, and the probable underlying mechanisms in cultured human uterosacral ligament fibroblasts (hUSLFs), was explored. Mechanical stress has an effect on oxidation‑antioxidation products in parametrial ligament fibroblasts. Thus, hUSLFs were incubated with different concentrations of hydrogen peroxide to elucidate any potential interactions. Excess mechanical stress and H2O2 inhibited cell proliferation, and decreased mRNA and protein expression levels of ECM components, collagen 1, collagen 3 and elastin. Further analysis revealed that the mRNA expression level of matrix metalloproteinase‑2 (MMP‑2) was increased and TIMP metallopeptidase inhibitor 2 (TIMP‑2) decreased, and in addition the MMP2/TIMP2 mRNA ratio was increased, which may facilitate the degradation of the ECM. Due to the key role of the transforming growth factor β1 (TGF‑β1)/mothers against decapentaplegic homolog 2 (Smad2) signaling pathway in fibrosis, the present study investigated the effect of excess mechanical stress and H2O2 on TGF‑β1/Smad2 signaling. The results indicated that excess mechanical stress and H2O2 treatment suppressed phosphorylated Smad2 expression and decreased the levels of TGF‑β1. Activation of the TGF‑β1 signaling pathway by either mechanical stress or H2O2 was demonstrated to attenuate cell proliferation and ECM components, and also increased the MMP2/TIMP2 mRNA ratio. These findings suggested that mechanical stress and H2O2 overexposure inhibit cell proliferation and remodel the ECM network via regulation of the TGF‑β1 signaling pathway.

  15. Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer.

    PubMed

    Pérez-Riesgo, Enrique; Gutiérrez, Lucía G; Ubierna, Daniel; Acedo, Alberto; Moyer, Mary P; Núñez, Lucía; Villalobos, Carlos

    2017-04-27

    Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca(2+) homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca(2+) remodeling includes critical changes in store-operated Ca(2+) entry (SOCE) and Ca(2+) store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca(2+) transport, a comprehensive view of Ca(2+) remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca(2+) transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca(2+) channels and store-operated Ca(2+) entry players, transient receptor potential (TRP) channels, Ca(2+) release channels, Ca(2+) pumps, Na⁺/Ca(2+) exchanger isoforms and genes involved in mitochondrial Ca(2+) transport. These data provide the first comprehensive transcriptomic analysis of Ca(2+) remodeling in CRC.

  16. Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer

    PubMed Central

    Pérez-Riesgo, Enrique; Gutiérrez, Lucía G.; Ubierna, Daniel; Acedo, Alberto; Moyer, Mary P.; Núñez, Lucía; Villalobos, Carlos

    2017-01-01

    Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca2+ homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca2+ remodeling includes critical changes in store-operated Ca2+ entry (SOCE) and Ca2+ store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca2+ transport, a comprehensive view of Ca2+ remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca2+ transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca2+ channels and store-operated Ca2+ entry players, transient receptor potential (TRP) channels, Ca2+ release channels, Ca2+ pumps, Na+/Ca2+ exchanger isoforms and genes involved in mitochondrial Ca2+ transport. These data provide the first comprehensive transcriptomic analysis of Ca2+ remodeling in CRC. PMID:28448473

  17. Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells.

    PubMed

    Wiafe, Bridget; Adesida, Adetola; Churchill, Thomas; Adewuyi, Esther Ekpe; Li, Zack; Metcalfe, Peter

    2017-01-01

    Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p < 0.05), whereas HIF3 was upregulated after 72 h (p < 0.005). HIF1 and HIF3α proteins were significantly induced after 2 and 72 h, respectively. VEGF mRNA increased significantly after 24 and 72 h (p < 0.005). The inflammatory cytokines, TGFB (protein and mRNA), IL 1β, 1L6, and TNFα (mRNA) demonstrated a time-dependent increased expression. Furthermore, the anti-inflammatory cytokine IL-10 was downregulated after 72 h (p < 0.05). Evidence of smooth muscle cell dedifferentiation included increased αSMA, vimentin, and desmin. Evidence of pro-fibrotic changes included increased CTGF, SMAD 2, and SMAD 3 as well as collagens 1, 2, 3, and 4, fibronectin, aggrecan, and TIMP 1 transcripts (p < 0.05). Total collagen proteins also increased time-dependently (p < 0.05). Together, these results show that exposure of hbSMC to low oxygen tension results in intense hypoxic cascade, including inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.

  18. Matrix remodeling during endochondral ossification.

    PubMed

    Ortega, Nathalie; Behonick, Danielle J; Werb, Zena

    2004-02-01

    Endochondral ossification, the process by which most of the skeleton is formed, is a powerful system for studying various aspects of the biological response to degraded extracellular matrix (ECM). In addition, the dependence of endochondral ossification upon neovascularization and continuous ECM remodeling provides a good model for studying the role of the matrix metalloproteases (MMPs) not only as simple effectors of ECM degradation but also as regulators of active signal-inducers for the initiation of endochondral ossification. The daunting task of elucidating their specific role during endochondral ossification has been facilitated by the development of mice deficient for various members of this family. Here, we discuss the ECM and its remodeling as one level of molecular regulation for the process of endochondral ossification, with special attention to the MMPs.

