The foraging benefits of being fat in a highly migratory marine mammal
Adachi, Taiki; Maresh, Jennifer L.; Robinson, Patrick W.; Peterson, Sarah H.; Costa, Daniel P.; Naito, Yasuhiko; Watanabe, Yuuki Y.; Takahashi, Akinori
2014-01-01
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. PMID:25377461
The foraging benefits of being fat in a highly migratory marine mammal.
Adachi, Taiki; Maresh, Jennifer L; Robinson, Patrick W; Peterson, Sarah H; Costa, Daniel P; Naito, Yasuhiko; Watanabe, Yuuki Y; Takahashi, Akinori
2014-12-22
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro
2014-11-22
Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for 'surfacers' because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro
2014-01-01
Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856
Group foraging increases foraging efficiency in a piscivorous diver, the African penguin
McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.
2017-01-01
Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785
Depletion of deep marine food patches forces divers to give up early.
Thums, Michele; Bradshaw, Corey J A; Sumner, Michael D; Horsburgh, Judy M; Hindell, Mark A
2013-01-01
Many optimal foraging models for diving animals examine strategies that maximize time spent in the foraging zone, assuming that prey acquisition increases linearly with search time. Other models have considered the effect of patch quality and predict a net energetic benefit if dives where no prey is encountered early in the dive are abandoned. For deep divers, however, the energetic benefit of giving up is reduced owing to the elevated energy costs associated with descending to physiologically hostile depths, so patch residence time should be invariant. Others consider an asymptotic gain function where the decision to leave a patch is driven by patch-depletion effects - the marginal value theorem. As predator behaviour is increasingly being used as an index of marine resource density and distribution, it is important to understand the nature of this gain function. We investigated the dive behaviour of the world's deepest-diving seal, the southern elephant seal Mirounga leonina, in response to patch quality. Testing these models has largely been limited to controlled experiments on captive animals. By integrating in situ measurements of the seal's relative lipid content obtained from drift rate data (a measure of foraging success) with area-restricted search behaviour identified from first-passage time analysis, we identified regions of high- and low-quality patches. Dive durations and bottom times were not invariant and did not increase in regions of high quality; rather, both were longer when patches were of relatively low quality. This is consistent with the predictions of the marginal value theorem and provides support for a nonlinear relationship between search time and prey acquisition. We also found higher descent and ascent rates in high-quality patches suggesting that seals minimized travel time to the foraging patch when quality was high; however, this was not achieved by increasing speed or dive angle. Relative body lipid content was an important predictor of dive behaviour. Seals did not schedule their diving to maximize time spent in the foraging zone in higher-quality patches, challenging the widely held view that maximizing time in the foraging zone translates to greater foraging success. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Dynamic Cerebral Autoregulation Is Acutely Impaired during Maximal Apnoea in Trained Divers
Cross, Troy J.; Kavanagh, Justin J.; Breskovic, Toni; Johnson, Bruce D.; Dujic, Zeljko
2014-01-01
Aims To examine whether dynamic cerebral autoregulation is acutely impaired during maximal voluntary apnoea in trained divers. Methods Mean arterial pressure (MAP), cerebral blood flow-velocity (CBFV) and end-tidal partial pressures of O2 and CO2 (PETO2 and PETCO2) were measured in eleven trained, male apnoea divers (28±2 yr; 182±2 cm, 76±7 kg) during maximal “dry” breath holding. Dynamic cerebral autoregulation was assessed by determining the strength of phase synchronisation between MAP and CBFV during maximal apnoea. Results The strength of phase synchronisation between MAP and CBFV increased from rest until the end of maximal voluntary apnoea (P<0.05), suggesting that dynamic cerebral autoregulation had weakened by the apnoea breakpoint. The magnitude of impairment in dynamic cerebral autoregulation was strongly, and positively related to the rise in PETCO2 observed during maximal breath holding (R 2 = 0.67, P<0.05). Interestingly, the impairment in dynamic cerebral autoregulation was not related to the fall in PETO2 induced by apnoea (R 2 = 0.01, P = 0.75). Conclusions This study is the first to report that dynamic cerebral autoregulation is acutely impaired in trained divers performing maximal voluntary apnoea. Furthermore, our data suggest that the impaired autoregulatory response is related to the change in PETCO2, but not PETO2, during maximal apnoea in trained divers. PMID:24498340
Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies
Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.
2013-01-01
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063
Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R
2013-05-01
Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.
Forensic Fluid Dynamics and the Indian Spring (1991) cave collapse problem
NASA Astrophysics Data System (ADS)
Nof, D.
2013-05-01
The collapse of the Indian spring cave (Florida) in 1991 was unique because it occurred while cave divers were in the cave. For the most part, the submerged cave is large enough to accommodate a passing truck so the cave divers were not in touch with its walls and it is hard to imagine why would it naturally collapse just when the divers were in it. Recently, Nof and Paldor (2010) resolved this apparent paradox by suggesting that resonance in the air pockets in the cavern, created by breathing (open circuit) divers, may have contributed to the collapse. In this scenario, divers present in the cavern during the dive may have (unknowingly) caused the collapse through the pressurized air/gas that they release with each breath. When the breathing period of the diver(s) matches the natural oscillations period of the "cave oscillator", the ensuing resonance causes the air pressure in the pockets to increase uncontrollably. Here, we place the above theory on a more solid ground. To do so, we first extended the resonance theory from our original two-pockets, symmetrical U-tube model (with two identical branches that were not specifically identified within the cave system) to a one (identified) pocket in the cavern and a very broad basin (identified, of course) that serves as the other branch of the U-tube. Our methodology is to apply familiar fluid dynamics principles to the situation that occurred in the cave. We did so, step-by-step, on the basis of our interviews with four out of the five surviving cave-divers. Namely, we dissected their testimonies to arrive at a physically plausible scenario determined on basis of a fluid dynamics application to the natural flow in the cave and the flow induced by the compressed air released by the divers as well as the collapsed mud. We found that the oscillation period was larger than what we earlier calculated (still relevant to the case, nevertheless), and that, in contrast to what most cave divers believe, there was a temporary flow blocking during the collapse but no total flow reversal within the cave. Observed swirling in the basin during the collapse is attributed to a dipole flow corresponding to an inflow and outflow from the cave.
Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers.
Miller, Patrick J O; Biuw, Martin; Watanabe, Yuuki Y; Thompson, Dave; Fedak, Mike A
2012-10-15
Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We evaluated alternative predictions from external-work and actuator-disc theory of how non-neutral buoyancy affects round-trip COT to depth, and the minimum COT speed for steady-state vertical transit. Not surprisingly, the models predict that one-way COT decreases (increases) when buoyancy aids (hinders) one-way transit. At extreme deviations from neutral buoyancy, gliding at terminal velocity is the minimum COT strategy in the direction aided by buoyancy. In the transit direction hindered by buoyancy, the external-work model predicted that minimum COT speeds would not change at greater deviations from neutral buoyancy, but minimum COT speeds were predicted to increase under the actuator disc model. As previously documented for grey seals, we found that vertical transit rates of 36 elephant seals increased in both directions as body density deviated from neutral buoyancy, indicating that actuator disc theory may more closely predict the power requirements of divers affected by gravity than an external work model. For both models, minor deviations from neutral buoyancy did not affect minimum COT speed or round-trip COT itself. However, at body-density extremes, both models predict that savings in the aided direction do not fully offset the increased COT imposed by the greater thrusting required in the hindered direction.
Rapp, Dan C; Youngren, Sarah M; Hartzell, Paula; David Hyrenbach, K
2017-10-15
Between 2006 and 2013, we salvaged and necropsied 362 seabird specimens from Tern Island, French Frigate Shoals, Northwestern Hawaiian Islands. Plastic ingestion occurred in 11 of the 16 species sampled (68.75%), representing four orders, seven families, and five foraging guilds: four plunge-divers, two albatrosses, two nocturnal-foraging petrels, two tuna-birds, and one frigatebird. Moreover, we documented the first instance of ingestion in a previously unstudied species: the Brown Booby. Plastic prevalence (percent occurrence) ranged from 0% to 100%, with no significant differences across foraging guilds. However, occurrence was significantly higher in chicks versus adult conspecifics in the Black-footed Albatross, one of the three species where multiple age classes were sampled. While seabirds ingested a variety of plastic (foam, line, sheets), fragments were the most common and numerous type. In albatrosses and storm-petrels, the plastic occurrence in the two stomach chambers (the proventriculus and the ventriculus) was not significantly different. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.
Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi
2015-05-01
Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Functional response of sport divers to lobsters with application to fisheries management.
Eggleston, David B; Parsons, Darren M; Kellison, G Todd; Plaia, Gayle R; Johnson, Eric G
2008-01-01
Fishery managers must understand the dynamics of fishers and their prey to successfully predict the outcome of management actions. We measured the impact of a two-day exclusively recreational fishery on Caribbean spiny lobster in the Florida Keys, USA, over large spatial scales (>100 km) and multiple years and used a theoretical, predator-prey functional response approach to identify whether or not sport diver catch rates were density-independent (type I) or density-dependent (type II or III functional response), and if catch rates were saturated (i.e., reached an asymptote) at relatively high lobster densities. We then describe how this predator-prey framework can be applied to fisheries management for spiny lobster and other species. In the lower Keys, divers exhibited a type-I functional response, whereby they removed a constant and relatively high proportion of lobsters (0.74-0.84) across all pre-fishing-season lobster densities. Diver fishing effort increased in a linear manner with lobster prey densities, as would be expected with a type-I functional response, and was an order of magnitude lower in the upper Keys than lower Keys. There were numerous instances in the upper Keys where the density of lobsters actually increased from before to after the fishing season, suggesting some type of "spill-in effect" from surrounding diver-disturbed areas. With the exception of isolated reefs in the upper Keys, the proportion of lobsters removed by divers was density independent (type-I functional response) and never reached saturation at natural lobster densities. Thus, recreational divers have a relatively simple predatory response to spiny lobster, whereby catch rates increase linearly with lobster density such that catch is a reliable indicator of abundance. Although diver predation is extremely high (approximately 80%), diver predation pressure is not expected to increase proportionally with a decline in lobster density (i.e., a depensatory response), which could exacerbate local extinction. Furthermore, management actions that reduce diver effort should have a concomitant and desired reduction in catch. The recreational diver-lobster predator-prey construct in this study provides a useful predictive framework to apply to both recreational and commercial fisheries, and on which to build as management actions are implemented.
Marine predators and persistent prey in the southeast Bering Sea
NASA Astrophysics Data System (ADS)
Sigler, Michael F.; Kuletz, Kathy J.; Ressler, Patrick H.; Friday, Nancy A.; Wilson, Christopher D.; Zerbini, Alexandre N.
2012-06-01
Predictable prey locations reduce search time and energetic costs of foraging; thus marine predators often exploit locations where prey concentrations persist. In our study, we examined whether this association is influenced by differences among predator species in foraging modes (travel cost, surface feeder or diver) or whether the predator species is a central place forager or not. We examined distributions of two seabird species during their nesting period, the surface-feeding black-legged kittiwake (Rissa tridactyla) and the pursuit-diving thick-billed murre (Uria lomvia), and two baleen whale species, the humpback whale (Megaptera novaeangliae) and the fin whale (Balaenoptera physalus), in relation to two key prey, age-1 walleye pollock (Theragra chalcogramma) and euphausiids (Euphausiidae). Prey surveys were conducted once each year during 2004 and 2006-2010. Concurrent predator surveys were conducted in 2006-2010 (seabirds) and 2008 and 2010 (whales). We compared the seabird and whale foraging locations to where age-1 pollock and euphausiids were concentrated and considered the persistence of these concentrations, where the time-scale of persistence is year (i.e., a comparison among surveys that are conducted once each year). Euphausiids were widespread and concentrations often were reliably found within specific 37 km×37 km blocks ('persistent hot spots of prey'). In contrast, age-1 pollock were more concentrated and their hot spots were persistent only on coarser scales (>37 km). Both seabird species, regardless of foraging mode, were associated with age-1 pollock but not with euphausiids, even though age-1 pollock were less persistent than euphausiids. The higher travel cost central place foragers, thick-billed murres, foraged at prey concentrations nearer their island colonies than black-legged kittiwakes, which were more widespread foragers. Humpback whales were not tied to a central place and mostly were located only where euphausiids were concentrated, and further, often in locations where these concentrations were persistent. Fin whales were associated with locations where age-1 pollock were more likely, similar to black-legged kittiwakes and thick-billed murres, but their association with euphausiids was unclear. Our results suggest that a predator's foraging mode and their restrictions during breeding affect their response to prey persistence.
The History and Implications of Design Standards for Underwater Breathing Apparatus - 1954 to 2015
2015-02-11
respiratory loading using both simple models of fluid mechanics and experimental evidence. An understanding of the influence of both respiratory ventilatory... fluid dynamics of flow in divers’ airways. It allows testing laboratories to make maximum use of all of their testing data, and lo present that data in...tireless efforts of numerous military divers at Navy Experimental Diving Unit in Panama City, FL and Naval Medical Research Institute, Bethesda, MD
Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics
USDA-ARS?s Scientific Manuscript database
1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...
NASA Astrophysics Data System (ADS)
Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.
2013-04-01
Resource competition between fisheries and marine mammal continue to raise concern worldwide. Understanding this complex conflict requires data on spatial and dietary overlap of marine mammal and fisheries. In Uruguay the South American sea lions population has been dramatically declining over the past decade. The reasons for this population decline are unknown but may include the following: (1) direct harvesting; (2) reduced prey availability and distribution as a consequence of environmental change; or (3) biological interaction with fisheries. This study aims to determine resource overlap and competition between South American sea lions (SASL, Otaria flavescens, n=10) and the artisanal fisheries (AF), and the coastal bottom trawl fisheries (CBTF). We integrated data on sea lions diet (scat analysis), spatial and annual consumption estimates; and foraging behavior-satellite-tracking data from lactating SASL with data on fishing effort areas and fisheries landings. We found that lactating SASL are benthic divers and forage in shallow water within the continental shelf. SASL's foraging areas overlapped with CBTF and AF fisheries operational areas. Dietary analysis indicated a high degree of overlap between the diet of SASL and the AF and CBTF fisheries catch. The results of our work show differing degrees of spatial resource overlap with AF and CBTF, highlighting that there are differences in potential impact from each fishery; and that different management/conservation approaches may need to be taken to solve the fisheries-SASL conflict.
Optimal Foraging in Semantic Memory
ERIC Educational Resources Information Center
Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.
2012-01-01
Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…
Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine
2015-01-01
Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.
Decompression sickness in breath-hold divers: a review.
Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka
2009-12-01
Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.
Foraging swarms as Nash equilibria of dynamic games.
Özgüler, Arif Bülent; Yildiz, Aykut
2014-06-01
The question of whether foraging swarms can form as a result of a noncooperative game played by individuals is shown here to have an affirmative answer. A dynamic game played by N agents in 1-D motion is introduced and models, for instance, a foraging ant colony. Each agent controls its velocity to minimize its total work done in a finite time interval. The game is shown to have a unique Nash equilibrium under two different foraging location specifications, and both equilibria display many features of a foraging swarm behavior observed in biological swarms. Explicit expressions are derived for pairwise distances between individuals of the swarm, swarm size, and swarm center location during foraging.
Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine
2015-01-01
Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088
Breed, Greg A; Don Bowen, W; Leonard, Marty L
2013-10-01
In populations of colony-breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density-dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population-level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 (o)N 60.0 (o)W). These data were first analyzed using a behaviorally switching state-space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young-of-year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark-resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital-breeding life-history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent.
Starvation dynamics of a greedy forager
NASA Astrophysics Data System (ADS)
Bhat, U.; Redner, S.; Bénichou, O.
2017-07-01
We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.
Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia
NASA Astrophysics Data System (ADS)
Zhang, Liye; Chung, ShanShan
2015-12-01
This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.
Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia.
Zhang, Liye; Chung, ShanShan
2015-12-01
This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.
Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L
2014-01-01
A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. PMID:25598549
Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L
2014-04-01
A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics.
A portable device to assess underwater changes of cardio dynamic variables by impedance cardiography
NASA Astrophysics Data System (ADS)
Tocco, F.; Crisafulli, A.; Marongiu, E.; Milia, R.; Kalb, A.; Concu, A.
2012-12-01
Data concerning heart rate (HR), stroke volume (SV), and cardiac output (CO) during dynamic apnoea (DA) were collected from 10 healthy male, elite divers by means of an impedance cardiograph adapted to the underwater environment (C. O. Re., from 2C Technologies Inc, Italy). Three trials were performed by the divers in a 3-m-deep pool with a water temperature of 25°C: 3-minute head-out immersion during normal breathing (A), till exhaustion immersed at the surface (B) and at 3m depth (C). Both B and C conditions did not led to changes in HR, SV and CO compared to A. Data indicate that typical diving response consisting in a reduction of HR, SV and CO was not present during DA, probably due to sympathetic activation induced by exercise during DA, which partially obscured the effects of the diving response. Moreover, this study highlights the innovative role of our portable, impedance cardiography device, i.e. the C. O. Re., in easily assessing cardiodynamic changes in subjects engaged in exercise schedules including phases of underwater, dynamic apnoea.
Role of social interactions in dynamic patterns of resource patches and forager aggregation.
Tania, Nessy; Vanderlei, Ben; Heath, Joel P; Edelstein-Keshet, Leah
2012-07-10
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer-scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly ("producers") and those that exploit other foragers to find food ("scroungers" or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to "waves of pursuit." Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers' food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction--i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators.
Irgens, Ågot; Troland, Kari; Grønning, Marit
2017-01-01
The aim of the present study was to explore the potential differences between female and male professional divers with regards to demographics, diving certificates, areas of diving, diving activity and health effects. The Norwegian Labour Inspection Authority's Diving certificate register contains data on all professional inshore divers who have held a certificate at any time since 1980. Forty nine per cent of these divers responded to the "Norwegian diver 2011" questionnaire. Of these divers 64 female and 1327 male divers completed the questionnaire about their professional diving career, certificate, year of onset and the year they stopped diving professionally if they were not still active in the diving industry. The level of general education was higher among female divers. More males than females were fully certified in diving. The mean age was lower among female than male fully certified divers. Fully certified female divers reported a lower total number of dives, shallower dives and diving for a shorter period of time than the male divers. They also had a lower percentage of work within the quay/construction sector and more often worked as teachers/instructors. A lower percentage of fully certified females than males had experienced decompression sickness (16.7% vs. 26.9%). Life-threatening events and psychologically challenging events were less common among females, as were adverse health effects. No such gender differences were seen for divers with a restricted certificate. The fully certified, female professional divers in our study had a very short diving career, reported fewer and shallower dives, and chose less physically demanding jobs than their male counterparts. They also had a higher level of education, reported less health problems and a better quality of life. The health effects seem to be related to the type of work rather than to gender.
Chronic daily headache with analgesics overuse in professional women breath-hold divers.
Choi, Jay Chol; Lee, Jung Seok; Kang, Sa-Yoon; Kang, Ji-Hoon; Bae, Jong-Myon
2008-07-01
The object of this study is to investigate the prevalence and characteristics of headache in Korean professional women breath-hold divers, including their overuse of analgesics. Headache is a common problem encountered in clinical practice, and undersea divers exhibit unique causes of headache in addition to other common primary headaches. Many scuba divers are known to use various types of drugs to overcome dive-related symptoms or to enhance their underwater performance. The target population of this study was women divers in the northern district of Jeju Island who were registered in the divers' union. Data were collected using telephone interviews with a structured questionnaire. Headache was diagnosed and classified according to criteria of the International Headache Society. Nine hundred and eleven (80.3%) divers responded to the telephone interview. The prevalence rates of headache were 21.4% for tension-type headache and 9.1% for migraine. One hundred and four divers (11.4%) fulfilled the criteria for chronic daily headache (CDH). Overuse of combination analgesics was reported by 70.7% of divers. Women divers with CDH were significantly older and they complained more of tinnitus and dizziness, and had a greater history of hypertension than divers without headache. The prevalence of CDH is high in Korean professional women breath-hold divers, with many of them being combination-analgesics overusers.
Peripheral cold acclimatization in Antarctic scuba divers.
Bridgman, S A
1991-08-01
Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.
... is Your Dive Safety Association Divers Alert Network DAN is Divers Alert Network, the diving industry’s largest ... Serving scuba divers for more than 30 years, DAN provides emergency assistance, medical information resources, educational opportunities ...
Oceanography for Divers: Waves, Tides, and Currents. Diver Education Series.
ERIC Educational Resources Information Center
Somers, Lee H.
To dive safely, it is suggested that the diver have a working knowledge of waves, tides, currents, and water quality. Lack of understanding and respect for ocean currents and surf can be of serious consequence to the diver. This paper on the diving environment is designed to provide the diver with a general understanding of the physical…
M. Zachariah Peery; Scott H. Newman; Curt D. Storlazzi; Steven R. Beissinger
2009-01-01
Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes...
Crop scents affect the occurrence of trophallaxis among forager honeybees.
Gil, M; Farina, W M
2003-05-01
Previous evidence indicates that the recognition of the nectar delivered by forager honeybees within the colony may have been a primitive method of communication on food resources. Thus, the association between scent and reward that nectar foragers establish while they collect on a given flower species should be retrieved during trophallaxis, i.e., the transfer of liquid food by mouth, and, accordingly, foraging experience could affect the occurrence of these interactions inside the nest. We used experimental arenas to analyze how crop scents carried by donor bees affect trophallaxis among foragers, i.e., donors and receivers, which differ in their foraging experience. Results showed that whenever the foragers had collected unscented sugar solution from a feeder the presence of scents in the solution carried by donors did not affect the occurrence of trophallaxis nor its dynamics. In contrast, whenever the foragers had previous olfactory information, new scents present in the crop of the donors negatively affected the occurrence, but not the dynamics of trophallaxis. Thus, the association learned at the food source seems to be retrieved during trophallaxis, and it is possible that known scents present in the mouthparts of nest-mates may operate as a triggering stimulus to elicit trophallactic behavior within the hive.
A quantitative model of honey bee colony population dynamics.
Khoury, David S; Myerscough, Mary R; Barron, Andrew B
2011-04-18
Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.
Courbin, Nicolas; Besnard, Aurélien; Péron, Clara; Saraux, Claire; Fort, Jérôme; Perret, Samuel; Tornos, Jérémy; Grémillet, David
2018-04-16
Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence. © 2018 John Wiley & Sons Ltd/CNRS.
Linear-Nonlinear-Poisson Models of Primate Choice Dynamics
ERIC Educational Resources Information Center
Corrado, Greg S.; Sugrue, Leo P.; Seung, H. Sebastian; Newsome, William T.
2005-01-01
The equilibrium phenomenon of matching behavior traditionally has been studied in stationary environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys ("Macacca mulatta") foraged for juice rewards by making…
Shields, T G; Duff, P M; Evans, S A; Gemmell, H G; Sharp, P F; Smith, F W; Staff, R T; Wilcock, S E
1997-01-01
OBJECTIVES: To explore the use of 99technetiumm-hexamethyl propylene amine oxime single photon computed tomography (HMPAO-SPECT) of the brain as a means of detecting nervous tissue damage in divers and to determine if there is any correlation between brain image and a diver's history of diving or decompression illness (DCI). METHODS: 28 commercial divers with a history of DCI, 26 divers with no history of DCI, and 19 non-diving controls were examined with brain HMPAO-SPECT. Results were classified by observer assessment as normal (I) or as a pattern variants (II-V). The brain images of a subgroup of these divers (n = 44) and the controls (n = 17) were further analysed with a first order texture analysis technique based on a grey level histogram. RESULTS: 15 of 54 commercial divers (28%) were visually assessed as having HMPAO-SPECT images outside normal limits compared with 15.8% in appropriately identified non-diver control subjects. 18% of divers with a history of DCI were classified as having a pattern different from the normal image compared with 38% with no history of DCI. No association was established between the presence of a pattern variant from the normal image and history of DCI, diving, or other previous possible neurological insult. On texture analysis of the brain images, divers had a significantly lower mean grey level (MGL) than non-divers. Divers with a history of DCI (n = 22) had a significantly lower MGL when compared with divers with no history of DCI (n = 22). Divers with > 14 years professional diving or > 100 decompression days a year had a significantly lower MGL value. CONCLUSIONS: Observer assessment of HMPAO-SPECT brain images can lead to disparity in results. Texture analysis of the brain images supplies both an objective and consistent method of measurement. A significant correlation was found between a low measure of MGL and a history of DCI. There was also an indication that diving itself had an effect on texture measurement, implying that it had caused subclinical nervous tissue damage. PMID:9166130
Diver-based integrated navigation/sonar sensor
NASA Astrophysics Data System (ADS)
Lent, Keith H.
1999-07-01
Two diver based systems, the Small Object Locating Sonar (SOLS) and the Integrated Navigation and Sonar Sensor (INSS) have been developed at Applied Research Laboratories, the University of Texas at Austin (ARL:UT). They are small and easy to use systems that allow a diver to: detect, classify, and identify underwater objects; render large sector visual images; and track, map and reacquire diver location, diver path, and target locations. The INSS hardware consists of a unique, simple, single beam high resolution sonar, an acoustic navigation systems, an electronic depth gauge, compass, and GPS and RF interfaces, all integrated with a standard 486 based PC. These diver sonars have been evaluated by the very shallow water mine countermeasure detachment since spring 1997. Results are very positive, showing significantly greater capabilities than current diver held systems. For example, the detection ranges are increased over existing systems, and the system allows the divers to classify mines at a significant stand off range. As a result, the INSS design has been chosen for acquisition as the next generation diver navigation and sonar system. The EDMs for this system will be designed and built by ARL:UT during 1998 and 1999 with production planned in 2000.
[Patent foramen ovale and decompression illness in divers].
Sivertsen, Wiebke; Risberg, Jan; Norgård, Gunnar
2010-04-22
About 25 % of the population has patent foramen ovale, and the condition has been assumed to be a causal factor in decompressive illness. Transcatheter closure is possible and is associated with a relatively low risk, but it has not been clarified whether there is an indication for assessment and treatment of the condition in divers. The present study explored a possible relationship between a patent foramen ovale and the risk for decompression illness in divers, if there are categories of divers that should be screened for the condition and what advice should be given to divers with this condition. The review is based on literature identified through a search in Pubmed and the authors' long clinical experience in the field. The risk of decompression illness for divers with a persistent foramen ovale is about five times higher than that in divers without this condition, but the absolute risk for decompression illness is only 2.5 after 10,000 dives. A causal association has not been shown between patent foramen ovale and decompression illness. Even if closure of patent foramen ovale may be done with relatively small risk, the usefulness of the procedure has not been documented in divers. We do not recommend screening for patent foramen ovale in divers because the absolute risk of decompression illness is small and transcatheter closure is only indicated after decompression illness in some occupational divers.
2002-09-12
KENNEDY SPACE CENTER, FLA. -- Andy Fish, an SRB retrieval diver and diver medical technician with United Space Alliance, is in the spotlight for helping rescue a diver in distress off Cape Canaveral Sept. 11. Fish and others were on a certification exercise on board Freedom Star, one of the Shuttle Rocket Booster retrieval ships, manned by USA workers. The ship was near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. Fish had experience with distressed divers. He stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and taken to Florida Hospital. .
Use of handheld sonar to locate a missing diver.
McGrane, Owen; Cronin, Aaron; Hile, David
2013-03-01
The purpose of this study was to investigate whether a handheld sonar device significantly reduces the mean time needed to locate a missing diver. This institutional review board approved, prospective, crossover study used a voluntary convenience sample of 10 scuba divers. Participants conducted both a standard and modified search to locate a simulated missing diver. The standard search utilized a conventional search pattern starting at the point where the missing diver (simulated) was last seen. The modified search used a sonar beacon to augment the search. For each search method, successful completion of the search was defined as locating the missing diver within 40 minutes. Twenty total dives were completed. Using a standard search pattern, the missing diver was found by only 1 diver (10%), taking 18 minutes and 45 seconds. In the sonar-assisted search group, the missing diver was found by all 10 participants (100%), taking an average of 2 minutes and 47 seconds (SD 1 minute, 20 seconds). Using the nonparametric related samples Wilcoxon signed rank test, actual times between the sonar group and the standard group were significant (P < .01). Using paired samples t tests, the sonar group's self-assessed confidence increased significantly after using the sonar (P < .001), whereas the standard group decreased in confidence (not statistically significant, P = .111). Handheld sonar significantly reduces the mean duration to locate a missing diver as well as increasing users' confidence in their ability to find a missing diver when compared with standard search techniques. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
A Lot of Good Physics in the Cartesian Diver
ERIC Educational Resources Information Center
De Luca, Roberto; Ganci, Salvatore
2011-01-01
The Cartesian diver experiment certainly occupies a place of honour in old physics textbooks as a vivid demonstration of Archimedes' buoyancy. The original experiment, as described in old textbooks, shows Archimedes buoyancy qualitatively: when the increased weight of the diver is not counterbalanced by Archimedes' buoyancy, the diver sinks. When…
46 CFR 197.346 - Diver's equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...
46 CFR 197.346 - Diver's equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...
Managing scuba divers to meet ecological goals for coral reef conservation.
Sorice, Michael G; Oh, Chi-Ok; Ditton, Robert B
2007-06-01
Marine protected areas increasingly are challenged to maintain or increase tourism benefits while adequately protecting resources. Although carrying capacity strategies can be used to cope with use-related impacts, there is little understanding of divers themselves, their management preferences, and how preferences relate to conservation goals. By using a stated preference choice modeling approach, we investigated the choices divers make in selecting diving trips to marine protected areas as defined by use level, access, level of supervision, fees, conservation education, and diving expectations. Logit models showed that divers preferred a more restrictive management scenario over the status quo. Divers favored reductions in the level of site use and increased levels of conservation education. Divers did not favor fees to access protected areas, having less access to the resource, or extensive supervision. Finally, divers were much more willing to accept increasingly restrictive management scenarios when they could expect to see increased marine life.
Understanding the underwater behaviour of scuba divers in Hong Kong.
Chung, Shan-Shan; Au, Alfred; Qiu, Jian-Wen
2013-04-01
Diving-related activities may constitute a major threat to coral reefs. This study aimed to quantify the impact of diving in Hong Kong on hard corals and understand how socio-economic characteristics and experience level of divers influence diver-inflicted damage. We recorded and analysed the underwater behaviour of 81 recreational divers. On average, a diver was in contact with marine biota 14.7 times with about 40% of contacts involved corals and 38% were damaging contacts with corals or other biota in a single dive. The most harm-inflicting groups included inexperienced and camera-carrying divers. Although Hong Kong divers did not make many damaging contacts with corals, there is still an imminent need to determine the scale of damage from diving activities on the marine ecosystem given the rapid development of marine-based tourism and the limited coral-inhabited areas in Hong Kong where the marine environment is already under stress from anthropogenic activities.
Understanding the Underwater Behaviour of Scuba Divers in Hong Kong
NASA Astrophysics Data System (ADS)
Chung, Shan-shan; Au, Alfred; Qiu, Jian-Wen
2013-04-01
Diving-related activities may constitute a major threat to coral reefs. This study aimed to quantify the impact of diving in Hong Kong on hard corals and understand how socio-economic characteristics and experience level of divers influence diver-inflicted damage. We recorded and analysed the underwater behaviour of 81 recreational divers. On average, a diver was in contact with marine biota 14.7 times with about 40 % of contacts involved corals and 38 % were damaging contacts with corals or other biota in a single dive. The most harm-inflicting groups included inexperienced and camera-carrying divers. Although Hong Kong divers did not make many damaging contacts with corals, there is still an imminent need to determine the scale of damage from diving activities on the marine ecosystem given the rapid development of marine-based tourism and the limited coral-inhabited areas in Hong Kong where the marine environment is already under stress from anthropogenic activities.
Kočvara, Luboš; Sajdlová, Zuzana; Hoang The, Son Chung; Šmejkal, Marek; Peterka, Jiří
2017-01-01
So far, perch egg strands have been considered unpalatable biological material. However, we repeatedly found egg strands of European perch (Perca fluviatilis) in the diet of European catfish (Silurus glanis) caught by longlines in Milada and Most Lakes, Czech Republic. The finding proves that perch egg strands compose a standard food source for this large freshwater predatory fish. It extends the present knowledge on catfish foraging plasticity, showing it as an even more opportunistic feeder. Utilization of perch egg strands broadens the catfish diet niche width and represents an advantage against other fish predators. Comparison of datasets from extensive gillnet and SCUBA diver sampling campaigns gave the evidence that at least in localities where food sources are limited, multilevel predation by catfish may have an important impact on the perch population. PMID:28060862
Ratmanova, Patricia; Semenyuk, Roxana; Popov, Daniil; Kuznetsov, Sergey; Zelenkova, Irina; Napalkov, Dmitry; Vinogradova, Olga
2016-07-01
The aim of the study was to investigate the effects of voluntary breath-holding on brain activity and physiological functions. We hypothesised that prolonged apnoea would trigger cerebral hypoxia, resulting in a decrease of brain performance; and the apnoea's effects would be more pronounced in breath-hold divers. Trained breath-hold divers and non-divers performed maximal dry breath-holdings. Lung volume, alveolar partial pressures of O2 and CO2, attention and anxiety levels were estimated. Heart rate, blood pressure, arterial blood oxygenation, brain tissue oxygenation, EEG, and DC potential were monitored continuously during breath-holding. There were a few significant changes in electrical brain activity caused by prolonged apnoea. Brain tissue oxygenation index and DC potential were relatively stable up to the end of the apnoea in breath-hold divers and non-divers. We also did not observe any decrease of attention level or speed of processing immediately after breath-holding. Interestingly, trained breath-hold divers had some peculiarities in EEG activity at resting state (before any breath-holding): non-spindled, sharpened alpha rhythm; slowed-down alpha with the frequency nearer to the theta band; and untypical spatial pattern of alpha activity. Our findings contradicted the primary hypothesis. Apnoea up to 5 min does not lead to notable cerebral hypoxia or a decrease of brain performance in either breath-hold divers or non-divers. It seems to be the result of the compensatory mechanisms similar to the diving response aimed at centralising blood circulation and reducing peripheral O2 uptake. Adaptive changes during apnoea are much more prominent in trained breath-hold divers.
Injury survey in scuba divers of British Sub-Aqua Club: A retrospective study
Hyun, Gwang-Suk; Jee, Yong-Seok; Park, Jung-Min; Cho, Nam-Heung; Cha, Jun-Youl
2015-01-01
Scuba diving itself is generally known as a safe sports. However, various injury accidents can happen, and the incidences vary depending on divers’ education grade levels about the risks. Therefore, the study set out to identify and analyze the causes and patterns of injuries depending on the divers’ safety education grade levels through a questionnaire survey targeting ocean divers (n=12), sports divers (n=16), and dive leaders (n=15), all of whom belong to the British Sub-Aqua Club. After conducting a frequency analysis on the collected questionnaires, the conclusions are made as follows. First, in terms of diving depth, the most frequent diving depth was 15–20 m among ocean divers, 20–25 m among sports divers, and 15–20 m in case of dive leaders. Second, with regard to the causes of injuries, the most frequently answered causes are ‘overtension’ and ‘low skill’ among ocean divers; ‘low skill’ among sports divers; ‘overaction’ among dive leaders. Third, in terms of injury patterns, the most frequently answered injury patterns are ‘ear’ injuries among ocean divers; ‘ankle’ injuries among sports divers; ‘ankle’ and ‘calf’ injuries among dive leaders. Fourth, with regard to who performed first-aid when an injury accident happened, the most frequent answers are ‘instructor’ among ocean divers; ‘instructor’ and ‘self’ among sports divers; ‘self’ among dive leaders. We might suggest that more efforts need to be made to improve divers’ low dependence on specialists for treatment and consultation so that we can prevent an injury from leading to the second injury accident. PMID:26730384
Suresh, Rahul; Pavela, James; Kus, Marcus S; Alleman, Tony; Sanders, Robert
2018-01-01
In April 2016 the Association of Diving Contractors International (ADCI) consensus guidelines began recommending annual cardiovascular risk stratification of commercial divers using the Framingham Risk Score (FRS). For those at elevated risk, further testing is recommended. This approach has raised concerns about potential operational and financial impacts. However, the prevalence of elevated cardiovascular risk and need for additional testing among commercial divers is not known. Clinical data required to calculate the FRS was abstracted for 190 commercial divers in two cohorts. Population demographics, FRS distribution, contributions of risk factors and effect of interventions on reducing risk-factor burden were assessed. Mean FRS score was 1.68 ± 6.35 points, with 13 divers (6.8%) at intermediate risk and none at high 10-year risk. In these 13 divers, the mean contributions to the FRS were from age (6.5 points), cholesterol (3.1 pts.), smoking (1.3 pts.), highdensity lipoprotein (1 pt.), and systolic blood pressure (0.8 pts). The youngest age group had a significantly higher modifiable risk core than the oldest age group (5.87 vs. 1.2 points, P ⟨ 0.001). All 13 intermediate risk divers could have been reclassified as low-risk with successful treatment of modifiable risk factors. The prevalence of elevated cardiovascular risk among commercial divers is low, and treatment of modifiable risk factors could reclassify those at intermediate risk to low risk. Therefore, FRS implementation coupled with intensive risk-reduction strategies for at risk-divers may help improve diver health and prolong the careers of divers while limiting the need for additional testing and adverse operational impact. Copyright© Undersea and Hyperbaric Medical Society.
Role of social interactions in dynamic patterns of resource patches and forager aggregation
Tania, Nessy; Vanderlei, Ben; Heath, Joel P.; Edelstein-Keshet, Leah
2012-01-01
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer–scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly (“producers”) and those that exploit other foragers to find food (“scroungers” or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to “waves of pursuit.” Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers’ food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction—i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators. PMID:22745167
Lauren M. Heesemann; Jerry J. Vaske; David K. Loomis
2010-01-01
This study examines Florida Keys snorkeler and SCUBA diver encounter norms using the Potential for Conflict Index2 (PCI2). Snorkelers and SCUBA divers evaluated the acceptability of encountering a specific number of other snorkelers and SCUBA divers on a 7-point scale ranging from extremely acceptable (3) to extremely...
A suspended dive-net technique for catching territorial divers
Uher-Koch, Brian D.; Rizzolo, Daniel; Wright, Kenneth G.; Schmutz, Joel A.
2016-01-01
A variety of methods such as night-lighting and lift nets have been used to catch divers (Gavidae), although 24-hour daylight in the Arctic summer and the remote nature of field sites can make the use of these traditional methods impossible. Our research required capture of adult divers at remote locations in northern Alaska. Here we describe a suspended dive-net technique that we used to safely capture territorial White-billed Gavia adamsii and Pacific Divers G. pacifica and that is lightweight and easy to set up. We also were able to capture divers with chicks, and failed breeders, and suggest that this method could be used to catch other territorial aquatic diving birds, especially other diver species.
Cohort Study of Multiple Brain Lesions in Sport Divers: Role of a Patent Foramen Ovale
NASA Technical Reports Server (NTRS)
Knauth, Michael; Ries, Stefan; Pohimann, Stefan; Kerby, Tina; Forstring, Michael; Daffertshofer, Michael; Hennerici,Michael; Sartor, Klaus
1997-01-01
To investigate the role of a patent foramen ovale in the pathogenesis of multiple brain lesions acquired by sport divers in the absence of reported decompression symptoms. Design: Prospective double blind cohort study. . Setting Diving clubs around Heidelberg and departments of neuroradiology and neurology. Subjects: 87 sport divers with a minimum of 160 scuba dives (dives with self contained underwater breathing apparatus). Main outcome measures: Presence of multiple brain lesions visualised by cranial magnetic resonance imaging and presence and size of patent foramen ovale as documented by echocontrast transcranial Doppler ultrasonograhy. Results: 25 subjects were found to have a right-to-left shunt, 13 with a patent foramen ovale of high haemodynamic relevance. A total of 41 brain lesions were detected in 11 divers. There were seven brain lesions in seven divers without a right-to-left shunt and 34 lesions in four divers with a right-to-left shunt Multiple brain lesions occurred exclusively in three divers with a large patent foramen ovale (P=0.004). Conclusions: Multiple brain lesions in sport divers were associated with presence of a large patent foramen ovale. This association suggests paradoxical gas embolism as the pathological mechanism. A patent foramen ovale of high haemodynamic relevance seems to be an important risk factor for developing multiple brain lesions in sport divers.
The Cartesian Diver, Surface Tension and the Cheerios Effect
ERIC Educational Resources Information Center
Chen, Chi-Tung; Lee, Wen-Tang; Kao, Sung-Kai
2014-01-01
A Cartesian diver can be used to measure the surface tension of a liquid to a certain extent. The surface tension measurement is related to the two critical pressures at which the diver is about to sink and about to emerge. After sinking because of increasing pressure, the diver is repulsed to the centre of the vessel. After the pressure is…
Shona Paterson; David K. Loomis
2010-01-01
This paper presents research conducted for the Florida Reef Resilience Program on nonresident recreational SCUBA divers in three zones of the Florida Keys. When divers were segmented into specialization subgroups for analysis, divers in different subgroups tended to use different geographic locations. These results suggest differences in user preferences; yet when...
New Polish occupational health and safety regulations for underwater works.
Kot, Jacek; Sićko, Zdzisław
2007-01-01
In Poland, the new regulation of the Ministry of Health on Occupational Health for Underwater Works (dated 2007) pursuant to the Act on Underwater Works (dated 2003) has just been published. It is dedicated for commercial, non-military purposes. It defines health requirements for commercial divers and candidates for divers, medical assessment guide with a list of specific medical tests done on initial and periodical medical examination in order for a diver or a candidate for diver to be recognised fit for work, health surveillance during diving operations, compression and decompression procedures, list of content for medical equipment to be present at any diving place, formal qualifications for physicians conducting medical assessment of divers, requirements for certifications confirming the medical status of divers and candidates for divers. Decompression tables cover divings up to 120 meters of depth using compressed air, oxygen, nitrox and heliox as breathing mixtures. There are also decompression tables for repetitive diving, altitude diving and diving in the high-density waters (mud diving). It this paper, general description of health requirements for divers, as well as decompression tables that are included in the new Regulation on Occupational Health for Underwater Works are presented.
Otorhinolaryngologic disorders and diving accidents: an analysis of 306 divers.
Klingmann, Christoph; Praetorius, Mark; Baumann, Ingo; Plinkert, Peter K
2007-10-01
Diving is a very popular leisure activity with an increasing number of participants. As more than 80% of the diving related problems involve the head and neck region, every otorhinolaryngologist should be familiar with diving medical standards. We here present an analysis of more than 300 patients we have treated in the past four years. Between January 2002 and October 2005, 306 patients presented in our department with otorhinological disorders after diving, or after diving accidents. We collected the following data: name, sex, age, date of treatment, date of accident, diagnosis, special aspects of the diagnosis, number of dives, diving certification, whether and which surgery had been performed, history of acute diving accidents or follow up treatment, assessment of fitness to dive and special remarks. The study setting was a retrospective cohort study. The distribution of the disorders was as follows: 24 divers (8%) with external ear disorders, 140 divers (46%) with middle ear disorders, 56 divers (18%) with inner ear disorders, 53 divers (17%) with disorders of the nose and sinuses, 24 divers (8%) with decompression illness (DCI) and 9 divers (3%) who complained of various symptoms. Only 18% of the divers presented with acute disorders. The most common disorder (24%) was Eustachian tube dysfunction. Female divers were significantly more often affected. Chronic sinusitis was found to be associated with a significantly higher number of performed dives. Conservative treatment failed in 30% of the patients but sinus surgery relieved symptoms in all patients of this group. The middle ear is the main problem area for divers. Middle ear ventilation problems due to Eustachian tube dysfunction can be treated conservatively with excellent results whereas pathology of the tympanic membrane and ossicular chain often require surgery. More than four out of five patients visited our department to re-establish their fitness to dive. Although the treatment of acute diving-related disorders is an important field for the treatment of divers, the main need of divers seems to be assessment and recovery of their fitness to dive.
Tinker, M.T.; Mangel, M.; Estes, J.A.
2009-01-01
Question: How does the ability to improve foraging skills by learning, and to transfer that learned knowledge, affect the development of intra-population foraging specializations? Features of the model: We use both a state-dependent life-history model implemented by stochastic dynamic programming (SDPM) and an individual-based model (IBM) to capture the dynamic nature of behavioural preferences in feeding. Variables in the SDPM include energy reserves, skill levels, energy and handling time per single prey item, metabolic rate, the rates at which skills are learned and forgotten, the effect of skills on handling time, and the relationship between energy reserves and fitness. Additional variables in the IBM include the probability of successful weaning, the logistic dynamics of the prey species with stochastic recruitment, the intensity of top-down control of prey by predators, the mean and variance in skill levels of new recruits, and the extent to which learned Information can be transmitted via matrilineal social learning. Key range of variables: We explore the effects of approaching the time horizon in the SDPM, changing the extent to which skills can improve with experience, increasing the rates of learning or forgetting of skills, changing whether the learning curve is constant, accelerating (T-shaped) or decelerating ('r'-shaped), changing both mean and maximum possible energy reserves, changing metabolic costs of foraging, and changing the rate of encounter with prey. Conclusions: The model results show that the following factors increase the degree of prey specialization observed in a predator population: (1) Experience handling a prey type can substantially improve foraging skills for that prey. (2) There is limited ability to retain complex learned skills for multiple prey types. (3) The learning curve for acquiring new foraging skills is accelerating, or J-shaped. (4) The metabolic costs of foraging are high relative to available energy reserves. (5) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.
Incidence and Features of Barodontalgia Among Military Divers.
Gunepin, Mathieu; Derache, Florence; Blatteau, Jean-Eric; Nakdimon, Idan; Zadik, Yehuda
2016-02-01
Divers are vulnerable to barodontalgia (atmospheric pressure change related dental pain), which may jeopardize diving safety and mission completion. Our aim was to investigate the experience of barodontalgia among western military divers. French Armed Forces diving personnel were asked to answer a structured questionnaire including questions regarding their oral health, diving and career features, and barodontalgia while diving. For analysis, the participants were divided into commando/clearance divers (Group A) and ship divers (Group B). All the requested 1389 divers agreed to participate in the study (100%) and 1317 divers (94.8%) who fully completed the questionnaire were included in the analysis. Of these 1317 individuals, 96 (7.3%) suffered from at least 1 episode of barodontalgia while diving, with a total of 119 episodes of barodontalgia. Barodontalgia was more frequent in the upper (62.2%) than the lower dentition (37.8%) (OR = 2.7; 95% CI, 1.6-4.5) and appeared more common during descent (77.3%) than ascent (22.7%) (OR = 11.6; 95% CI, 6.3-31.3). Barodontalgia experience was higher in divers who have an examination less than once per year (14.5%) in comparison to divers who usually have a dental examination once a year or more (6.3%) (OR = 2.5; 95% CI, 1.5-4.2). Barodontalgia mostly appeared in the maxilla and during descent; therefore, a great role for barosinusitis in the etiology of oral pain while diving may be suggested. The infrequent experience of barodontalgia in divers who routinely visit the dentist once a year or more suggests that the risk of barodontalgia might decrease with the maintenance of a good oral status.
Baranto, Adad; Hellström, Mikael; Nyman, Rickard; Lundin, Olof; Swärd, Leif
2006-09-01
Several studies have been published on disc degeneration among young athletes in sports with great demands on the back, but few on competitive divers; however, there are no long-term follow-up studies. Twenty elite divers between 10 and 21 years of age, with the highest possible national ranking, were selected at random without knowledge of previous or present back injuries or symptoms for an MRI study of the thoraco-lumbar spine in a 5-year longitudinal study. The occurrence of MRI abnormalities and their correlation with back pain were evaluated. Eighty-nine percent of the divers had a history of back pain and the median age at the first episode of back pain was 15 years. Sixty-five percent of the divers had MRI abnormalities in the thoraco-lumbar spine already at baseline. Only one diver without abnormalities at baseline had developed abnormalities at follow-up. Deterioration of any type of abnormality was found in 9 of 17 (53%) divers. Including all disc levels in all divers, the total number of abnormalities increased by 29% at follow-up, as compared to baseline. The most common abnormalities were reduced disc signal, Schmorl's nodes, and disc height reduction. Since almost all divers had previous or present back pain, a differentiated analysis of the relationship between pain and MRI findings was not possible. However, the high frequency of both back pain and MRI changes suggests a causal relationship. In conclusion, elite divers had high frequency of back pain at young ages and they run a high risk of developing degenerative abnormalities of the thoraco-lumbar spine, probably due to injuries to the spine during the growth spurt.
Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots.
Dormanesh, Banafshe; Vosoughi, Kia; Akhoundi, Fahimeh H; Mehrpour, Masoud; Fereshtehnejad, Seyed-Mohammad; Esmaeili, Setareh; Sabet, Azin Shafiee
2016-12-01
The risky working environments of divers and pilots, and the possible role of extreme ambient pressure in carotid stenosis, make ischemic stroke an important occupational concern among these professionals. In this study, we aimed to evaluate the association of being exposed to hyperbaric or hypobaric conditions with carotid artery stenosis by comparing common carotid intima-media thickness (CCIMT) and blood flow velocities of cerebral arteries in divers and pilots using carotid duplex ultrasound (CDUS) and transcranial Doppler (TCD). CDUS and transtemporal TCD were performed in 29 divers, 36 pilots and 30 control participants. Medical history, blood pressure, lipid profile and blood sugar were recorded to control the previously well-known risk factors of atherosclerosis. Findings of the CDUS and TCD [including: CCIMT and blood flow velocities of internal carotid artery (ICA), common carotid artery (CCA), and middle cerebral artery (MCA)] of divers and pilots were compared with those of the control group using regression analysis models. Both right and left side CCIMT were significantly higher in divers (P < 0.05) and pilots (P < 0.05) in comparison with the control group. Carotid index [peak systolic velocity (PSV) of ICA/PSV of CCA) of divers and pilots were also higher than the control group. TCD findings were not significantly different between divers, pilots, and the control group. Increased CCIMT and carotid index in diver and pilot groups appear to be suggestive of accelerated atherosclerosis of carotid artery in these occupational groups.
Human memory retrieval as Lévy foraging
NASA Astrophysics Data System (ADS)
Rhodes, Theo; Turvey, Michael T.
2007-11-01
When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.
Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav
2017-12-01
Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Underwater Acoustic Source Localisation Among Blind and Sighted Scuba Divers: Comparative study.
Cambi, Jacopo; Livi, Ludovica; Livi, Walter
2017-05-01
Many blind individuals demonstrate enhanced auditory spatial discrimination or localisation of sound sources in comparison to sighted subjects. However, this hypothesis has not yet been confirmed with regards to underwater spatial localisation. This study therefore aimed to investigate underwater acoustic source localisation among blind and sighted scuba divers. This study took place between February and June 2015 in Elba, Italy, and involved two experimental groups of divers with either acquired (n = 20) or congenital (n = 10) blindness and a control group of 30 sighted divers. Each subject took part in five attempts at an under-water acoustic source localisation task, in which the divers were requested to swim to the source of a sound originating from one of 24 potential locations. The control group had their sight obscured during the task. The congenitally blind divers demonstrated significantly better underwater sound localisation compared to the control group or those with acquired blindness ( P = 0.0007). In addition, there was a significant correlation between years of blindness and underwater sound localisation ( P <0.0001). Congenital blindness was found to positively affect the ability of a diver to recognise the source of a sound in an underwater environment. As the correct localisation of sounds underwater may help individuals to avoid imminent danger, divers should perform sound localisation tests during training sessions.
NASA Astrophysics Data System (ADS)
Giglio, Vinicius J.; Luiz, Osmar J.; Schiavetti, Alexandre
2016-03-01
In the last two decades, coral reefs have become popular among recreational divers, especially inside marine protected areas. However, the impact caused by divers on benthic organisms may be contributing to the degradation of coral reefs. We analyzed the behavior of 142 scuba divers in the Abrolhos National Marine Park, Brazil. We tested the effect of diver profile, reef type, use of additional equipment, timing, and group size on diver behavior and their contacts with benthic organisms. Eighty-eight percent of divers contacted benthic organism at least once, with an average of eight touches and one damage per dive. No significant differences in contacts were verified among gender, group size, or experience level. Artificial reef received a higher rate of contact than pinnacle and fringe reefs. Specialist photographers and sidemount users had the highest rates, while non-users of additional equipment and mini camera users had the lowest contact rates. The majority of contacts were incidental and the highest rates occurred in the beginning of a dive. Our findings highlight the need of management actions, such as the provision of pre-dive briefing including ecological aspects of corals and beginning dives over sand bottoms or places with low coral abundance. Gathering data on diver behavior provides managers with information that can be used for tourism management.
Giglio, Vinicius J; Luiz, Osmar J; Schiavetti, Alexandre
2016-03-01
In the last two decades, coral reefs have become popular among recreational divers, especially inside marine protected areas. However, the impact caused by divers on benthic organisms may be contributing to the degradation of coral reefs. We analyzed the behavior of 142 scuba divers in the Abrolhos National Marine Park, Brazil. We tested the effect of diver profile, reef type, use of additional equipment, timing, and group size on diver behavior and their contacts with benthic organisms. Eighty-eight percent of divers contacted benthic organism at least once, with an average of eight touches and one damage per dive. No significant differences in contacts were verified among gender, group size, or experience level. Artificial reef received a higher rate of contact than pinnacle and fringe reefs. Specialist photographers and sidemount users had the highest rates, while non-users of additional equipment and mini camera users had the lowest contact rates. The majority of contacts were incidental and the highest rates occurred in the beginning of a dive. Our findings highlight the need of management actions, such as the provision of pre-dive briefing including ecological aspects of corals and beginning dives over sand bottoms or places with low coral abundance. Gathering data on diver behavior provides managers with information that can be used for tourism management.
Buzzacott, P; Denoble, P J
2017-01-01
The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.
Brain MRI signal abnormalities and right-to-left shunting in asymptomatic military divers.
Gempp, Emmanuel; Sbardella, Fabrice; Stephant, Eric; Constantin, Pascal; De Maistre, Sebastien; Louge, Pierre; Blatteau, Jean-Eric
2010-11-01
We conducted a controlled study to assess the prevalence of brain MRI hyperintense signals and their correlation with right-to-left shunting (RLS) in military divers. We prospectively enrolled 32 asymptomatic military divers under 41 yr of age and 32 non-diving healthy subjects matched with respect to age and vascular disease risk factors. We examined both groups with a 3-Tesla brain MRI; RLS was detected using transcranial pulsed Doppler in divers only. Hyperintense spots were observed in 43.7% of the divers and 21.8% of the control subjects. In particular, divers with significant shunting exhibited a higher prevalence of hyperintensities compared to those with slight or no RLS (75% vs. 25%, respectively). Linear trend analysis also revealed a positive correlation between focal white matter changes, determined using a validated visual rating scale and the RLS grade. Healthy military divers with a hemodynamically relevant RLS have an increased likelihood of cerebral hyperintense spots compared to age-matched normal subjects. The clinical relevance of these MRI signal abnormalities and their causal relationship with diving remain unclear.
Assessing the spatial distribution of coral bleaching using small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.
2018-06-01
Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.
Persistent producer-scrounger relationships in bats.
Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi
2018-02-01
Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time.
Persistent producer-scrounger relationships in bats
Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi
2018-01-01
Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time. PMID:29441356
Leung, Elaine S.; Chilvers, B. Louise; Nakagawa, Shinichi; Moore, Antoni B.; Robertson, Bruce C.
2012-01-01
Sexual segregation (sex differences in spatial organisation and resource use) is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ) sea lion (Phocarctos hookeri), a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account sex differences in foraging behaviour, as well as differential threat-risk to external impacts such as fisheries bycatch. PMID:23028978
Design and Testing of a Diver Thermal Protection Garment
2008-05-01
Felske JD.. Bardy E., Cuviello R. , Walcztk J ., Reynolds D and Janish J and their citations are shown below. The extensive evaluation of the thermal...indefinitely which we have demonstrate in a few divers. We have performed these tests in resting divers ( Bardy et al 2007) and in exercising divers...PUBLICATIONS: 1. Felske JD. Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int J Heat & Mass Transfer 47
2002-09-11
KENNEDY SPACE CENTER, FLA. -- An Air Care team from Orlando take a distressed lobster diver to the helicopter to take him to Florida Hospital. The diver was picked up by the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. The ship had a dive team on board, including a diver medical technician, Andy Fish, as well as a hyperbaric chamber. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and then taken to Florida Hospital.
2002-09-11
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers on board the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, release a distressed lobster diver to an Air Care Team from Orlando for transfer to a hospital. The ship and its dive team, including a diver medical technician, Andy Fish, were instrumental in rescuing the diver off Cape Canaveral Sept. 11. The ship was on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and then taken to Florida Hospital.
Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf
NASA Astrophysics Data System (ADS)
Campagna, Claudio; Piola, Alberto R.; Marin, Maria Rosa; Lewis, Mirtha; Zajaczkovski, Uriel; Fernández, Teresita
2007-10-01
Elephant seals are wide-ranging, pelagic, deep-diving (average of 400-600 m) predators that typically travel to open waters and continental shelf edges thousands of kilometers from their land breeding colonies. We report a less common pattern of foraging in the shallow waters of a continental shelf. Southern elephant seals, Mirounga leonina, that breed at Península Valdés (Argentina), face an extended (˜1,000,000 km 2; 400-700 km-wide, depending on track), shallow (<150 m) and seasonally productive plateau, the Patagonian shelf. Adults of both sexes usually cross it in rapid transit to other potential foraging grounds on the shelf edge or in the Argentine Basin, but 2-4 year-old juveniles spread over the plateau and spent months in shallow waters. This behavior was recorded for 9 seals (5 males and 4 females) of 23 satellite-tracked juveniles (springs of 2004 and 2005) and for 2 subadult males studied in previous seasons. Trips included travel trajectories and time spent in areas where swim speed decreased, suggesting foraging. Preferred locations of juvenile females were in the proximity of the shelf break, where stratified waters had relatively high phytoplankton concentrations, but young and subadult males used the relatively cold (7-8 °C), low-salinity (˜33.3) mid-shelf waters, with depths of 105-120 m and a poorly stratified water column. Three of the latter seals, instrumented with time-depth recorders, showed dives compatible with benthic feeding and no diel pattern of depths distribution. Regions of the mid-shelf were used in different seasons and were associated with low chlorophyll- a concentration at the time of the visit, suggesting that surface productivity does not overlap with putative quality habitat for benthic foragers. Benthic diving on the shallow mid-shelf would be a resource partitioning strategy advantageous for young males prior to greater energetic demands of a high growth rate and a large body size. Later in life, the more predictable, bathymetry-forced, shelf-break front may offer the food resources that explain the uninterrupted increase of this population over several decades.
Feeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper use
Levermann, Nette; Galatius, Anders; Ehlme, Göran; Rysgaard, Søren; Born, Erik W
2003-01-01
Background Direct observations of underwater behaviour of free-living marine mammals are rare. This is particularly true for large and potentially dangerous species such as the walrus (Odobenus rosmarus). Walruses are highly specialised predators on benthic invertebrates – especially bivalves. The unique feeding niche of walruses has led to speculations as to their underwater foraging behaviour. Based on observations of walruses in captivity and signs of predation left on the sea floor by free-living walruses, various types of feeding behaviour have been suggested in the literature. In this study, however, the underwater feeding behaviour of wild adult male Atlantic walruses (O. r. rosmarus) is documented for the first time in their natural habitat by scuba-divers. The video recordings indicated a predisposition for use of the right front flipper during feeding. This tendency towards dextrality was explored further by examining a museum collection of extremities of walrus skeletons. Results During July and August 2001, twelve video-recordings of foraging adult male walruses were made in Young Sound (74°18 N; 20°15 V), Northeast Greenland. The recordings did not allow for differentiation among animals, however based on notes by the photographer at least five different individuals were involved. The walruses showed four different foraging behaviours; removing sediment by beating the right flipper, removing sediment by beating the left flipper, removing sediment by use of a water-jet from the mouth and rooting through sediment with the muzzle. There was a significant preference for using right flipper over left flipper during foraging. Measurements of the dimensions of forelimbs from 23 walrus skeletons revealed that the length of the right scapula, humerus, and ulna was significantly greater than that of the left, supporting our field observations of walruses showing a tendency of dextrality in flipper use. Conclusion We suggest that the four feeding behaviours observed are typical of walruses in general, although walruses in other parts of their range may have evolved other types of feeding behaviour. While based on small sample sizes both the underwater observations and skeletal measurements suggest lateralized limb use, which is the first time this has been reported in a pinniped. PMID:14572316
Annual variation in foraging ecology of prothonotary warblers during the breeding season
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) along the Tennessee River in west-central Tennessee during the breeding seasons of 1984-1987. We analyzed seven foraging variables to determine if this population exhibited annual variation in foraging behavior. Based on nearly 3,000 foraging maneuvers, most variables showed significant interyear variation during the four prenestling and three nestling periods we studied. This interyear variation probably was due -to proximate, environmental cues--such as distribution and abundance of arthropods - which, in turn, were influenced by local weather conditions. Researchers should consider the consequences of combining foraging behavior data collected in different years, because resolution of ecological trends may be sacrificed by considering only general patterns of foraging ecology and not the dynamics of those activities. In addition, because of annual variability, foraging data collected in only one year, regardless of the number of observations gathered, may not provide an accurate concept of the foraging ecology in insectivorous birds.
Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.
Toklu, Akin Savas; Cimsit, Maide
2009-04-01
Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
A Framework for Managing Diver Impacts on Historic Shipwrecks
NASA Astrophysics Data System (ADS)
Edney, Joanne
2016-12-01
Shipwrecks are becoming increasingly popular and, therefore important attractions for recreational scuba divers. Divers' usage of these sites has the potential to create a range of adverse impacts on their cultural heritage values. Impacts associated with recreational scuba diving include boat anchor and mooring damage, impairment of site integrity and stability, the effects of intentional and unintentional contact with shipwrecks and artifacts, as well as divers' exhaled air bubbles coming into contact with shipwrecks. While these consequences may not present a major threat in comparison to other human impacts, such as fishing activities, extractive industries or commercial salvage, their cumulative effect can be significant, particularly at sites where visitation levels are high. Unlike natural events such as storms, diver impacts can be controlled and managing these impacts is an important component of a heritage management strategy for any site. Heritage managers face the difficult challenge of, on the one hand, balancing divers' access to important underwater cultural heritage sites, and on the other hand, protecting these sites. This paper outlines the causes and nature of potential recreational diver impacts on shipwrecks, briefly describing a range of management approaches that can mitigate such impacts, and presents a framework for the management of diver impacts on cultural heritage values of historic shipwrecks. The framework is designed to assist managers in deciding on appropriate management actions and priorities for particular sites.
Underwater Acoustic Source Localisation Among Blind and Sighted Scuba Divers
Cambi, Jacopo; Livi, Ludovica; Livi, Walter
2017-01-01
Objectives Many blind individuals demonstrate enhanced auditory spatial discrimination or localisation of sound sources in comparison to sighted subjects. However, this hypothesis has not yet been confirmed with regards to underwater spatial localisation. This study therefore aimed to investigate underwater acoustic source localisation among blind and sighted scuba divers. Methods This study took place between February and June 2015 in Elba, Italy, and involved two experimental groups of divers with either acquired (n = 20) or congenital (n = 10) blindness and a control group of 30 sighted divers. Each subject took part in five attempts at an under-water acoustic source localisation task, in which the divers were requested to swim to the source of a sound originating from one of 24 potential locations. The control group had their sight obscured during the task. Results The congenitally blind divers demonstrated significantly better underwater sound localisation compared to the control group or those with acquired blindness (P = 0.0007). In addition, there was a significant correlation between years of blindness and underwater sound localisation (P <0.0001). Conclusion Congenital blindness was found to positively affect the ability of a diver to recognise the source of a sound in an underwater environment. As the correct localisation of sounds underwater may help individuals to avoid imminent danger, divers should perform sound localisation tests during training sessions. PMID:28690888
Dynamic foraging of a top predator in a seasonal polar marine environment.
Weinstein, Ben G; Friedlaender, Ari S
2017-11-01
The seasonal movement of animals at broad spatial scales provides insight into life-history, ecology and conservation. By combining high-resolution satellite-tagged data with hierarchical Bayesian movement models, we can associate spatial patterns of movement with marine animal behavior. We used a multi-state mixture model to describe humpback whale traveling and area-restricted search states as they forage along the West Antarctic Peninsula. We estimated the change in the geography, composition and characteristics of these behavioral states through time. We show that whales later in the austral fall spent more time in movements associated with foraging, traveled at lower speeds between foraging areas, and shifted their distribution northward and inshore. Seasonal changes in movement are likely due to a combination of sea ice advance and regional shifts in the primary prey source. Our study is a step towards dynamic movement models in the marine environment at broad scales.
Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville
2018-01-01
Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks.
Exercising divers' thermal protection as a function of water temperature.
Pendergast, David R; Mollendorf, Joseph
2011-01-01
Physiological adjustments and passive thermal insulation are not sufficient to protect divers in the cold and warm waters experienced by sport, professional and military divers. In a previous study of resting subjects, divers were protected by actively heated/cooled water that perfused a six-zone (head, torso, arms, hands, legs and feet) tube suit. Subsequently a self-contained diver thermal protection system (DTPS) was developed and used in this study to test male divers (n = 8) wearing a 6-mm foam neoprene wetsuit in water temperatures (T(W)) of 10 degrees C-39 degrees C at 4 feet in depth. The DTPS is a scuba backpack containing five thermoelectric devices that heat/cool water to 30 degrees C, six pumps that circulate the water through a six-zone tube suit via two manifolds, and an electronic controller. Skin temperatures (T(S), n = 17) and core temperature (T(C), capsule) were measured. The DTPS and each zone of the tube suit were also instrumented. Divers were tested with the DTPS operational (protected) and turned off (unprotected) for 90 minutes. In the unprotected condition, T(S) decreased and approached T(W), while T(C) trended to decrease over the exposure time. Mean T(S) as a function of T(W) was T(S) = 0.44 T(W) + 21.23 degrees C while unprotected, but T(S) = 0.19 T(W) + 27.1 degrees C when the diver was protected. The average total heating/cooling power required to protect the diver was 166 +/- 78W, 86 +/- 95W, 9 +/- 75W, 72 +/- 45W, 135 +/- 73W, 279 +/- 87W and 336 +/- 95W at 10, 15, 20, 25, 30, 35 and 39 degrees C water temperatures, respectively. This power requirement was nominally split 4%, 22%, 22%, 14%, 25% and 13% for head, torso, arms, hands, legs and feet, respectively. While unprotected, divers T(S) and T(C) did not remain within acceptable limits in T(W) below 25 degrees C or above 30 degrees C. When using the DTPS, however, they did remain within acceptable limits, and the divers reported they were comfortable.
Lopes, Juliane F. S.; Brugger, Mariana S.; Menezes, Regys B.; Camargo, Roberto S.; Forti, Luiz Carlos; Fourcassié, Vincent
2016-01-01
Foraging networks are a key element for ant colonies because they facilitate the flow of resources from the environment to the nest and they allow the sharing of information among individuals. Here we report the results of an 8-month survey, extending from November 2009 to June 2010, of the foraging networks of four mature colonies of Atta bisphaerica, a species of grass-cutting ant which is considered as a pest in Brazil. We found that the distribution of foraging effort was strongly influenced by the landscape features around the nests, in particular by the permanently wet parts of the pasture in which the nests were located. The foraging networks consisted of underground tunnels which opened on average at 21.5m from the nests and of above-ground physical trails that reached on average 4.70m in length. The use of the foraging networks was highly dynamic, with few sections of the networks used for long periods of time. Three different phases, which could be linked to the seasonal change in the local rainfall regime, could be identified in the construction and use of the foraging networks. The first phase corresponded to the beginning of the rainy season and was characterized by a low foraging activity, as well as a low excavation and physical trail construction effort. The second phase, which began in February and extended up to the end of the humid season at the end of March, was characterized by an intense excavation and trail construction effort, resulting in an expansion of the foraging networks. Finally, in the third phase, which corresponded to the beginning of the dry season, the excavation and trail construction effort leveled off or decreased while foraging activity kept increasing. Our hypothesis is that ants could benefit from the underground tunnels and physical trails built during the humid season to maintain their foraging activity at a high level. PMID:26752413
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078
Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Association of microparticles and neutrophil activation with decompression sickness.
Thom, Stephen R; Bennett, Michael; Banham, Neil D; Chin, Walter; Blake, Denise F; Rosen, Anders; Pollock, Neal W; Madden, Dennis; Barak, Otto; Marroni, Alessandro; Balestra, Costantino; Germonpre, Peter; Pieri, Massimo; Cialoni, Danilo; Le, Phi-Nga Jeannie; Logue, Christopher; Lambert, David; Hardy, Kevin R; Sward, Douglas; Yang, Ming; Bhopale, Veena B; Dujic, Zeljko
2015-09-01
Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS. Copyright © 2015 the American Physiological Society.
Reef fish communities are spooked by scuba surveys and may take hours to recover
Cheal, Alistair J.; Miller, Ian R.
2018-01-01
Ecological monitoring programs typically aim to detect changes in the abundance of species of conservation concern or which reflect system status. Coral reef fish assemblages are functionally important for reef health and these are most commonly monitored using underwater visual surveys (UVS) by divers. In addition to estimating numbers, most programs also collect estimates of fish lengths to allow calculation of biomass, an important determinant of a fish’s functional impact. However, diver surveys may be biased because fishes may either avoid or are attracted to divers and the process of estimating fish length could result in fish counts that differ from those made without length estimations. Here we investigated whether (1) general diver disturbance and (2) the additional task of estimating fish lengths affected estimates of reef fish abundance and species richness during UVS, and for how long. Initial estimates of abundance and species richness were significantly higher than those made on the same section of reef after diver disturbance. However, there was no evidence that estimating fish lengths at the same time as abundance resulted in counts different from those made when estimating abundance alone. Similarly, there was little consistent bias among observers. Estimates of the time for fish taxa that avoided divers after initial contact to return to initial levels of abundance varied from three to 17 h, with one group of exploited fishes showing initial attraction to divers that declined over the study period. Our finding that many reef fishes may disperse for such long periods after initial contact with divers suggests that monitoring programs should take great care to minimise diver disturbance prior to surveys. PMID:29844998
Cerebral magnetic resonance imaging of compressed air divers in diving accidents.
Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P
2009-01-01
To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.
Can Artificial Reef Wrecks Reduce Diver Impacts on Shipwrecks? The Management Dimension
NASA Astrophysics Data System (ADS)
Edney, Joanne; Spennemann, Dirk H. R.
2015-08-01
Managers have been advocating the use of artificial reef wrecks to diversify the experiences of recreational divers and thereby reduce the well-known impact on reefs. To examine whether artificial reef wrecks can serve as substitutes for historic shipwrecks this paper discusses the attitude of Australian divers to wreck diving in general and to artificial reef wrecks in particular. While the overwhelming majority of divers surveyed accepted the need for control, the experienced divers were less interested in artificial reef wrecks and less prepared to tolerate controls over their perceived freedom to dive wrecks. We present projections that show that this legacy issue will have largely resolved itself by 2025 due to attrition and natural ageing.
Rayl, Nathaniel; Bastille-Rousseau, Guillaume; Organ, John F.; Mumma, Matthew; Mahoney, Shane P.; Soulliere, Colleen; Lewis, Keith; Otto, Robert; Murray, Dennis; Waits, Lisette; Fuller, Todd
2018-01-01
Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator–prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves).During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined.As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per‐capita rate at which bears killed calves followed a type‐I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves.Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time‐scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator–prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore.
Rayl, Nathaniel D; Bastille-Rousseau, Guillaume; Organ, John F; Mumma, Matthew A; Mahoney, Shane P; Soulliere, Colleen E; Lewis, Keith P; Otto, Robert D; Murray, Dennis L; Waits, Lisette P; Fuller, Todd K
2018-05-01
Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time-scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator-prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Association between right-to-left shunts and brain lesions in sport divers.
Gerriets, Tibo; Tetzlaff, Kay; Hutzelmann, Alfred; Liceni, Thomas; Kopiske, Gerrit; Struck, Niklas; Reuter, Michael; Kaps, Manfred
2003-10-01
Recent studies suggest that healthy sport divers may develop clinically silent brain damage, based on the association between a finding of multiple brain lesions on MRI and the presence of right-to-left shunt, a pathway for venous gas bubbles to enter the arterial system. We performed echocontrast transcranial Doppler sonography in 42 sport divers to determine the presence of a right-to-left shunt. Cranial MRI was carried out using a 1.5 T magnet. A lesion was counted if it was hyperintense on both T2-weighted and T2-weighted fluid attenuated inversion recovery sequences. To test the hypothesis that the occurrence of postdive arterial gas emboli is related to brain lesions on MRI, we measured postdive intravascular bubbles in a subset of 15 divers 30 min after open water scuba dives. Echocontrast transcranial Doppler sonography revealed a right-to-left shunt in 16 of the divers (38%). Only one hyperintensive lesion of the central white matter was found and that was in a diver with no evidence of a right-to-left shunt. Postdive arterial gas emboli were detected in 3 out of 15 divers; they had a right-to-left shunt, but no pathologic findings on cranial magnetic resonance imaging. Our data support the theory that right-to-left shunts can serve as a pathway for venous gas bubbles into the arterial circulation. However, we could not confirm an association between brain lesions and the presence of a right-to-left shunt in sport divers.
ERIC Educational Resources Information Center
Planinsic, G.; Kos, M.; Jerman, R.
2004-01-01
It is quite easy to make a version of the well known Cartesian diver experiment that uses two immiscible liquids. This allows students to test their knowledge of density and pressure in explaining the diver's behaviour. Construction details are presented here together with a mathematical model to explain the observations.
Poor flight performance in deep-diving cormorants.
Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André
2011-02-01
Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.
46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Alternative Hull Examination Program options: Divers or...) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the...
Diving the wreck: risk and injury in sport scuba diving.
Hunt, J C
1996-07-01
This paper utilizes psychoanalytic theory to examine risk and injury in the case of a male deep sea diver. It examines the unconscious conflicts which appeared to fuel the diver's involvement in deep diving and to lead to a near fatal incident of decompression sickness. Particular attention is paid to the role of the diver's father in the evolution of the preoedipal and oedipal fantasies and conflicts which appear to be linked to the injury. The research is based on interviews with and fieldwork among recreational and deep divers.
Inner ear decompression sickness in compressed-air diving.
Klingmann, Christoph
2012-01-01
Inner ear decompression sickness (IEDCS) has become more frequently reported in recreational diving. We examined 34 divers after IEDCS and analyzed their dive profiles, pattern of symptoms, time of symptom onset and the association with a right-to left shunt (r/l shunt). Four divers used mixed gas and were excluded from the analysis. Of the remaining 30 divers, 25 presented with isolated IEDCS alone, while five divers had additional skin and neurological symptoms. All divers presented with vertigo (100%), and 12 divers reported additional hearing loss (40%). All symptoms occurred within 120 minutes (median 30 minutes) of ascent. Twenty-two of 30 divers (73.3%) showed a r/l shunt. A possible explanation for the frequent association of a r/l shunt and the dominance of vestibular rather than cochlear symptoms could be attributed to the different blood supply of the inner ear structures and the different size of the labyrinthine compartments. The cochlea has a blood supply up to four times higher than the vestibular part of the inner ear, whereas the vestibular fluid space is 30% larger. The higher prevalence of symptoms referrable to the less well-perfused vestibular organ provides further evidence that persistent local inert gas supersaturation may cause growth of incoming arterial bubbles and may therefore be an important pathophysiological factor in IEDCS.
Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.
Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen
2016-12-01
Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fishing amplifies forage fish population collapses.
Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C
2015-05-26
Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.
The hippocampus and exploration: dynamically evolving behavior and neural representations
Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul
2012-01-01
We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville
2018-01-01
Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks. PMID:29628904
Monitoring diver kinematics with dielectric elastomer sensors
NASA Astrophysics Data System (ADS)
Walker, Christopher R.; Anderson, Iain A.
2017-04-01
Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The ability of the sensors to measure joint angles was assessed by examining GoPro footage in the image processing software, ImageJ. This paper applies dielectric elastomer sensor technology to monitoring the leg motion of a diver. The experimental set-up and results are presented and discussed.
Glen, S
2004-01-01
Background: The need for routine medical examinations of sport divers in the Scottish Sub-Aqua Club (Scot-SAC) was revised in March 2000, and a new system using a self administered screening questionnaire was developed to allow divers to be assessed when necessary by doctors with diving medicine experience. Objective: To assess the effect of the new medical system on medical referee workload, diver exclusion rates, and diving incident frequency. Methods: All divers were required to complete a questionnaire to screen for conditions that might affect fitness to dive. Divers answering "Yes" to any of the questions had their medical background assessed by a diving doctor, and, if necessary, received a clinical examination or investigation. The rate of diver exclusions based on the questionnaire response was recorded in conjunction with analysis of the incident reports. Results: The number of forms requiring review by diving doctors increased from 1.2% to 5.7% (p<0.0001, 95% confidence interval (CI) –0.06 to –0.03) in the year after the introduction of the new medical system and gradually increased in subsequent years to 7.7% (p<0.0001, 95% CI –0.08 to –0.05). The number of divers failing to be certified fit to dive increased slightly from 0.7% to 1.0% after one year (p = 0.26, 95% CI –0.01 to 0.00) and subsequently to 2.0% (p = 0.0003, 95% CI 0.02 to –0.01) after three years. Most divers were certified fit to dive on the basis of the questionnaire alone, and only 0.9% required objective investigation (such as exercise testing or echocardiography). Analysis of the incidents during three years of follow up confirmed that no incident occurred because of an undetected pre-existing medical condition. Two incidents involved divers with hypertension, but both had received medical examinations and investigation based on their responses to the questionnaire. Conclusion: The new self administered questionnaire system appears to be an effective screening tool for the detection of divers requiring detailed assessment by doctors with diving medicine experience. PMID:15562174
Speth, Martin T; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel
2015-05-01
Conventional invertebrate models of aging have provided striking examples for the influence of food- and nutrient-sensing on lifespan and stress resilience. On the other hand, studies in highly social insects, such as honey bees, have revealed how social context can shape very plastic life-history traits, for example flexible aging dynamics in the helper caste (workers). It is, however, not understood how food perception and stress resilience are connected in honey bee workers with different social task behaviors and aging dynamics. To explore this linkage, we tested if starvation resilience, which normally declines with age, depends on food responsiveness in honey bees. We studied two typically non-senesced groups of worker bees with different social task behaviors: mature nurses (caregivers) and mature foragers (food collectors). In addition, we included a group of old foragers for which functional senescence is well-established. Bees were individually scored for their food perception by measuring the gustatory response to different sucrose concentrations. Subsequently, individuals were tested for survival under starvation stress. We found that starvation stress resilience, but not gustatory responsiveness differed between workers with different social task behaviors (mature nurses vs. mature foragers). In addition starvation stress resilience differed between foragers with different aging progressions (mature foragers vs. old foragers). Control experiments confirmed that differences in starvation resilience between mature nurses and mature foragers were robust against changing experimental conditions, such as water provision and activity. For all worker groups we established that individuals with low gustatory responsiveness were more resilient to starvation stress. Finally, for the group of rapidly aging foragers we found that low food responsiveness was linked to a delayed age-related decline in starvation resilience. Our study highlights associations between reduced food perception, increased survival capacity and delayed aging in highly social honey bees. We discuss that these associations may involve canonical internal nutrient sensing pathways, which are shared between honey bees and animal models with less plastic aging dynamics. Copyright © 2015 Elsevier Inc. All rights reserved.
Diver Relative UUV Navigation for Joint Human-Robot Operations
2013-09-01
loop response: (10) where Kej is the gain that scales the position error to force . Substituting the measured values for ζ and ων as well as the...Underwater Vehicle; Tethered ; Hovering; Autonomous Underwater Vehicle; Joint human-robot operations; dynamic, uncertain environments 15. NUMBER OF PAGES...4 Figure 3. The SeaBotix vLBV300 tethered AUV platform (left), and the planar vectored thruster
Divers revisited: The ventilatory response to carbon dioxide in experienced scuba divers.
Earing, Christopher Matthew Norton; McKeon, Damian John; Kubis, Hans-Peter
2014-05-01
To investigate the ventilatory response to CO2 in hyperoxia, hypoxia, and during exercise amongst experienced scuba divers and matched controls. Two studies were performed. The first investigated the CO2 sensitivity in rest and exercise using CO2 rebreathing in hyperoxia at a workload typical for diving with divers (n = 11) and controls (n = 11). The second study examined the respiratory drive of divers (n = 10) and controls (n = 10) whilst breathing four different gas mixtures balanced with N2 (ambient air; 25% O2/6% CO2; 13% O2; 13% O2/6% CO2) to assess the combined response to hypercapnia and moderate hypoxia. Exercise at a load typical for diving was found to have no effect on the ventilatory sensitivity to CO2 in divers (rest: 1.49 ± 0.33; exercise: 1.22 ± 0.55 [l/min × mmHg(-1)]) and controls (rest: 2.08 ± 0.71; exercise: 2.05 ± 0.98 [l/min × mmHg(-1)]) while differences in sensitivity remained between the groups. Inhalation of the four gas mixtures revealed the tested oxygen pressures caused no significant alteration in the ventilatory sensitivity to CO2 in divers and controls. Experienced divers possess a lower ventilatory response to CO2 which was not affected by exercise or the tested oxygen pressures suggesting a dominant adaptation of central CO2 sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
A subjective evaluation of a drinking system for saturation divers.
Hope, Arvid; Brekken, Rudolf
2010-03-01
Studies have shown that divers may lose large volumes of body fluids in hot water suit (HWS) dives lasting for four hours or longer, and that this dehydration is mainly caused by sweating. Body fluid balance may be impaired and the diver's alertness and power of judgement could be influenced by such imbalance. The main objective of the present study was to obtain a subjective judgement of a drinking system for divers (DSFD) and to obtain information related to body fluid loss during long saturation lock-out dives. Via a suction pipe imbedded in the microphone unit in the oronasal mask, the DSFD makes it possible for the diver to drink while in the water. Ten divers tested the drinking system during 12 saturation lock-out dives lasting on average for 5.5 h. A questionnaire was answered after each dive. The divers drank 21 times (range 5-30 times) during the dives, and the average drinking volume was 1.4 litre (range 1.0-1.5 litre) but only drank 0.04 litre (range 0-0.3 litre) in the bell after diving. The system was easy to operate and preparation and clothing did not cause any delay. The suction pipe did not intrude and the microphone performed excellently. The work in water was not hindered by DSFD and all divers were very satisfied with the drinking system. It was obvious that the need for fluid intake after a dive with DSFD was markedly reduced; another good indication of maintained body fluid balance.
Oceanography for Divers: Hazardous Marine Life. Diver Education Series.
ERIC Educational Resources Information Center
Somers, Lee H.
Most people find that the life of the marine environment is beautiful and fascinating. Of the thousands of marine animals and plants, relatively few constitute a real hazard to the diver. Although some species are dangerous and may, in some instances, inflict serious wounds, with a few exceptions marine animals are not aggressive. Most…
Emang, Diana; Lundhede, Thomas Hedemark; Thorsen, Bo Jellesmark
2016-11-01
The protected coral reefs off the coast of Malaysia receive numerous tourists, while also being as fishing grounds. These joint environmental pressures raise the need for additional costly conservation measures. It is natural to consider the potential for expanding the 'user pays' principle, already implemented in the form of various user fees. This study explores the potential for price discrimination among scuba divers at Sipadan in Malaysia. The study applies a choice experiment to estimate scuba divers willingness to pay higher user fees for avoiding decreases of or getting improvements in environmental and recreational aspects of the diving experience. We investigate how sensitivity to fee size and hence willingness to pay vary with suitable selected characteristics of divers. We find potentials for a third degree price discrimination strategy exploiting higher willingness to pay among foreign divers (45%), male divers (16%) and people who has visited Sipadan several times (25%). Thus, revised pricing structures could significantly increase funds for the preservation of Sipadan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forage dynamics in mixed tall fescue-bermudagras pastures of the Southern Piedmont USA
USDA-ARS?s Scientific Manuscript database
Botanical composition and forage productivity of mixed cool- and warm-season perennial pastures are important determinants of agricultural sustainability that can be influenced by management. We evaluated the factorial combination of three sources of nutrient application (inorganic only, organic + ...
Min, B R; Pinchak, W E; Fulford, J D; Puchala, R
2005-06-01
The aim of this study was to determine the effect of winter wheat (Triticum aestivum L.) forage growth stage, forage allowance, time of day, and commercial condensed tannins (CT) on steer bloat dynamics and in vitro ruminal gas production. Twenty-six crossbreed steers (Angus x Hereford x Salers; average initial BW = 194 +/- 26 kg) were used. Wheat forage allowances were either 18 kg (high forage allowance) and 6 kg (low forage allowance) of DM/(100 kg BW.d). In each bloat observation period, fresh wheat forage samples were hand-clipped to ground level in all study pastures for nutrient and in vitro ruminal gas production analyses. In vitro ruminal gas accumulation was measured at 0, 1, 2, 3, 4, 5, 6, and 12 h. Commercial CT was added at 0, 10, 15, and 20 mg of CT/g of DM. Bloat was scored once per week on two consecutive days at 0800 and 1500 during the vegetative stage and once every 2 wk during the reproductive stage of wheat development. Mean bloat score was calculated for each steer by time of day, stage of plant growth, and forage allowance. Bloat was detected in 65.8% of the observation periods. Average bloat scores were four and 2.5 times greater (P < 0.05) in cattle grazing at a high forage allowance than at a low forage allowance in the vegetative and reproductive growth phases of wheat, respectively. Rate of gas production was greater (P < 0.001) in the vegetative stage than in the reproductive stage. Steer bloat score was positively correlated with forage CP (r = 0.22; P < 0.05) and IVDMD (r = 0.32; P < 0.05). Rate of ruminal gas production was positively correlated (P < 0.01) to forage CP (r = 0.48), NPN (r = 0.40), soluble protein (r = 0.32), and IVDMD (r = 0.47). Conversely, negative correlations were found for forage DM (r = -0.20; P < 0.05), insoluble protein (r = -0.40), NDF (r = -0.69), and forage height (r = -0.49; P < 0.01) on the rate of ruminal gas production. Addition of CT at levels greater than 10 mg of CT/g of DM decreased (P < 0.05) the rate of in vitro ruminal gas and methane gas production after 5 h of incubation. Wheat pasture bloat is a complex disorder that varies across an array of forage and environmental conditions. Condensed tannins have the potential to decrease bloat by altering ruminal gas production and soluble protein digestibility from wheat forage.
2002-09-11
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers on board the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, check the controls on the recompression chamber at right. The ship and its dive team, including a diver medical technician, Andy Fish, were instrumental in rescuing a lobster diver in distress off Cape Canaveral Sept. 11. The ship was on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and taken to Florida Hospital.
Smith, Kirby; Scarr, Mark; Scarpaci, Carol
2010-11-01
Humans can dive with critically endangered grey nurse sharks (Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.
NASA Astrophysics Data System (ADS)
Smith, Kirby; Scarr, Mark; Scarpaci, Carol
2010-11-01
Humans can dive with critically endangered grey nurse sharks ( Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.
Recreational SCUBA divers' willingness to pay for marine biodiversity in Barbados.
Schuhmann, Peter W; Casey, James F; Horrocks, Julia A; Oxenford, Hazel A
2013-05-30
The use of natural resources and the services they provide often do not have an explicit price and are therefore undervalued in decision-making, leading to environmental degradation. To 'monetize' the benefits from these services requires the use of non-market valuation techniques. Using a stated preference survey of recreational divers in Barbados conducted between 2007 and 2009, the economic value of marine biodiversity to recreational SCUBA divers in Barbados was estimated. In addition to a variety of demographic variables, divers were asked about their level of experience, expenditures related to travel and diving, and encounters with fish and sea turtles. Divers then completed a choice experiment, selecting between alternative dives with varying characteristics including price, crowding, fish diversity, encounters with sea turtles, and coral cover. Results indicate that divers in Barbados have a clear appreciation of reef quality variables. Willingness to pay for good coral cover, fish diversity and presence of sea turtles is significantly higher than prices paid for dives. In general, divers valued reef attributes similarly, although their appreciation of low density of divers at a site and high coral cover varied with prior diving experience. The results of this study demonstrate the economic value generated in Barbados by the recreational SCUBA diving industry and highlight the potential for substantial additional economic contributions with improvements to the quality of a variety of reef attributes. These results could inform management decisions regarding reef use and sea turtle conservation, and could aid in the development of informed 'win-win' policies aimed at maximizing returns from diving while reducing negative impacts often associated with tourism activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Violations of safe diving practices among 122 diver fatalities.
Shreeves, Karl; Buzzacott, Peter; Hornsby, Al; Caney, Mark
2018-01-01
Diving is a popular recreation with an excellent safety record, with an estimated 1.8 deaths per 1 million dives. This study investigated the relationship between intentional deviation from accepted diving practices (violations) and diver fatalities. The authors examined 119 incidents/122 diver fatalities that did not involve diver training in North America and the Caribbean, and identified the presence of violations of accepted diving safety practices, as well as if the death was associated with an acute medical event such as heart attack. Of the 122 fatalities, 57% (n = 70) were associated with a medical event and 43% (n = 52) were non-medical. Violations were found in 45% of fatalities (n = 55) overall. Violations were recorded for 23% of the 70 medical and 75% of the 52 non-medical fatalities. Divers who died from something other than a medical cause were 7 times as likely to have one or more violations associated with the fatality (OR 7.3, 95% CI 2.3-23.2). The odds of dying from something other than a medical condition increased approximately 60% for each additional 10 metres of depth. The odds of a death being associated with a medical condition increased approximately 9% per year of age, or 2.4 times for every 10 years older a diver was. Medical events are associated with over half of the non-training related diver fatalities in North America and the Caribbean, with the odds of death being associated with a medical condition doubling each decade of additional age. These data support recommendations that divers stay physically fit and have regular medical checkups, particularly as they get older. They also strongly support the safety benefit of adhering to established safe diving practices.
Learning from a dive show in an aquarium setting
NASA Astrophysics Data System (ADS)
Walsh, Lori M.
A study was conducted at an aquarium next to a theme park to understand information recalled from two versions of shows viewed at the largest display. The goal of this research was to determine if learning was enhanced by having a diver in water as the treatment group. This project focused on the knowledge recalled about shark and ray feeding adaptations, the information recalled about the mentioned conservation message about sustainable seafood and the potential of the two shows to make memorable experiences. During the project, 30 adult participants from each group were given a survey with five open-ended questions. Results suggest that the diver might distract from biological content information, or that the diver is such a novel element that it interferes with recall. While guests seemed to recall information about rays and sharks, the amount of information was not substantial. It appears that the diver does not affect content messaging but does impact whether guests attend to Seafood Watch messaging. The diver may have been so novel that the treatment group could not attend to the conservation message that was delivered, regardless of topic, or the control group recalled the message because the guests were not distracted by the diver or feeding. The absence of a diver seems to allow the guests to better attend to what is happening outside of the tank. While adding a diver increases photo opportunities and may bring guests to a show, the results seem to indicate that it does not significantly increase recall. The results of this study show that guests in a theme park setting can recall information from an educational program. Guests may not enter this hybrid aquarium with the intention of learning, but recall, one of the components in learning, does occur.
Gut fermentation seems to promote decompression sickness in humans.
de Maistre, Sébastien; Vallee, Nicolas; Gempp, Emmanuel; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric
2016-10-01
Massive bubble formation after diving can lead to decompression sickness (DCS) that can result in neurological disorders. In experimental dives using hydrogen as the diluent gas, decreasing the body's H 2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. In contrast, we have shown that gut bacterial fermentation in rats on a standard diet promotes DCS through endogenous hydrogen production. Therefore, we set out to test these experimental results in humans. Thirty-nine divers admitted into our hyperbaric center with neurological DCS (Affected Divers) were compared with 39 healthy divers (Unaffected Divers). Their last meal time and composition were recorded. Gut fermentation rate was estimated by measuring breath hydrogen 1-4 h after the dive. Breath hydrogen concentrations were significantly higher in Affected Divers (15 ppm [6-23] vs. 7 ppm [3-12]; P = 0.0078). With the use of a threshold value of 16.5 ppm, specificity was 87% [95% confidence interval (CI) 73-95] for association with neurological DCS onset. We observed a strong association between hydrogen values above this threshold and an accident occurrence (odds ratio = 5.3, 95% CI 1.8-15.7, P = 0.0025). However, high fermentation potential foodstuffs consumption was not different between Affected and Unaffected Divers. Gut fermentation rate at dive time seemed to be higher in Affected Divers. Hydrogen generated by fermentation diffuses throughout the body and could increase DCS risk. Prevention could be helped by excluding divers who are showing a high fermentation rate, by eliminating gas produced in gut, or even by modifying intestinal microbiota to reduce fermentation rate during a dive. Copyright © 2016 the American Physiological Society.
Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.
Pope, Nathaniel S; Jha, Shalene
2018-01-01
Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.
Modelling food and population dynamics in honey bee colonies.
Khoury, David S; Barron, Andrew B; Myerscough, Mary R
2013-01-01
Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.
2002-09-11
KENNEDY SPACE CENTER, FLA. - On board the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, workers with United Space Alliance help finalize the rescue of a lobster diver in distress after their return to port Sept. 11. The ship was on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. On board the ship was a dive team, including a diver medical technician, Andy Fish, who are trained to assist in case of a dive accident during a retrieval mission. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and taken to Florida Hospital.
Contrasting responses of male and female foraging effort to year-round wind conditions.
Lewis, Sue; Phillips, Richard A; Burthe, Sarah J; Wanless, Sarah; Daunt, Francis
2015-11-01
There is growing interest in the effects of wind on wild animals, given evidence that wind speeds are increasing and becoming more variable in some regions, particularly at temperate latitudes. Wind may alter movement patterns or foraging ability, with consequences for energy budgets and, ultimately, demographic rates. These effects are expected to vary among individuals due to intrinsic factors such as sex, age or feeding proficiency. Furthermore, this variation is predicted to become more marked as wind conditions deteriorate, which may have profound consequences for population dynamics as the climate changes. However, the interaction between wind and intrinsic effects has not been comprehensively tested. In many species, in particular those showing sexual size dimorphism, males and females vary in foraging performance. Here, we undertook year-round deployments of data loggers to test for interactions between sex and wind speed and direction on foraging effort in adult European shags Phalacrocorax aristotelis, a pursuit-diving seabird in which males are c. 18% heavier. We found that foraging time was lower at high wind speeds but higher during easterly (onshore) winds. Furthermore, there was an interaction between sex and wind conditions on foraging effort, such that females foraged for longer than males when winds were of greater strength (9% difference at high wind speeds vs. 1% at low wind speeds) and when winds were easterly compared with westerly (7% and 4% difference, respectively). The results supported our prediction that sex-specific differences in foraging effort would become more marked as wind conditions worsen. Since foraging time is linked to demographic rates in this species, our findings are likely to have important consequences for population dynamics by amplifying sex-specific differences in survival rates. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of the British Ecological Society.
Differences in SCUBA diver motivations based on level of development
Sharon L. Todd; Alan R. Graefe; Walter Mann
2002-01-01
This study examined SCUBA divers' level of development in relationship to their motivations to dive. During the fall of 1999,869 divers ranging from beginners to post-experts were surveyed (37% response rate). Respondents ranked 24 motives on a 5-point importance scale. When the data were reduced using factor analysis to tease out major themes, six factors (...
Are recreational SCUBA divers with asthma at increased risk?
Ustrup, Amalie S; Ulrik, Charlotte S
2017-10-01
Asthma has traditionally been regarded as a contraindication to self-contained underwater breathing apparatus (SCUBA) diving, although large numbers of patients with asthma dive. The aim of the review is to provide an update on current knowledge on potential disease-related hazards in SCUBA divers with asthma. Systematic literature review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Seven studies met the criteria for inclusion in the review (comprising a total of 560 subjects). Five studies reported an increased risk for developing diving-related injuries in divers with asthma, based on case reports (n = 1), case history combined with objective assessment (n = 1), and dives and/or simulated dives (n = 3). The remaining studies (n = 2) were based on self-reported diving habits in divers suffering from asthma, obtained from anonymous questionnaires in diving magazines, reported no diving-related injuries among respondents. Due to limited evidence it is difficult to draw valid conclusions, but there are indications that recreational divers with asthma may be at increased risk for diving-related injuries compared to non-asthmatic divers. However, it is of at most importance to obtain further evidence from large-scale, well-designed studies.
The neuropsychology of repeated 1- and 3-meter springboard diving among college athletes.
Zillmer, Eric A
2003-01-01
This study examined the neuropsychological effects of repeated springboard diving. It was hypothesized that the impact velocity, which can range from 20 to 30 mph, and accompanying deceleration in the water may lead to concussions and affect the diver's cognitive function. Six varsity National Collegiate Athletic Association Division 1 springboard divers participated in the study. Each diver performed a total of 50 practice dives from either the 1- or 3-m springboard. After each set of 10 dives, the participants were immediately evaluated at poolside using the Symbol Digit Modalities Test, the Stroop Color Word Test, and the Trail Making Test B. Baseline testing revealed, consistent with their athletic specialty, clear neurocognitive strengths among the divers on tests sensitive to proprioception, motor speed, and visual-spatial organization. Results from the serial assessments indicated no detectable neuropsychological deficits among competitive divers compared to baseline testing. Skilled diving at the collegiate level appears to be a safe sport and water appears to present the perfect medium for gradual deceleration. More studies, however, are warranted for 5-, 7.5-, and 10-m platform diving since the impact velocity of the diver from these heights is higher.
Patent foramen ovale influences the presentation of decompression illness in SCUBA divers.
Liou, Kevin; Wolfers, Darren; Turner, Robert; Bennett, Michael; Allan, Roger; Jepson, Nigel; Cranney, Greg
2015-01-01
Few have examined the influence of patent foramen ovale (PFO) on the phenotype of decompression illness (DCI) in affected divers. A retrospective review of our database was performed for 75 SCUBA divers over a 10-year period. Overall 4,945 bubble studies were performed at our institution during the study period. Divers with DCI were more likely to have positive bubble studies than other indications (p<0.001). Major DCI was observed significantly more commonly in divers with PFO than those without (18/1,000 v.s. 3/1,000, p=0.02). Divers affected by DCI were also more likely to require a longer course of hyperbaric oxygen therapy (HBOT) if PFO was present (p=0.038). If the patient experienced one or more major DCI symptoms, the odds ratio of PFO being present on a transoesophageal echocardiogram was 3.2 (p=0.02) compared to those who reported no major DCI symptoms. PFO is highly prevalent in selected SCUBA divers with DCI, and is associated with a more severe DCI phenotype and longer duration of HBOT. Patients with unexpected DCI with one or more major DCI symptoms should be offered PFO screening if they choose to continue diving, as it may have considerable prognostic and therapeutic implications. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Wilmshurst, Peter T; Morrison, W Lindsay; Walsh, Kevin P
2015-06-01
Decompression illness (DCI) is associated with a right-to-left shunt, such as persistent foramen ovale (PFO), atrial septal defect (ASD) and pulmonary arteriovenous malformations. About one-quarter of the population have a PFO, but considerably less than one-quarter of divers suffer DCI. Our aim was to determine whether shunt-related DCI occurs mainly or entirely in divers with the largest diameter atrial defects. Case control comparison of diameters of atrial defects (PFO and ASD) in 200 consecutive divers who had transcatheter closure of an atrial defect following shunt-related DCI and in an historic group of 263 individuals in whom PFO diameter was measured at post-mortem examination. In the divers who had experienced DCI, the median atrial defect diameter was 10 mm and the mean (standard deviation) was 9.9 (3.6) mm. Among those in the general population who had a PFO, the median diameter was 5 mm and mean was 4.9 (2.6) mm. The difference between the two groups was highly significant (P < 0.0001). Of divers with shunt-related DCI, 101 (50.5%) had an atrial defect 10 mm diameter or larger, but only 1.3% of the general population studied had a PFO that was 10 mm diameter of larger. The risk of a diver suffering DCI is related to the size of the atrial defect rather than just the presence of a defect.
A Modified Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers
2013-10-01
Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers Authors: DISTRIBUTION STATEMENT A. Paul C. Algra, LT, MC...May 2012 – May 2013 4. TITLE AND SUBTITLE A Modified Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers...SUPPLEMENTARY NOTES 14. ABSTRACT To prevent acute otitis externa (AOE) in the saturation setting and to decrease the side effects
Patch dynamics of a foraging assemblage of bees.
Wright, David Hamilton
1985-03-01
The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.
Linking demographic processes and foraging ecology in wandering albatross-Conservation implications.
Weimerskirch, Henri
2018-07-01
Population dynamics and foraging ecology are two fields of the population ecology that are generally studied separately. Yet, foraging determines allocation processes and therefore demography. Studies on wandering albatrosses Diomedea exulans over the past 50 years have contributed to better understand the links between population dynamics and foraging ecology. This article reviews how these two facets of population ecology have been combined to better understand ecological processes, but also have contributed fundamentally for the conservation of this long-lived threatened species. Wandering albatross research has combined a 50-year long-term study of marked individuals with two decades of tracking studies that have been initiated on this species, favoured by its large size and tameness. At all stages of their life history, the body mass of individuals plays a central role in allocation processes, in particular in influencing adult and juvenile survival, decisions to recruit into the population or to invest into provisioning the offspring or into maintenance. Strong age-related variations in demographic parameters are observed and are linked to age-related differences in foraging distribution and efficiency. Marked sex-specific differences in foraging distribution, foraging efficiency and changes in mass over lifetime are directly related to the strong sex-specific investment in breeding and survival trajectories of the two sexes, with body mass playing a pivotal role especially in males. Long-term study has allowed determining the sex-specific and age-specific demographic causes of population decline, and the tracking studies have been able to derive where and how these impacts occur, in particular the role of long-line fisheries. © 2018 The Author. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Kirkbride-Smith, Anne E.; Wheeler, Philip M.; Johnson, Magnus L.
2013-01-01
Artificial reefs are increasingly used worldwide as a method for managing recreational diving since they have the potential to satisfy both conservation goals and economic interests. In order to help maximize their utility, further information is needed to drive the design of stimulating resources for scuba divers. We used a questionnaire survey to explore divers’ perceptions of artificial reefs in Barbados. In addition, we examined reef resource substitution behaviour among scuba divers. Divers expressed a clear preference for large shipwrecks or sunken vessels that provided a themed diving experience. Motives for diving on artificial reefs were varied, but were dominated by the chance of viewing concentrated marine life, increased photographic opportunities, and the guarantee of a ‘good dive’. Satisfaction with artificial reef diving was high amongst novices and declined with increasing experience. Experienced divers had an overwhelming preference for natural reefs. As a management strategy, our results emphasize the capacity of well designed artificial reefs to contribute towards the management of coral reef diving sites and highlight a number of important areas for future research. Suggested work should validate the present findings in different marine tourism settings and ascertain support of artificial reefs in relationship to level of diver specialization. PMID:23894372
Provisional report on diving-related fatalities in Australian waters in 2011.
Lippmann, John; Lawrence, Christopher; Fock, Andrew; Jamieson, Scott; Harris, Richard
2016-12-01
An individual case review of diving-related deaths reported as occurring in Australia in 2011 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and, where available, details from the post-mortem examination are provided. A chain of events analysis was conducted for each case. In total, there were 30 reported fatalities (10 more than in 2010). These included 15 snorkel/breath-hold divers, 14 scuba divers and one diver using surface-supplied breathing apparatus. Twenty-four victims were males. The mean age of snorkelling victims was 49.6 (range 23-75) years and compressed gas divers 42.2 (range 23-55) years. Cardiac-related issues were thought to have been the disabling injury in the deaths of at least seven snorkel divers and five scuba divers. Immersion pulmonary oedema was implicated in at least one death; and three fatalities resulted from attacks by marine animals. Two novices died while under instruction/supervision after separation from their instructor in poor visibility. Pre-existing medical conditions, separation and inadequate supervision and seafood collection in areas frequented by marine predators were once again features in several deaths in this series.
Andersson, Johan P A; Linér, Mats H; Jönsson, Henrik
2009-11-01
Many competitive breath-hold divers use 'glossopharyngeal insufflation', also called 'lung packing', to overfill their lungs above normal total lung capacity. This increases intrathoracic pressure, decreases venous return, compromises cardiac pumping, and reduces arterial blood pressure, possibly resulting in a syncope breath-hold divers call 'packing blackout'. We report a case with a breath-hold diver who inadvertently experienced a packing blackout. During the incident, an electrocardiogram (ECG) and blood pressure were recorded, and blood samples for determinations of biomarkers of cardiac muscle perturbation (creatine kinase-MB isoenzyme (CK-MB), cardiac troponin-T (TnT), and myoglobin) were collected. The ECG revealed short periods of asystole during the period of 'packing blackout', simultaneous with pronounced reductions in systolic, diastolic, and pulse pressures. Serum myoglobin concentration was elevated 40 and 150 min after the incident, whereas there were no changes in CK-MB or TnT. The ultimate cause of syncope in this diver probably was a decrease in cerebral perfusion following glossopharyngeal insufflation. The asystolic periods recorded in this diver could possibly indicate that susceptible individuals may be put at risk of a serious cardiac incident if the lungs are excessively overinflated by glossopharyngeal insufflation. This concern is further substantiated by the observed increase in serum myoglobin concentration after the event.
NASA Astrophysics Data System (ADS)
Clarke, John R.; Southerland, David
1999-07-01
Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.
Nutritional recommendations for divers.
Benardot, Dan; Zimmermann, Wes; Cox, Gregory R; Marks, Saul
2014-08-01
Competitive diving involves grace, power, balance, and flexibility, which all require satisfying daily energy and nutrient needs. Divers are short, well-muscled, and lean, giving them a distinct biomechanical advantage. Although little diving-specific nutrition research on performance and health outcomes exists, there is concern that divers are excessively focused on body weight and composition, which may result in reduced dietary intake to achieve desired physique goals. This will result in low energy availability, which may have a negative impact on their power-to-weight ratio and health risks. Evidence is increasing that restrictive dietary practices leading to low energy availability also result in micronutrient deficiencies, premature fatigue, frequent injuries, and poor athletic performance. On the basis of daily training demands, estimated energy requirements for male and female divers are 3,500 kcal and 2,650 kcal, respectively. Divers should consume a diet that provides 3-8 g/kg/day of carbohydrate, with the higher values accommodating growth and development. Total daily protein intake (1.2-1.7 g/kg) should be spread evenly throughout the day in 20 to 30 g amounts and timed appropriately after training sessions. Divers should consume nutrient-dense foods and fluids and, with medical supervision, certain dietary supplements (i.e., calcium and iron) may be advisable. Although sweat loss during indoor training is relatively low, divers should follow appropriate fluid-intake strategies to accommodate anticipated sweat losses in hot and humid outdoor settings. A multidisciplinary sports medicine team should be integral to the daily training environment, and suitable foods and fluids should be made available during prolonged practices and competitions.
Stamoulis, Kostantinos A.; Boland, Raymond C.; Lino, Kevin C.; Hauk, Brian B.; Leonard, Jason C.; Asher, Jacob M.; Lopes, Keolohilani H.; Kosaki, Randall K.
2016-01-01
Visual survey by divers using open-circuit (OC) SCUBA is the most widely used approach to survey coral reef fishes. Therefore, it is important to quantify sources of bias in OC surveys, such as the possibility that avoidance of OC divers by fishes can lead to undercounting in areas where targeted species have come to associate divers with a risk of being speared. One potential way to reduce diver avoidance is to utilize closed circuit rebreathers (CCRs), which do not produce the noise and bubbles that are a major source of disturbance associated with OC diving. For this study, we conducted 66 paired OC and CCR fish surveys in the Main Hawaiian Islands at locations with relatively high, moderate, and light fishing pressure. We found no significant differences in biomass estimates between OC and CCR surveys when data were pooled across all sites, however there were differences at the most heavily fished location, Oahu. There, biomass estimates from OC divers were significantly lower for several targeted fish groups, including surgeonfishes, targeted wrasses, and snappers, as well as for all targeted fishes combined, with mean OC biomass between 32 and 68% of mean CCR biomass. There were no clear differences between OC and CCR biomass estimates for these groups at sites with moderate or low fishing pressure, or at any location for other targeted fish groups, including groupers, parrotfishes, and goatfishes. Bias associated with avoidance of OC divers at heavily fished locations could be substantially reduced, or at least calibrated for, by utilization of CCR. In addition to being affected by fishing pressure, the extent to which avoidance of OC divers is problematic for visual surveys varies greatly among taxa, and is likely to be highly influenced by the survey methodology and dimensions used. PMID:27936044
Gray, Andrew E; Williams, Ivor D; Stamoulis, Kostantinos A; Boland, Raymond C; Lino, Kevin C; Hauk, Brian B; Leonard, Jason C; Rooney, John J; Asher, Jacob M; Lopes, Keolohilani H; Kosaki, Randall K
2016-01-01
Visual survey by divers using open-circuit (OC) SCUBA is the most widely used approach to survey coral reef fishes. Therefore, it is important to quantify sources of bias in OC surveys, such as the possibility that avoidance of OC divers by fishes can lead to undercounting in areas where targeted species have come to associate divers with a risk of being speared. One potential way to reduce diver avoidance is to utilize closed circuit rebreathers (CCRs), which do not produce the noise and bubbles that are a major source of disturbance associated with OC diving. For this study, we conducted 66 paired OC and CCR fish surveys in the Main Hawaiian Islands at locations with relatively high, moderate, and light fishing pressure. We found no significant differences in biomass estimates between OC and CCR surveys when data were pooled across all sites, however there were differences at the most heavily fished location, Oahu. There, biomass estimates from OC divers were significantly lower for several targeted fish groups, including surgeonfishes, targeted wrasses, and snappers, as well as for all targeted fishes combined, with mean OC biomass between 32 and 68% of mean CCR biomass. There were no clear differences between OC and CCR biomass estimates for these groups at sites with moderate or low fishing pressure, or at any location for other targeted fish groups, including groupers, parrotfishes, and goatfishes. Bias associated with avoidance of OC divers at heavily fished locations could be substantially reduced, or at least calibrated for, by utilization of CCR. In addition to being affected by fishing pressure, the extent to which avoidance of OC divers is problematic for visual surveys varies greatly among taxa, and is likely to be highly influenced by the survey methodology and dimensions used.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Au, Whitlow W. L.
2017-03-01
The Kona coast of the island of Hawaii hosts many species of odontocetes. These marine mammals are top predators and their foraging activity plays an important role in the ecosystem dynamics. Three passive acoustics recorders were used to study the temporal and spatial occurrence of the foraging activity of odontocetes (excluding beaked and sperm whales) at three locations along the Kona coast of Hawaii between 2012 and 2013. Echolocation clicks were detected using the M3R1
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi; Kokubun, Nobuo; Kikuchi, Dale M.; Sato, Nobuhiko; Takahashi, Akinori; Will, Alexis P.; Kitaysky, Alexander S.; Watanuki, Yutaka
2016-04-01
Seasonal sea-ice cover has been decreasing in the southeastern Bering Sea shelf, which might affect ecosystem dynamics and availability of food resources to marine top predators breeding in the region. In this study, we investigated the foraging responses of two seabird species, surface-foraging red-legged kittiwakes Rissa brevirostris (hereafter, RLKI) and pursuit-diving foraging thick-billed murres Uria lomvia (TBMU) to different marine environmental conditions over 2 years. At-sea distributions of RLKI and TBMU breeding on St. George Island, the largest seabird colony in the region, were recorded using GPS loggers, and blood samples were taken to examine their physiological condition and isotopic foraging niche in a given year. Between the study years, winter ice retreated earlier and summer water temperatures were relatively warmer in 2014 compared to those in 2013. RLKI foraging occurred mostly over the oceanic basin in both years. TBMU, however, foraged mostly over the shelf but showed a relatively higher use of the shelf break and oceanic basin in 2013. The foraging distances from the colony peaked at 250-300 km in 2013 and bimodally at 150-250 and 300-350 km in 2014 for RLKI and tended to be farther in 2013 compared to those in 2014 for TBMU. Plasma levels of corticosterone did not differ between the years in RLKI but differed in TBMU, showing higher levels of physiological stress incurred by murres in 2013, the year of relatively cooler sea surface temperatures with later sea-ice retreat. δ13N (a proxy of trophic level of prey) did not differ between the years in either RLKI or TBMU. These results suggest that the response of ecosystem dynamics to climate variability in the southeastern Bering Sea may differ between the ocean basin and continental shelf regions, which, in turn, may generate differential responses in seabirds relying on those habitats for foraging.
Sink or Swim: The Cartesian Diver.
ERIC Educational Resources Information Center
Pinkerton, K. David
2001-01-01
Presents the activity of Cartesian divers which demonstrates the relationship between pressure, temperature, volume, and buoyancy. Includes both instructor information and student activity sheet. (YDS)
Beerens, James M.; Gawlik, Dale E.; Herring, Garth; Cook, Mark I.