  19. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  20. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.

  1. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  2. A structure-based model of arterial remodeling in response to sustained hypertension.

    PubMed

    Tsamis, Alkiviadis; Stergiopulos, Nikos; Rachev, Alexander

    2009-10-01

    A novel structure-based mathematical model of arterial remodeling in response to a sustained increase in pressure is proposed. The model includes two major aspects of remodeling in a healthy matured vessel. First, the deviation of the wall stress and flow-induced shear stress from their normal physiological values drives the changes in the arterial geometry. Second, the new mass that is produced during remodeling results from an increase in the mass of smooth muscle cells and collagen fibers. The model additionally accounts for the effect of the average pulsatile strain on the recruitment of collagen fibers in load bearing. The model was used to simulate remodeling of a human thoracic aorta, and the results are in good agreement with previously published model predictions and experimental data. The model predicts that the total arterial volume rapidly increases during the early stages of remodeling and remains virtually constant thereafter, despite the continuing stress-driven geometrical remodeling. Moreover, the effects of a perfect or incomplete restoration of the arterial compliance on the remodeling outputs were analyzed. For instance, the model predicts that the pattern of the time course of the opening angle depends on the extent to which the average pulsatile strain is restored at the end of the remodeling process. Future experimental studies on the time course of compliance, opening angle, and mass fractions of collagen, elastin, and smooth muscle cells can validate and improve the introduced hypotheses of the model.

  3. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    PubMed

    Yin, Qian; Yang, Chengzhi; Wu, Jimin; Lu, Haiyan; Zheng, Xiaohui; Zhang, Youyi; Lv, Zhizhen; Zheng, Xiaopu; Li, Zijian

    2016-01-01

    β-adrenergic receptors (β-ARs) play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO) at the dose of 0.25 mg·kg(-1)·d(-1) for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB) is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR), a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  4. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR

    PubMed Central

    Yin, Qian; Yang, Chengzhi; Wu, Jimin; Lu, Haiyan; Zheng, Xiaohui; Zhang, Youyi; Lv, Zhizhen; Zheng, Xiaopu; Li, Zijian

    2016-01-01

    β-adrenergic receptors (β-ARs) play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO) at the dose of 0.25 mg·kg−1·d−1 for 7days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB) is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR), a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling. PMID:27035432

  5. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  6. Diversity and Divergence of Dinoflagellate Histone Proteins.

    PubMed

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  7. Cell-intrinsic mechanism involving Siglec-5 associated with divergent outcomes of HIV-1 infection in human and chimpanzee CD4 T cells.

    PubMed

    Soto, Paula C; Karris, Maile Y; Spina, Celsa A; Richman, Douglas D; Varki, Ajit

    2013-02-01

    Human and chimpanzee CD4+ T cells differ markedly in expression of the inhibitory receptor Siglec-5, which contributes towards differential responses to activating stimuli. While CD4+ T cells from both species are equally susceptible to HIV-1 infection, chimpanzee cells survive better, suggesting a cell-intrinsic difference. We hypothesized that Siglec-5 expression protects T cells from activation-induced and HIV-1-induced cell death. Transduction of human CEM T cells with Siglec-5 decreased cell responses to stimulation. Following HIV-1 infection, a higher percentage of Siglec-5-positive cells survived, suggesting relative resistance to virus-induced cell death. Consistent with this, we observed an increase in percentage of Siglec-5-positive cells surviving in mixed infected cultures. Siglec-5-transduced cells also showed decreased expression of apoptosis-related proteins following infection and reduced susceptibility to Fas-mediated cell death. Similar Siglec-5-dependent differences were seen when comparing infection outcomes in primary CD4+ T cells from humans and chimpanzees. A protective effect of Siglec-5 was further supported by observing greater proportions of circulating CD4+ T cells expressing Siglec-5 in acutely infected HIV-1 patients, compared to controls. Taken together, our results suggest that Siglec-5 expression protects T cells from HIV-1- and apoptosis-induced cell death and contributes to the different outcomes of HIV-1 infection in humans and chimpanzees.

  8. Interim estimates of divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance (2010-2015) in Hangzhou, southeast of China.

    PubMed

    Li, Jun; Zhou, Yin-yan; Kou, Yu; Yu, Xin-fen; Zheng, Zhi-bei; Yang, Xu-hui; Wang, Hao-qiu

    2015-11-01

    In the post-pandemic period 2010-2015, seasonal influenza A(H3N2) virus predominated in Hangzhou, southeast of China, with an increased activity and semi-annual seasons. This study utilized HA virus gene segment sequences to analyze the divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance in Hangzhou. Virological and serological analyses of 124 representative A(H3N2) viruses from prospective studies of systematic surveillance samples were conducted to quantify the genetic and antigenic characteristics and their vaccine strain match. Bayesian phylogenetic inference showed that two separate subgroups 3C.3 and 3C.2 probably diverged from group 3C in early 2012 and then evolved into groups 3C.3a and 3C.2a, respectively, in the 2014/15 influenza season. Furthermore, high amino acid substitution rates of the HA1 subunit were found in A(H3N2) group 3C.2a variants, indicating that increased antigenic drift of A(H3N2) group 3C.2a virus is associated with a vaccine mismatch to the 2015/16 vaccine reference strain Switzerland/9715293/2013 (group 3C.3a). A portion of the group 3C.2a isolates are not covered by the current A(H3N2) vaccine strain. These findings offer insights into the emergence of group 3C.2a variants with epidemic potential in the imminent influenza seasons. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  10. Dependence of Bone Yield (Volume of Bone Formed per Unit of Cement Surface Area) on Resorption Cavity Size During Osteonal Remodeling in Human Rib: Implications for Osteoblast Function and the Pathogenesis of Age-Related Bone Loss

    PubMed Central

    Qiu, Shijing; Rao, D Sudhaker; Palnitkar, Saroj; Parfitt, A Michael

    2010-01-01

    It is both a necessary and a sufficient condition for bone to be lost with age at any surface location that during remodeling the replacement of resorbed bone is incomplete. In both the ilium and the rib, the degree of such focal imbalance is smaller on the intracortical than on the endocortical or cancellous surfaces that are adjacent to bone marrow. The reason for this difference is unknown. To further examine this question, we measured various geometric variables in 1263 osteons in rib cross sections from 65 persons, including both sexes and age ranges 20 to 30 years and 60 to 70 years (four groups). Haversian canal (HC) area did not differ significantly between sexes or age groups. Percent osteonal refilling was close to 95% in all groups and did not differ between sexes but fell slightly with age. There was a very highly significant linear relationship between osteon bone area and (osteon area + HC area) in all groups, with coefficients of determination (r2) greater than 0.98. The regression slopes declined slightly with age in women but not in men. There was a very highly significant quadratic relationship between osteon bone area and osteon perimeter in all groups, with r2 values greater than 0.97. The ratio osteon bone area:osteon perimeter, an index of bone yield—the volume of bone deposited on each unit area of cement surface—was strongly related to osteon area and did not differ between sexes but was slightly less in the older groups. We conclude the following: (1) The high efficiency of intracortical remodeling in the rib is confirmed, with only trivial effects of age. (2) For HC area to be maintained within narrow limits and bone balance preserved, either initial osteoblast density or osteoblast capacity (the two determinants of bone yield) or, most likely, both must increase progressively with the size of the resorption cavity, suggesting that osteoblast recruitment (relative to available surface) and osteoblast lifespan increase with the volume

  11. Calcium remodeling in colorectal cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2017-06-01

    Colorectal cancer (CRC) is the third most frequent form of cancer and the fourth leading cause of cancer-related death in the world. Basic and clinical data indicate that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) may prevent colon cancer but mechanisms remain unknown. Aspirin metabolite salicylate and other NSAIDs may inhibit tumor cell growth acting on store-operated Ca(2+) entry (SOCE), suggesting an important role for this pathway in CRC. Consistently, SOCE is emerging as a novel player in different forms of cancer, including CRC. SOCE and store-operated currents (SOCs) are dramatically enhanced in CRC while Ca(2+) stores are partially empty in CRC cells. These features may contribute to CRC hallmarks including enhanced cell proliferation, migration, invasion and survival. At the molecular level, enhanced SOCE and depleted stores are mediated by overexpression of Orai1, Stromal interaction protein 1 (STIM1) and Transient receptor protein channel 1 (TRPC1) and downregulation of STIM2. In normal colonic cells, SOCE is mediated by Ca(2+)-release activated Ca(2+) channels made of STIM1, STIM2 and Orai1. In CRC cells, SOCE is mediated by different store-operated currents (SOCs) driven by STIM1, Orai1 and TRPC1. Loss of STIM2 contributes to depletion of Ca(2+) stores and enhanced resistance to cell death in CRC cells. Thus, SOCE is a novel key player in CRC and inhibition by salicylate and other NSAIDs may contribute to explain chemoprevention activity. Colorectal cancer (CRC) is the third most frequent form of cancer worldwide. Recent evidence suggests that intracellular Ca(2+) remodeling may contribute to cancer hallmarks. In addition, aspirin and other NSAIDs might prevent CRC acting on remodeled Ca(2+) entry pathways. In this review, we will briefly describe 1) the players involved in intracellular Ca(2+) homeostasis with a particular emphasis on the mechanisms involved in SOCE activation and inactivation, 2) the evidence that aspirin

  12. A Vaccine of L2 Epitope Repeats Fused with a Modified IgG1 Fc Induced Cross-Neutralizing Antibodies and Protective Immunity against Divergent Human Papillomavirus Types

    PubMed Central

    Zhang, Ting; Liu, Yanchun; Xie, Xixiu; Wang, Zhirong; Xu, Xuemei

    2014-01-01

    Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17–36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development. PMID:24802101

  13. Infrared divergences in de Sitter space

    SciTech Connect

    Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)

    1991-03-15

    Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.

  14. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  15. Metabolic remodeling in hypertrophied and failing myocardium: a review.

    PubMed

    Peterzan, Mark A; Lygate, Craig A; Neubauer, Stefan; Rider, Oliver J

    2017-09-01

    The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts. Copyright © 2017 the American Physiological Society.

  16. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    PubMed

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  17. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth

    PubMed Central

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C.

    2017-01-01

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5+ cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling. PMID:28327604

  18. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth.