2011-01-01
Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile “searcher” species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual “exploiter” species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species—habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret.
Dysbaric Osteonecrosis in Divers. 1. A Survey of 611 Selected U. S. Navy Divers
1976-02-24
ed., Academic Press, New York, 1971, pp 251- 262. 10 7. Asahi, S. H. Ohiwa, and I. Nashimoto, " Avascular Bone Necrosis in Japanese Diving...bone necrosis has been confirmed. 4>5 The confirmation of aseptic bone necrosis in Caisson workers prompted several studies of divers to determine...de- scribe the radiological observations of bone density and structure variations which appear to be aseptic bone necrosis occurring in
Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.
Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J
2003-01-01
Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Kokubun, N.; Kikuchi, D. M.; Sato, N.; Takahashi, A.; Will, A.; Kitaysky, A. S.; Watanuki, Y.
2015-11-01
Seasonal sea-ice cover has been decreasing in the southeastern Bering Sea shelf, which might affect ecosystem dynamics and availability of food resources to marine top predators breeding in the region. In this study, we investigated the foraging responses of two seabird species, surface-foraging red-legged kittiwakes Rissa brevirostris (hereafter, RLKI) and pursuit-diving foraging thick-billed murres Uria lomvia (TBMU) to the inter-annual change in environmental conditions. Between the study years, winter ice retreated earlier and summer water temperatures were warmer in 2014 compared to those in 2013. At-sea distributions of RLKI and TBMU breeding on St. George Island, the largest seabird colony in the region, were recorded using GPS loggers, and blood samples were taken to examine their physiological condition and isotopic foraging niche in a given year. RLKI foraging occurred mostly over the oceanic basin in both years. TBMU, however, foraged mostly over the shelf, but showed a relatively higher use of the shelf break and oceanic basin in the colder year, 2013. The foraging distances from the colony peaked at 250-300 km in 2013 and, bimodally, at 150-250 and 300-350 km in 2014 for RLKI, and tended to be farther in 2013 compared to those in 2014 for TBMU. Plasma levels of corticosterone did not differ between years in RLKI, but differed in TBMU, showing higher levels of physiological stress incurred by murres during the colder year, 2013. δ13N (a proxy of trophic level of prey) did not differ between the years in either RLKI or TBMU, while δ13C (a proxy of prey origin) were lower in 2014 than in 2013 in both species, suggesting possible differences in influx of oceanic prey items into foraging areas. These results suggest that the response of ecosystem dynamics to climate variability in the southeast Bering Sea may differ between the ocean basin and continental shelf regions, which, in turn, may generate differential responses in seabirds relying on those habitats for foraging.
Walrus foraging marks on the seafloor in Bristol Bay, Alaska: A reconnaissance survey
Bornhold, Brian D.; Jay, Chadwick V.; McConnaughey, Robert; Rathwell, Glenda; Rhynas, Karl; Collins, William
2005-01-01
A reconnaissance sidescan sonar survey in Bristol Bay, Alaska revealed extensive areas of seafloor with features related to walrus foraging. They are similar to those seen in areas such as the outer Bering Sea and Chukchi Sea. Two types of feature were observed: (a) small (≪1 m diameter) shallow pits, often in clusters ranging in density from 5 pits per hectare to 35 pits per hectare; and, (b) more abundant, narrow, sinuous furrows, typically 5 to 10 m long with some reaching 20 m or more. Most foraging marks were in less than 60 m water depth in areas of sandy seafloor that were smooth, hummocky or characterized by degraded bedforms; the absence of foraging marks in other areas may be related, in part, to their more dynamic nature. The distribution of foraging marks was consistent in a general way with walrus locations from satellite telemetry studies.
Health Survey of U.S. Navy Divers from 1960 to 1990: A First Look
2011-09-01
Married divers represented 87% of the participants; divorced or widowed, 11%; and never married, 1%. Of all these divers, 60% now receive disability ...care and benefits for what they feel are “service-connected” health problems related to their participation in activities during those careers. These...diving but not related to unsafe practice.” “Long-term,” this statement continues, is defined as “persisting beyond the acute phase and rehabilitation
De Brauwer, Maarten; Saunders, Benjamin J; Ambo-Rappe, Rohani; Jompa, Jamaluddin; McIlwain, Jennifer L; Harvey, Euan S
2018-07-15
Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brief communication: Self-reported health and activity habits and attitudes in saturation divers.
Dolan, Eimear; Deb, Sanjoy; Stephen, Graeme; Swinton, Paul
2016-01-01
Exposure to the confined hyperbaric, hyperoxic environment of the saturation chamber poses a number of unique physiological challenges to divers. Appropriately tailored training, nutrition and health programs may help support the body to cope with and overcome these challenges. To describe the self-reported habits and attitudes of saturation divers toward issues related to health, lifestyle, nutrition and physical activity. A questionnaire was developed to elicit information related to four key areas: 1) respondent demographics; 2) physical activity habits and attitudes; 3) nutritional attitudes; and 4) general lifestyle and health information. Respondents (n = 89/45%) reported a generally healthy lifestyle, including high physical activity levels while onshore, low tobacco use and alcohol intakes within U.K.-recommended guidelines. Responses to in-chamber items demonstrated reduced physical activity, disrupted sleep and distorted taste and smell perception. In addition, lethargy, headaches and musculoskeletal stiffness/soreness were reported as frequent symptoms following a period of time spent in saturation. Results of this study provide an in-sight into the self-reported practices and attitudes of saturation divers and appear to indicate a generally healthy lifestyle in the respondents. Some themes emerged which may impact on diver health and performance while in saturation. The results of this report may help provide a platform to generate hypotheses for further research and facilitate development of appropriately tailored nutrition and training-based strategies for saturation divers.
A comparison between boat-based and diver-based methods for quantifying coral bleaching
Zawada, David G.; Ruzicka, Rob; Colella, Michael A.
2015-01-01
Recent increases in both the frequency and severity of coral bleaching events have spurred numerous surveys to quantify the immediate impacts and monitor the subsequent community response. Most of these efforts utilize conventional diver-based methods, which are inherently time-consuming, expensive, and limited in spatial scope unless they deploy large teams of scientifically-trained divers. In this study, we evaluated the effectiveness of the Along-Track Reef Imaging System (ATRIS), an automated image-acquisition technology, for assessing a moderate bleaching event that occurred in the summer of 2011 in the Florida Keys. More than 100,000 images were collected over 2.7 km of transects spanning four patch reefs in a 3-h period. In contrast, divers completed 18, 10-m long transects at nine patch reefs over a 5-day period. Corals were assigned to one of four categories: not bleached, pale, partially bleached, and bleached. The prevalence of bleaching estimated by ATRIS was comparable to the results obtained by divers, but only for corals > 41 cm in size. The coral size-threshold computed for ATRIS in this study was constrained by prevailing environmental conditions (turbidity and sea state) and, consequently, needs to be determined on a study-by-study basis. Both ATRIS and diver-based methods have innate strengths and weaknesses that must be weighed with respect to project goals.
Ketogenic diet for high partial pressure oxygen diving.
Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T
2014-01-01
A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.
The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.
Gordon, Deborah M
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.
Yellowjackets use nest-based cues to differentially exploit higher-quality resources
NASA Astrophysics Data System (ADS)
Taylor, Benjamin J.; Schalk, Dane R.; Jeanne, Robert L.
2010-12-01
While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.
NASA Astrophysics Data System (ADS)
Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido
2016-10-01
Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.
Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.
Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D
2017-01-01
Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.
... Diver Poster Rock Climber Poster Sky Diver Poster Social Media Graphics ... THE CAMPAIGN Mind Your Risks® is a public health campaign that educates people with high blood pressure about the importance of ...
Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.
Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D; Jeong, Jaeseung
2014-08-01
A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.
USDA-ARS?s Scientific Manuscript database
Research was conducted to determine the effects of sources of tannins on in vitro ruminal gas and foam production, in vivo ruminal bacterial populations, bloat dynamics and ADG of heifers grazing wheat forage. Two experiments were conducted to 1) enumerate the effect of tannins supplementation on bi...
Liu, Junhua; Zhang, Mengling; Xue, Chunxu; Zhu, Weiyun; Mao, Shengyong
2016-12-01
Three ruminally cannulated Holstein cows were used to characterize the dynamics of bacterial colonization of rice straw and alfalfa hay and to assess the differences in the composition and inferred gene function of the colonized microbiota between these 2 forages. Nonincubated (0h) rice straw and alfalfa hay samples and residues in nylon bags incubated for 0.5, 2, 6, 16, and 48h were analyzed for dry matter and were used for DNA extraction and MiSeq (Illumina Inc., San Diego, CA) sequencing of the 16S rRNA gene. The microbial communities that colonized the air-dried and nonincubated (0h) rice straw and alfalfa hay were both dominated by members of the Proteobacteria (contributing toward 70.47% of the 16S RNA reads generated). In situ incubation of the 2 forages revealed major shifts in the community composition: Proteobacteria were replaced within 30min by members belonging to the Bacteroidetes and Firmicutes, contributing toward 51.9 and 36.6% of the 16S rRNA reads generated, respectively. A second significant shift was observed after 6h of rumen incubation, when members of the Spirochaetes and Fibrobacteria phyla became abundant in the forage-adherent community. During the first 30min of rumen incubation, ~20.7 and 36.1% of the rice straw and alfalfa hay, respectively, were degraded, whereas little biomass degradation occurred between 30min and 2h after the rice straw or alfalfa hay was placed in the rumen. Significant differences were noted in attached bacterial community structure between the 2 forage groups, and the abundances of dominant genera Anaeroplasma, Butyrivibrio, Fibrobacter, and Prevotella were affected by the forage types. Real-time PCR results showed that the 16S rRNA copies of total bacteria attached to these 2 forages were affected by the forage types and incubation time, and higher numbers of attached bacterial 16S rRNA were observed in the alfalfa hay samples than in the rice straw from 0.5 to 16h of incubation. The metagenomes predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) revealed that the forage types significantly affected 21 metabolic pathways identified in the Kyoto Encyclopedia of Genes and Genomes, and 33 were significantly changed over time. Collectively, our results reveal a difference in the dynamics of bacterial colonization and the inferred gene function of microbiota associated with rice straw and alfalfa hay within the rumen. These findings are of great importance for the targeted improvement of forage nutrient use efficiency in ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1995-01-01
The Attitude Adjuster is a system for weight repositioning corresponding to a SCUBA diver's changing positions. Compact tubes on the diver's air tank permit controlled movement of lead balls within the Adjuster, automatically repositioning when the diver changes position. Manufactured by Think Tank Technologies, the system is light and small, reducing drag and energy requirements and contributing to lower air consumption. The Mid-Continent Technology Transfer Center helped the company with both technical and business information and arranged for the testing at Marshall Space Flight Center's Weightlessness Environmental Training Facility for astronauts.
Neurologic outcome of controlled compressed-air diving.
Cordes, P; Keil, R; Bartsch, T; Tetzlaff, K; Reuter, M; Hutzelmann, A; Friege, L; Meyer, T; Bettinghausen, E; Deuschl, G
2000-12-12
The authors compared the neurologic, neuropsychological, and neuroradiologic status of military compressed-air divers without a history of neurologic decompression illness and controls. No gross differences in the neuropsychometric test results or abnormal neurologic findings were found. There was no correlation between test results, diving experience, and number and size of cerebral MRI lesions. Prevalence of cerebral lesions was not increased in divers. These results suggest that there are no long-term CNS sequelae in military divers if diving is performed under controlled conditions.
Morphometrics of the avian lung. 4. The structural design of the charadriiform lung.
Maina, J N
1987-04-01
The lungs of five charadriiform species of bird, two of which are good divers and three predominantly flyers (soarers and gliders) have been analysed by morphometric techniques. Largely the morphometric structural values in the divers significantly exceeded those of the flyers (gulls). The average weight specific surface area of the blood-gas (tissue) barrier in the divers (28.45 +/- 2.05 cm2 X g-1 SD) surpassed that of the flyers (23.5 +/- 3.61 cm2 X g-1 SD). The divers had a higher volume of the pulmonary capillary blood per unit body weight (4.42 +/- 0.11 cm3 X kg-1 SD) than the flyers (2.84 +/- 0.58 cm3 X kg-1 SD). The weight specific volume of the lung in the divers (34.90 +/- 3.11 cm3 X kg-1 SD) exceeded that of the flyers (26.94 +/- 3.15 cm3 X kg-1 SD). The total morphometric pulmonary diffusing capacity per unit body weight in the divers (4.73 +/- 0.05 ml O2 X (min X mm Hg X kg)-1 SD) was higher than that of the flyers (3.09 +/- 0.47 ml O2 X (min X mm Hg X kg)-1 SD). The divers, however, had a notably thicker blood-gas (tissue) barrier with a harmonic mean thickness of 0.212 +/- 0.03 micron SD compared to that of the flyers (0.138 +/- 0.02 micron SD). The data acquired here commensurate the modes of life exhibited by these two groups of bird. The divers, which are relatively energetic birds, expend a lot of energy to move and stay underwater, concomitantly undergoing prolonged asphyxia during submergence and may hence need to extract as much of the oxygen in the pulmonary air as possible to prolong a dive. These birds appear in general to have structurally better adapted lungs than those of the gulls, birds which to a large extent exhibit relatively less energetic soaring and gliding flights.
Authier, Matthieu; Dragon, Anne-Cécile; Richard, Pierre; Cherel, Yves; Guinet, Christophe
2012-01-01
Maternal effects are widespread in ecology and can alter the dynamics of a population. We investigated the impact of maternal foraging strategies on offspring weaning mass—a proxy of maternal foraging success and of offspring survival—in southern elephant seals on îles Kerguelen. Using 4 years of data, we modelled pup weaning mass as a two-component mixture and used blood stable isotope values to discriminate between maternal foraging strategies previously identified from bio-logging studies. Carbon isotope ratio was a strong predictor of weaning mass, but the relationship was non-monotonic in contrast to a priori expectations. Females foraging in the interfrontal zone weaned pups with a smaller mass compared with females foraging in Antarctic waters. Pup mass was positively correlated with a proxy of global primary production in the interfrontal zone for small weanlings. Maternal effects, via a poor foraging efficiency in the 1970s, may help explain the large population decrease observed at that time on îles Kerguelen because of an overall decrease in pup weaning mass, survival and subsequent recruitment. PMID:22398171
Lagrangian analysis of multi-satellite data in support of open ocean Marine Protected Area design
NASA Astrophysics Data System (ADS)
Della Penna, Alice; Koubbi, Philippe; Cotté, Cedric; Bon, Cécile; Bost, Charles-André; d'Ovidio, Francesco
2017-06-01
Compared to ecosystem conservation in territorial seas, protecting the open ocean has peculiar geopolitical, economic and scientific challenges. One of the major obstacle is defining the boundary of an open ocean Marine Protected Area (MPA). In contrast to coastal ecosystems, which are mostly constrained by topographic structures fixed in time, the life of marine organisms in the open ocean is entrained by fluid dynamical structures like eddies and fronts, whose lifetime occurs on ecologically-relevant timescales. The position of these highly dynamical structures can vary interannually by hundreds of km, and so too will regions identified as ecologically relevant such as the foraging areas of marine predators. Thus, the expected foraging locations suggested from tracking data cannot be directly extrapolated beyond the year in which the data were collected. Here we explore the potential of Lagrangian methods applied to multisatellite data as a support tool for a MPA proposal by focusing on the Crozet archipelago oceanic area (Indian Sector of the Southern Ocean). By combining remote sensing with biologging information from a key marine top predator (Eudyptes chrysolophus, or Macaroni penguin) of the Southern Ocean foodweb, we identify a highly dynamic branch of the Subantarctic front as a foraging hotspot. By tracking this feature in historical satellite data (1993-2012) we are able to extrapolate the position of this foraging ground beyond the years in which tracking data are available and study its spatial variability.
NASA Astrophysics Data System (ADS)
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.
2018-07-01
The article proposes a new research object for a general physics course—the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the saturated water vapour pressure allows the teacher to demonstrate the Le Chatelier’s principle: increasing the temperature of a system in a dynamic equilibrium favours the endothermic change. That means that increasing the temperature increases the amount of vapour present, and so increases the saturated vapour pressure. The experimental setup proposed in this paper can be used as an example of an auto-oscillatory system, based on the properties of saturated vapour. The article describes a mathematical model of physical processes that occur in the experiment, and proposes a numerical solution method for the acquired system of equations. It shows that the results of numerical simulation coincide with the self-oscillation parameters from the real experiment. The proposed installation can also be considered as a model of a thermal engine.
5 CFR 532.281 - Special wage schedules for divers and tenders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.281 Special wage schedules for divers and tenders. (a) Agencies are authorized to establish special schedule payments for prevailing rate...
Flying after diving: in-flight echocardiography after a scuba diving week.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2014-10-01
Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2) during the diving week; 3) before the return flight after a 24-h PFSI; and 4) during the return flight. All divers completed similar multiple repetitive dives during the diving week. All dives were equivalent as to inert gas load and gradient factor upon surfacing. No bubbles in the right heart were found in any diver during the outgoing flight or at the preflight control after a 24-h PFSI following the diving week. A significant increase in the number and grade of bubbles was observed during the return flight. However, bubbles were only observed in 6 of the 32 divers. These six divers were the same ones who developed bubbles after every dive. Having observed a 24-h preflight interval, the majority of divers did not develop bubbles during altitude exposure; however, it is intriguing to note that the same subjects who developed significant amounts of bubbles after every dive showed equally significant bubble grades during in-flight echocardiography notwithstanding a correct PFSI. This indicates a possible higher susceptibility to bubble formation in certain individuals, who may need longer PFSI before altitude exposure after scuba diving.
The use of drugs by UK recreational divers: illicit drugs.
Dowse, Marguerite St Leger; Shaw, Steve; Cridge, Christine; Smerdon, Gary
2011-03-01
Anecdotal observations suggest the use of illicit drugs takes place amongst recreational divers but, to date, there has been little open debate within the diving community concerning possible prevalence. This study investigated the prevalence and type of illicit drugs used by recreational divers in the United Kingdom (UK). Anonymous questionnaires were circulated via UK dive clubs, dive schools, dive shows and conferences. Questions incorporated diver and diving demographics and general health, which included anxiety, depression and panic attacks, alcohol use, smoking and illicit drug use since learning to dive and closest time to a dive. Questions pertaining to over-the-counter and prescription drug use were also asked. 479 divers responded (66% males and 34% females) in the age range 16 to 59 years. Of the respondents, 22% had used one or more illicit drug since learning to dive, reporting benzodiazepines, amphetamines, cocaine, ecstasy, LSD, cannabis, heroin, and 'magic mushrooms'. Illicit drugs had been used by 3.5% of respondents in the last 12 months, and 3% in the last month. Cannabis, cocaine and ecstasy use was reported within 6 hours of a dive. Logistic regression confirmed a relationship between illicit drug use and depression (P = 0.014), and also between illicit drug use and anxiety (P = 0.024). These data support anecdotal reports that recreational divers use a range of illicit drugs. The significant relationship between illicit drug use and depression and anxiety supports the literature in non-diving populations.
Standards on medical fitness examinations for Navy divers.
Weiss, Michael
2003-01-01
The German Navy employs approximately 480 divers in their primary and secondary role. Before entering diving training, every diver has to pass an intensive physical examination programme at the German Naval Medical Institute (NMI) in Kiel-Kronshagen. Annual follow-ups ensure the currency of the medical findings. Criteria of medical fitness for diving reflect industrial medical standards for hyperbaric workers as well as the general medical guidelines for NATO divers. A diving examination consists of the individual medical history, a physical examination including the neurological status and the assessment of the cardiovascular fitness by ECG and bicycle ergometry. The respiratory system is screened by regular chest x-rays and spirometry or body plethysmography. Blood and urine samples are taken to look for abnormal haematological and metabolic conditions as well as disorders of the genito-urinary system. In order to determine visual fitness, diver's visual acuity, colour vision and stereopsis as well as eye fundi are examined by an eye specialist. Also the ENT examination involves a speciality consultant and consists of audiometry, inspection of the external ear and tympanic membrane and functional tests. To ensure a high standard of dental fitness, screening by a dental officer is part of the annual check-up. Every routine diving medical examination at the NMI includes a pressure test in the hyperbaric chamber. Divers who use nitrox or oxygen-rebreather devices have to pass successfully an oxygen tolerance test under hyperbaric conditions. The annual routine diving medical examination contributes to minimize the risk of accidents in military diving operations.
Prevalence and causes of loss of consciousness in former North Sea occupational divers.
Sundal, Endre; Irgens, Ågot; Troland, Kari; Thorsen, Einar; Grønning, Marit
2013-01-01
Loss of consciousness (LOC) is a serious event during diving. The purpose of this study wasto estimate the prevalence and causes of LOC during diving in former North Sea divers, and the impacton health-related quality of life. Up to 1990 a total of 373 Norwegian offshore divers worked in the North Sea. From 2000 to 2011, 221 of these were referred to the Department of Occupational Medicine at Haukeland University Hospital for examination due to health complaints. They filled in a questionnaire for registration of diving experience and health complaints, including the SF-36 version 1 for the assessment of quality oflife. The questionnaire and the hospital records were systematically reviewed by 2 independent observers. Episodes of LOC during diving and the causes were registered. All participants underwent a clinical neurological examination. Electroencephalogram (EEG) and the event-related brain potential (P300) were recorded. One or more episodes of LOC were reported by 58 of 219 divers. LOC due to gas cut was reportedby 27 of these. Divers having experienced LOC due to gas cut had lower SF-36 sub-scores then the rest of the diving population. EEG and P300 recordings did not differ between the groups. A high proportion of former Norwegian North Sea divers reported episodes of LOC, for whichgas cut was the most common cause. Both hypoxia and peritraumatic stress associated with the episodecould have a long term impact on the quality of life. Neurophysiological functions, however, did not differbetween the groups.
NASA Astrophysics Data System (ADS)
Roche, Ronan C.; Harvey, Chloe V.; Harvey, James J.; Kavanagh, Alan P.; McDonald, Meaghan; Stein-Rostaing, Vivienne R.; Turner, John R.
2016-07-01
Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.
The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus
Gordon, Deborah M.
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest. PMID:23209749
Forage selection by Royle's pika (Ochotona roylei) in the western Himalaya, India.
Bhattacharyya, Sabuj; Adhikari, Bhupendra S; Rawat, Gopal S
2013-10-01
Forage selection decisions of herbivores are often complex and dynamic; they are modulated by multiple cues, such as quality, accessibility and abundance of forage plants. To advance the understanding of plant-herbivore interactions, we explored foraging behavior of the alpine lagomorph Royle's pika (Ochotona roylei) in Kedarnath Wildlife Sanctuary, India. Pika bite counts on food plants were recorded through focal sampling in three permanently marked plots. Food plant abundance was recorded by traditional quadrat procedures; forage selection was estimated with Jacob's selection index. Multiple food-choice experiments were conducted to determine whether forage selection criteria would change with variation in food plant composition. We also analyzed leaf morphology and nutrient content in both major food plants and abundantly available non-food plants. Linear regression models were used to test competing hypotheses in order to identify factors governing forage selection. Royle's pika fed primarily on 17 plant species and each forage selection decision was positively modulated by leaf area and negatively modulated by contents of avoided substances (neutral detergent fiber, acid detergent fiber, acid detergent lignin and tannin) in food plants. Furthermore, significance of the interaction term "leaf size × avoided substance" indicates that plants with large leaves were selected only when they had low avoided substance content. The forage selection criteria did not differ between field and laboratory experiments. The parameter estimates of best fit models indicate that the influence of leaf size or amount of avoided substance on pika forage selection was modulated by the magnitude of predation risk. Copyright © 2013 Elsevier GmbH. All rights reserved.
Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.
2016-02-01
During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.
Haifig, Ives; Jost, Christian; Fourcassié, Vincent; Zana, Yossi; Costa-Leonardo, Ana Maria
2015-09-01
Foraging behavior in termites varies with the feeding habits of each species but often occurs through the formation of well-defined trails that connect the nest to food sources in species that build structured nests. We studied the formation of foraging trails and the change in caste ratio during foraging in the termite Velocitermes heteropterus. This species is widespread in Cerrado vegetation where it builds epigeal nests and forages in open-air at night. Our aim was to understand the processes involved in the formation of foraging trails, from the exploration of new unmarked areas to the recruitment of individuals to food and the stabilization of traffic on the trails, as well as the participation of the different castes during these processes. Foraging trails were videotaped in the laboratory and the videos were then analyzed both manually and automatically to assess the flow of individuals and the caste ratio on the trails as well as to examine the spatial organization of traffic over time. Foraging trails were composed of minor workers, major workers, and soldiers. The flow of individuals on the trails gradually increased from the beginning of the exploration of new areas up to the discovery of the food. The caste ratio remained constant throughout the foraging excursion: major workers, minor workers and soldiers forage in a ratio of 8:1:1, respectively. The speed of individuals was significantly different among castes, with major workers and soldiers being significantly faster than minor workers. Overall, our results show that foraging excursions in V. heteropterus may be divided in three different phases, characterized by individual speeds, differential flows and lane segregation. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimisation of a honeybee-colony's energetics via social learning based on queuing delays
NASA Astrophysics Data System (ADS)
Thenius, Ronald; Schmickl, Thomas; Crailsheim, Karl
2008-06-01
Natural selection shaped the foraging-related processes of honeybees in such a way that a colony can react to changing environmental conditions optimally. To investigate this complex dynamic social system, we developed a multi-agent model of the nectar flow inside and outside of a honeybee colony. In a honeybee colony, a temporal caste collects nectar in the environment. These foragers bring their harvest into the colony, where they unload their nectar loads to one or more storer bees. Our model predicts that a cohort of foragers, collecting nectar from a single nectar source, is able to detect changes in quality in other food sources they have never visited, via the nectar processing system of the colony. We identified two novel pathways of forager-to-forager communication. Foragers can gain information about changes in the nectar flow in the environment via changes in their mean waiting time for unloadings and the number of experienced multiple unloadings. This way two distinct groups of foragers that forage on different nectar sources and that never communicate directly can share information via a third cohort of worker bees. We show that this noisy and loosely knotted social network allows a colony to perform collective information processing, so that a single forager has all necessary information available to be able to 'tune' its social behaviour, like dancing or dance-following. This way the net nectar gain of the colony is increased.
Accident rates at a busy diving centre.
Davis, Michael; Malcolm, Kate
2008-06-01
Dear Editor, The Poor Knights Islands in Northland, New Zealand, is a world-famous, temperate-water, diving tourism destination, popularised many years ago by Jacques Cousteau. By far the largest dive operator there is Dive! Tutukaka, with five vessels carrying up to 30 divers, operating on a regular basis throughout the year. Dive! Tutukaka is required to keep a detailed, daily vessel manifest. Thus, the number of divers is known accurately and all incidents are recorded by the Skipper or the Chief Divemaster on board. Although all dives are logged (time in, time out and maximum depth for every diver) and kept permanently, these data were not utilised for this brief report. Each customer does two dives on a trip and there are between one and four divemasters on board who may do one, two or more dives a day (van der Hulst G, unpublished observations). Thus the accident rate per diver is known, and it is assumed that the rate per dive is very close to half this figure. In addition, under health and safety regulations all non-diving injuries both on shore and on board are documented, but these will include some non-divers. For the three financial years between July 2005 and 14 June 2008, 32,302 customers dived with Dive! Tutukaka, approximately 63,000 dives (a small minority did only one dive). Over the same period, there were an estimated 7,600 dives conducted by the divemasters. The injuries documented during this time are shown in Table 1. There were seven cases of decompression illness (DCI), a rate of about 1 per 10,000 divers (0.5 per 10,000 dives). Two of the seven DCI cases involved serious neurological injury. There was one further possible case of DCI who did not seek medical advice. If this diver is included then the rate is 1.14 per 10,000 divers. More minor diving injuries and incidents occurred at a rate of approximately 2 per 10,000 divers. Non-diving injuries occurred rarely, the most common being various musculo-skeletal injuries to staff, requiring time off work. Many of these were secondary to lifting and carrying heavy diving equipment, particularly dive tanks. This indicates an area where improved practices by staff could be achieved. We believe these injury data are robust and provide an accurate picture of a single, mainstream, international tourism diving centre in temperate waters, and indicate a low rate of injury, comparable to the international literature.
Underwater speech communications with a modulated laser
NASA Astrophysics Data System (ADS)
Woodward, B.; Sari, H.
2008-04-01
A novel speech communications system using a modulated laser beam has been developed for short-range applications in which high directionality is an exploitable feature. Although it was designed for certain underwater applications, such as speech communications between divers or between a diver and the surface, it may equally be used for air applications. With some modification it could be used for secure diver-to-diver communications in the situation where untethered divers are swimming close together and do not want their conversations monitored by intruders. Unlike underwater acoustic communications, where the transmitted speech may be received at ranges of hundreds of metres omnidirectionally, a laser communication link is very difficult to intercept and also obviates the need for cables that become snagged or broken. Further applications include the transmission of speech and data, including the short message service (SMS), from a fixed installation such as a sea-bed habitat; and data transmission to and from an autonomous underwater vehicle (AUV), particularly during docking manoeuvres. The performance of the system has been assessed subjectively by listening tests, which revealed that the speech was intelligible, although of poor quality due to the speech algorithm used.
Assessing ecological correlates of marine bird declines to inform marine conservation.
Vilchis, L Ignacio; Johnson, Christine K; Evenson, Joseph R; Pearson, Scott F; Barry, Karen L; Davidson, Peter; Raphael, Martin G; Gaydos, Joseph K
2015-02-01
Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long-range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long-term marine bird monitoring programs conducted throughout the Salish Sea--a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide-ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low-trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long-term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats--information that is paramount for species-specific and ecosystem-wide conservation. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit
2017-01-01
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit
2017-02-24
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.
Scrounging by foragers can resolve the paradox of enrichment
2017-01-01
Theoretical models of predator–prey systems predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). Although real ecological communities contain many gregarious species, whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might resolve this paradox. I considered a predator population in which individuals play the producer–scrounger foraging game in one-prey-one-predator and two-prey-one-predator systems. I analysed the stability of a coexisting equilibrium point in the one-prey system and that of non-equilibrium dynamics in the two-prey system. The results revealed that social foraging could stabilize both systems, and thereby resolve the paradox of enrichment when scrounging behaviour (i.e. kleptoparasitism) is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on the sustainability of ecological communities. PMID:28405371
Advanced deep sea diving equipment
NASA Technical Reports Server (NTRS)
Danesi, W. A.
1972-01-01
Design requirements are generated for a deep sea heavy duty diving system to equip salvage divers with equipment and tools that permit work of the same quality and in times approaching that done on the surface. The system consists of a helmet, a recirculator for removing carbon dioxide, and the diver's dress. The diver controls the inlet flow by the recirculatory control valve and is able to change closed cycle operation to open cycle if malfunction occurs. Proper function of the scrubber in the recirculator minimizes temperature and humidity effects as it filters the returning air.
Augustine, David J; Springer, Tim L
2013-06-01
Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands is paralleled by variability in the magnitude of competition between native and domestic grazers. Competitive interactions evident during dry periods may be partially or wholly offset by facilitation during periods when forage digestibility is enhanced and forage quantity does not limit the daily intake rate of cattle.
Spisni, Enzo; Marabotti, Claudio; De Fazio, Luigia; Valerii, Maria Chiara; Cavazza, Elena; Brambilla, Stefano; Hoxha, Klarida; L'Abbate, Antonio; Longobardi, Pasquale
2017-03-01
The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.
Chest sonography detects lung water accumulation in healthy elite apnea divers.
Frassi, Francesca; Pingitore, Alessandro; Cialoni, Danilo; Picano, Eugenio
2008-10-01
Ultrasound lung comets (ULCs) detected by chest sonography are a simple, noninvasive, semiquantitative sign of increased extravascular lung water. Pulmonary edema may occur in elite apnea divers, possibly triggered by centralization of blood flow from the periphery to pulmonary vessels. We assessed the prevalence of ULCs in top-level breath-hold divers after immersion. We evaluated 31 consecutive healthy, top-level, breath-hold divers (10 female, 21 male; age 31 +/- 5 years) participating in a yearly international apnea diving contest in Sharm-el-Sheik, Egypt, November 1 to 3, 2007. We performed chest and cardiac sonography with a transthoracic probe (2.5-3.5 MHz, Esaote Mylab) in all divers, both on the day before and 10 +/- 9 minutes after immersion. In a subset of 4 divers, chest scan was also repeated at 24 hours after immersion. ULCs were evaluated on the anterior and posterior chest at 61 predefined scanning sites. An independent sonographer, blind to both patient identity and status (pre- or post-diving), scored ULCs. Diving depth ranged from 31 to 112 m. Duration of immersion ranged from 120 to 225 seconds. The ULC score was 0.5 +/- 1.5 at baseline and 13 +/- 21 after diving (P = .012). At individual patient analysis, ULCs appeared in 14 athletes (45%) after diving. Of these 14 athletes, 4 were asymptomatic, 6 showed aspecific symptoms with transient loss of motor control ("Samba"), 2 had palpitations with frequent premature ventricular contractions, and 2 had persistent cough with hemoptysis and pulmonary crackles. In a subset of 4 athletes with post-diving ULCs in whom late follow-up study also was available, chest sonography findings fully normalized at 24 hours of follow-up. In top-level breath-hold divers, chest sonography frequently reveals an increased number of ULCs after immersion, indicating a relatively high prevalence of (often subclinical) reversible extravascular lung water accumulation.
Team dynamics in isolated, confined environments - Saturation divers and high altitude climbers
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Gregorich, Steven E.
1992-01-01
The effects of leadership dynamics and social organization factors on team performance under conditions of high altitude climbing and deep sea diving are studied. Teams of two to four members that know each other well and have a relaxed informal team structure with much sharing of responsibilities are found to do better than military teams with more than four members who do not know each other well and have a formal team structure with highly specialized rules. Professionally guided teams with more than four members, a formally defined team structure, and clearly designated role assignments did better than 'club' teams of more than four members with a fairly informal team structure and little role specialization.
Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions
Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung
2014-01-01
A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498
Oxygen, the lung and the diver: friends and foes?
van Ooij, Pieter-Jan A M; Sterk, Peter J; van Hulst, Robert A
2016-12-01
Worldwide, the number of professional and sports divers is increasing. Most of them breathe diving gases with a raised partial pressure of oxygen (P O 2 ). However, if the P O 2 is between 50 and 300 kPa (375-2250 mmHg) (hyperoxia), pathological pulmonary changes can develop, known as pulmonary oxygen toxicity (POT). Although in its acute phase, POT is reversible, it can ultimately lead to non-reversible pathological changes. Therefore, it is important to monitor these divers to prevent them from sustaining irreversible lesions.This review summarises the pulmonary pathophysiological effects when breathing oxygen with a P O 2 of 50-300 kPa (375-2250 mmHg). We describe the role and the limitations of lung function testing in monitoring the onset and development of POT, and discuss new techniques in respiratory medicine as potential markers in the early development of POT in divers. Copyright ©ERS 2016.
A neural network model of foraging decisions made under predation risk.
Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L
2005-12-01
This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.
Roche, Ronan C; Harvey, Chloe V; Harvey, James J; Kavanagh, Alan P; McDonald, Meaghan; Stein-Rostaing, Vivienne R; Turner, John R
2016-07-01
Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2015-03-01
Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). We performed transthoracic echocardiography (TTE) on a group of 56 healthy scuba divers (39 male, 17 female) as follows: first echo--during the outgoing flight, no recent dives; second echo--before boarding the return flight, after a multiday diving week in the tropics and a 24-hour PFSI; third echo--during the return flight at 30, 60 and 90 minutes after take-off. TTE was also done after every dive during the week's diving. Divers were divided into three groups according to their 'bubble-proneness': non-bubblers, occasional bubblers and consistent bubblers. During the diving, 23 subjects never developed bubbles, 17 only occasionally and 16 subjects produced bubbles every day and after every dive. Bubbles on the return flight were observed in eight of the 56 divers (all from the 'bubblers' group). Two subjects who had the highest bubble scores during the diving were advised not to make the last dive (increasing their PFSI to approximately 36 hours), and did not demonstrate bubbles on the return flight. Even though a 24-hour PFSI is recommended on the basis of clinical trials showing a low risk of decompression sickness (DCS), the presence of venous gas bubbles in-flight in eight of 56 divers leads us to suspect that in real-life situations DCS risk after such a PFSI is not zero.
Hobbs, Malcolm; Higham, Philip A; Kneller, Wendy
2014-06-01
The current study tested whether undersea divers are able to accurately judge their level of memory impairment from inert gas narcosis. Inert gas narcosis causes a number of cognitive impairments, including a decrement in memory ability. Undersea divers may be unable to accurately judge their level of impairment, affecting safety and work performance. In two underwater field experiments, performance decrements on tests of memory at 33 to 42 m were compared with self-ratings of impairment and resolution. The effect of depth (shallow [I-II m] vs. deep [33-42 m]) was measured on free-recall (Experiment I; n = 41) and cued-recall (Experiment 2; n = 39) performance, a visual-analogue self-assessment rating of narcotic impairment, and the accuracy of judgements-of-learning JOLs). Both free- and cued-recall were significantly reduced in deep, compared to shallow, conditions. This decrement was accompanied by an increase in self-assessed impairment. In contrast, resolution (based on JOLs) remained unaffected by depth. The dissociation of memory accuracy and resolution, coupled with a shift in a self-assessment of impairment, indicated that divers were able to accurately judge their decrease in memory performance at depth. These findings suggest that impaired self-assessment and resolution may not actually be a symptom of narcosis in the depth range of 33 to 42 m underwater and that the divers in this study were better equipped to manage narcosis than prior literature suggested. The results are discussed in relation to implications for diver safety and work performance.