    PubMed

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C

    2017-03-22

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5(+) cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling.

  19. Energy Remodeling, Mitochondrial Disorder and Heart Failure.

    PubMed

    Wang, Peng; Xu, Lei; Sun, Aijun

    2016-01-01

    Heart failure (HF) is a major global problem in public health with no curative treatment currently available. Energy remodeling is one of the features in HF, preceding cardiac structure remodeling. As an important energy organelle, mitochondrion plays critical roles in the progress of HF. This review focuses on the potential mechanisms linking mitochondrial functions and energy remodeling in HF including the energy starvation theory and energy substrate metabolism. It also highlights the potentials of novel drugs targeting HF energy metabolism.

  20. Regeneration and Remodeling of Composite Materials

    DTIC Science & Technology

    2015-08-27

    AFRL-AFOSR-VA-TR-2015-0263 REGENERATION AND REMODELING OF COMPOSITE MATERIALS Scott White UNIVERSITY OF ILLINOIS Final Report 08/27/2015 DISTRIBUTION...Remodeling of Composite Materials 5a. CONTRACT NUMBER FA9550-10-1-0255 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) White, Scott R., Sottos...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Regeneration and Remodeling of Composite Materials (Regeneration) Program was

  1. Regulation of mast cell characteristics by cytokines: divergent effects of interleukin-4 on immature mast cell lines versus mature human skin mast cells.

    PubMed

    Thienemann, Friedrich; Henz, Beate M; Babina, Magda

    2004-08-01

    Mast cells (MC) are of hematopoietic origin but complete their differentiation exclusively within tissues. The mediators that positively or negatively affect the maturation process are incompletely defined. Here, the human MC line HMC-1 (subclone 5C6) was used along with several treatments (IL-4, IL-6, NGFbeta), either alone or in combination, and MC differentiation was monitored by flow-cytometric analysis of c-kit, tryptase, and FcepsilonRIalpha expression. Of the different treatments, IL-4 displayed the clearest effects by suppressing the expression of the three markers and inhibiting cellular growth, while the other cytokines had no (NGFbeta) or negligible (IL-6) effects only. The downregulating effects of IL-4 could not be overcome by any other treatment. There is some controversy in the literature as to the impact of IL-4 on the MC lineage. To determine whether the effects from IL-4 were differentiation stage dependent, two further human MC subsets (skin MC and LAD 2 cells) were investigated. No effects on c-kit and FcepsilonRIalpha expression were noted when terminally differentiated skin MC were used as target cells, while a modest downregulation of c-kit was observed with intermediately matured LAD 2 cells. In sharp contrast to HMC-1 5C6 cells, the survival of skin MC was significantly enhanced by IL-4 treatment. Our data therefore imply that at a lower maturation stage, IL-4 acts as a negative regulator of the MC lineage, but that this property disappears or is even reversed upon terminal differentiation of the cell. Our study provides direct proof that the effects of IL-4 vary substantially in the course of MC maturation.

  2. The remodeling transient and the calcium economy.

    PubMed

    Aloia, J F; Arunabh-Talwar, S; Pollack, S; Yeh, J K

    2008-07-01

    The remodeling transient describes a change in bone mass that lasts one remodeling cycle following an intervention that disturbs the calcium economy. We demonstrated the transient in a study of the response of bone density to calcium/vitamin D3 supplementation and show the hazards of misinterpretation if the transient is not considered. The remodeling transient describes a change in bone mass that lasts for one remodeling cycle following an intervention that disturbs the calcium economy. We report an intervention with calcium and vitamin D supplementation in 208 postmenopausal African-American women where the remodeling transient was considered a priori in the study design. Both groups (calcium alone vs. calcium + 20 microg (800 IU) vitamin D3) were ensured a calcium intake in excess of 1200 mg/day. There were no differences between the two groups in changes in BMD over time. These BMD changes were therefore interpreted to reflect increased calcium intake in both groups but not any influence of vitamin D. A transient increase in bone mineral density was observed during the first year of study, followed by a decline. The remodeling period was estimated at about 9 months, which is similar to histomorphometric estimates. It is problematic to draw conclusions concerning interventions that influence the calcium economy without considering the remodeling transient in study design. Studies of agents that effect bone remodeling must be carried out for at least two remodeling cycles and appropriate techniques must be used in data analysis.

  3. RAMCO Remodel America Corp.Information Sheet

    EPA Pesticide Factsheets

    RAMCO Remodel America Corp. (the Company) is located in Memphis, Tennessee. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Memphis, Tennessee.

  4. Divergent Collaboration (service mark)

    DTIC Science & Technology

    2012-12-01

    a person resilient and support them in continuing that behavior • Explore Forensics • Morale assessment • Educate people on how to move in and...acupressure • Measure electromagnetic Aura • Use hypnosis • Measure Non-traditional Human Energies • New paradigm for conops • Train to induce vivid

  5. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.

    PubMed

    Ydfors, Mia; Hughes, Meghan C; Laham, Robert; Schlattner, Uwe; Norrbom, Jessica; Perry, Christopher G R

    2016-06-01

    Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training

  6. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    SciTech Connect

    Nintasen, Rungrat; Riches, Kirsten; Mughal, Romana S.; Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa; Turner, Neil A.; Porter, Karen E.

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  7. The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity

    PubMed Central

    Teyssier, Catherine; Déméné, Hélène; Carvalho, João E.; Bird, Louise E.; Lebedev, Andrey; Fattori, Juliana; Schubert, Michael; Dumas, Christian; Bourguet, William; le Maire, Albane

    2016-01-01

    Mixed Lineage Leukemia 5 (MLL5) plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. Chromatin binding is ensured by its plant homeodomain (PHD) through a direct interaction with the N-terminus of histone H3 (H3). In addition, MLL5 contains a Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain, a protein module that usually displays histone lysine methyltransferase activity. We report here the crystal structure of the unliganded SET domain of human MLL5 at 2.1 Å resolution. Although it shows most of the canonical features of other SET domains, both the lack of key residues and the presence in the SET-I subdomain of an unusually large loop preclude the interaction of MLL5 SET with its cofactor and substrate. Accordingly, we show that MLL5 is devoid of any in vitro methyltransferase activity on full-length histones and histone H3 peptides. Hence, the three dimensional structure of MLL5 SET domain unveils the structural basis for its lack of methyltransferase activity and suggests a new regulatory mechanism. PMID:27812132

  8. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases.

    PubMed Central

    Salvesen, G; Parkes, C; Abrahamson, M; Grubb, A; Barrett, A J

    1986-01-01

    We point out that human low-Mr kininogen contains three cystatin-like sequences, rather than two, as had previously been thought. The protein was purified by affinity chromatography on carboxymethyl-papain-Sepharose, and subjected to limited proteolysis by trypsin and chymotrypsin. Fragments were isolated, and three corresponding to the individual cystatin-like domains were identified. By comparison with the known amino acid sequence of the protein they were numbered 1 to 3 from the N-terminus. Domain 1 was not found to have any inhibitory activity for cysteine proteinases, which is consistent with the absence of residues that are highly conserved in inhibitors of the cystatin superfamily, and have previously been suggested to be essential for activity. Domain 2 was a good inhibitor of chicken calpain, and also papain and cathepsin L. Domain 3 showed negligible inhibition of calpain, but inhibited papain and cathepsin L strongly. The probable arrangement of disulphide bonds in the heavy chain of low-Mr kininogen is deduced from the homology with the cystatins and other evidence contained in the present paper. Images Fig. 2. PMID:3521586

  9. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    PubMed Central

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  10. Bone remodeling after renal transplantation.

    PubMed

    Bellorin-Font, Ezequiel; Rojas, Eudocia; Carlini, Raul G; Suniaga, Orlando; Weisinger, José R

    2003-06-01

    Several studies have indicated that bone alterations after transplantation are heterogeneous. Short-term studies after transplantation have shown that many patients exhibit a pattern consistent with adynamic bone disease. In contrast, patients with long-term renal transplantation show a more heterogeneous picture. Thus, while adynamic bone disease has also been described in these patients, most studies show decreased bone formation and prolonged mineralization lag-time faced with persisting bone resorption, and even clear evidence of generalized or focal osteomalacia in many patients. Thus, the main alterations in bone remodeling are a decrease in bone formation and mineralization up against persistent bone resorption, suggesting defective osteoblast function, decreased osteoblastogenesis, or increased osteoblast death rates. Indeed, recent studies from our laboratory have demonstrated that there is an early decrease in osteoblast number and surfaces, as well as in reduced bone formation rate and delayed mineralization after transplantation. These alterations are associated with an early increase in osteoblast apoptosis that correlates with low levels of serum phosphorus. These changes were more frequently observed in patients with low turnover bone disease. In contrast, PTH seemed to preserve osteoblast survival. The mechanisms of hypophosphatemia in these patients appear to be independent of PTH, suggesting that other phosphaturic factors may play a role. However, further studies are needed to determine the nature of a phosphaturic factor and its relationship to the alterations of bone remodeling after transplantation.

  11. Small artery remodelling in diabetes.

    PubMed

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-05-01

    The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin-angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin-angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure.

  12. Small artery remodelling in diabetes

    PubMed Central

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-01-01

    Abstract The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure. PMID:20646125

  13. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-12-07

    Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.

  14. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle.

    PubMed

    Stefanetti, Renae J; Lamon, Séverine; Rahbek, Stine K; Farup, Jean; Zacharewicz, Evelyn; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron P; Vissing, Kristian