Ranapurwala, Shabbar I; Kucera, Kristen L; Denoble, Petar J
2018-01-01
Scuba diver fitness is paramount to confront environmental stressors of diving. However, the diving population is aging and the increasing prevalence of diseases may be a concern for diver fitness. The purpose of this study is to assess the demographics, lifestyle factors, disease prevalence, and healthcare access and utilization of Divers Alert Network (DAN) members and compare them with those from the general population. DAN membership health survey (DMHS) was administered online in 2011 to DAN members in the United States (US). Health status of DMHS respondents was compared with the general US population data from the Center for Disease Control and Prevention's Behavioral Risk Factor Surveillance System using two-sided student's t-tests and Mantel-Haenszel chi-square tests. Univariate and multivariate logistic regression analyses were conducted to identify factors associated with healthcare utilization among the DMHS participants. Compared to the general US population, the DMHS population had lower prevalence of asthma, heart attack, angina, stroke, diabetes, hypertension, hypercholesterolemia, and disabilities (p<0.01); more heavy alcohol drinkers, and fewer smokers (p<0.01); and greater access and utilization (routine checkup) of healthcare (p<0.01). Healthcare utilization in males was lower than among females. Increasing age and increase in the number of chronic illnesses were associated with increased healthcare utilization. DAN members are healthier than the general US population. DAN members also have better access to healthcare and utilize healthcare for preventive purposes more often than the general population. DAN members appear to have a better fitness level than their non-diving peers.
Weather conditions drive dynamic habitat selection in a generalist predator.
Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B; Rahbek, Carsten
2014-01-01
Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.
Group cohesion in foraging meerkats: follow the moving 'vocal hot spot'.
Gall, Gabriella E C; Manser, Marta B
2017-04-01
Group coordination, when 'on the move' or when visibility is low, is a challenge faced by many social living animals. While some animals manage to maintain cohesion solely through visual contact, the mechanism of group cohesion through other modes of communication, a necessity when visual contact is reduced, is not yet understood. Meerkats ( Suricata suricatta ), a small, social carnivore, forage as a cohesive group while moving continuously. While foraging, they frequently emit 'close calls', soft close-range contact calls. Variations in their call rates based on their local environment, coupled with individual movement, produce a dynamic acoustic landscape with a moving 'vocal hotspot' of the highest calling activity. We investigated whether meerkats follow such a vocal hotspot by playing back close calls of multiple individuals to foraging meerkats from the front and back edge of the group simultaneously. These two artificially induced vocal hotspots caused the group to spatially elongate and split into two subgroups. We conclude that meerkats use the emergent dynamic call pattern of the group to adjust their movement direction and maintain cohesion. Our study describes a highly flexible mechanism for the maintenance of group cohesion through vocal communication, for mobile species in habitats with low visibility and where movement decisions need to be adjusted continuously to changing environmental conditions.
Eating locally: Australasian gannets increase their foraging effort in a restricted range
Angel, Lauren P.; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P. Y.
2015-01-01
ABSTRACT During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. PMID:26369928
Eating locally: Australasian gannets increase their foraging effort in a restricted range.
Angel, Lauren P; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P Y
2015-09-14
During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. © 2015. Published by The Company of Biologists Ltd.
Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.
2009-01-01
Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Reiskind, Michael H; Janairo, M Shawn
2015-09-01
The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Venter, Jan A; Prins, Herbert H T; Mashanova, Alla; Slotow, Rob
2017-01-01
Finding suitable forage patches in a heterogeneous landscape, where patches change dynamically both spatially and temporally could be challenging to large herbivores, especially if they have no a priori knowledge of the location of the patches. We tested whether three large grazing herbivores with a variety of different traits improve their efficiency when foraging at a heterogeneous habitat patch scale by using visual cues to gain a priori knowledge about potential higher value foraging patches. For each species (zebra ( Equus burchelli ), red hartebeest ( Alcelaphus buselaphus subspecies camaa ) and eland ( Tragelaphus oryx )), we used step lengths and directionality of movement to infer whether they were using visual cues to find suitable forage patches at a habitat patch scale. Step lengths were significantly longer for all species when moving to non-visible patches than to visible patches, but all movements showed little directionality. Of the three species, zebra movements were the most directional. Red hartebeest had the shortest step lengths and zebra the longest. We conclude that these large grazing herbivores may not exclusively use visual cues when foraging at a habitat patch scale, but would rather adapt their movement behaviour, mainly step length, to the heterogeneity of the specific landscape.
Questions Students Ask: How Can a Downhill Skier Move Faster than a Sky Diver?
ERIC Educational Resources Information Center
Armenti, Angelo, Jr.
1984-01-01
Discusses the relationship of gravity, coefficient of friction, surface area, and Newton's second law to explain the physics involved in downhill skiers being able to move faster than sky divers in free fall. (JM)
Diving accidents in sports divers in Orkney waters.
Trevett, A J; Forbes, R; Rae, C K; Sheehan, C; Ross, J; Watt, S J; Stephenson, R
2001-12-01
Scapa Flow in Orkney is one of the major world centres for wreck diving. Because of the geography of Orkney and the nature of the diving, it is possible to make relatively accurate estimates of the number of dives taking place. The denominator of dive activity allows the unusual opportunity of precise calculation of accident rates. In 1999, one in every 178 sports divers visiting Orkney was involved in a significant accident, in 2000 the figure was one in 102. Some of these accidents appear to have been predictable and could be avoided by better education and preparation of visiting divers.
Heat loss and hypothermia in free diving: Estimation of survival time under water
NASA Astrophysics Data System (ADS)
Aguilella-Arzo, Marcel; Alcaraz, Antonio; Aguilella, Vicente M.
2003-04-01
The heat exchange between a diver and the colder surrounding water is analyzed on the basis of the fundamental equations of thermal transport. To estimate the decrease in the diver's body temperature as a function of time, we discuss the complex interplay of several factors including the body heat production rate, the role of the diver's wet suit, and the way different heat exchange mechanisms (conduction, convection, and radiation) contribute to thermal transport. This knowledge could be useful to prevent physiological disorders that occur when the human body temperature drops below 35 °C.
Development of a Hydrogen-Fueled Diver Heater.
1982-05-01
HHV ) of 319 B/lb, and a lower heating value ( LHV ) of 270 B/lb. The difference between HHV and LHV is the energy of water con- Sdensation. For an...AO-A115 173 BATTELLE COLUSUIJA LAOS 0O4 F/0 6/17 DEVELOPMNT OF A MYDR(N- FUELED DIVER IEATER. CU) MCAY U P 5 RIEGEL M61331-81-C-00?S I 4KLASSIFIED ML... FUELED DIVER HEATER to I NAVAL COASTAL SYSTEMS CENTER May 1982 by P. S. RIEGEL Contract No. N61331-81-C-0075 it Columbus Laboratories 505 King Avenue JUNO
Johnson, Rebecca
2016-09-01
Some people with well-managed insulin-dependent diabetes can dive safely. Those cleared to participate should control tightly the variables that impact blood glucose levels, including activity, timing, food and insulin. Honest self-assessment is critical. A diabetic diver should cancel a dive if seasick, unusually anxious, or following significant high or low blood glucose levels in the preceding 24 hours. The diver should enter the water with a blood glucose level above 8.3 mmol·L⁻¹ and below 14 mmol·L⁻¹ with a stable or rising trend in blood glucose established with glucose tests at 90, 60, and 30 minutes prior to a dive. The diver should carry emergency glucose at all times and brief dive buddies about hypoglycaemia procedures. This is a personal account of the author's experience diving with type 1 diabetes and details how the UHMS/DAN recommendations are put into practice on dive days. Key elements of the self-assessment process, long- and rapid-acting insulin adjustments, meal timing, responses to blood glucose trends, handling hypoglycaemia and approaching multi-dive days are described. Some considerations for people using insulin pumps are also briefly discussed.
A case-control study evaluating relative risk factors for decompression sickness: a research report.
Suzuki, Naoko; Yagishita, Kazuyosi; Togawa, Seiichiro; Okazaki, Fumihiro; Shibayama, Masaharu; Yamamoto, Kazuo; Mano, Yoshihiro
2014-01-01
Factors contributing to the pathogenesis of decompression sickness (DCS) in divers have been described in many studies. However, relative importance of these factors has not been reported. In this case-control study, we compared the diving profiles of divers experiencing DCS with those of a control group. The DCS group comprised 35 recreational scuba divers who were diagnosed by physicians as having DCS. The control group consisted of 324 apparently healthy recreational divers. All divers conducted their dives from 2009 to 2011. The questionnaire consisted of 33 items about an individual's diving profile, physical condition and activities before, during and just after the dive. To simplify dive parameters, the dive site was limited to Izu Osezaki. Odds ratios and multiple logistic regression were used for the analysis. Odds ratios revealed several items as dive and health factors associated with DCS. The major items were as follows: shortness of breath after heavy exercise during the dive (OR = 12.12), dehydration (OR = 10.63), and maximum dive depth > 30 msw (OR = 7.18). Results of logistic regression were similar to those by odds ratio analysis. We assessed the relative weights of the surveyed dive and health factors associated with DCS. Because results of several factors conflict with previous studies, future studies are needed.
Ocean climate and seal condition.
Le Boeuf, Burney J; Crocker, Daniel E
2005-03-28
The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.
Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien
2015-01-01
In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration. PMID:26398528
Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien
2015-01-01
In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.
Large-scale climatic anomalies affect marine predator foraging behaviour and demography.
Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-27
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
Large-scale climatic anomalies affect marine predator foraging behaviour and demography
NASA Astrophysics Data System (ADS)
Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-01
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
Global seabird responses to forage fish depletion - One-third for the birds
Cury, Philippe M.; Boyd, Ian L.; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J.M.; Furness, Robert W.; Mills, James A.; Murphy, Eugene J.; Österblom, Henrik; Paleczny, Michelle; Piatt, John F.; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J.
2011-01-01
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Global seabird response to forage fish depletion--one-third for the birds.
Cury, Philippe M; Boyd, Ian L; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J M; Furness, Robert W; Mills, James A; Murphy, Eugene J; Osterblom, Henrik; Paleczny, Michelle; Piatt, John F; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J
2011-12-23
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J
2016-09-01
Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.
Rapid behavioral maturation accelerates failure of stressed honey bee colonies
Perry, Clint J.; Myerscough, Mary R.; Barron, Andrew B.
2015-01-01
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. PMID:25675508
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
Rapid behavioral maturation accelerates failure of stressed honey bee colonies.
Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B
2015-03-17
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.
Chaos–order transition in foraging behavior of ants
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-01-01
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159
Titus, Benjamin M; Daly, Marymegan; Exton, Dan A
2015-01-01
Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.
Kucera, Kristen L.; Denoble, Petar J.
2018-01-01
Background Scuba diver fitness is paramount to confront environmental stressors of diving. However, the diving population is aging and the increasing prevalence of diseases may be a concern for diver fitness. Purpose The purpose of this study is to assess the demographics, lifestyle factors, disease prevalence, and healthcare access and utilization of Divers Alert Network (DAN) members and compare them with those from the general population. Methods DAN membership health survey (DMHS) was administered online in 2011 to DAN members in the United States (US). Health status of DMHS respondents was compared with the general US population data from the Center for Disease Control and Prevention’s Behavioral Risk Factor Surveillance System using two-sided student’s t-tests and Mantel-Haenszel chi-square tests. Univariate and multivariate logistic regression analyses were conducted to identify factors associated with healthcare utilization among the DMHS participants. Results Compared to the general US population, the DMHS population had lower prevalence of asthma, heart attack, angina, stroke, diabetes, hypertension, hypercholesterolemia, and disabilities (p<0.01); more heavy alcohol drinkers, and fewer smokers (p<0.01); and greater access and utilization (routine checkup) of healthcare (p<0.01). Healthcare utilization in males was lower than among females. Increasing age and increase in the number of chronic illnesses were associated with increased healthcare utilization. Conclusions DAN members are healthier than the general US population. DAN members also have better access to healthcare and utilize healthcare for preventive purposes more often than the general population. DAN members appear to have a better fitness level than their non-diving peers. PMID:29566018
Improved pulmonary function in working divers breathing nitrox at shallow depths
NASA Technical Reports Server (NTRS)
Fitzpatrick, Daniel T.; Conkin, Johnny
2003-01-01
INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p < 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.
Cain, James W.; Gedir, Jay V.; Marshal, Jason P.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Jansen, Brian; Morgart, John R.
2017-01-01
Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi-arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation-induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north-temperate ungulates which are generally reported to be energy-limited, N and moisture may be more nutritionally limiting for desert ungulates than digestible energy.
Long foraging distances impose high costs on offspring production in solitary bees.
Zurbuchen, Antonia; Cheesman, Stephanie; Klaiber, Jeannine; Müller, Andreas; Hein, Silke; Dorn, Silvia
2010-05-01
1. Solitary bees are central place foragers returning to their nests several times a day with pollen and nectar to provision their brood cells. They are especially susceptible to landscape changes that lead to an increased spatial separation of suitable nesting sites and flower rich host plant stands. While knowledge of bee foraging ranges is currently growing, quantitative data on the costs of foraging flights are very scarce, although such data are crucial to understand bee population dynamics. 2. In this study, the impact of increased foraging distance on the duration of foraging bouts and on the number of brood cells provisioned per time unit was experimentally quantified in the two pollen specialist solitary bee species Hoplitis adunca and Chelostoma rapunculi. Females nesting at different sites foraged under the same environmental conditions on a single large and movable flowering host plant patch in an otherwise host plant free landscape. 3. The number of brood cells provisioned per time unit by H. adunca was found to decrease by 23%, 31% and 26% with an increase in the foraging distance by 150, 200 and 300 m, respectively. The number of brood cells provisioned by C. rapunculi decreased by 46% and 36% with an increase in the foraging distance by 500 and 600 m, respectively. 4. Contrary to expectation, a widely scattered arrangement of host plants did not result in longer mean duration of a foraging bout in H. adunca compared to a highly aggregated arrangement, which might be due to a reduced flight directionality combined with a high rate of revisitation of already depleted flowers in the aggregated plant arrangement or by a stronger competition and disturbance by other flower visitors. 5. The results of this study clearly indicate that a close neighbourhood of suitable nesting and foraging habitats is crucial for population persistence and thus conservation of endangered solitary bee species.
Method To Display Data On A Face Mask
NASA Technical Reports Server (NTRS)
Moore, Kevin-Duron
1995-01-01
Proposed electronic instrument displays information on diver's or firefighter's face mask. Includes mask, prism, electronic readouts, transceiver and control electronics. Mounted at periphery of diver's field of view to provide data on elapsed time, depth, pressure, and temperature. Provides greater safety and convenience to user.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the diver access to the surrounding environment, and is capable of being used as a refuge during... supervisor. Diver means a person working beneath the surface, exposed to hyperbaric conditions, and using.... Injurious corrosion means an advanced state of corrosion which may impair the structural integrity or safe...
Severe capillary leak syndrome after inner ear decompression sickness in a recreational scuba diver.
Gempp, Emmanuel; Lacroix, Guillaume; Cournac, Jean-Marie; Louge, Pierre
2013-07-01
Post-decompression shock with plasma volume deficit is a very rare event that has been observed under extreme conditions of hypobaric and hyperbaric exposure in aviators and professional divers. We report a case of severe hypovolemic shock due to extravasation of plasma in a recreational scuba diver presenting with inner ear decompression sickness. Impaired endothelial function can lead to capillary leak with hemoconcentration and hypotension in severe cases. This report suggests that decompression-induced circulating bubbles may have triggered the endothelial damage, activating the classic inflammatory pathway of increased vascular permeability. This observation highlights the need for an accurate diagnosis of this potentially life-threatening condition at the initial presentation in the Emergency Department after a diving-related injury. An elevated hematocrit in a diver should raise the suspicion for the potential development of capillary leak syndrome requiring specific treatment using albumin infusion as primary fluid replacement. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anoraga, J. S.; Bramantyo, B.; Bardosono, S.; Simanungkalit, S. H.; Basiruddin, J.
2017-08-01
Impedance audiometry is not yet routinely used in pressure tests, especially in Indonesia. Direct exposure to pressure in a hyperbaric chamber is sometimes without any assessment of the middle ear or the Eustachian tube function (ETF) of ventilation. Impedance audiometry examinations are important to assess ETF ventilation. This study determined the middle ear pressure value changes associated with the ETF (ventilation) of prospective divers. This study included 29 prospective divers aged 20-40 years without conductive hearing loss. All subjects underwent a modified diving impedance audiometry examination both before and after the pressure test in a double-lock hyperbaric chamber. Using the Toynbee maneuver, the values obtained for changes of pressure in the middle ear were significant before and after the pressure test in the right and left ears: p < 0.001 and p = 0.018, respectively. The impedance audiometry examination is necessary for the selection of candidate divers undergoing pressure tests within a hyperbaric chamber.
Garin, D.; Fuchs, F.; Crance, J. M.; Rouby, Y.; Chapalain, J. C.; Lamarque, D.; Gounot, A. M.; Aymard, M.
1994-01-01
An epidemiological study of hepatitis A and enteroviruses was conducted in a military diving training school, by evaluating the viral contamination of water using an ultrafiltration concentration technique, and assessing seroconversion and the presence of virus in stool specimens obtained from 109 divers and 48 controls. Three of 29 water specimens were positive for enterovirus by cell culture and 9 by molecular hybridization. There was little or no risk of virus infection during the training course (49 h exposure) because there was no significant difference between divers and controls for both viral isolation and seroconversion. However, a higher percentage of coxsackievirus B4 and B5 seropositive divers suggests that these were more exposed during previous water training. No hepatitis A virus (HAV) detection and no seroconversion to HAV was observed. The rate of HAV seropositive subjects was 17% in this 24.5-year-old population. PMID:7995363
Cancer risks in naval divers with multiple exposures to carcinogens.
Richter, Elihu D; Friedman, Lee S; Tamir, Yuval; Berman, Tamar; Levy, Or; Westin, Jerome B; Peretz, Tamar
2003-01-01
We investigated risks for cancer and the case for a cause-effect relationship in five successive cohorts of naval commando divers (n = 682) with prolonged underwater exposures (skin, gastrointestinal tract, and airways) to many toxic compounds in the Kishon River, Israel's most polluted waterway, from 1948 to 1995. Releases of industrial, ship, and agricultural effluents in the river increased substantially, fish yields decreased, and toxic damage to marine organisms increased. Among the divers (16,343 person-years follow-up from 18 years of age to year 2000), the observed/expected ratio for all tumors was 2.29 (p<0.01). Risks increased in cohorts first diving after 1960 compared to risks in earlier cohorts, notably for hematolymphopoietic, central nervous system, gastrointestinal, and skin cancer; induction periods were often brief. The findings suggest that the increases in risk for cancer and short induction periods resulted from direct contact with and absorption of multiple toxic compounds. Early toxic effects in marine life predicted later risks for cancer in divers. PMID:12676624
Andrić, Dejan; Petri, Nadan M; Stipancević, Hrvoje; Petri, Lena Vranjković; Kovacević, Hasan
2003-01-01
A significant change of occurrence (p=0.0343) of type 1 and type 2 decompression sickness (DCS) of divers in Croatia was observed in the period from 1991 to 2002 (type 1: n=26, 37.68% and type 2: n=43, 62.32%) compared with the period from 1967 to 1990 (type 1: n=93, 52.84% and type 2: n=83, 47.16%). The change was attributed to the extensive usage of diving computers and artificial gas mixtures which enable extended bottom times and deeper dives, thus putting divers at an increased decompression risk. The importance of the results of this report is in the fact that permanent neurological deficit occurs only after type 2 DCS. Injured divers with permanent loss after type 2 DCS are not fit for diving and require a long term medical care, thus becoming a significant public health problem.
Rozali, A; Khairuddin, H; Sherina, M S; Zin, B Mohd; Sulaiman, A
2008-06-01
Occupational divers are exposed to hazards which contribute to the risk of developing decompression illnesses (DCI). DCI consists of Type I decompression sickness (DCS), Type II DCS and arterial gas embolism (AGE), developed from formation of bubbles in the tissues or circulation as a result of inadequate elimination of inert gas (nitrogen) after a dive. In Malaysia, DCI is one of the significant contributions to mortality and permanent residual morbidity in diving accidents. This is a case of a diver who suffered from Type II DCS with neurological complications due to an occupational diving activity. This article mentions the clinical management of the case and makes several recommendations based on current legislations and practise implemented in Malaysia in order to educate medical and health practitioners on the current management of DCI from the occupational perspective. By following these recommendations, hopefully diving accidents mainly DCI and its sequalae among occupational divers can be minimized and prevented, while divers who become injured receive the proper compensation for their disabilities.
Divergence Free High Order Filter Methods for the Compressible MHD Equations
NASA Technical Reports Server (NTRS)
Yea, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.
Multi-Day Air Saturation at 20 and 22 FSW With Direct Ascent: Data Report on Project 92-09
2002-03-01
0802 0 air L/S; Divers 7, 8, 9, 10, 11, 12 0803 22 air R/B Feb 09 1919 22 air DMO entry, Diver 12 has scratchy throat and post-nasal drip, given aspirin...10,11, fsw 12 _ Galley is shipshape as is food. 1919 8 OK Robinson 12 describes scratchy throat & post nasal drip with ????? with purulent nasal...Ball 12 scratchy throat , sniffles, ASA 2 PO every 4 hrs 9 no c/o 7 no c/o 10 no c/o 11 mild congestion, Sudafed 60 mg Divers in good spirits 1250 8
Carrying capacity in arid rangelands during droughts: the role of temporal and spatial thresholds.
Accatino, F; Ward, D; Wiegand, K; De Michele, C
2017-02-01
Assessing the carrying capacity is of primary importance in arid rangelands. This becomes even more important during droughts, when rangelands exhibit non-equilibrium dynamics, and the dynamics of livestock conditions and forage resource are decoupled. Carrying capacity is usually conceived as an equilibrium concept, that is, the consumer density that can co-exist in long-term equilibrium with the resource. As one of the first, here we address the concept of carrying capacity in systems, where there is no feedback between consumer and resource in a limited period of time. To this end, we developed an individual-based model describing the basic characteristics of a rangeland during a drought. The model represents a rangeland composed by a single water point and forage distributed all around, with livestock units moving from water to forage and vice versa, for eating and drinking. For each livestock unit we implemented an energy balance and we accounted for the gut-filling effect (i.e. only a limited amount of forage can be ingested per unit time). Our results showed that there is a temporal threshold above which livestock begin to experience energy deficit and burn fat reserves. We demonstrated that such a temporal threshold increases with the number of animals and decreases with the rangeland conditions (amount of forage). The temporal threshold corresponded to the time livestock take to consume all the forage within a certain distance from water, so that the livestock can return to water for drinking without spending more energy than they gain within a day. In this study, we highlight the importance of a time threshold in the assessment of carrying capacity in non-equilibrium conditions. Considering this time threshold could explain contrasting observations about the influence of livestock number on livestock conditions. In case of private rangelands, the herd size should be chosen so that the spatial threshold equals (or exceeds) the length of the drought.
Possible behavioural, energetic and demographic effects of displacement of red-throated divers
Dierschke, Volker; Furness, Robert W.; Gray, Carrie E.; Petersen, Ib Krag; Schmutz, Joel A.; Zydelis, Ramunas; Daunt, Francis
2017-01-01
This report comprises the main points of discussion and agreement during a workshop, held in Edinburgh in May 2017, to discuss how displacement might affect individuals and the Red-throated diver population; with additional information added by the scientists following the workshop.
76 FR 4529 - Safety Zone; Underwater Hazard, Gravesend Bay, Brooklyn, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... divers, U.S. Navy Explosive Ordnance Disposal divers from Naval Weapons Station Earle conducted... Government and Indian tribes. Energy Effects We have analyzed this rule under Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use. We have determined that...
Pedata, Paola; Corvino, Anna Rita; Napolitano, Raffaele Carmine; Garzillo, Elpidio Maria; Furfaro, Ciro; Lamberti, Monica
2016-01-20
From many years now, thanks to the development of modern diving techniques, there has been a rapid spread of diving activities everywhere. In fact, divers are ever more numerous both among the Armed Forces and civilians who dive for work, like fishing, biological research and archeology. The aim of the study was to propose a health protocol for work fitness of professional divers keeping in mind the peculiar work activity, existing Italian legislation that is almost out of date and the technical and scientific evolution in this occupational field. We performed an analysis of the most frequently occurring diseases among professional divers and of the clinical investigation and imaging techniques used for work fitness assessment of professional divers. From analysis of the health protocol recommended by D.M. 13 January 1979 (Ministerial Decree), that is most used by occupational health physician, several critical issues emerged. Very often the clinical investigation and imaging techniques still used are almost obsolete, ignoring the execution of simple and inexpensive investigations that are more useful for work fitness assessment. Considering the out-dated legislation concerning diving disciplines, it is necessary to draw up a common health protocol that takes into account clinical and scientific knowledge and skills acquired in this area. This protocol's aim is to propose a useful tool for occupational health physicians who work in this sector.
Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.
2016-01-01
Factors affecting feeding and growth of early life stages of the federally endangered pallid sturgeon (Scaphirhynchus albus) are not fully understood, owing to their scarcity in the wild. In this study was we evaluated the performance of a combined foraging-bioenergetics model as a tool for assessing growth of age-0 pallid sturgeon in the Missouri River. In the laboratory, three size classes of sturgeon larvae (18–44 mm; 0.027–0.329 g) were grown for 7 to 14 days under differing temperature (14–24 °C) and prey density (0–9 Chironomidae larvae/d) regimes. After accounting for effects of water temperature and prey density on fish activity, we compared observed final weight, final length, and number of prey consumed to values generated from the foraging-bioenergetics model. When confronted with an independent dataset, the combined model provided reliable estimates (within 13% of observations) of fish growth and prey consumption, underscoring the usefulness of the modeling approach for evaluating growth dynamics of larval fish when empirical data are lacking.
30 CFR 250.1742 - What other methods can I use to verify that a site is clear?
Code of Federal Regulations, 2010 CFR
2010-07-01
...— And you must— (a) Sonar cover 100 percent of the appropriate grid area listed in § 250.1741(a) Use a sonar signal with a frequency of at least 500 kHz. (b) A diver ensure that the diver visually inspects...
PHYSIOLOGICAL EVALUATION OF A FREE-FLOODING DIVER HEAT REPLACEMENT GARMENT.
The general capabilities of a free-flooding heat replacement garment in maintaining thermal comfort in 40F water, at both surface and deep diving...recorded. Suit inlet temperatures which produce a subjective response of thermal comfort by the diver (Comfort Zone Inlet Temperature) at various flow
ERIC Educational Resources Information Center
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.
2018-01-01
The article proposes a new research object for a general physics course--the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the…
Consequences of U.S. Navy Diving Mishaps: Air Embolism and Barotrauma.
1985-12-01
diver), displacement of the intervertebral disc (I diver), and various combinations of hearing impairment, otitis ", media , otitis externa, and other...hospitalization for otitis media , otitis externa, and other diseases of the ear and mastoid process (8 days later)/ released from active duty (2 yrs, 4
46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) Program options... MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.650 Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater...
29 CFR 1910.427 - Liveboating.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.427... of 220 fsw; (3) Using mixed gas at depths greater than 220 fsw; (4) In rough seas which significantly... while a diver is in the water. (5) A diver-carried reserve breathing gas supply shall be carried by each...
Finding Environmental Knowledge in SCUBA-Based Textual Materials
ERIC Educational Resources Information Center
Gündogdu, Cemal; Aygün, Yalin; Ilkim, Mehmet
2018-01-01
As marine environments within the adventure domain are future key-settings for recreational SCUBA diving experience, SCUBA-based textual materials should provide insight into environmental knowledge that is well connected to the novice divers' behaviour and attitude. This research is concerned with a major recreational SCUBA diver manual for…
CERC Field Research Facility Environmental Data Summary, 1977-79.
1982-12-01
Motorola "Mini-Ranger," coupled to a Hewlett-Packard Mini-Computer and flatbed plotter. This positioning system was put together and operated by Prank... laminations within the core. While one diver collected the sample, the second diver recorded conditions on the bottom. This description included sediment
Increasing metabolic rate despite declining body weight in an adult parasitoid wasp.
Casas, Jérôme; Body, Mélanie; Gutzwiller, Florence; Giron, David; Lazzari, Claudio R; Pincebourde, Sylvain; Richard, Romain; Llandres, Ana L
2015-08-01
Metabolic rate is a positive function of body weight, a rule valid for most organisms and the basis of several theories of metabolic ecology. For adult insects, however, the diversity of relationships between body mass and respiration remains unexplained. The aim of this study is to relate the respiratory metabolism of a parasitoid with body weight and foraging activity. We compared the metabolic rate of groups of starving and host-fed females of the parasitoid Eupelmus vuilleti recorded with respirometry for 7days, corresponding to the mean lifetime of starving females and over half of the lifetime of foraging females. The dynamics of carbohydrate, lipid and protein in the body of foraging females were quantified with biochemical techniques. Body mass and all body nutrients declined sharply from the first day onwards. By contrast, the CO2 produced and the O2 consumed increased steadily. Starving females showed the opposite trend, identifying foraging as the reason for the respiration increase of feeding females. Two complementary physiological processes explain the unexpected relationship between increasing metabolic rate and declining body weight. First, host hemolymph is a highly unbalanced food, and the excess nutrients (protein and carbohydrate) need to be voided, partially through excretion and partially through respiration. Second, a foraging young female produces eggs at an increasing rate during the first half of its lifetime, a process that also increases respiration. We posit that the time-varying metabolic rate contributions of the feeding and reproductive processes supplements the contribution of the structural mass and lead to the observed trend. We extend our explanations to other insect groups and discuss the potential for unification using Dynamic Energy Budget theory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Páez, David J; Restif, Olivier; Eby, Peggy; Plowright, Raina K
2018-05-05
Bats provide important ecosystem services such as pollination of native forests; they are also a source of zoonotic pathogens for humans and domestic animals. Human-induced changes to native habitats may have created more opportunities for bats to reside in urban settings, thus decreasing pollination services to native forests and increasing opportunities for zoonotic transmission. In Australia, fruit bats ( Pteropus spp. flying foxes) are increasingly inhabiting urban areas where they feed on anthropogenic food sources with nutritional characteristics and phenology that differ from native habitats. We use optimal foraging theory to investigate the relationship between bat residence time in a patch, the time it takes to search for a new patch (simulating loss of native habitat) and seasonal resource production. We show that it can be beneficial to reside in a patch, even when food productivity is low, as long as foraging intensity is low and the expected searching time is high. A small increase in the expected patch searching time greatly increases the residence time, suggesting nonlinear associations between patch residence and loss of seasonal native resources. We also found that sudden increases in resource consumption due to an influx of new bats has complex effects on patch departure times that again depend on expected searching times and seasonality. Our results suggest that the increased use of urban landscapes by bats may be a response to new spatial and temporal configurations of foraging opportunities. Given that bats are reservoir hosts of zoonotic diseases, our results provide a framework to study the effects of foraging ecology on disease dynamics.One contribution of 14 to a theme isssue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
Longo, G O; Floeter, S R
2012-10-01
This study compared remote underwater video and traditional direct diver observations to assess reef fish feeding impact on benthos across multiple functional groups within different trophic categories (e.g. herbivores, zoobenthivores and omnivores) and in two distinct reef systems: a subtropical rocky reef and a tropical coral reef. The two techniques were roughly equivalent, both detecting the species with higher feeding impact and recording similar bite rates, suggesting that reef fish feeding behaviour at the study areas are not strongly affected by the diver's presence. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Decompression sickness in a vegetarian diver: are vegetarian divers at risk? A case report.
van Hulst, Robert A; van der Kamp, Wim
2010-01-01
We present a case of a diver who suffered decompression sickness (DCS), but who also was a strict vegetarian for more than 10 years. He presented with symptoms of tingling of both feet and left hand, weakness in both legs and sensory deficits for vibration and propriocepsis after two deep dives with decompression. The initial clinical features of this case were most consistent with DCS, possibly because of a vulnerable spinal cord due to cobalamin deficiency neuropathy. This case illustrates the similarities between DCS and a clinically defined vitamin B12 deficiency. The pathophysiology of vitamin B12 deficiency and common pathology and symptoms of DCS are reviewed.
Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans.
Eichhorn, Lars; Erdfelder, Felix; Kessler, Florian; Doerner, Jonas; Thudium, Marcus O; Meyer, Rainer; Ellerkmann, Richard K
2015-12-01
In this study we investigated the responsiveness of near-infrared spectroscopy (NIRS) recordings measuring regional cerebral tissue oxygenation (rSO2) during hypoxia in apneic divers. The goal was to mimic dynamic hypoxia as present during cardiopulmonary resuscitation, laryngospasm, airway obstruction, or the "cannot ventilate cannot intubate" situation. Ten experienced apneic divers performed maximal breath hold maneuvers under dry conditions. SpO2 was measured by Masimo™ pulse oximetry on the forefinger of the left hand. NIRS was measured by NONIN Medical's EQUANOX™ on the forehead or above the musculus quadriceps femoris. Following apnea median cerebral rSO2 and SpO2 values decreased significantly from 71 to 54 and from 100 to 65%, respectively. As soon as cerebral rSO2 and SpO2 values decreased monotonically the correlation between normalized cerebral rSO2 and SpO2 values was highly significant (Pearson correlation coefficient = 0.893). Prior to correlation analyses, the values were normalized by dividing them by the individual means of stable pre-apneic measurements. Cerebral rSO2 measured re-saturation after termination of apnea significantly earlier (10 s, SD = 3.6 s) compared to SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703, p < 0.001, r(2) = 0.868]. Our data demonstrate that NIRS monitoring reliably measures dynamic changes in cerebral tissue oxygen saturation, and identifies successful re-saturation faster than SpO2. Measuring cerebral rSO2 may prove beneficial in case of respiratory emergencies and during pulseless situations where SpO2 monitoring is impossible.
Plant toxicity, adaptive herbivory, and plant community dynamics
Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart
2009-01-01
We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...
Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas
Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.
2004-01-01
In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.
Persistent (patent) foramen ovale (PFO): implications for safe diving.
Germonpré, Peter
2015-06-01
Diving medicine is a peculiar specialty. There are physicians and scientists from a wide variety of disciplines with an interest in diving and who all practice 'diving medicine': the study of the complex whole-body physiological changes and interactions upon immersion and emersion. To understand these, the science of physics and molecular gas and fluid movements comes into play. The ultimate goal of practicing diving medicine is to preserve the diver's health, both during and after the dive. Good medicine starts with prevention. For most divers, underwater excursions are not a professional necessity but a hobby; avoidance of risk is generally a much better option than risk mitigation or cure. However, prevention of diving illnesses seems to be even more difficult than treating those illnesses. The papers contained in this issue of DHM are a nice mix of various aspects of PFO that divers are interested in, all of them written by specialist doctors who are avid divers themselves. However, diving medicine should also take advantage of research from the "non-diving" medicine community, and PFO is a prime example. Cardiology and neurology have studied PFO for as long, or even longer than divers have been the subjects of PFO research, and with much greater numbers and resources. Unexplained stroke has been associated with PFO, as has severe migraine with aura. As the association seems to be strong, investigating the effect of PFO closure was a logical step. Devices have been developed and perfected, allowing now for a relatively low-risk procedure to 'solve the PFO problem'. However, as with many things in science, the results have not been as spectacular as hoped for: patients still get recurrences of stroke, still have migraine attacks. The risk-benefit ratio of PFO closure for these non-diving diseases is still debated. For diving, we now face a similar problem. Let there be no doubt that PFO is a pathway through which venous gas emboli (VGE) can arterialize, given sufficiently favourable circumstances (such as: a large quantity of VGE, size of the PFO, straining or provocation manoeuvres inducing increased right atrial pressure, delayed tissue desaturation so that seeding arterial gas emboli (AGE) grow instead of shrink, and there may be other, as yet unknown factors). There is no doubt that closing a PFO, either surgically or using a catheter-delivered device, can reduce the number of VGE becoming AGE. There is also no doubt that the procedure itself carries some health risks which are, at 1% or higher risk of serious complications, an order of magnitude greater than the risk for decompression illness (DCI) in recreational diving. Scientists seek the 'truth', but the truth about how much of a risk PFO represents for divers is not likely to be discovered nor universally accepted. First of all, the exact prevalence of PFO in divers is not known. As it has been pointed out in the recent literature, a contrast echocardiography (be it transthoracic or transoesophageal) or Doppler examination is only reliable if performed according to a strict protocol, taking into account the very many pitfalls yielding false negative results. The optimal procedure for injection of contrast medium was described several years ago, but has not received enough attention. Indeed, it is our and others' experience that many divers presenting with PFO-related DCI symptoms initially are declared "PFO-negative" by eminent, experienced cardiologists! Failing a prospective study, the risks of diving with a right-to left vascular shunt can only be expressed as an 'odds ratio', which is a less accurate measure than is 'relative risk'. The DAN Europe Carotid Doppler Study, started in 2001, is nearing completion and will provide more insight into the actual risks of DCI for recreational divers. The degree of DCI risk reduction from closing a PFO is thus not only dependent on successful closure but also (mostly?) on how the diver manages his/her dive and decompression in order to reduce the incidence of VGE. It has been convincingly shown that conservative dive profiles reduce DCI incidence even in divers with large PFOs, just as PFO closure does not protect completely from DCI if the dive profiles are aggressive. Prospective studies should not only focus on the reduction of DCI incidence after closure, but should take into account the costs and side effects of the procedure, as has been done in the cardiology and neurology studies. Imagine lung transplants becoming a routine operation, costly but with a high success rate; imagine also a longterm smoker suffering from a mild form of obstructive lung disease and exercise-limiting dyspnoea. Which of two options would you recommend: having a lung transplant and continue smoking as before, or quit smoking and observe a progressive improvement of pulmonary and cardiac pathology? As opposed to patients with thrombotic disease and migraine, divers can choose to reduce DCI risk. In fact, all it takes is acceptance that some types of diving carry too high a health risk - whether it is because of a PFO or another 'natural' factor. It would be unethical to promote PFO closure in divers solely on the basis of its efficacy of shunt reduction. Unfortunately, at least one device manufacturer has already done so in the past, citing various publications to specifically target recreational divers. Some technical diving organizations even have recommended preventive PFO closure in order to undertaking high-risk dive training. As scientists, we must not allow ourselves to be drawn into intuitive diver fears and beliefs. Nor should we let ourselves be blinded by the ease and seemingly low risk of the procedure. With proper and objective information provided by their diving medicine specialist, divers could make an informed decision, rather than focus on the simplistic idea that they need 'to get it fixed' in order to continue diving. A significant relationship between PFO and cerebral damage, in the absence of high-risk diving or DCI, has yet to be confirmed. Studying PFO-related DCI provides us with unique opportunities to learn more about the effect of gas bubbles in various tissues, including the central vascular bed and neurological tissue. It may also serve to educate divers that safe diving is something that needs to be learned, not something that can be implanted.