    2014-06-01

    Knowledge from human exercise studies on regulators of muscle atrophy is lacking, but it is important to understand the underlying mechanisms influencing skeletal muscle protein turnover and net protein gain. This study examined the regulation of muscle atrophy-related factors, including atrogin-1 and MuRF1, their upstream transcription factors FOXO1 and FOXO3A and the atrogin-1 substrate eIF3-f, in response to unilateral isolated eccentric (ECC) vs. concentric (CONC) exercise and training. Exercise was performed with whey protein hydrolysate (WPH) or isocaloric carbohydrate (CHO) supplementation. Twenty-four subjects were divided into WPH and CHO groups and completed both single-bout exercise and 12 wk of training. Single-bout ECC exercise decreased atrogin-1 and FOXO3A mRNA compared with basal and CONC exercise, while MuRF1 mRNA was upregulated compared with basal. ECC exercise downregulated FOXO1 and phospho-FOXO1 protein compared with basal, and phospho-FOXO3A was downregulated compared with CONC. CONC single-bout exercise mediated a greater increase in MuRF1 mRNA and increased FOXO1 mRNA compared with basal and ECC. CONC exercise downregulated FOXO1, FOXO3A, and eIF3-f protein compared with basal. Following training, an increase in basal phospho-FOXO1 was observed. While WPH supplementation with ECC and CONC training further increased muscle hypertrophy, it did not have an additional effect on mRNA or protein levels of the targets measured. In conclusion, atrogin-1, MuRF1, FOXO1/3A, and eIF3-f mRNA, and protein levels, are differentially regulated by exercise contraction mode but not WPH supplementation combined with hypertrophy-inducing training. This highlights the complexity in understanding the differing roles these factors play in healthy muscle adaptation to exercise.

  15. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  16. Remodeling, Renovation, & Conversion of Educational Facilities.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    Based on a series of workshops, this collection of papers provides a framework for thought--emphasizing planning within time, flexibility, and maintenance constraints--as well as a practical guide for actual engineering of remodeling/renovation/conversion projects. Is remodeling always less expensive than new construction? Should high initial…

  17. An Analysis of the Residential Remodeling Occupation.

    ERIC Educational Resources Information Center

    Scruggs, Kenneth

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the residential remodeling occupation. The analysis only briefly covers the many areas of residential remodeling. The document opens with a brief introduction followed by a job description. The bulk of the…

  18. Semantic search during divergent thinking.

    PubMed

    Hass, Richard W

    2017-09-01

    Divergent thinking, as a method of examining creative cognition, has not been adequately analyzed in the context of modern cognitive theories. This article casts divergent thinking responding in the context of theories of memory search. First, it was argued that divergent thinking tasks are similar to semantic fluency tasks, but are more constrained, and less well structured. Next, response time distributions from 54 participants were analyzed for temporal and semantic clustering. Participants responded to two prompts from the alternative uses test: uses for a brick and uses for a bottle, for two minutes each. Participants' cumulative response curves were negatively accelerating, in line with theories of search of associative memory. However, results of analyses of semantic and temporal clustering suggested that clustering is less evident in alternative uses responding compared to semantic fluency tasks. This suggests either that divergent thinking responding does not involve an exhaustive search through a clustered memory trace, but rather that the process is more exploratory, yielding fewer overall responses that tend to drift away from close associates of the divergent thinking prompt. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Divergent clonal selection dominates medulloblastoma at recurrence.

    PubMed

    Morrissy, A Sorana; Garzia, Livia; Shih, David J H; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M G; Ramaswamy, Vijay; Lindsay, Patricia E; Jelveh, Salomeh; Donovan, Laura K; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J L; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L; Lee, John J Y; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C; Manno, Alex; Michealraj, K A; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S N; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q; Schein, Jacqueline E; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F; Hamilton, Ronald L; Li, Xiao-Nan; Bendel, Anne E; Fults, Daniel W; Walter, Andrew W; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H; Garvin, James H; Stearns, Duncan S; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E; Tirapelli, Daniela P C; Carlotti, Carlos G; Wheeler, Helen; Hallahan, Andrew R; Ingram, Wendy; MacDonald, Tobey J; Olson, Jeffrey J; Van Meir, Erwin G; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C; Clifford, Steven C; Eberhart, Charles G; Cooper, Michael K; Packer, Roger J; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E; Dirks, Peter; Bouffet, Eric; Rutka, James T; Wechsler-Reya, Robert J; Weiss, William A; Collier, Lara S; Dupuy, Adam J; Korshunov, Andrey; Jones, David T W; Kool, Marcel; Northcott, Paul A; Pfister, Stefan M; Largaespada, David A; Mungall, Andrew J; Moore, Richard A; Jabado, Nada; Bader, Gary D; Jones, Steven J M; Malkin, David; Marra, Marco A; Taylor, Michael D

    2016-01-21

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.

  20. Cervical Remodeling during Pregnancy and Parturition

    PubMed Central

    Timmons, Brenda; Akins, Meredith; Mahendroo, Mala

    2010-01-01

    Appropriate and timely cervical remodeling is key for successful birth. Premature cervical opening can result in preterm birth which occurs in 12.5% of pregnancies. Research focused on the mechanisms of term and preterm cervical remodeling is essential to prevent prematurity. This review highlights recent findings that better define molecular processes driving progressive disorganization of the cervical extracellular matrix. This includes studies that redefine the role of immune cells and identify diverse functions of the cervical epithelia and hyaluronan in remodeling. New investigations proposing that infection-induced premature cervical remodeling is distinct from the normal process are presented. Recent advances in our understanding of term and preterm cervical remodeling provide new directions for investigation and compel investigators to reevaluate currently accepted models. PMID:20172738

  1. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  2. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  3. Divergence-based vector quantization.

    PubMed

    Villmann, Thomas; Haase, Sven

    2011-05-01

    Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy.

  4. Graybody Factors and Infrared Divergences

    NASA Astrophysics Data System (ADS)

    Anderson, Paul; Fabbri, Alessandro; Balbinot, Roberto; Parentani, Renaud

    2015-04-01

    A method of computing the gray-body factors for static spherically symmetric and BEC acoustic black holes using a Volterra integral equation is given. The results are used to investigate infrared divergences in the particle number, two-point function, point-split stress-energy tensor and density-density correlation function. Infrared divergences in the particle number and two-point function occur if the gray-body factor approaches a nonzero constant in the zero frequency limit, as happens for Schwarzschild-de Sitter black holes and BEC acoustic black holes. However, no infrared divergences occur in the point-split stress-energy tensor or the density-density correlation function. Supported in part by the National Science Foundation under Grant Nos. PHY-0856050 and PHY-1308325.

  5. Bortezomib protects from varicose-like venous remodeling.

    PubMed

    Pfisterer, Larissa; Meyer, Ralph; Feldner, Anja; Drews, Oliver; Hecker, Markus; Korff, Thomas

    2014-08-01

    Despite the high prevalence of venous diseases that are associated with and based on the structural reorganization of the venous vessel wall, not much is known about their mechanistic causes. In this context, we demonstrated that the quantity of myocardin, a transcriptional regulator of the contractile and quiescent smooth muscle cell phenotype, was diminished in proliferating synthetic venous smooth muscle cells (VSMCs) of human and mouse varicose veins by 51 and 60%, respectively. On the basis of the relevance of proteasomal activity for such phenotypic changes, we hypothesized that the observed VSMC activation is attenuated by the proteasome inhibitor bortezomib. This drug fully abolished VSMC proliferation and loss of myocardin in perfused mouse veins and blocked VSMC invasion in collagen gels by almost 80%. In line with this, topical transdermal treatment with bortezomib diminished VSMC proliferation by 80%, rescued 90% of VSMC myocardin abundance, and inhibited varicose-like venous remodeling by 67 to 72% in a mouse model. Collectively, our data indicate that the proteasome plays a pivotal role in VSMC phenotype changes during venous remodeling processes. Its inhibition protects from varicose-like vein remodeling in mice and may thus serve as a putative therapeutic strategy to treat human varicose veins.

  6. Exercise-induced cardiac remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  7. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  8. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  9. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  10. Fat body remodeling and homeostasis control in Drosophila.

    PubMed

    Zheng, Huimei; Yang, Xiaohang; Xi, Yongmei

    2016-12-15

    Remarkable advances have been made in recent years in our understanding of the Drosophila fat body and its functions in energy storage, immune response and nutrient sensing. The fat body interplays with other tissues to respond to the physiological needs of the body's growth and coordinates various metabolic processes at different developmental stages and under different environmental conditions. The identification of various conserved genetic functions and signaling pathways relating to the Drosophila fat body may provide clues to lipometabolic disease and other aspects of tissue remodeling in humans. Here, we discuss recent insights into how regulation of fat body remodeling contributes to hemostasis with a special focus on how signaling networks and internal physiological states shape different aspects of the lipid metabolism in Drosophila. Copyright © 2016. Published by Elsevier Inc.

  11. VEGF inhibition as possible therapy in spondyloarthritis patients: Targeting bone remodelling.

    PubMed

    Lacout, Alexis; Carlier, Robert Yves; El Hajjam, Mostafa; Marcy, Pierre Yves

    2017-04-01

    Spondyloarthritis refers to a group of chronic inflammatory rheumatic diseases that predominantly affects the axial skeleton, causing pain and stiffness. Human bone is highly dynamic organ that interacts with a wide array cells and tissues. Process of bone remodelling relies on a delicate balance between bone formation and bone resorption, orchestrated by osteoblasts and osteoclasts. Disruption of this homeostatic balance of bone removal and replacement can manifest as inappropriate new bone formation found in spondylarthritis. We hypothesize that VEGF may promote bone remodelling, stimulate angiogenesis, and both osteoclastic and osteoblastic activity. Anti VEGF may be tested as a dedicated therapy to prevent bone remodelling in spondyloarthritis patients, namely in cases of aggressive disease. Bone remodelling could be monitored by using [18F]Fluoride PET scan.

  12. Divergent Thinking and Interview Ratings

    ERIC Educational Resources Information Center

    Batey, Mark; Rawles, Richard; Furnham, Adrian

    2009-01-01

    This study examined divergent thinking (DT) test scores of applicants taking part in a selection procedure for an undergraduate psychology degree (N = 370). Interviewers made six specific (creative intelligence, motivation, work habits, emotional stability, sociability, and social responsibility) and one overall recommendation rating on each…

  13. Divergent Thinking and Interview Ratings

    ERIC Educational Resources Information Center

    Batey, Mark; Rawles, Richard; Furnham, Adrian

    2009-01-01

    This study examined divergent thinking (DT) test scores of applicants taking part in a selection procedure for an undergraduate psychology degree (N = 370). Interviewers made six specific (creative intelligence, motivation, work habits, emotional stability, sociability, and social responsibility) and one overall recommendation rating on each…