Military Curricula for Vocational & Technical Education. Diver Second Class, 15-3.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This curriculum outline, student guide, and instructor guide for a secondary-postsecondary-level course in scuba diving (diver second class) is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose stated for the 425-hour course is to…
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) program options...-27 Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated vehicle... operations; (2) Provide permanent hull markings, a temporary grid system of wires or cables spaced not more...
Interactive effects of body-size structure and adaptive foraging on food-web stability.
Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian
2012-03-01
Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.
The movement of a forager: strategies for the efficient use of resources
NASA Astrophysics Data System (ADS)
Kazimierski, Laila D.; Abramson, Guillermo; Kuperman, Marcelo N.
2016-10-01
We study a simple model of a foraging animal that modifies the substrate on which it moves. This substrate provides its only resource, and the forager manages it by taking a limited portion at each visited site. The resource recovers its value after the visit following a relaxation law. We study different scenarios to analyze the efficiency of the managing strategy, corresponding to control the bite size. We observe the non trivial emergence of a home range, that is visited in a periodic way. The duration of the corresponding cycles and the transient until it emerges is affected by the bite size. Our results show that the most efficient use of the resource, measured as the balance between gathering and traveled distance, corresponds to foragers that take larger portions but without exhausting the resource. We also analyze the use of space determining the number of attractors of the dynamics, and we observe that it depends on the bite size and the recovery time of the resource.
Castagna, O; Desruelle, A V; Blatteau, J E; Schmid, B; Dumoulin, G; Regnard, J
2015-12-01
Highly trained "combat swimmers" encounter physiological difficulties when performing missions in warm water. The aim of this study was to assess the respective roles of immersion and physical activity in perturbing fluid balance of military divers on duty in warm water. 12 trained divers performed 2 dives each (2 h, 3 m depth) in fresh water at 29 °C. Divers either remained Static or swam continuously (Fin) during the dive. In the Fin condition, oxygen consumption and heart rate were 2-fold greater than during the Static dive. Core and skin temperatures were also higher (Fin: 38.5±0.4 °C and 36.2±0.3 °C and Static: 37.2±0.3 °C and 34.3±0.3 °C; respectively p=0.0002 and p=0.0003). During the Fin dive, the average mass loss was 989 g (39% urine loss, 41% sweating and 20% insensible water loss and blood sampling); Static divers lost 720 g (84% urine loss, 2% sweating and 14% insensible water loss and blood sampling) (p=0.003). In the Fin condition, a greater decrease in total body mass and greater sweating occurred, without effects on circulating renin and aldosterone concentrations; diuresis was reduced, and plasma volume decreased more than in the Static condition. © Georg Thieme Verlag KG Stuttgart · New York.
Brebeck, Anne-Kathrin; Deussen, Andreas; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D
2018-03-01
Bubble formation during scuba diving might induce decompression sickness. This prospective randomised and double-blind study included 108 advanced recreational divers (38 females). Fifty-four pairs of divers, 1 breathing air and the other breathing nitrox28 undertook a standardised dive (24 ± 1 msw; 62 ± 5min) in the Red Sea. Venous gas bubbles were counted (Doppler) 30-<45 min (early) and 45-60 min (late) post-dive at jugular, subclavian and femoral sites. Only 7% (air) vs. 11% (air28®) (n.s.) were bubble-free after a dive. Independent of sampling time and breathing gas, there were more bubbles in the jugular than in the femoral vein. More bubbles were counted in the air-group than in the air28-group (pooled vein: early: 1845 vs. 948; P = 0.047, late: 1817 vs. 953; P = 0.088). The number of bubbles was sex-dependent. Lastly, 29% of female air divers but only 14% of male divers were bubble-free (P = 0.058). Air28® helps to reduce venous gas emboli in recreational divers. The bubble number depended on the breathing gas, sampling site and sex. Thus, both exact reporting the dive and in particular standardising sampling characteristics seem mandatory to compare results from different studies to further investigate the hitherto incoherent relation between inert gas bubbles and DCS.
Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera).
Kapheim, Karen M; Rao, Vikyath D; Yeoman, Carl J; Wilson, Brenda A; White, Bryan A; Goldenfeld, Nigel; Robinson, Gene E
2015-01-01
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.
Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W
2017-01-01
We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N = 701) and non-foraging dives ( N = 10,618) were kinematically distinct (Wilks' lambda: λ 16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.
2013-01-01
Background Underwater divers are more likely to complain of musculoskeletal symptoms than a control population. Accordingly, we conducted a study to determine whether musculoskeletal symptoms reflected observable physical disorder, to ascertain the relationship between symptoms and measures of mood, memory and executive function and to assess any need for future screening. Methods A 10% random sample of responders to a prior postal health questionnaire was examined (151 divers, 120 non-diving offshore workers). Participants underwent physical examination and a neuropsychological test battery for memory and executive function. Participants also completed the Hospital Anxiety and Depression Scale for anxiety (HADSa) and depression (HADSd), and questionnaires for physical health-related quality of life (SF36 PCS), mental health-related quality of life (SF36 MCS), memory (Cognitive Failures Questionnaire (CFQ), Prospective and Retrospective Memory Questionnaire (PRMQ)), executive function (dysexecutive syndrome questionnaire (DEX)), musculoskeletal symptoms (MSS) and general unrelated symptom reporting. Results Of participants with moderate/severe musculoskeletal symptoms, 52% had physical signs, and of participants with no symptoms, 73% had no physical signs. There was no difference in the prevalence of signs or symptoms between groups. Musculoskeletal symptoms were associated with lower SF36 PCS for both groups. In divers, musculoskeletal symptoms were associated with higher general unrelated symptom reporting and poorer scoring for HADSa, PRMQ, CFQ and DEX with scores remaining within the normative range. A positive physical examination was associated with general unrelated symptom reporting in divers. There were no differences in neuropsychological test scores attributable to either group or musculoskeletal symptoms. Conclusions Musculoskeletal symptoms were associated with physical signs, but this was not a strong effect. Reporting of musculoskeletal symptoms by the divers studied was also associated with a tendency to report symptoms generally or somatisation, and caution should be exercised regarding their interpretation as an indication of physical disease or their use for health screening. PMID:23849557
Estimating the risk of a scuba diving fatality in Australia.
Lippmann, John; Stevenson, Christopher; McD Taylor, David; Williams, Jo
2016-12-01
There are few data available on which to estimate the risk of death for Australian divers. This report estimates the risk of a scuba diving fatality for Australian residents, international tourists diving in Queensland, and clients of a large Victorian dive operator. Numerators for the estimates were obtained from the Divers Alert Network Asia-Pacific dive fatality database. Denominators were derived from three sources: Participation in Exercise, Recreation and Sport Surveys, 2001-2010 (Australian resident diving activity data); Tourism Research Australia surveys of international visitors to Queensland 2006-2014 and a dive operator in Victoria 2007-2014. Annual fatality rates (AFR) and 95% confidence intervals (95% CI) were calculated using an exact binomial test. Estimated AFRs were: 0.48 (0.37-0.59) deaths per 100,000 dives, or 8.73 (6.85-10.96) deaths per 100,000 divers for Australian residents; 0.12 (0.05-0.25) deaths per 100,000 dives, or 0.46 (0.20-0.91) deaths per 100,000 divers for international visitors to Queensland; and 1.64 (0.20-5.93) deaths per 100,000 dives for the dive operator in Victoria. On a per diver basis, Australian residents are estimated to be almost twenty times more likely to die whilst scuba diving than are international visitors to Queensland, or to lower than fourfold on a per dive basis. On a per dive basis, divers in Victoria are fourteen times more likely to die than are Queensland international tourists. Although some of the estimates are based on potentially unreliable denominator data extrapolated from surveys, the diving fatality rates in Australia appear to vary by State, being considerably lower in Queensland than in Victoria. These estimates are similar to or lower than comparable overseas estimates, although reliability of all such measurements varies with study size and accuracy of the data available.
Non-Gaussian noise-weakened stability in a foraging colony system with time delay
NASA Astrophysics Data System (ADS)
Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong
2018-02-01
In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.
Neeman, Noga; Spotila, James R; O'Connor, Michael P
2015-09-07
Variation in the yearly number of sea turtles nesting at rookeries can interfere with population estimates and obscure real population dynamics. Previous theoretical models suggested that this variation in nesting numbers may be driven by changes in resources at the foraging grounds. We developed a physiologically-based model that uses temperatures at foraging sites to predict foraging conditions, resource accumulation, remigration probabilities, and, ultimately, nesting numbers for a stable population of sea turtles. We used this model to explore several scenarios of temperature variation at the foraging grounds, including one-year perturbations and cyclical temperature oscillations. We found that thermally driven resource variation can indeed synchronize nesting in groups of turtles, creating cohorts, but that these cohorts tend to break down over 5-10 years unless regenerated by environmental conditions. Cohorts were broken down faster at lower temperatures. One-year perturbations of low temperature had a synchronizing effect on nesting the following year, while high temperature perturbations tended to delay nesting in a less synchronized way. Cyclical temperatures lead to cyclical responses both in nesting numbers and remigration intervals, with the amplitude and lag of the response depending on the duration of the cycle. Overall, model behavior is consistent with observations at nesting beaches. Future work should focus on refining the model to fit particular nesting populations and testing further whether or not it may be used to predict observed nesting numbers and remigration intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.
A neural coding scheme reproducing foraging trajectories
NASA Astrophysics Data System (ADS)
Gutiérrez, Esther D.; Cabrera, Juan Luis
2015-12-01
The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.
NASA Astrophysics Data System (ADS)
Kerber, L.; Nesnas, I.; Keszthelyi, L.; Head, J. W.; Denevi, B.; Hayne, P. O.; Mitchell, K.; Ashley, J. W.; Whitten, J. L.; Stickle, A. M.; Parness, A.; McGarey, P.; Paton, M.; Donaldson-Hanna, K.; Anderson, R. C.; Needham, D.; Isaacson, P.; Jozwiak, L.; Bleacher, J.; Parcheta, C.
2018-04-01
Moon Diver is a Discovery-class mission concept designed to explore a lunar mare pit. It would be the first mission to examine an in-place bedrock stratigraphy on the Moon, and the first to venture into the subsurface of another planetary body.
Fatal dissecting aneurysm of the aorta in a diver.
James, R; Hayman, J A
1986-07-01
A 20-yr-old trained sports diver developed severe chest pain shortly after decompressing from a 40 m repetitive freshwater sinkhole dive, and died 6 h later. An autopsy examination showed a dissecting aneurysm of the aorta with rupture into the left pleural cavity. The relationship between the fatal event and the diving is discussed.
Cyber Foraging for Improving Survivability of Mobile Systems
2016-02-10
environments—such as dynamic context, limited computing resources, disconnected- intermittent - limited (DIL) network connectivity, and high levels of stress...environments, such as dynamic context, limited computing resources, disconnected- intermittent -limited (DIL) network connectivity, and high levels of...Table 1: Mapping of Cloudlet Features to Survivability Requirements Threats Intermittent Cloudlet- Enterprise Connectivity Mobility Limited
Role of depletion on the dynamics of a diffusing forager
NASA Astrophysics Data System (ADS)
Bénichou, O.; Chupeau, M.; Redner, S.
2016-09-01
We study the dynamics of a starving random walk in general spatial dimension d. This model represents an idealized description for the fate of an unaware forager whose motion is not affected by the presence or absence of resources. The forager depletes its environment by consuming resources and dies if it wanders too long without finding food. In the exactly solvable case of one dimension, we explicitly derive the average lifetime of the walk and the distribution for the number of distinct sites visited by the walk at the instant of starvation. We also give a heuristic derivation for the averages of these two quantities. We tackle the complex but ecologically relevant case of two dimensions by an approximation in which the depleted zone is assumed to always be circular and which grows incrementally each time the walk reaches the edge of this zone. Within this framework, we derive a lower bound for the scaling of the average lifetime and number of distinct sites visited at starvation. We also determine the asymptotic distribution of the number of distinct sites visited at starvation. Finally, we solve the case of high spatial dimensions within a mean-field approach.
An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey.
Orrock, John L; Fletcher, Robert J
2014-06-07
Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour.
Evolution mediates the effects of apex predation on aquatic food webs
Urban, Mark C.
2013-01-01
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548
Evolution mediates the effects of apex predation on aquatic food webs.
Urban, Mark C
2013-07-22
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
California State Waters Map Series: offshore of Tomales Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
Meir, Jessica U; Robinson, Patrick W; Vilchis, L Ignacio; Kooyman, Gerald L; Costa, Daniel P; Ponganis, Paul J
2013-01-01
Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural" state.
The Cartesian Diver as an Aid for Teaching Respiratory Physiology
ERIC Educational Resources Information Center
Fitch, Greg K.
2004-01-01
The mechanism by which air enters the mammalian lung is difficult for many students of physiology. In particular, some students have trouble seeing how pressure can be transmitted through a fluid such as the intrapleural fluid and how the magnitude of that pressure can change. A Cartesian diver, an old-time child's toy, may be used as a visual aid…
Sharon L. Todd; Tiffany Cooper; Alan R. Graefe
2001-01-01
This study examined SCUBA divers' level of development in relationship to environmental beliefs, ascriptions of responsibility, and management preferences concerning the use and management of New York's Great Lakes' underwater cultural resources. More than 850 New York State divers were surveyed during the fall of 1999, ranging from novices to experts...
Nitrogen narcosis and tactile shape memory in low visibility.
van Wijk, Charles H; Meintjes, W A J
2014-01-01
Commercial diving often occurs in low visibility, where divers are reliant on their tactile senses. This study examined the effect of nitrogen narcosis on tactile memory for shapes as well as the influence of psychological and biographical factors on this relationship. This crossover study tested 139 commercial divers in a dry hyperbaric chamber at 101.325 and 607.95 kPa (1 and 6 atmospheres absolute/atm abs). Divers memorized shapes while blindfolded, using their tactile senses only. Delayed recall was measured at the surface after each dive. Psychological and biographical data were also collected. A significant effect of hyperbaric pressure on tactile memory was demonstrated, and a further effect of sequence of testing found. Thus, divers' delayed shape recall deteriorated by 8% after learning material at depth, compared to learning on the surface. There were also significant but small effects of psychological and biographical markers on tactile memory performance, with lower trait anxiety associated with better recall, and lower education associated with poorer recall. The findings emphasize the importance of utilizing other forms of recording of events or objects at depth, particularly in conditions of low visibility during deeper diving, to aid memory encoding and subsequent recall at the surface.
Bradley, M E
1984-08-01
The distributions of fatal diving accidents in commercial diver populations were examined in the Gulf of Mexico from 1968 to 1975 and in the British sector of the North Sea from 1971 to 1978. Influences and causes of death were analyzed by examining the interaction between host, environmental and agent factors. The interaction of host and environmental factors appeared to be the greatest contributing factor to diving fatalities among the estimated 900 commercial divers in the Gulf of Mexico and the 700 in the North Sea. The most significant host factors were level of experience and behavioral dysfunction. They are also the host characteristics most amenable to change through improved and more thorough training. The most significant environmental factors were equipment failure and supervisor/tender errors. These factors would be minimized by improved selection, maintenance and operation of equipment, together with improved operating and emergency diving procedures. In recent years there has been a significant downward trend in mortality rates in the commercial diver populations of this study due to improved diving techniques and operations. Further research is needed, however, on the cause(s) of diver unconsciousness and inexplicable actions that occur at depths below 91.44m (300 ft.).
Garbella, Erika; Piarulli, Andrea; Fornai, Edo; Pingitore, Alessandro; Prediletto, Renato
2011-06-01
To evaluate pulmonary alveolar-capillary membrane integrity and ventilation/perfusion mismatch after breath-hold diving. Pulmonary diffusing capacity to carbon monoxide (DLCO) and nitric oxide (DLNO), haemoglobin (Hb) and haematocrit (Hct) were measured in six elite divers before and at 2, 10 and 25 minutes after a maximal breath-hold dive to a depth of 10 metres' sea water. Compared to pre-dive, DLCO showed a slight increase at 2 minutes in five subjects and a tendency to decrease at 25 minutes (P < 0.001) in all subjects. DLNO showed an increase at 10 minutes in three divers and a slight decrease at 25 minutes in five subjects. There was a small but significant (P < 0.001) increase in Hb and Hct at 2 minutes, possibly affecting the DLCO measurements. An early but transient increase in DLCO in five divers may reflect the central shift in blood volume during a breath-hold dive. The late parallel decrease in DLCO and DLNO likely reflects alveolar-capillary distress (interstitial oedema). The DLNO increase in three subjects at 10 minutes may suggest ventilation/perfusion mismatch.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo
Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an order of magnitude higher than previously found with trawls, and sizes of animals were found to be 3-4 times larger than in trawl data.
Lowther, Andrew D.; Harcourt, Robert G.; Page, Bradley; Goldsworthy, Simon D.
2013-01-01
The southern coastline of Australia forms part of the worlds' only northern boundary current system. The Bonney Upwelling occurs every austral summer along the south-eastern South Australian coastline, a region that hosts over 80% of the worlds population of an endangered endemic otariid, the Australian sea lion. We present the first data on the movement characteristics and foraging behaviour of adult male Australian sea lions across their South Australian range. Synthesizing telemetric, oceanographic and isotopic datasets collected from seven individuals enabled us to characterise individual foraging behaviour over an approximate two year time period. Data suggested seasonal variability in stable carbon and nitrogen isotopes that could not be otherwise explained by changes in animal movement patterns. Similarly, animals did not change their foraging patterns despite fine-scale spatial and temporal variability of the upwelling event. Individual males tended to return to the same colony at which they were tagged and utilized the same at-sea regions for foraging irrespective of oceanographic conditions or time of year. Our study contrasts current general assumptions that male otariid life history strategies should result in greater dispersal, with adult male Australian sea lions displaying central place foraging behaviour similar to males of other otariid species in the region. PMID:24086338
Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.
2010-01-01
To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814
The oxygen-conserving potential of the diving response: A kinetic-based analysis.
Costalat, Guillaume; Coquart, Jeremy; Castres, Ingrid; Joulia, Fabrice; Sirost, Olivier; Clua, Eric; Lemaître, Frédéric
2017-04-01
We investigated the oxygen-conserving potential of the human diving response by comparing trained breath-hold divers (BHDs) to non-divers (NDs) during simulated dynamic breath-holding (BH). Changes in haemodynamics [heart rate (HR), stroke volume (SV), cardiac output (CO)] and peripheral muscle oxygenation [oxyhaemoglobin ([HbO 2 ]), deoxyhaemoglobin ([HHb]), total haemoglobin ([tHb]), tissue saturation index (TSI)] and peripheral oxygen saturation (SpO 2 ) were continuously recorded during simulated dynamic BH. BHDs showed a breaking point in HR kinetics at mid-BH immediately preceding a more pronounced drop in HR (-0.86 bpm.% -1 ) while HR kinetics in NDs steadily decreased throughout BH (-0.47 bpm.% -1 ). By contrast, SV remained unchanged during BH in both groups (all P > 0.05). Near-infrared spectroscopy (NIRS) results (mean ± SD) expressed as percentage changes from the initial values showed a lower [HHb] increase for BHDs than for NDs at the cessation of BH (+24.0 ± 10.1 vs. +39.2 ± 9.6%, respectively; P < 0.05). As a result, BHDs showed a [tHb] drop that NDs did not at the end of BH (-7.3 ± 3.2 vs. -3.0 ± 4.7%, respectively; P < 0.05). The most striking finding of the present study was that BHDs presented an increase in oxygen-conserving efficiency due to substantial shifts in both cardiac and peripheral haemodynamics during simulated BH. In addition, the kinetic-based approach we used provides further credence to the concept of an "oxygen-conserving breaking point" in the human diving response.
Wienke, B R; O'Leary, T R
2008-05-01
Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.
Laurino, Marco; Menicucci, Danilo; Mastorci, Francesca; Allegrini, Paolo; Piarulli, Andrea; Scilingo, Enzo P.; Bedini, Remo; Pingitore, Alessandro; Passera, Mirko; L'Abbate, Antonio; Gemignani, Angelo
2011-01-01
The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH. PMID:22461774
NASA Astrophysics Data System (ADS)
Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien
2016-03-01
The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.
Modeling colony collapse disorder in honeybees as a contagion.
Kribs-Zaleta, Christopher M; Mitchell, Christopher
2014-12-01
Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.
A neural coding scheme reproducing foraging trajectories
Gutiérrez, Esther D.; Cabrera, Juan Luis
2015-01-01
The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series. PMID:26648311
Changes in dive profiles as an indicator of feeding success in king and Adélie penguins
NASA Astrophysics Data System (ADS)
Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.
2007-02-01
Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.
The Socioecology of Territory Size and a "Work-Around" Hypothesis for the Adoption of Farming
Freeman, Jacob
2016-01-01
This paper combines theory from ecology and anthropology to investigate variation in the territory sizes of subsistence oriented agricultural societies. The results indicate that population and the dependence of individuals within a society on “wild” foods partly determine the territory sizes of agricultural societies. In contrast, the productivity of an agroecosystem is not an important determinant of territory size. A comparison of the population-territory size scaling dynamics of agricultural societies and human foragers indicates that foragers and farmers face the same constraints on their ability to expand their territory and intensify their use of resources within a territory. However, the higher density of food in an agroecosystem allows farmers, on average, to live at much higher population densities than human foragers. These macroecological patterns are consistent with a “work-around hypothesis” for the adoption of farming. This hypothesis is that as residential groups of foragers increase in size, farming can sometimes better reduce the tension between an individual’s autonomy over resources and the need for social groups to function to provide public goods like defense and information. PMID:27391955
Bee Swarm Optimization for Medical Web Information Foraging.
Drias, Yassine; Kechid, Samir; Pasi, Gabriella
2016-02-01
The present work is related to Web intelligence and more precisely to medical information foraging. We present here a novel approach based on agents technology for information foraging. An architecture is proposed, in which we distinguish two important phases. The first one is a learning process for localizing the most relevant pages that might interest the user. This is performed on a fixed instance of the Web. The second takes into account the openness and the dynamicity of the Web. It consists on an incremental learning starting from the result of the first phase and reshaping the outcomes taking into account the changes that undergoes the Web. The whole system offers a tool to help the user undertaking information foraging. We implemented the system using a group of cooperative reactive agents and more precisely a colony of artificial bees. In order to validate our proposal, experiments were conducted on MedlinePlus, a benchmark dedicated for research in the domain of Health. The results are promising either for those related to Web regularities and for the response time, which is very short and hence complies the real time constraint.
Malmstrom, Carolyn M; Butterfield, H Scott; Planck, Laura; Long, Christopher W; Eviner, Valerie T
2017-01-01
Invasive weeds threaten the biodiversity and forage productivity of grasslands worldwide. However, management of these weeds is constrained by the practical difficulty of detecting small-scale infestations across large landscapes and by limits in understanding of landscape-scale invasion dynamics, including mechanisms that enable patches to expand, contract, or remain stable. While high-end hyperspectral remote sensing systems can effectively map vegetation cover, these systems are currently too costly and limited in availability for most land managers. We demonstrate application of a more accessible and cost-effective remote sensing approach, based on simple aerial imagery, for quantifying weed cover dynamics over time. In California annual grasslands, the target communities of interest include invasive weedy grasses (Aegilops triuncialis and Elymus caput-medusae) and desirable forage grass species (primarily Avena spp. and Bromus spp.). Detecting invasion of annual grasses into an annual-dominated community is particularly challenging, but we were able to consistently characterize these two communities based on their phenological differences in peak growth and senescence using maximum likelihood supervised classification of imagery acquired twice per year (in mid- and end-of season). This approach permitted us to map weed-dominated cover at a 1-m scale (correctly detecting 93% of weed patches across the landscape) and to evaluate weed cover change over time. We found that weed cover was more pervasive and persistent in management units that had no significant grazing for several years than in those that were grazed, whereas forage cover was more abundant and stable in the grazed units. This application demonstrates the power of this method for assessing fine-scale vegetation transitions across heterogeneous landscapes. It thus provides means for small-scale early detection of invasive species and for testing fundamental questions about landscape dynamics.
Butterfield, H. Scott; Planck, Laura; Long, Christopher W.; Eviner, Valerie T.
2017-01-01
Invasive weeds threaten the biodiversity and forage productivity of grasslands worldwide. However, management of these weeds is constrained by the practical difficulty of detecting small-scale infestations across large landscapes and by limits in understanding of landscape-scale invasion dynamics, including mechanisms that enable patches to expand, contract, or remain stable. While high-end hyperspectral remote sensing systems can effectively map vegetation cover, these systems are currently too costly and limited in availability for most land managers. We demonstrate application of a more accessible and cost-effective remote sensing approach, based on simple aerial imagery, for quantifying weed cover dynamics over time. In California annual grasslands, the target communities of interest include invasive weedy grasses (Aegilops triuncialis and Elymus caput-medusae) and desirable forage grass species (primarily Avena spp. and Bromus spp.). Detecting invasion of annual grasses into an annual-dominated community is particularly challenging, but we were able to consistently characterize these two communities based on their phenological differences in peak growth and senescence using maximum likelihood supervised classification of imagery acquired twice per year (in mid- and end-of season). This approach permitted us to map weed-dominated cover at a 1-m scale (correctly detecting 93% of weed patches across the landscape) and to evaluate weed cover change over time. We found that weed cover was more pervasive and persistent in management units that had no significant grazing for several years than in those that were grazed, whereas forage cover was more abundant and stable in the grazed units. This application demonstrates the power of this method for assessing fine-scale vegetation transitions across heterogeneous landscapes. It thus provides means for small-scale early detection of invasive species and for testing fundamental questions about landscape dynamics. PMID:29016604
2007-01-01
Tidal PCO 2," Undersea Biomed. Res., Vol. 15 (Suppl., 1988), p. 39. 17. D. Warkander, G. K. Nagasawa, W. T. Norfleet, and C. E. G. Lundgren, "Dyspnea...Workshop, Bethesda, MD, 1989. 35. D. E. Warkander, W. T. Norfleet, G. K. Nagasawa, and C. E. G. Lundgren, "CO2 Retention with Minimal Symptoms but Severe
Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.
Grémillet, David; Fort, Jérôme; Amélineau, Françoise; Zakharova, Elena; Le Bot, Tangi; Sala, Enric; Gavrilo, Maria
2015-03-01
Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics. © 2015 John Wiley & Sons Ltd.
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis)
Silvis, Alexander; Kniowski, Andrew B.; Gehrt, Stanley D.; Ford, W. Mark
2014-01-01
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.
Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.
2009-01-01
Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.
Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival
Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.
2017-01-01
Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.
Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis).
Silvis, Alexander; Kniowski, Andrew B; Gehrt, Stanley D; Ford, W Mark
2014-01-01
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.
Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival
NASA Astrophysics Data System (ADS)
Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.
2017-10-01
Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.
Army ants dynamically adjust living bridges in response to a cost-benefit trade-off.
Reid, Chris R; Lutz, Matthew J; Powell, Scott; Kao, Albert B; Couzin, Iain D; Garnier, Simon
2015-12-08
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.
Army ants dynamically adjust living bridges in response to a cost–benefit trade-off
Reid, Chris R.; Lutz, Matthew J.; Powell, Scott; Kao, Albert B.; Couzin, Iain D.; Garnier, Simon
2015-01-01
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges” of linked individuals that are constructed to span gaps in the colony’s foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost–benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost–benefit trade-off, without any individual unit’s having information on global benefits or costs. PMID:26598673
NASA Astrophysics Data System (ADS)
Uyarra, Maria C.; Watkinson, Andrew R.; Côté, Isabelle M.
2009-01-01
It has been argued that strategies to manage natural areas important for tourism and recreation should integrate an understanding of tourist preferences for specific natural features. However, the accuracy of tourist recalled perceptions of environmental attributes, which are usually derived from post hoc surveys and used to establish management priorities, is currently unmeasured. We tested the validity of the relationship between tourist-stated preferences and actual condition of coral reefs around the Caribbean island of Bonaire. Using standardized questionnaires, we asked 200 divers to select their most and least favorite dive sites and the attributes that contributed to that selection. We also carried out ecological surveys at 76 of the 81 dives sites around the island to assess the actual conditions of the attributes indicated as important for site selection. Fish- and coral-related attributes were key features affecting dive enjoyment. In general, divers appeared to be able to perceive differences between sites in the true condition of biological attributes such as fish species richness, total number of fish schools, live coral cover, coral species richness, and reef structural complexity, although men and women divers differed in their ability to perceive/recall some of the attributes. Perceived differences in environmental attributes, such as surface conditions, underwater current, and the likelihood of encountering rare fish and sea turtles, were not empirically validated. The fact that divers perceive correctly differences in the condition of some of the key biological attributes that affect dive enjoyment reinforces the need to maintain overall reef condition at satisfactory levels. However, variation in accuracy of perceptions owing to demographic factors and attribute type suggests the need for caution when using public perceptions to develop environmental management strategies, particularly for coral reefs.
Uyarra, Maria C; Watkinson, Andrew R; Côté, Isabelle M
2009-01-01
It has been argued that strategies to manage natural areas important for tourism and recreation should integrate an understanding of tourist preferences for specific natural features. However, the accuracy of tourist recalled perceptions of environmental attributes, which are usually derived from post hoc surveys and used to establish management priorities, is currently unmeasured. We tested the validity of the relationship between tourist-stated preferences and actual condition of coral reefs around the Caribbean island of Bonaire. Using standardized questionnaires, we asked 200 divers to select their most and least favorite dive sites and the attributes that contributed to that selection. We also carried out ecological surveys at 76 of the 81 dives sites around the island to assess the actual conditions of the attributes indicated as important for site selection. Fish- and coral-related attributes were key features affecting dive enjoyment. In general, divers appeared to be able to perceive differences between sites in the true condition of biological attributes such as fish species richness, total number of fish schools, live coral cover, coral species richness, and reef structural complexity, although men and women divers differed in their ability to perceive/recall some of the attributes. Perceived differences in environmental attributes, such as surface conditions, underwater current, and the likelihood of encountering rare fish and sea turtles, were not empirically validated. The fact that divers perceive correctly differences in the condition of some of the key biological attributes that affect dive enjoyment reinforces the need to maintain overall reef condition at satisfactory levels. However, variation in accuracy of perceptions owing to demographic factors and attribute type suggests the need for caution when using public perceptions to develop environmental management strategies, particularly for coral reefs.
Seidler, Ramon J.; Allen, D. A.; Lockman, H.; Colwell, R. R.; Joseph, S. W.; Daily, O. P.
1980-01-01
Counts of total viable, aerobic, heterotrophic bacteria, indicator organisms, and Aeromonas spp. were made at a diver training site on the Anacostia River in Washington, D.C. The numbers of Aeromonas cells in Anacostia River sediment and water increased during periods of elevated water temperature, to maxima of 4 × 105 cells per g of sediment and 300 cells per ml of water. Correspondingly, Aeromonas counts dropped 2 to 4 logs as the water temperature decreased to 0 to 0.5°C. Cultures taken by sterile swabs from the ears and face masks of divers after a 30-min swim in the Anacostia River yielded bacterial types and numbers similar to those found in the river. The nasal passages of the divers apparently did not become contaminated by swimming, possibly because of the protective effect of the face masks used by the divers. Properties associated with virulence in Aeromonas hydrophila and Aeromonas sobria strains isolated from the river, sediment, and divers were investigated. Nearly 40% of the strains of both species collected during the study produced cytotoxic activity for mouse Y-1 adrenal cells, as well as elastase. Enterotoxin activity, as detected by the Y-1 assay, was observed in 3% (1 of 35) of the strains of A. sobria and in 6% (19 of 330) of the A. hydrophila strains. Fluid accumulation in rabbit ileal loops induced by both species of Aeromonas varied greatly among the 17 strains examined. Fluid accumulation of at least 0.4 ml/cm was correlated with positive cytotoxin- or enterotoxin-like response in the Y-1 tissue culture assay. PMID:7396482
Chin, Walter; Huchim-Lara, Oswaldo; Salas, Silvia
2016-01-01
Artisanal fishermen in the Yucatán Peninsula utilize hookah dive systems (HDS). The air compressors in these HDS are not filtered, and the intake is near the engine exhaust. This proximity allows carbon monoxide (CO) from the exhaust to directly enter the HDS volume tank and contaminate the fishermen diver's air supply. Conservative safety standards permit a diver's air supply to contain 10 parts per million (ppm) of CO. This study quantified the levels of CO in the diver's air supply both before and after physical separation of the engine exhaust from the compressor intake. CO levels in seven volume tanks were analyzed before and after a 1-inch hose was attached to the compressor intake and elevated 5 feet above the engine exhaust. The tanks were drained and refilled before collecting each set of pre- and post-intervention gas samples. Four CO measurements were collected before and after the intervention from each volume tank. A C-Squared© CO Analyzer (± 1 ppm), calibrated with a Praxair 70 ppm CON2 gas (± 5%), was used to analyze the gas samples. A paired samples t-test shows a statistically significant difference in average CO values before and after the intervention (t = 6.8674, df: 27; p⟨0.0001). The physical separation of the engine exhaust from the compressor intake reduced the CO contamination of the diver air supply by 72%. This intervention could be applied to the hookah systems in the rest of the fishing cooperative to reduce the divers' risk of CO poisoning. Copyright© Undersea and Hyperbaric Medical Society.
Very Few Exercise-Induced Arterialized Gas Bubbles Reach the Cerebral Vasculature.
Barak, Otto F; Madden, Dennis; Lovering, Andrew T; Lambrechts, Kate; Ljubkovic, Marko; Dujic, Zeljko
2015-09-01
Arterialization of venous gas emboli (VGE) formed after surfacing from SCUBA diving can become arterial gas emboli (AGE) through intrapulmonary arterial-venous anastomoses that open with exercise. We recruited twenty patent foramen ovale-negative SCUBA divers and conducted a field and a laboratory study with the aim of investigating the appearance of AGE in intracranial vessels. At the field, they performed a single dive to a depth of 18-m sea water with a 47-min bottom time and a direct ascent to the surface. Transthoracic echocardiography was used to score VGE and AGE, and transcranial Doppler was used to visualize middle and posterior cerebral arteries with automated objective bubble detection. Observations were conducted for 45-min after dive at rest and at the laboratory after agitated saline injection at rest and throughout an incremental cycle supine exercise test until exhaustion and for 10 min of recovery. After resurfacing, all divers presented endogenous VGE and arterialization was present in three divers. Saline contrast injection led to AGE in nine of 19 subjects at rest. AGE that reached the cerebral arteries after dive were recorded in two divers at 60 W, three at 90 W, five at 120 W, six at 150 W, and four at 180 W and in three, four, five, nine, and nine, respectively, after saline contrast injection in the laboratory. All divers had AGE grades of 1 or 2, and only single AGE reached the cerebral vasculature. These data suggest that few emboli of venous origin reach the brain through exercise-induced intrapulmonary arterial-venous anastomoses but cerebral embolization is not high risk in the studied population.
John F. Lehmkuhl
1999-01-01
I studied the landscape dynamics, organization, and productivity of a toll-grass and riverine forest mosaic in the eastern portion of Chitwan National Park, Nepal. Aerial photograph interpretation, releve sampling, experimental plots, models, and foraging studies were done. A model of landscape dynamics showed that fluvia1 action controlled landscape organization. Ten...
Dynamic programming for optimization of timber production and grazing in ponderosa pine
Kurt H. Riitters; J. Douglas Brodie; David W. Hann
1982-01-01
Dynamic programming procedures are presented for optimizing thinning and rotation of even-aged ponderosa pine by using the four descriptors: age, basal area, number of trees, and time since thinning. Because both timber yield and grazing yield are functions of stand density, the two outputs-forage and timber-can both be optimized. The soil expectation values for single...
Underway Recovery Test 6 (URT-6) - Day 5 Activities
2018-01-21
Navy Diver 2nd Class Laethem and his fellow divers get briefed before heading out to sea to recover the Orion test article during Underway Recovery Test 6 off the coast of San Diego. Kennedy Space Center’s NASA Recovery Team works with the U.S. Navy to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.
Air Purity in Diving from Submarines. 1. Review and Preliminary Analyses
1987-12-01
Nathaniel Howard for technical assistance, and Susan Cecire for editorial assistance. iv INTRODUCTION The need for divers to use compressed air from...pneumatic control systems) and emergency submarine functions, and submarine interior air is frequently compressed back into the bank which will cycle...breathe the interior air for long periods, so why the concern for divers? First, the processes of compression (by multi-stage oil lubricated
Incidence of CNS Oxygen Toxicity with Mild Hyperoxia: A Literature and Data Review
2013-04-01
multi-depth profiles.16,17 One diver reported numbness, tingling, poor concentration and dizziness after only 5 minutes. One diver reported tinnitus ...function dives,22, 24, 26, 28 the symptoms considered to be CNS oxygen toxicity during the training dives--nausea, dizziness, tinnitus ...models accumulate risk from prior exposure but do not (and cannot) consider other possible changes caused by immediate history , e.g., sensitization or
MOCHA - Multi-Study Ocean Acoustics Human Effects Analysis
2015-09-30
understanding of the response of marine mammals to navy sonar and other acoustic stimuli, by maximizing the information gain from Behavioral Response Studies...focussed on a functional/taxonomic group of marine mammals (deep divers, other odontocetes, pilot whales and baleen whales). We began with deep divers...Controlled Exposure Experiments component of the Marine Mammals and Biology Program, and it will also address broader commitments of the Navy for
ROV's: The key is cost effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, E.