  14. Maternal Uterine Vascular Remodeling During Pregnancy

    PubMed Central

    Osol, George; Mandala, Maurizio

    2009-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms. PMID:19196652

  15. Respiratory muscle fiber remodeling in chronic hyperinflation: dysfunction or adaptation?

    PubMed

    Clanton, Thomas L; Levine, Sanford

    2009-07-01

    The diaphragm and other respiratory muscles undergo extensive remodeling in both animal models of emphysema and in human chronic obstructive pulmonary disease, but the nature of the remodeling is different in many respects. One common feature is a shift toward improved endurance characteristics and increased oxidative capacity. Furthermore, both animals and humans respond to chronic hyperinflation by diaphragm shortening. Although in rodent models this clearly arises by deletion of sarcomeres in series, the mechanism has not been proven conclusively in human chronic obstructive pulmonary disease. Unique characteristics of the adaptation in human diaphragms include shifts to more predominant slow, type I fibers, expressing slower myosin heavy chain isoforms, and type I and type II fiber atrophy. Although some laboratories report reductions in specific force, this may be accounted for by decreases in myosin heavy chain content as the muscles become more oxidative and more efficient. More recent findings have reported reductions in Ca(2+) sensitivity and reduced myofibrillar elastic recoil. In contrast, in rodent models of disease, there is no consistent evidence for loss of specific force, no consistent shift in fiber populations, and atrophy is predominantly seen only in fast, type IIX fibers. This review challenges the hypothesis that the adaptations in human diaphragm represent a form of dysfunction, secondary to systemic disease, and suggest that most findings can as well be attributed to adaptive processes of a complex muscle responding to unique alterations in its working environment.

  16. Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful?

    PubMed

    van Oers, René F M; van Rietbergen, Bert; Ito, Keita; Huiskes, Rik; Hilbers, Peter A J

    2011-05-01

    Microdamage-targeted resorption is paradoxal, because it entails the removal of bone from a region that was already overloaded. Under continued intense loading, resorption spaces could potentially cause more damage than they remove. To investigate this problem, we incorporated damage algorithms in a computer-simulation model for trabecular remodeling. We simulated damage accumulation and bone remodeling in a trabecular architecture, for two fatigue regimens, a 'moderate' regimen, and an 'intense' regimen with a higher number of loading cycles per day. Both simulations were also performed without bone remodeling to investigate if remodeling removed or exacerbated the damage. We found that remodeling tends to remove damage under the 'moderate' fatigue regimen, but it exacerbates damage under the 'intense' regimen. This harmful effect of remodeling may play a role in the development of stress fractures.

  17. Cardiovascular remodeling and the peripheral serotonergic system.

    PubMed

    Ayme-Dietrich, Estelle; Aubertin-Kirch, Gaëlle; Maroteaux, Luc; Monassier, Laurent

    2017-01-01

    Plasma 5-hydroxytryptamine (5-HT; serotonin), released from blood platelets, plays a major role in the human cardiovascular system. Besides the effect of endogenous serotonin, many drugs targeting serotonergic receptors are widely used in the general population (antiobesity agents, antidepressants, antipsychotics, antimigraine agents), and may enhance the cardiovascular risk. Depending on the type of serotonin receptor activated and its location, the use of these compounds triggers acute and chronic effects. The acute cardiovascular response to 5-HT, named the Bezold-Jarish reflex, leads to intense bradycardia associated with atrioventricular block, and involves 5-HT3, 5-HT1B/1D, 5-HT7 and 5-HT2A/2B receptors. The chronic contribution of 5-HT and its receptors (5-HT4 and 5-HT2A/2B) in cardiovascular tissue remodeling, with a particular emphasis on cardiac hypertrophy, fibrosis and valve degeneration, will be explored in this review. Finally, through the analysis of the effects of sarpogrelate, some new aspects of 5-HT2A receptor pharmacology in vasomotor tone regulation and the interaction between endothelial and smooth muscle cells will also be discussed. The aim of this review is to emphasize the cardiac side effects caused by serotonin receptor activation, and to highlight their possible prevention by the development of new drugs targeting this system. Copyright © 2016. Published by Elsevier Masson SAS.

  18. Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling.

    PubMed

    Moreno-Moral, Aida; Mancini, Massimiliano; D'Amati, Giulia; Camici, Paolo; Petretto, Enrico

    2013-12-01

    Hypertension and cardiomyopathies share maladaptive changes of cardiac morphology, eventually leading to heart failure. These include left ventricular hypertrophy (LVH), myocardial fibrosis, and structural remodeling of coronary microcirculation, which is the morphologic hallmark of coronary microvascular dysfunction. To pinpoint the complex molecular mechanisms and pathways underlying LVH-associated cardiac remodeling independent of blood pressure effects, we employed gene network approaches to the rat heart. We used the Spontaneously Hypertensive Rat model showing many features of human hypertensive cardiomyopathy, for which we collected histological and histomorphometric data of the heart and coronary vasculature, and genome-wide cardiac gene expression. Here, we provide a large catalogue of gene co-expression networks in the heart that are significantly associated with quantitative variation in LVH, microvascular remodeling, and fibrosis-related traits. Many of these networks were significantly conserved to human idiopathic and/or ischemic cardiomyopathy patients, suggesting a potential role for these co-expressed genes in human heart disease.

  19. Atrial Electrophysiological Remodeling and Fibrillation in Heart Failure

    PubMed Central

    Pandit, Sandeep V.; Workman, Antony J.

    2016-01-01

    Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient’s age, sex, di