1986-10-01
Although diver-support activities will continue to be required in terms of monitoring and assistance, low-cost, remotely operated vehicles (ROV's) will have an increasing presence in the oil industry and other fields provided there is ongoing improvement in management, preparation, and execution of work. Beyond the safety aspect, the key is cost effectiveness. It is the company's intention wherever possible, and within realistic constraints, to take the man out of the water either by direct ROV replacement of the diver or by assisting him. Shell's exploration and production operations are based in three main areas: the southern, central, and northern Northmore » Sea. These developed fields, which consist of 26 various structures (interconnected), are connected to the mainland by over 1,100 km of submarine pipeline. Maintenance and underwater engineering costs in northern operations alone exceed pounds40 million/year (about $60 million/year) where typical support is an estimated 700 ROV days/year. The utilization analysis indicates a major use in ''eyeball'' vehicles for diver monitoring, and a large percentage for pipeline survey with only a limited amount on structural work and other special applications. The ''Bondi initiative'' in the late 1970s was intended to remove the diver from the water by ROV replacement, but due to lack of development, the capability in many areas has not evolved.« less
Synergy in spreading processes: from exploitative to explorative foraging strategies.
Pérez-Reche, Francisco J; Ludlam, Jonathan J; Taraskin, Sergei N; Gilligan, Christopher A
2011-05-27
An epidemiological model which incorporates synergistic effects that allow the infectivity and/or susceptibility of hosts to be dependent on the number of infected neighbors is proposed. Constructive synergy induces an exploitative behavior which results in a rapid invasion that infects a large number of hosts. Interfering synergy leads to a slower and sparser explorative foraging strategy that traverses larger distances by infecting fewer hosts. The model can be mapped to a dynamical bond percolation with spatial correlations that affect the mechanism of spread but do not influence the critical behavior of epidemics. © 2011 American Physical Society
Phenotyping for the dynamics of field wheat root system architecture
NASA Astrophysics Data System (ADS)
Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian
2017-01-01
We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0-70d period, which increased rapidly afterwards (70-112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time.
Long necks enhance and constrain foraging capacity in aquatic vertebrates.
Wilson, Rory P; Gómez-Laich, Agustina; Sala, Juan-Emilio; Dell'Omo, Giacomo; Holton, Mark D; Quintana, Flavio
2017-11-29
Highly specialized diving birds display substantial dichotomy in neck length with, for example, cormorants and anhingas having extreme necks, while penguins and auks have minimized necks. We attached acceleration loggers to Imperial cormorants Phalacrocorax atriceps and Magellanic penguins Spheniscus magellanicus , both foraging in waters over the Patagonian Shelf, to examine the difference in movement between their respective heads and bodies in an attempt to explain this dichotomy. The penguins had head and body attitudes and movements that broadly concurred throughout all phases of their dives. By contrast, although the cormorants followed this pattern during the descent and ascent phases of dives, during the bottom (foraging) phase of the dive, the head angle differed widely from that of the body and its dynamism (measured using vectorial dynamic acceleration) was over four times greater. A simple model indicated that having the head on an extended neck would allow these cormorants to half the energy expenditure that they would expend if their body moved in the way their heads did. This apparently energy-saving solution is likely to lead to greater heat loss though and would seem tenable in slow-swimming species because the loss of streamlining that it engenders would make it detrimental for fast-swimming taxa such as penguins. © 2017 The Author(s).
Phenotyping for the dynamics of field wheat root system architecture
Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian
2017-01-01
We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0–70d period, which increased rapidly afterwards (70–112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time. PMID:28079107
Evaluating the impacts of wildland fires on caribou in interior Alaska
Joly, Kyle; Adams, Layne G.; Dale, Bruce W.; Collins, William
2002-01-01
Caribou are found throughout the boreal forests of interior Alaska, a region subject to chronic and expansive wildland fires. Fruticose lichens, if available, constitute the majority of the winter diet of caribou throughout their range and are common in mature boreal forests but largely absent from early successional stages. Fire, the dominant ecological driving force, increases vegetative diversity and productivity across the landscape but may reduce the availability of caribou winter forage for decades.Increasingly, wildland fire regimes are influenced by humans seeking to reduce fire hazards or mitigate the effects of years of fire suppression. Consequently, biologists have debated the importance of forage lichens to the dynamics of caribou populations, and land managers have questioned the importance of fire regime to wintering caribou. To better understand the impacts of wildland fire on caribou, we are simultaneously investigating the relationships between fire history, caribou movements, forage lichen availability, and caribou nutritional performance on their winter range.
Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.
2017-01-01
Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.
Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution.
Sandvik, Hanno; Barrett, Robert T; Erikstad, Kjell Einar; Myksvoll, Mari S; Vikebø, Frode; Yoccoz, Nigel G; Anker-Nilssen, Tycho; Lorentsen, Svein-Håkon; Reiertsen, Tone K; Skarðhamar, Jofrid; Skern-Mauritzen, Mette; Systad, Geir Helge
2016-05-13
Colonial breeding is an evolutionary puzzle, as the benefits of breeding in high densities are still not fully explained. Although the dynamics of existing colonies are increasingly understood, few studies have addressed the initial formation of colonies, and empirical tests are rare. Using a high-resolution larval drift model, we here document that the distribution of seabird colonies along the Norwegian coast can be explained by variations in the availability and predictability of fish larvae. The modelled variability in concentration of fish larvae is, in turn, predicted by the topography of the continental shelf and coastline. The advection of fish larvae along the coast translates small-scale topographic characteristics into a macroecological pattern, viz. the spatial distribution of top-predator breeding sites. Our findings provide empirical corroboration of the hypothesis that seabird colonies are founded in locations that minimize travel distances between breeding and foraging locations, thereby enabling optimal foraging by central-place foragers.
76 FR 48183 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... established in 1986 studying the foraging ecology, population dynamics, census and reproductive success and energetic of Antarctic seals. In addition, the applicant will continue studies of the behavioral ecology and...
Bats aggregate to improve prey search but might be impaired when their density becomes too high.
Cvikel, Noam; Egert Berg, Katya; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi
2015-01-19
Social foraging is a very common yet extremely complex behavior. Numerous studies attempted to model it with little supporting evidence. Studying it in the wild is difficult because it requires monitoring the animal's movement, its foraging success, and its interactions with conspecifics. We present a novel system that enables full night ultrasonic recording of freely foraging bats, in addition to GPS tracking. As they rely on echolocation, audio recordings of bats allow tapping into their sensory acquisition of the world. Rapid changes in echolocation allowed us to reveal the bats' dynamic reactions in response to prey or conspecifics—two key behaviors that are extremely difficult to assess in most animals. We found that bats actively aggregate and forage as a group. However, we also found that when the group became too dense, bats were forced to devote sensory attention to conspecifics that frequently entered their biosonar "field of view," impairing the bats' prey detection performance. Why then did bats fly in such high densities? By emitting echolocation calls, bats constantly provide public information about their detection of prey. Bats could therefore benefit from intentionally flying at a distance that enables eavesdropping on conspecifics. Group foraging, therefore, probably allowed bats to effectively operate as an array of sensors, increasing their searching efficiency. We suggest that two opposing forces are at play in determining the efficient foraging density: on the one hand, higher densities improve prey detection, but on the other hand, they increase conspecific interference. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling sociocognitive aspects of students' learning
NASA Astrophysics Data System (ADS)
Koponen, I. T.; Kokkonen, T.; Nousiainen, M.
2017-03-01
We present a computational model of sociocognitive aspects of learning. The model takes into account a student's individual cognition and sociodynamics of learning. We describe cognitive aspects of learning as foraging for explanations in the epistemic landscape, the structure (set by instructional design) of which guides the cognitive development through success or failure in foraging. We describe sociodynamic aspects as an agent-based model, where agents (learners) compare and adjust their conceptions of their own proficiency (self-proficiency) and that of their peers (peer-proficiency) in using explanatory schemes of different levels. We apply the model here in a case involving a three-tiered system of explanatory schemes, which can serve as a generic description of some well-known cases studied in empirical research on learning. The cognitive dynamics lead to the formation of dynamically robust outcomes of learning, seen as a strong preference for a certain explanatory schemes. The effects of social learning, however, can account for half of one's success in adopting higher-level schemes and greater proficiency. The model also predicts a correlation of dynamically emergent interaction patterns between agents and the learning outcomes.
2002-09-30
KENNEDY SPACE CENTER, FLA. - Jack Wilcox (at the microphone) answers questions from the media during a reunion with his rescuers at the Hangar AF docks, Cape Canaveral Air Force Station. At right is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando.
Blood lactate changes in professional Indian divers under hyperbaric conditions
Sikri, Gaurav; Singh, S.P.; Srinivasa, A.B.; Chaudhry, H.B.S.
2016-01-01
Background Hyperoxia due to hyperbaric conditions influences lactate metabolism. Previous studies on lactate levels in hyperbaric conditions have reported varied results depending on the depth of evaluation and breathing gas mixture used. Methods This study compared post-exercise blood lactate levels of Indian professional male divers (breathing ambient air under normobaric conditions) with their post-exercise blood lactate levels measured under simulated hyperbaric conditions. Result In the present study, blood lactate levels in divers were found to have decreased significantly during recovery phase of exercise in hyperbaric conditions of dry diving at 2.8 Atmospheres Absolute (ATA) as compared to normobaric conditions. A significant improvement was observed in physical performance in terms of HR max and duration of exercise. Conclusion This study revealed that hyperoxia due to moderate hyperbaric condition leads to improvement in lactate metabolism in muscles and organs (liver and heart) for its removal. PMID:26900221
Lewis, Tyler L.; Flint, Paul L.; Derksen, Dirk V.; Schmutz, Joel A.; Taylor, Eric J.; Bollinger, Karen S.
2011-01-01
From 1976 onward, molting brant geese (Branta bernicla) within the Teshekpuk Lake Special Area, Alaska, shifted from inland, freshwater lakes toward coastal wetlands. Two hypotheses explained this redistribution: (1) ecological change: redistribution of molting brant reflects improvements in coastal foraging habitats, which have undergone a succession toward salt-tolerant plants due to increased coastal erosion and saltwater intrusion as induced by climate change or (2) interspecific competition: greater white-fronted geese (Anser albifrons) populations increased 12-fold at inland lakes, limiting food availability and forcing brant into coastal habitats. Both hypotheses presume that brant redistributions were driven by food availability; thus, body mass dynamics may provide insight into the relevance of these hypotheses. We compared body mass dynamics of molting brant across decades (1978, 1987–1992, 2005–2007) and, during 2005–2007, across habitats (coastal vs. inland). Brant lost body mass during molt in all three decades. At inland habitats, rates of mass loss progressively decreased by decade despite the increased number of greater white-fronted geese. These results do not support an interspecific competition hypothesis, instead suggesting that ecological change enhanced foraging habitats for brant. During 2005–2007, rates of mass loss did not vary by habitat. Thus, while habitats have improved from earlier decades, our results cannot distinguish between ecological changes at inland versus coastal habitats. However, we speculate that coastal forage quality has improved beyond that of inland habitats and that the body mass benefits of these higher quality foods are offset by the disproportionate number of brant now molting coastally.
NASA Astrophysics Data System (ADS)
Erdmann, Eric S.; Ribic, Christine A.; Patterson-Fraser, Donna L.; Fraser, William R.
2011-07-01
In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin ( Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200-500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001-2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.
Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.
2011-01-01
In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200–500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001–2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics
Skelhorn, John; Rowe, Candy; Ruxton, Graeme D.; Higginson, Andrew D.
2017-01-01
Prey often evolve defences to deter predators, such as noxious chemicals including toxins. Toxic species often advertise their defence to potential predators by distinctive sensory signals. Predators learn to associate toxicity with the signals of these so-called aposematic prey, and may avoid them in future. In turn, this selects for mildly toxic prey to mimic the appearance of more toxic prey. Empirical evidence shows that mimicry could be either beneficial (‘Mullerian’) or detrimental (‘quasi-Batesian’) to the highly toxic prey, but the factors determining which are unknown. Here, we use state-dependent models to explore how tri-trophic interactions could influence the evolution of prey defences. We consider how predation risk affects predators’ optimal foraging strategies on aposematic prey, and explore the resultant impact this has on mimicry dynamics between unequally defended species. In addition, we also investigate how the potential energetic cost of metabolising a toxin can alter the benefits to eating toxic prey and thus impact on predators’ foraging decisions. Our model predicts that both how predators perceive their own predation risk, and the cost of detoxification, can have significant, sometimes counterintuitive, effects on the foraging decisions of predators. For example, in some conditions predators should: (i) avoid prey they know to be undefended, (ii) eat more mildly toxic prey as detoxification costs increase, (iii) increase their intake of highly toxic prey as the abundance of undefended prey increases. These effects mean that the relationship between a mimic and its model can qualitatively depend on the density of alternative prey and the cost of metabolising toxins. In addition, these effects are mediated by the predators’ own predation risk, which demonstrates that, higher trophic levels than previously considered can have fundamental impacts on interactions among aposematic prey species. PMID:28045959
Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective
Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.
2016-01-01
Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main conclusions The decadal declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on the foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, the trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
Morand-Ferron, J.
2017-01-01
There has been extensive game-theoretic modelling of conditions leading to equilibria of producer–scrounger dichotomies in groups. However there is a surprising paucity of experimental evidence in wild populations. Here, we examine producer–scrounger games in five subpopulations of birds feeding at a socially learnt foraging task. Over four weeks, a bimodal distribution of producers and scroungers emerged in all areas, with pronounced and consistent individual tactic specialization persisting over 3 years. Tactics were unrelated to exploratory personality, but correlated with latency to contact and learn the foraging task, with the late arrivers and slower learners more likely to adopt the scrounging role. Additionally, the social environment was also important: at the broad scale, larger subpopulations with a higher social density contained proportionally more scroungers, while within subpopulations scroungers tended to be central in the social network and be observed in larger foraging flocks. This study thus provides a rare example of a stable, dimorphic distribution of producer–scrounger tactics in a wild population. It further gives support across multiple scales for a major prediction of social foraging theory; that the frequency of scroungers increases with group size. PMID:28404775
Giant panda foraging and movement patterns in response to bamboo shoot growth.
Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin
2018-03-01
Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.
Aplin, L M; Morand-Ferron, J
2017-04-12
There has been extensive game-theoretic modelling of conditions leading to equilibria of producer-scrounger dichotomies in groups. However there is a surprising paucity of experimental evidence in wild populations. Here, we examine producer-scrounger games in five subpopulations of birds feeding at a socially learnt foraging task. Over four weeks, a bimodal distribution of producers and scroungers emerged in all areas, with pronounced and consistent individual tactic specialization persisting over 3 years. Tactics were unrelated to exploratory personality, but correlated with latency to contact and learn the foraging task, with the late arrivers and slower learners more likely to adopt the scrounging role. Additionally, the social environment was also important: at the broad scale, larger subpopulations with a higher social density contained proportionally more scroungers, while within subpopulations scroungers tended to be central in the social network and be observed in larger foraging flocks. This study thus provides a rare example of a stable, dimorphic distribution of producer-scrounger tactics in a wild population. It further gives support across multiple scales for a major prediction of social foraging theory; that the frequency of scroungers increases with group size. © 2017 The Authors.
Kerr, Zachary Y; Baugh, Christine M; Hibberd, Elizabeth E; Snook, Erin M; Hayden, Ross; Dompier, Thomas P
2015-04-01
Recent injury data for collegiate-level swimming and diving are limited. This study describes the epidemiology of men's and women's swimming and diving injuries reported by the National Collegiate Athletic Association (NCAA) Injury Surveillance Program (ISP) during the 2009/2010 to 2013/2014 academic years. Injuries and athlete-exposure (AE) data reported within 9 men's and 13 women's swimming and diving programmes were analysed. Injury rates, injury rate ratios (IRR), and injury proportions by body site, diagnosis and mechanism were reported with 95% CIs. The ISP captured 149 and 208 injuries for men's and women's swimming and diving, respectively, leading to injury rates of 1.54/1000 and 1.71/1000 AEs. Among females, divers had a higher injury rate (2.49/1000 AEs) than swimmers (1.63/1000 AEs; IRR=1.53; 95% CI 1.07 to 2.19). Injury rates for male divers (1.94/1000 AEs) and swimmers (1.48/1000 AEs) did not differ (IRR=1.33; 95% CI 0.85 to 2.31). Most injuries occurred to the shoulder, resulted in strains and were classified as overuse or non-contact. Female swimmers had a higher overuse injury rate (1.04/1000 AEs) than male swimmers (0.66/1000 AEs; IRR=1.58; 95% CI 1.14 to 2.19). Overuse injury rates for female divers (0.54/1000 AEs) and male divers (0.46/1000 AEs) did not differ (IRR=1.16; 95% CI 0.40 to 3.34). Injury rates in 2012/2013-2013/2014 were lower than those in 2009/2010-2011/2012 for women's swimming (IRR=0.70; 95% CI 0.52 to 0.95) and diving (IRR=0.56; 95% CI 0.30 to 1.08), respectively. No time trends existed for men's swimmers or divers. Shoulder, strain and overuse injuries were common in collegiate men's and women's swimming and diving. Female swimmers were more likely to suffer an overuse injury than male swimmers. In addition, divers may have higher injury rates than swimmers, although small reported numbers warrant additional research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Diver Operated Tools and Applications for Underwater Construction
1987-01-01
subsurface construction. rhe list is by no means exhaustive and new 3 methods and requirements continue to evolve. * 8 I NCUAPTUN TIM DIVINO OPMATIONS...length suit that permitted the exhaust air to escape under the hem. By 1840, Siebe made a full length waterproof suit and added an exhaust valve to...The open circuit scuba takes 3 air from the supply tank, is inhaled by th& diver, and then exhausted directly to the surrounding water. 3 The basic
Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers
1986-03-01
CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA DIVERS III By F. K. Butler, Jr., LCDR, MC, USN NAVY EXPERIMENTAL DIVING UNIT DTIC...PANAMA CITY. FLORIDA 321407 IN. aLV OMW Vol NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 5-86 CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA...BUTLER, Jr. J . .d.M. HAMILTON LCDR, MC, USK CDR, MC, USK CDR, USKN Medical Research Officer Senior Medical Officer Comanding Officer UNCLASSIFIED 4
Decompression illness in divers treated in Auckland, New Zealand, 1996-2012.
Haas, Rachel M; Hannam, Jacqueline A; Sames, Christopher; Schmidt, Robert; Tyson, Andrew; Francombe, Marion; Richardson, Drew; Mitchell, Simon J
2014-03-01
The treatment of divers for decompression illness (DCI) in Auckland, New Zealand, has not been described since 1996, and subsequent trends in patient numbers and demographics are unmeasured. This was a retrospective audit of DCI cases requiring recompression in Auckland between 01 January 1996 and 31 December 2012. Data describing patient demographics, dive characteristics, presentation of DCI and outcomes were extracted from case notes and facility databases. Trends in annual case numbers were evaluated using Spearman's correlation coefficients (ρ) and compared with trends in entry-level diver certifications. Trends in patient demographics and delay between diving and recompression were evaluated using regression analyses. There were 520 DCI cases. Annual caseload decreased over the study period (ρ = 0.813, P < 0.0001) as did entry level diving certifications in New Zealand (ρ = 0.962, P < 0.0001). Mean diver age was 33.6 (95% confidence limits (CI) 32.7 to 34.5) years and age increased (P < 0.0001) over the study period. Median (range) delay to recompression was 2.06 (95% CI 0.02 to 23.6) days, and delay declined over the study period (P = 0.005). Numbers of DCI cases recompressed in Auckland have declined significantly over the last 17 years. The most plausible explanation is declining diving activity but improvements in diving safety cannot be excluded. The delay between diving and recompression has reduced.
Essential Hypertension: Cardiovascular Response to Breath Hold Combined with Exercise.
Hoffmann, U; Urban, P; Koschate, J; Drescher, U; Pfister, R; Michels, G
2015-07-01
Essential hypertension (EH) is a widespread disease and might be prevalent in apnea divers and master athletes. Little is known about the influence of EH and the antihypertensive drugs (AHD) on cardiovascular reactions to combined breath hold (BH) and exercise. In this pilot study, healthy divers (HCON) were compared with treated hypertensive divers with regard to heart rate (HR) and mean blood-pressure (MAP) responses to BH, exercise and the combination of both. Ten subjects with EH and ten healthy divers were tested. 3 different 20 s stimuli were applied: BH combined with 30 W or 150 W and 150 W without BH. The time-charts during the stress intervals and during recovery were compared. Subjects treated with an angiotensin-converting enzyme (ACE) inhibitor showed higher changes for MAP values if breath hold was performed. HR responses were obviously changed if a β-blocker was part of the medication. One subject showed extreme MAP responses to all stimuli and conspicuous HR if BH was involved. The modulation of HR-/MAP-response in EH subjects depends on the mechanisms of antihypertensive agents. The combination of an ACE inhibitor and a β-blocker may give the best protection. It is recommended to include short apnea tests in the fitness-to-dive examination to individually predict potential endangerment. © Georg Thieme Verlag KG Stuttgart · New York.
Parameter sensitivity analysis for pesticide impacts on honeybee colonies
We employ Monte Carlo simulation and linear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed that simulate hive population trajectories, taking into account queen strength, foraging success, weather, colo...
Sobol’ sensitivity analysis for stressor impacts on honeybee colonies
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather...
Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Ottea, James A.
2016-01-01
Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3–5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old nurse bees and there was no relationship of head weight with age of foragers. Discussion. Although the relationship between pteridine levels and age was significant, variation in the data yielded a +4-day range in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager in colonies with altered demographics as in the case of single cohort colonies. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing the age of an insect. Future studies utilizing these methods will provide a more holistic view of colony health. PMID:27413635
Study the Seasonal Variability of Plankton and Forage Fish in the Gulf of Khambhat Using Npzfd Model
NASA Astrophysics Data System (ADS)
Kumar, V.; Kumar, S.
2016-02-01
Numerical modelling of marine ecology exploits several assumptions and it is indeed quite challenging to include marine ecological phenomena into a mathematical framework with too many unknown parameters. The governing ordinary differential equations represent the interaction of the biological and chemical processes in a marine environment. The key concern in the development of a numerical models are parameterizations based on output, viz., mathematical modelling of ecological system mainly depends on parameters and its variations. Almost, all constituents of each trophic level of marine food web are depended on phytoplankton, which are mostly influenced by initial slope of P-I curve and nutrient stock in the study domain. Whereas, the earlier plankton dynamic models rarely include a compartment of small fish and as an agent in zooplankton mortality, which is most important for the modelling of higher trophic level of marine species. A compartment of forage fish in the modelling of plankton dynamics has been given more realistic mortality rates of plankton, viz., they feed upon phytoplankton and zooplankton. The inclusion of an additional compartment increases complexity of earlier plankton dynamics model as it introduces additional unknown parameters, which has been specified for performing the numerical simulations.As a case study we applied our analysis to explain the aquatic ecology of Gulf of Khambhat (19o 48' N - 22o20' N, 65o E - 72o40' E), west coast of India, which has rich bio-diversity and a high productive area in the form of plankton and forage fish. It has elevated turbidity and varying geography location, viz., one of the regions among world's ocean with high biological productivity.The model presented in this study is able to bring out the essential features of the observed data; that includes the bimodal oscillations in the observed data, monthly mean chlorophyll-a in the SeaWiFs/MODIS Aqua data and in-situ data of plankton. The additional compartment of forage fish and detritus in NPZFD model represents a major structural difference from the earlier NPZ model.
Barboza, Perry; Adams, Layne; Griffith, Brad; Whitten, Kenneth
2017-01-01
Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs. PMID:28231256
Harvey, Léa; Fortin, Daniel
2013-01-01
Spatial heterogeneity in the strength of trophic interactions is a fundamental property of food web spatial dynamics. The feeding effort of herbivores should reflect adaptive decisions that only become rewarding when foraging gains exceed 1) the metabolic costs, 2) the missed opportunity costs of not foraging elsewhere, and 3) the foraging costs of anti-predator behaviour. Two aspects of these costs remain largely unexplored: the link between the strength of plant-herbivore interactions and the spatial scale of food-quality assessment, and the predator-prey spatial game. We modeled the foraging effort of free-ranging plains bison (Bison bison bison) in winter, within a mosaic of discrete meadows. Spatial patterns of bison herbivory were largely driven by a search for high net energy gains and, to a lesser degree, by the spatial game with grey wolves (Canis lupus). Bison decreased local feeding effort with increasing metabolic and missed opportunity costs. Bison herbivory was most consistent with a broad-scale assessment of food patch quality, i.e., bison grazed more intensively in patches with a low missed opportunity cost relative to other patches available in the landscape. Bison and wolves had a higher probability of using the same meadows than expected randomly. This co-occurrence indicates wolves are ahead in the spatial game they play with bison. Wolves influenced bison foraging at fine scale, as bison tended to consume less biomass at each feeding station when in meadows where the risk of a wolf's arrival was relatively high. Also, bison left more high-quality vegetation in large than small meadows. This behavior does not maximize their energy intake rate, but is consistent with bison playing a shell game with wolves. Our assessment of bison foraging in a natural setting clarifies the complex nature of plant-herbivore interactions under predation risk, and reveals how spatial patterns in herbivory emerge from multi-scale landscape heterogeneity. PMID:24039909
Gustine, David D.; Barboza, Perry; Adams, Layne G.; Griffith, Brad; Cameron, Raymond D.; Whitten, Kenneth R.
2017-01-01
Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs.
NASA Astrophysics Data System (ADS)
Ben Lamine, Emna; Di Franco, Antonio; Romdhane, Mohamed Salah; Francour, Patrice
2018-01-01
Resource monitoring is a key issue in ecosystem management especially for marine protected areas (MPAs), where information on the composition and structure of fish assemblages is crucial to design a sound management plan. Data on fish assemblage are usually collected using Underwater Visual Censuses (UVC). However, fish assemblages monitoring in MPAs usually calls for considerable resources in terms of costs, time and technical/scientific skills. Financial resources and trained scientific divers may, however, not be available in certain geographical areas, that are thus understudied. Therefore, involving citizen volunteer divers in fish assemblage monitoring and adopting easy-to-use underwater visual census methods could be an effective way to collect crucial data. Citizen science can be used only if it can provide information that is consistent with that collected using standard scientific monitoring. Here, we aim to: 1) compare the consistency of results from a Standard scientific UVC (S-UVC) and an Easy-to-use UVC (E-UVC) method in assessing fish assemblage spatial variability, and 2) test the consistency of data collected by Scientific Divers (SD) and Scientifically-Trained Volunteer divers (STV), using E-UVC. We used, in two consecutive years, three Tunisian future Marine Protected Areas (MPAs) and adjacent areas as case studies. E-UVC and S-UVC data were consistent in highlighting the same spatial patterns for the three MPAs (between MPAs and, inside and outside each one). No significant difference was recorded between data collected by SD or STV. Our results suggest that E-UVC can provide information representing simplified proxies for describing fish assemblages and can therefore be a valuable tool for fish monitoring by citizen divers in understudied areas. This evidence could foster citizen science as an effective tool to raise environmental awareness and involve stakeholders in resource management.
Kerr, Zachary Y.; Baugh, Christine M.; Hibberd, Elizabeth E.; Snook, Erin M.; Hayden, Ross; Dompier, Thomas P.
2015-01-01
Background/Aim Recent injury data for collegiate-level swimming and diving is limited. Previous data is limited to single seasons, elite and national team athletes, or emergency department data. This study describes the epidemiology of men’s and women’s swimming and diving injuries reported by the National Collegiate Athletic Association (NCAA) Injury Surveillance Program (ISP) during the 2009/10-2013/14 academic years. Methods Injuries and athlete-exposure (AE) data reported within nine men’s and 13 women’s swimming and diving programs were analyzed. Injury rates, injury rate ratios (IRR), and injury proportions by body site, diagnosis, and mechanism were reported with 95% confidence intervals (CI). Results The ISP captured 149 and 208 injuries for men’s and women’s swimming and diving, respectively, leading to injury rates of 1.54/1000AEs and 1.71/1000AEs. Among females, divers had a higher injury rate (2.49/1000AEs) than swimmers (1.63/1000AEs; IRR=1.53; 95%CI: 1.07, 2.19). Injury rates for male divers (1.94/1000AEs) and swimmers (1.48/1000AEs) did not differ (IRR=1.33; 95%CI: 0.85, 2.31). Most injuries occurred to the shoulder and resulted in strains. Many injuries were classified as overuse or non-contact. Female swimmers had a higher overuse injury rate (1.04/1000AEs) than male swimmers (0.66/1000AEs; IRR=1.58; 95%CI: 1.14, 2.19). Overuse injury rates for female divers (0.54/1000AEs) and male divers (0.46/1000AEs) did not differ (IRR=1.16; 95%CI: 0.40, 3.34). Conclusions Shoulder, strain, and overuse injuries were common in collegiate men’s and women’s swimming and diving. In addition, divers may have higher injury rates than swimmers, although small reported numbers in this study warrant additional research. PMID:25633831
A Mathematical Model to Predict and Maintain the Neutral Buoyancy of Suited Astronauts
NASA Technical Reports Server (NTRS)
Clowers, Kurt; Jaramillo, Marcos; Nguyen, Daniel; Sweet, Robert; Rajulu, Sudhakar
2006-01-01
A previous study reported that inadequate weigh outs of suited subjects contribute to fatigue and the risk of injury during training in the Neutral Buoyancy Laboratory (NBL). Another study suggested that shoulder injuries observed in suited subjects who train in the NBL may be attributed to excessive righting moments caused by a non-optimal weigh out. The purpose of this study was to develop a mathematical model to predict and maintain the neutral buoyancy of suited subjects during training operations at the NBL. Due to time constraints, one certified NBL support diver served as a subject (height: 66.54 in; weight: 182 lbs) for this study and only one complete test was conducted. The study was divided into two runs for which the first run required the NBL divers to perform a weigh out similar to a suited astronaut on a scuba diver wearing a mock Portable Life Support System and a Displays and Control Module. For the second run, the same subject and equipment were weighed out according to the mathematical model. The objective of each run was to achieve a neutrally buoyant subject floating 450 to the pool floor. Motion data was collected using two underwater cameras and analyzed using Dartfish video analysis software while force and moment data were recorded using an AMTI force plate. The results from the NBL divers visual run indicate that the subject was floating at an angle of 29.50 while the resultant force and moment data were 1.139 lb and 1.125 ft-lb respectively. The mathematical model s weigh out resulted in the subject floating at an angle of 37.40 and a resultant force of 0.765 lb and resultant moment of 1.248 ft-lb. The mathematical model was better able to orient the subject and reduce resultant moment and force as compared to the NBL divers.
NASA Astrophysics Data System (ADS)
Urmy, Samuel Stetson
Most seabirds forage for prey whose distributions are patchy and unpredictable, and their strategies for locating food have long interested ecologists. Recent studies using individual telemetry have yielded many insights, but our understanding is still limited: simultaneous measurements of prey and predator distributions are rare, and tracking tags can be deployed on only small numbers of animals at once. I addressed these challenges using a marine radar deployed at a breeding colony of common and roseate terns (Sterna hirundo and S. dougallii) on Great Gull Island, New York, in 2014 and 2015. I calibrated the radar, enabling measurements of tern radar cross-sections, which in turn allowed the number of birds in a flock to be estimated remotely by echo integration. The distribution of feeding flocks around the colony was mapped by radar, and the terns' prey and tidal currents were measured using acoustic instruments on small boats. These high-resolution data let me identify and model the terns' important foraging habitat: where tidal currents accelerated and diverged over shallow topography. I also developed methods to identify and track individual terns in the radar data. Analysis of hundreds of thousands of tern tracks showed the terns' directions of departure and return from the colony shifted between days, weeks, and years. By analyzing the relative timing of outbound and inbound traffic, distant foraging areas could be tentatively identified; these generally agreed with the habitat model's predictions. Finally, several mechanisms for information transfer between foraging terns were investigated. I showed theoretically that one of these behaviors, trail following, should provide more accurate guidance to food patches. This prediction was confirmed in an individual-based simulation model, and evidence for trail following was found in the flight patterns of the terns. These findings may have conservation value, for instance in planning human activities such as offshore wind energy installations to avoid harm to terns. They also open exciting new possibilities for studies linking the behaviors of individual seabirds to the dynamic distribution of their populations as a whole.
Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato
2014-01-01
The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Top marine predators track Lagrangian coherent structures
Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique
2009-01-01
Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel. PMID:19416811
Ecological allometries and niche use dynamics across Komodo dragon ontogeny
NASA Astrophysics Data System (ADS)
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Liedtke, Theresa; Gibson, Caroline; Lowry, Dayv; Fagergren, Duane
2013-01-01
Locally and globally, there is growing recognition of the critical roles that herring, smelt, sand lance, eulachon, and other forage fishes play in marine ecosystems. Scientific and resource management entities throughout the Salish Sea, agree that extensive information gaps exist, both in basic biological knowledge and parameters critical to fishery management. Communication and collaboration among researchers also is inadequate. Building on the interest and enthusiasm generated by recent forage fish workshops and symposia around the region, the 2012 Research Symposium on the Conservation and Ecology of Marine Forage Fishes was designed to elucidate practical recommendations for science and policy needs and actions, and spur further collaboration in support for the precautionary management of forage fish. This dynamic and productive event was a joint venture of the Northwest Straits Commission Forage Fish Program, U.S. Geological Survey (USGS), Washington Department of Fish and Wildlife (WDFW), and The Puget Sound Partnership. The symposium was held on September 12–14, 2012, at the University of Washington, Friday Harbor Laboratories campus. Sixty scientists, graduate students, and fisheries policy experts convened; showcasing ongoing research, conservation, and management efforts targeting forage fish from regional and national perspectives. The primary objectives of this event were to: (1) review current research and management related to marine forage fish species; and (2) identify priority science and policy needs and actions for Washington, British Columbia, and the entire West Coast. Given the diversity of knowledge, interests, and disciplines surrounding forage fish on both sides of the international border, the organizing committee made a concerted effort to contact many additional experts who, although unable to attend, provided valuable insights and ideas to the symposium structure and discussions. The value of the symposium format was highlighted in the closing remarks delivered by Joseph Gaydos, SeaDoc Society and Chair of the Puget Sound Science Panel. Dr. Gaydos’ presentation referenced the 2011 paper by Murray Rudd in the journal Conservation Biology, “How research-prioritization exercises affect conservation policy.” The paper points out that policy makers and funding agencies are more likely to gain a full understanding of issues when they are presented with research findings from an aligned research program. That is, compared to unaligned research strategies, where work is not based on identified research priorities.
Kimber, Joel A; Sims, David W; Bellamy, Patricia H; Gill, Andrew B
2014-01-01
Top predators inhabiting a dynamic environment, such as coastal waters, should theoretically possess sufficient cognitive ability to allow successful foraging despite unpredictable sensory stimuli. The cognition-related hunting abilities of marine mammals have been widely demonstrated. Having been historically underestimated, teleost cognitive abilities have also now been significantly demonstrated. Conversely, the abilities of elasmobranchs have received little attention, despite many species possessing relatively large brains comparable to some mammals. The need to determine what, if any, cognitive ability these globally distributed, apex predators are endowed with has been highlighted recently by questions arising from environmental assessments, specifically whether they are able to learn to distinguish between anthropogenic electric fields and prey bioelectric fields. We therefore used electroreceptive foraging behaviour in a model species, Scyliorhinus canicula (small-spotted catshark), to determine cognitive ability by analysing whether elasmobranchs are able to learn to improve foraging efficiency and remember learned behavioural adaptations. Positive reinforcement, operant conditioning was used to study catshark foraging behaviour towards artificial, prey-type electric fields (Efields). Catsharks rewarded with food for responding to Efields throughout experimental weeks were compared with catsharks that were not rewarded for responding in order to assess behavioural adaptation via learning ability. Experiments were repeated after a 3-week interval with previously rewarded catsharks this time receiving no reward and vice versa to assess memory ability. Positive reinforcement markedly and rapidly altered catshark foraging behaviour. Rewarded catsharks exhibited significantly more interest in the electrical stimulus than unrewarded catsharks. Furthermore, they improved their foraging efficiency over time by learning to locate and bite the electrodes to gain food more quickly. In contrast, unrewarded catsharks showed some habituation, whereby their responses to the electrodes abated and eventually entirely ceased, though they generally showed no changes in most foraging parameters. Behavioural adaptations were not retained after the interval suggesting learned behaviour was not memorised beyond the interval. Sequences of individual catshark search paths clearly illustrated learning and habituation behavioural adaptation. This study demonstrated learning and habituation occurring after few foraging events and a memory window of between 12 h and 3 weeks. These cognitive abilities are discussed in relation to diet, habitat, ecology and anthropogenic Efield sources.
Aseptic Bone Necrosis Among U.S. Navy Divers: Survey of 934 Nonrandomly Selected Personnel
1977-06-01
Health, Education, and Welfare, Washington, D.C. Kawashima, M., T. Torisu, K. Hayashi, and Y. Kamo. 1974. Avascular bone necrosis in Japanese diving...5ÜL ^4- P=- 7 RESEM^a^ATORY SUBMARINE BASE, GROTON, CONN. REPORT NUMBER 854 ASEPTIC BONE NECROSIS AMONG U. S. NAVY DIVERS: Survey of 934...Approved for public release; distribution unlimited SUMMARY PAGE THE PROBLEM Aseptic boire~ necrosis tABN) has beelTknown toT5e~ associated with
2008-04-01
visualisation tête basse (VTB) ou d’un visiocasque pour l’exécution de leurs tâches courantes sous l’eau. Neuf plongeurs de lutte contre les mines ont...existe peu d’information empirique sur l’aptitude des plongeurs à utiliser un dispositif multifonction de visualisation tête basse (VTB) ou d’un...experiment, the diver was also linked to the researchers and operations crew via audio communications. 11 Display Screen Chamber Laptop Diver
Human/computer control of undersea teleoperators
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Verplank, W. L.; Brooks, T. L.
1978-01-01
The potential of supervisory controlled teleoperators for accomplishment of manipulation and sensory tasks in deep ocean environments is discussed. Teleoperators and supervisory control are defined, the current problems of human divers are reviewed, and some assertions are made about why supervisory control has potential use to replace and extend human diver capabilities. The relative roles of man and computer and the variables involved in man-computer interaction are next discussed. Finally, a detailed description of a supervisory controlled teleoperator system, SUPERMAN, is presented.
2015-05-28
Diver Characteristics Appendix E Diving Schedule Appendix F Medical Incidents Appendix G UBA Gas Compositions iv ACKNOWLEDGEMENTS The...experimental dives (median = 3). The schedule of each diver’s participation in experimental dives is given in Appendix E . Divers were required to avoid any...divers’ participation on each test schedule is given in Appendix E . The numbers of completed man-dives on the two schedules are not multiples of the
Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing
NASA Astrophysics Data System (ADS)
Novcic, Ivana
2016-08-01
Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species - separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.
Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker
2013-01-01
The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality. However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management. We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee – varroa mite – virus interactions. We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications. We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions. PMID:24223431
Consistent Individual Differences Drive Collective Behavior and Group Functioning of Schooling Fish.
Jolles, Jolle W; Boogert, Neeltje J; Sridhar, Vivek H; Couzin, Iain D; Manica, Andrea
2017-09-25
The ubiquity of consistent inter-individual differences in behavior ("animal personalities") [1, 2] suggests that they might play a fundamental role in driving the movements and functioning of animal groups [3, 4], including their collective decision-making, foraging performance, and predator avoidance. Despite increasing evidence that highlights their importance [5-16], we still lack a unified mechanistic framework to explain and to predict how consistent inter-individual differences may drive collective behavior. Here we investigate how the structure, leadership, movement dynamics, and foraging performance of groups can emerge from inter-individual differences by high-resolution tracking of known behavioral types in free-swimming stickleback (Gasterosteus aculeatus) shoals. We show that individual's propensity to stay near others, measured by a classic "sociability" assay, was negatively linked to swim speed across a range of contexts, and predicted spatial positioning and leadership within groups as well as differences in structure and movement dynamics between groups. In turn, this trait, together with individual's exploratory tendency, measured by a classic "boldness" assay, explained individual and group foraging performance. These effects of consistent individual differences on group-level states emerged naturally from a generic model of self-organizing groups composed of individuals differing in speed and goal-orientedness. Our study provides experimental and theoretical evidence for a simple mechanism to explain the emergence of collective behavior from consistent individual differences, including variation in the structure, leadership, movement dynamics, and functional capabilities of groups, across social and ecological scales. In addition, we demonstrate individual performance is conditional on group composition, indicating how social selection may drive behavioral differentiation between individuals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker
2013-08-01
The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.
At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango
Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas
2017-01-01
Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561
NASA Astrophysics Data System (ADS)
Burke, Ariane; Kageyama, Masa; Latombe, Guilllaume; Fasel, Marc; Vrac, Mathieu; Ramstein, Gilles; James, Patrick M. A.
2017-05-01
The extent to which climate change has affected the course of human evolution is an enduring question. The ability to maintain spatially extensive social networks and a fluid social structure allows human foragers to ;map onto; the landscape, mitigating the impact of ecological risk and conferring resilience. But what are the limits of resilience and to which environmental variables are foraging populations sensitive? We address this question by testing the impact of a suite of environmental variables, including climate variability, on the distribution of human populations in Western Europe during the Last Glacial Maximum (LGM). Climate variability affects the distribution of plant and animal resources unpredictably, creating an element of risk for foragers for whom mobility comes at a cost. We produce a model of habitat suitability that allows us to generate predictions about the probable distribution of human populations and discuss the implications of these predictions for the structure of human populations and their social and cultural evolution during the LGM.
Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution
Sandvik, Hanno; Barrett, Robert T.; Erikstad, Kjell Einar; Myksvoll, Mari S.; Vikebø, Frode; Yoccoz, Nigel G.; Anker-Nilssen, Tycho; Lorentsen, Svein-Håkon; Reiertsen, Tone K.; Skarðhamar, Jofrid; Skern-Mauritzen, Mette; Systad, Geir Helge
2016-01-01
Colonial breeding is an evolutionary puzzle, as the benefits of breeding in high densities are still not fully explained. Although the dynamics of existing colonies are increasingly understood, few studies have addressed the initial formation of colonies, and empirical tests are rare. Using a high-resolution larval drift model, we here document that the distribution of seabird colonies along the Norwegian coast can be explained by variations in the availability and predictability of fish larvae. The modelled variability in concentration of fish larvae is, in turn, predicted by the topography of the continental shelf and coastline. The advection of fish larvae along the coast translates small-scale topographic characteristics into a macroecological pattern, viz. the spatial distribution of top-predator breeding sites. Our findings provide empirical corroboration of the hypothesis that seabird colonies are founded in locations that minimize travel distances between breeding and foraging locations, thereby enabling optimal foraging by central-place foragers. PMID:27173005
Shepherd, S; Lima, M A P; Oliveira, E E; Sharkh, S M; Jackson, C W; Newland, P L
2018-05-21
Extremely low frequency electromagnetic field (ELF EMF) pollution from overhead powerlines is known to cause biological effects across many phyla, but these effects are poorly understood. Honey bees are important pollinators across the globe and due to their foraging flights are exposed to relatively high levels of ELF EMF in proximity to powerlines. Here we ask how acute exposure to 50 Hz ELF EMFs at levels ranging from 20-100 µT, found at ground level below powerline conductors, to 1000-7000 µT, found within 1 m of the conductors, affects honey bee olfactory learning, flight, foraging activity and feeding. ELF EMF exposure was found to reduce learning, alter flight dynamics, reduce the success of foraging flights towards food sources, and feeding. The results suggest that 50 Hz ELF EMFs emitted from powerlines may represent a prominent environmental stressor for honey bees, with the potential to impact on their cognitive and motor abilities, which could in turn reduce their ability to pollinate crops.
2002-09-30
KENNEDY SPACE CENTER, FLA. -- Jack Wilcox, right, returns to the ship that helped rescue him at sea Sept. 11. With him is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando. The reunion was held at the Hangar AF docks on the Cape Canaveral Air Force Station.
2002-09-30
KENNEDY SPACE CENTER, FLA. - KENNEDY SPACE CENTER, FLA. - Jack Wilcox answers questions from the media during a reunion at the Hangar AF docks, Cape Canaveral Air Force Station, with his rescuers. At right is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando.
Metabolomic approach with LC-MS reveals significant effect of pressure on diver's plasma.
Ciborowski, Michal; Javier Rupérez, F; Martínez-Alcázar, Ma Paz; Angulo, Santiago; Radziwon, Piotr; Olszanski, Romuald; Kloczko, Janusz; Barbas, Coral
2010-08-06
Professional and recreational diving are growing activities in modern life. Diving has been associated with increased prevalence of stroke, hypertension, asthma, diabetes, or bone necrosis. We evaluated the effect of increased pressure equivalent to diving at 30 and 60 m for 30 min in two groups of divers using an untargeted approach with LC-MS fingerprinting of plasma. We found over 100 metabolites to be altered in plasma post exposure and after the corresponding decompression procedures. Among them, a group of lysophosphatidylcholines and lysophosphatidylethanolamines were increased, including lysoplasmalogen, a thrombosis promoter, together with changes in metabolic rate-associated molecules such as acylcarnitines and hemolysis-related compounds. Moreover, three metabolites that could be associated to bone degradation show different intensities between experimental groups. Ultimately, this nontargeted, short-term study opens the possibility of discovering markers of long-term effect of pressure that could be employed in routine health control of divers and could facilitate the development of safer decompression procedures.
Morel, Danielle Soares; Dionello, Carla da Fontoura; Moreira-Marconi, Eloá; Brandão-Sobrinho-Neto, Samuel; Paineiras-Domingos, Laisa Liane; Souza, Patrícia Lopes; Sá-Caputo, Danúbia da Cunha; Dias, Glenda; Figueiredo, Claudia; Carmo, Roberto Carlos Resende; Paiva, Patrícia de Castro; Sousa-Gonçalves, Cintia Renata; Kütter, Cristiane Ribeiro; Guedes-Aguiar, Eliane de Oliveira; Cloak, Ross; Bernardo-Filho, Mario
2017-01-01
Whole body vibration exercise (WBVE) has been used as a safe and accessible exercise and important reviews have been published about the use of this exercise to manage diseases and to improve physical conditions of athletes The aim of this paper is to highlight the relevance of WBVE to soccer players, divers and combat athletes. This study was made through a systematic review of publications involving WBVE and the selected sports in two databases (Pubmed and PEDRo). It were identified 10 studies involving WBVE and sports (6 of soccer, 2 of diving and 2 of sport combat) with 156 subjects (80 soccer players, 32 divers and 44 combat athletes), with age from 17 to 44 years old. The use of WBVE has proven to be a safe and useful strategy to improve the physical conditions of players of different sports. These findings may have clinical relevance and should be considered as a strategy to be used to try improve the physical conditions of players.
Provisional report on diving-related fatalities in Australian waters 2003.
Walker, Douglas; Lippmann, John
2009-03-01
An individual case review of the diving-related deaths that were reported to have occurred in Australia in 2003 was conducted as part of the combined Project Stickybeak/DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, as well as details from the post mortem examination, where available. In total there were 22 reported fatalities, 18 men and four women. Twelve deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving and one while using surface-supply breathing apparatus. Cardiac-related issues were thought to have contributed to the deaths of six snorkel divers (50%) and four scuba divers (44%) in this series. There were three deaths in breath-hold divers likely to have been associated with apnoeic hypoxia blackout. Inexperience, time away from diving and lack of common sense were features in several scuba deaths.
Provisional report on diving-related fatalities in Australian waters 2005.
Walker, Douglas; Lippmann, John; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Jamieson, Scott
2010-09-01
An individual case review of diving-related deaths reported as occurring in Australia in 2005 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 24 reported fatalities, comprising four females and 20 males. Fourteen deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving, and one while using surface-supply breathing apparatus. Four deaths from large marine animal attacks were recorded. Once again, cardiac-related issues were thought to have contributed to some deaths: five snorkel divers and at least two but possibly up to four scuba divers. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, trauma from marine creatures and snorkelling or diving alone were features in several deaths in this series.
Underwater and hyperbaric medicine as a branch of occupational and environmental medicine.
Lee, Young Il; Ye, Byeong Jin
2013-12-19
Exposure to the underwater environment for occupational or recreational purposes is increasing. As estimated, there are around 7 million divers active worldwide and 300,000 more divers in Korea. The underwater and hyperbaric environment presents a number of risks to the diver. Injuries from these hazards include barotrauma, decompression sickness, toxic effects of hyperbaric gases, drowning, hypothermia, and dangerous marine animals. For these reasons, primary care physicians should understand diving related injuries and assessment of fitness to dive. However, most Korean physicians are unfamiliar with underwater and hyperbaric medicine (UHM) in spite of scientific and practical values.From occupational and environmental medicine (OEM) specialist's perspective, we believe that UHM should be a branch of OEM because OEM is an area of medicine that deals with injuries caused by physical and biological hazards, clinical toxicology, occupational diseases, and assessment of fitness to work. To extend our knowledge about UHM, this article will review and update on UHM including barotrauma, decompression illness, toxicity of diving gases and fitness for diving.
Filin, I
2009-06-01
Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.
Intergenerational Wealth Transmission and the Dynamics of Inequality in Small-Scale Societies*
Mulder, Monique Borgerhoff; Bowles, Samuel; Hertz, Tom; Bell, Adrian; Beise, Jan; Clark, Greg; Fazzio, Ila; Gurven, Michael; Hill, Kim; Hooper, Paul L.; Irons, William; Kaplan, Hillard; Leonetti, Donna; Low, Bobbi; Marlowe, Frank; McElreath, Richard; Naidu, Suresh; Nolin, David; Piraino, Patrizio; Quinlan, Rob; Schniter, Eric; Sear, Rebecca; Shenk, Mary; Smith, Eric Alden; von Rueden, Christopher; Wiessner, Polly
2009-01-01
Small-scale human societies range from foraging bands with a strong egalitarian ethos to more economically stratified agrarian and pastoral societies. We explain this variation in inequality using a dynamic model in which a population’s long-run steady-state level of inequality depends on the extent to which its most important forms of wealth are transmitted within families across generations. We estimate the degree of intergenerational transmission of three different types of wealth (material, embodied, and relational) as well as the extent of wealth inequality in 21 historical and contemporary populations. We show that intergenerational transmission of wealth and wealth inequality are substantial among pastoral and small-scale agricultural societies (on a par with or even exceeding the most unequal modern industrial economies) and quite limited among horticultural and foraging peoples (equivalent to the most egalitarian of modern industrial populations). Differences in the technology by which a people derive their livelihood and in the institutions and norms making up the economic system jointly contribute to this pattern. PMID:19900925
History-Based Response Threshold Model for Division of Labor in Multi-Agent Systems
Lee, Wonki; Kim, DaeEun
2017-01-01
Dynamic task allocation is a necessity in a group of robots. Each member should decide its own task such that it is most commensurate with its current state in the overall system. In this work, the response threshold model is applied to a dynamic foraging task. Each robot employs a task switching function based on the local task demand obtained from the surrounding environment, and no communication occurs between the robots. Each individual member has a constant-sized task demand history that reflects the global demand. In addition, it has response threshold values for all of the tasks and manages the task switching process depending on the stimuli of the task demands. The robot then determines the task to be executed to regulate the overall division of labor. This task selection induces a specialized tendency for performing a specific task and regulates the division of labor. In particular, maintaining a history of the task demands is very effective for the dynamic foraging task. Various experiments are performed using a simulation with multiple robots, and the results show that the proposed algorithm is more effective as compared to the conventional model. PMID:28555031
Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D
2008-06-01
Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.
Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E
2014-06-01
Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.
1997-12-01
younger trees with thinner sapwood and greater heartwood diameter than other trees in the area . The RCW requires approximately 6 inches in diameter...and management areas and have explored applications of system dynamics modeling at the graduate level. The attached application addresses specific...Population Sensitivity to Birth Rate 62 10. RCW Population with Variation of Relatedness Entity 64 11. RCW Population with Variation of Foraging Area
A predator equalizes rate of capture of a schooling prey in a patchy environment.
Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika
2017-05-01
Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Feeding Behavior of a Crab According to Cheliped Number
de Oliveira, Diogo Nunes; Christofoletti, Ronaldo Adriano; Barreto, Rodrigo Egydio
2015-01-01
Cheliped loss through autotomy is a common reflexive response in decapod crustaceans. Cheliped loss has direct and indirect effects on feeding behavior which can affect population dynamics and the role of species in the community. In this study, we assessed the impact of autotomy (0, 1, or 2 cheliped loss) on feeding behavior in the crab Pachygrapsus transversus, an omnivorous and abundant species that inhabits subtropical intertidal rocky shores along the South Atlantic Ocean. Autotomy altered crab feeding patterns and foraging behavior; however, the time spent foraging on animal prey or algae was not affected. These results indicate a plasticity of feeding behavior in P. transversus, allowing them to maintain feeding when injured. PMID:26682546
USDA-ARS?s Scientific Manuscript database
Maintaining grazingland and enterprise resilience under changing climatic and economic conditions requires novel, resilience based, management strategies. State and Transition models provide a solid foundation and framework for management of grazinglands using non-equilibrium dynamics. These models ...
Underway Recovery Test 6 (URT-6) - Day 4 Activities
2018-01-20
Navy diver Michael Tuft (far right) and his team wait to be called for their part in Underway Recovery Test 6 aboard the USS Anchorage. The divers will be the first people astronauts aboard the Orion spacecraft see when they splash down in the Pacific Ocean after Exploration Mission-2. The testing with the NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.
Space Suit Technologies Protect Deep-Sea Divers
NASA Technical Reports Server (NTRS)
2008-01-01
Working on NASA missions allows engineers and scientists to hone their skills. Creating devices for the high-stress rigors of space travel pushes designers to their limits, and the results often far exceed the original concepts. The technologies developed for the extreme environment of space are often applicable here on Earth. Some of these NASA technologies, for example, have been applied to the breathing apparatuses worn by firefighters, the fire-resistant suits worn by racecar crews, and, most recently, the deep-sea gear worn by U.S. Navy divers.
The Effect of Pressure and Time on Information Recall
2008-04-01
retenu que 69 % de l’information visualisée à une profondeur de 40 m, comparativement à 90 % de celle-ci dans le cas d’un signalement immédiat. Après 2...from the diver, so it is vital that the diver proves complete and accurate information. This study was designed to quantify the amount and type of...de l’information sur l’objectif, comparativement à 90 % de celle-ci dans le cas d’un signalement immédiat. Après 2 heures, les plongeurs n’ont
Analysis for the Design of a U.S. Navy Diving and Salvage Smart Stage
2013-06-01
to be salvaged or constructed in the depths of the water , they send in the U.S. Navy divers to carry out that task. The current device used to...conditions of the waters vary depending on the location and situation in which they are called upon to act. A dive stage is used when a diver is...used in tropical waters for one salvage job, and then the next time it is used may be in frigid arctic waters (Commander, Naval Sea Systems Command
Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M.
2015-01-01
How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. PMID:26581108
Reynolds, Andrew M.; Stelzer, Ralph J.; Lim, Ka S.; Smith, Alan D.; Osborne, Juliet L.; Chittka, Lars
2012-01-01
Central place foragers, such as pollinating bees, typically develop circuits (traplines) to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris) develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length) and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m) of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map. PMID:23049479
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients
Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386
Linking dynamic habitat selection with wading bird foraging distributions across resource gradients
Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.
Characterizing habitat suitability for a central-place forager in a dynamic marine environment.
Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L
2018-03-01
Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.
GPS/GIS technology in range cattle management
USDA-ARS?s Scientific Manuscript database
Animal dominated landscapes are dynamic and not fully understood. Electronics were first employed in the mid-1970’s to monitor free-ranging cattle behavior and its impact on forage utilization. By the mid-90’s satellite positioning systems were being used to monitor wildlife and had all but remove...
Understanding predation: implications toward forest management
Harvey R. Smith
1991-01-01
It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.
76 FR 48184 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... developed regulations for the establishment of a permit system for various activities in Antarctica and... establish such a permit system to designate Antarctic Specially Protected Areas. The applications received... established in 1986 studying the foraging ecology, population dynamics, census and reproductive success and...
THE SEARCH DYNAMICS OF RECRUITED HONEY BEES, APIS MELLIFERA LIGUSTICA SPINOLA.
Friesen, Larry Jon
1973-02-01
Some variables in the recruitment process of honey bees were studied as they affected the distribution and success of the searching population in the field. The dance language and odor dependence hypotheses were contrasted and their predictions compared with the following observations. 1. Recruits were attracted to the odors from the food which were carried by foragers and were dependent on these odors for success. 2. A monitoring of recruit densities in the field demonstrated an association of searchers with the forager flight path. 3. The degree of correspondence between the distribution of recruits and the direction of the flight path to the feeding site was correlated with wind direction, not search efficiency. 4. Feeding stations upwind of the hive provided the highest recruit success rates, shortest search times, and the least dependence on wind speed. Downwind stations provided the lowest recruit success rates, the longest search times, and the greatest dependence on wind speed. 5. A disproportionate increase in recruit success with an increase in the number of foragers visiting a feeding site was correlated with the density of the foragers in the field. 6. Increased bee densities at the feeding site, even with bees from different hives, increased recruit success and shortened search times. 7. The progression of and the extremely long intervals between the onset of recruit arrivals at areas along the forager flight path suggested communication among bees in the field and a dependence of recruit success on the density and growth of the searching population. These observations are compatible with an odor dependent search behavior and together fail to support the predictions of the dance language hypothesis. Dance attendants appeared to have been conditioned to the odors associated with returning foragers and, after leaving the hive, entered a searching population dependent on these odors for success. The dependence of recruit success on food odor at the feeding station, the density of foragers between this station and the hive, and the direction of the wind indicates that the integrity of the forager flight path was extremely important to this success. The distributions and extended search times of recruits indicated a search behavior based on positive anemotaxis during the perception of the proper combination of odors and negative anemotaxis after the loss of this stimulation.
Optimizing Optics For Remotely Controlled Underwater Vehicles
NASA Astrophysics Data System (ADS)
Billet, A. B.
1984-09-01
The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light weight, high response hydraulic system was developed in a very small package.
Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David
2014-09-01
Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw, and two successive bounce dive series in a day's diving.
Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George
2013-01-01
Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.
Underwater fin swimming in women with reference to fin selection.
Pendergast, D R; Mollendorf, J; Logue, C; Samimy, S
2003-01-01
Underwater swimmers use fins, which provide thrust to overcome drag and propel the diver. The type of fin used has been shown to affect diver performance, however data are lacking for women. The oxygen consumption (VdotO2) of swimming as a function of speed, velocity as a function of kick frequency, maximal speed (v), maximal VdotO2 and the maximal thrust were determined for 8 female divers swimming at 1.25 m depth in a 60 m annular pool. VdotO2 increased as a function of v as; 0.52 + -0.485 V + 2.85 V2 (r2 = 0.996) and 0.12 + 1.52 V +1.275 V2 (r2 = 0.999) for high (5 fins) and low (3 fins) groupings, respectively. Splits, vents and flanges did not significantly affect VdotO2. Kick frequency increased linearly with v, with unique slopes for each fin. Maximal VdotO2 was not affect by fin type (1.46 +/- 0.05 l/min). Velocities that could be stained aerobically were 0.60 +/- 0.02 m/sec on average, with the most flexible fin higher (0.71 m/sec). Maximal v averaged 0.87 +/- 0.03 m/sec, with the most rigid fin lower (0.77 m/sec). Maximal thrust was not affected by fin and averaged 104 +/- 9 N. It can be concluded that female divers preferred the most flexible fins, which were also the most economical. This is most likely due to low leg power, which could also explain the absence of differences in maximal thrust and velocity.
Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
NASA Astrophysics Data System (ADS)
Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan
2017-11-01
We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
Do elite breath-hold divers suffer from mild short-term memory impairments?
Billaut, François; Gueit, Patrice; Faure, Sylvane; Costalat, Guillaume; Lemaître, Frédéric
2018-03-01
Repeated apneas are associated with severe hypoxemia that may ultimately lead to loss of consciousness in some breath-hold divers. Despite increasing number of practitioners, the relationship between apnea-induced hypoxia and neurocognitive functions is still poorly understood in the sport of free diving. To shed light onto this phenomenon, we examined the impact of long-term breath-hold diving training on attentional processing, short-term memory, and long-term mnesic and executive functions. Thirty-six men matched for age, height, and weight were separated into the following 3 groups: (i) 12 elite breath-hold divers (EBHD), mean static apnea best time 371 s, 105 months mean apnea experience; (ii) 12 novice breath-hold divers, mean best time 243 s, 8.75 months mean apnea experience; and (iii) 12 physical education students with no breath-hold diving experience; all of these participants performed varied written and computerized neuropsychological tasks. Compared with the 2 other groups, the EBHD group was slower to complete the interference card during a Stroop test (F [1,33] = 4.70, p < 0.05), and presented more errors on the interference card (F [1,33] = 2.96, p < 0.05) and a lower total interference score (F [1,33] = 5.64, p < 0.05). The time to complete the interference card test was positively correlated with maximal static apnea duration (r = 0.73, p < 0.05) and the number of years of breath-hold diving training (r = 0.79, p < 0.001). These findings suggest that breath-hold diving training over several years may cause mild, but persistent, short-term memory impairments.
'Sea legs': sharpened Romberg test after three days on a live-aboard dive boat.
Gibbs, Clinton R; Commons, Katherine H; Brown, Lawrence H; Blake, Denise F
2010-12-01
The sharpened Romberg test (SRT) is commonly used by diving and hyperbaric physicians as an indicator of neurological decompression illness (DCI). People who spend a prolonged time on a boat at sea experience impairment in their balance on returning to shore, a condition known as mal de debarquement ('sea legs'). This conditioning of the vestibular system to the rocking motion of a boat at sea may impact on the utility of the SRT in assessing a diver with potential DCI after a live-aboard dive trip. To assess the impact 'sea legs' has on the SRT after three days on a live-aboard dive trip. Thirty-nine staff and passengers of a three-day, live-aboard dive trip performed a SRT before and after their journey, with assessment of potential variables, including middle ear barotrauma, alcohol consumption, sea-sickness and occult DCI. There was no statistically significant impact on SRT performance, with 100% completion pre-trip and 35 out of 36 divers (97.2%) post-trip. There were trends towards more attempts being required and time needed for successful SRT post-trip, but these were not statistically significant. There was a small, but noteworthy incidence of middle-ear barotrauma, with seven people affected pre-trip, and 13 post-trip. There was a higher incidence in student divers. Middle-ear barotrauma did not appear to have a direct impact on SRT performance. There was no significant impact on SRT performance resulting from 'sea legs' after three days at sea. Recreational divers, especially dive students, have a substantial incidence of mild middle ear barotrauma.
Fitz-Clarke, John R
2018-03-25
Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
Post-dive ultrasound detection of gas in the liver of rats and scuba divers.
L'abbate, Antonio; Marabotti, Claudio; Kusmic, Claudia; Pagliazzo, Antonino; Navari, Alessandro; Positano, Vincenzo; Palermo, Mario; Benassi, Antonio; Bedini, Remo
2011-09-01
In a previous study, we obtained histologic documentation of liver gas embolism in the rat model of rapid decompression. The aim of the study was to assess in the same model occurrence and time course of liver embolism using 2-D ultrasound imaging, and to explore by this means putative liver gas embolism in recreational scuba divers. Following 42 min compression at 7 ATA breathing air and 12 min decompression, eight surviving female rats were anesthetized and the liver imaged by ultrasound at 20 min intervals up to 120 min. A significant enhancement of echo signal was recorded from 60 to 120 min as compared to earlier post-decompression times. Enzymatic markers of liver damage (AST, ALT, and GGT) increased significantly at 24 h upon decompression. Twelve healthy experienced divers were studied basally and at 15-min intervals up to 60 min following a 30-min scuba dive at 30 msw depth. At 30 min upon surfacing echo images showed significant signal enhancement that progressed and reached plateau at 45 and 60 min. Total bilirubin at 24 h increased significantly (p = 0.02) with respect to basal values although within the reference range. In conclusion, 2-D ultrasound liver imaging allowed detection of gas embolism in the rat and defined the time course of gas accumulation. Its application to scuba divers revealed liver gas accumulation in all subjects in the absence of clear-cut evidence of liver damage or of any symptom. The clinical significance of our findings remains to be investigated.
Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡
Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel
2016-01-01
Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913
A new one-man submarine is tested as vehicle for solid rocket booster retrieval
NASA Technical Reports Server (NTRS)
2000-01-01
- The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.
Arvanitidis, Christos; Faulwetter, Sarah; Chatzigeorgiou, Georgios; Penev, Lyubomir; Bánki, Olaf; Dailianis, Thanos; Pafilis, Evangelos; Kouratoras, Michail; Chatzinikolaou, Eva; Fanini, Lucia; Vasileiadou, Aikaterini; Pavloudi, Christina; Vavilis, Panagiotis; Koulouri, Panayota; Dounas, Costas
2011-01-01
Abstract This paper discusses the design and implementation of a citizen science pilot project, COMBER (Citizens’ Network for the Observation of Marine BiodivERsity, http://www.comber.hcmr.gr), which has been initiated under the ViBRANT EU e-infrastructure. It is designed and implemented for divers and snorkelers who are interested in participating in marine biodiversity citizen science projects. It shows the necessity of engaging the broader community in the marine biodiversity monitoring and research projects, networks and initiatives. It analyses the stakeholders, the industry and the relevant markets involved in diving activities and their potential to sustain these activities. The principles, including data policy and rewards for the participating divers through their own data, upon which this project is based are thoroughly discussed. The results of the users analysis and lessons learned so far are presented. Future plans include promotion, links with citizen science web developments, data publishing tools, and development of new scientific hypotheses to be tested by the data collected so far. PMID:22207815
Morel, Danielle Soares; Dionello, Carla da Fontoura; Moreira-Marconi, Eloá; Brandão-Sobrinho-Neto, Samuel; Paineiras-Domingos, Laisa Liane; Souza, Patrícia Lopes; Sá-Caputo, Danúbia da Cunha; Dias, Glenda; Figueiredo, Claudia; Carmo, Roberto Carlos Resende; Paiva, Patrícia de Castro; Sousa-Gonçalves, Cintia Renata; Kütter, Cristiane Ribeiro; Guedes-Aguiar, Eliane de Oliveira; Cloak, Ross; Bernardo-Filho, Mario
2017-01-01
Background: Whole body vibration exercise (WBVE) has been used as a safe and accessible exercise and important reviews have been published about the use of this exercise to manage diseases and to improve physical conditions of athletes The aim of this paper is to highlight the relevance of WBVE to soccer players, divers and combat athletes. Material and methods: This study was made through a systematic review of publications involving WBVE and the selected sports in two databases (Pubmed and PEDRo). Results: It were identified 10 studies involving WBVE and sports (6 of soccer, 2 of diving and 2 of sport combat) with 156 subjects (80 soccer players, 32 divers and 44 combat athletes), with age from 17 to 44 years old. Conclusion: The use of WBVE has proven to be a safe and useful strategy to improve the physical conditions of players of different sports. These findings may have clinical relevance and should be considered as a strategy to be used to try improve the physical conditions of players. PMID:28740940
2000-04-22
KENNEDY SPACE CENTER, FLA. -- The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program
2000-04-22
KENNEDY SPACE CENTER, FLA. -- The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program
Provisional report on diving-related fatalities in Australian waters 2004.
Walker, Douglas; Lippmann, John; Lawrence, Chris; Huston, John; Fock, Andrew
2009-09-01
An individual case review of diving-related deaths reported to have occurred in Australia in 2004 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, and also details from the post-mortem examination, where available. In total, there were 22 reported fatalities, all male. Nine deaths occurred while snorkelling and/or breath-hold diving, 10 while scuba diving, one just prior to scuba diving, one while using surface-supply breath apparatus and one while diving with a rebreather. In this series, cardiac-related issues were thought to have contributed to the deaths of five snorkel divers and three scuba divers, and in one person who was about to go diving. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, inexperience, time away from diving, inadequate supervision, and diving without appropriate training were features in several scuba deaths in this series.
Nutrient foraging strategies are associated with productivity and population growth in forest shrubs
Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.
2017-01-01
Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have root traits associated with rapid uptake of soil nutrients may be more likely to increase in abundance, while species without such traits may be less likely to keep pace with more productive species. PMID:28119293
Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current.
Fossette, Sabrina; Abrahms, Briana; Hazen, Elliott L; Bograd, Steven J; Zilliacus, Kelly M; Calambokidis, John; Burrows, Julia A; Goldbogen, Jeremy A; Harvey, James T; Marinovic, Baldo; Tershy, Bernie; Croll, Donald A
2017-11-01
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co-occurring and closely related species on Earth, blue ( Balaenoptera musculus ) and humpback ( Megaptera novaeangliae ) whales. We integrated multiple long-term datasets (line-transect surveys, whale-watching records, net sampling, stable isotope analysis, and remote-sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long-term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.
Specialists and generalists coexist within a population of spider-hunting mud dauber wasps
Taylor, Lisa A.
2017-01-01
Abstract Individual foraging specialization describes the phenomenon where conspecifics within a population of generalists exhibit differences in foraging behavior, each specializing on different prey types. Individual specialization is widespread in animals, yet is understudied in invertebrates, despite potential impacts to food web and population dynamics. Sceliphron caementarium (Hymenoptera: Sphecidae) is an excellent system to examine individual specialization. Females of these mud dauber wasps capture and paralyze spiders which they store in mud nests to provision their offspring. Individuals may make hundreds of prey choices in their short lifespan and fully intact prey items can be easily excavated from their mud nests, where each distinct nest cell represents a discrete foraging bout. Using data collected from a single population of S. caementarium (where all individuals had access to the same resources), we found evidence of strong individual specialization; individuals utilized different resources (with respect to prey taxa, prey ecological guild, and prey size) to provision their nests. The extent of individual specialization differed widely within the population with some females displaying extreme specialization (taking only prey from a single species) while others were generalists (taking prey from up to 6 spider families). We also found evidence of temporal consistency in individual specialization over multiple foraging events. We discuss these findings broadly in the context of search images, responses to changing prey availability, and intraspecific competition pressure. PMID:29622922
Spiegel, Orr; Getz, Wayne M; Nathan, Ran
2013-05-01
The search phase is a critical component of foraging behavior, affecting interspecific competition and community dynamics. Nevertheless, factors determining interspecific variation in search efficiency are still poorly understood. We studied differences in search efficiency between the lappet-faced vulture (Torgos tracheliotus; LFV) and the white-backed vulture (Gyps africanus; WBV) foraging on spatiotemporally unpredictable carcasses in Etosha National Park, Namibia. We used experimental food supply and high-resolution GPS tracking of free-ranging vultures to quantify search efficiency and elucidate the factors underlying the observed interspecific differences using a biased correlated random walk simulation model bootstrapped with the GPS tracking data. We found that LFV's search efficiency was higher than WBV's in both first-to-find, first-to-land, and per-individual-finding rate measures. Modifying species-specific traits in the simulation model allows us to assess the relative role of each factor in LFV's higher efficiency. Interspecific differences in morphology (through the effect on perceptual range and motion ability) and searchers' spatial dispersion (due to different roost arrangements) are in correspondence with the empirically observed advantage of LFV over WBV searchers, whereas differences in other aspects of the movement patterns appear to play a minor role. Our results provide mechanistic explanations for interspecific variation in search efficiency for species using similar resources and foraging modes.
Of hummingbirds and helicopters: hovering costs, competitive ability, and foraging strategies.
Altshuler, Douglas L
2004-01-01
Wing morphology and flight kinematics profoundly influence foraging costs and the overall behavioral ecology of hummingbirds. By analogy with helicopters, previous energetic studies have applied the momentum theory of aircraft propellers to estimate hovering costs from wing disc loading (WDL), a parameter incorporating wingspan (or length) and body mass. Variation in WDL has been used to elucidate differences either among hummingbird species in nectar-foraging strategies (e.g., territoriality, traplining) and dominance relations or among gender-age categories within species. We first demonstrate that WDL, as typically calculated, is an unreliable predictor of hovering (induced power) costs; predictive power is increased when calculations use wing length instead of wingspan and when actual wing stroke amplitudes are incorporated. We next evaluate the hypotheses that foraging strategy and competitive ability are functions of WDL, using our data in combination with those of published sources. Variation in hummingbird behavior cannot be easily classified using WDL and instead is correlated with a diversity of morphological and physiological traits. Evaluating selection pressures on hummingbird wings will require moving beyond wing and body mass measurements to include the assessment of the aerodynamic forces, power requirements, and power reserves of hovering, forward flight, and maneuvering. However, the WDL-helicopter dynamics model has been instrumental in calling attention to the importance of comparative wing morphology and related aerodynamics for understanding the behavioral ecology of hummingbirds.
2011-07-22
year old active duty male diver surfaced from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops...effort, and this episode responded immediately to pressure. AGE is unlikely due to the experience of the diver, the MK 20 FFM characteristics, and...from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops” experimental decompression profile
Moral and Ethical Decision Making
2007-07-01
l’intermédiaire de divers navigateurs Web. L’échantillon se composait de 212 sujets, dont 121 femmes et 91 hommes , tous résidents des États-Unis. La...interrogés résidaient aux États-Unis. Parmi eux, il y avait 121 femmes et 91 hommes . La moyenne d’âge était de 47,89 ans et l’écart-type de 7,87. Le...participants de les remplir par l’intermédiaire de divers navigateurs Web. L’échantillon se composait de 212 sujets, dont 121 femmes et 91 hommes , tous
Automated benchmark generation based upon a specification language
NASA Technical Reports Server (NTRS)
Rajan, N.; Feteih, S. E.; Saito, J.
1984-01-01
The problem of validating and verifying digital flight control system (DFCS) software is addressed in this paper. A new specification language DIVERS is proposed, and is the keystone of the approach. This language consists of keywords where each keyword represents an element in the block diagram of a DFCS. DIVERS has a dictionary which contains all the keywords a DFCS designer might need. Translator programs convert the system specifications into an executable, high-level language program. The features of translators are discussed and are elucidated by examples. This language is used to describe a typical flight software module.
Orion's Neutral Buoyancy Lab (NBL) Activities
2016-09-21
U.S. Navy divers are training in the Neutral Buoyancy Laboratory at NASA’s Johnson Space Center in Houston. Navy divers, Air Force pararescuemen and Coast Guard rescue swimmers practice Orion underway recovery techniques using a test version of the Orion spacecraft. Training will help the team prepare for Underway Recovery Test 5 for Exploration Mission 1 aboard the USS San Diego in the Pacific Ocean off the coast of California in October. The Ground Systems Development and Operations Program, along with the U.S. Navy and Lockheed Martin, are preparing the recovery team, hardware and operations to support EM-1 recovery.
1982-08-01
divers who make repeated daily dives and in the process become more tolerant of narcosis. It was planned that Nisat I would be long enough to allow...95% nitrogen, 5% oxygen during the flushing process . The inner lock was isolated by closing the inner lock door and the purging of the 1000 cubic...covered in II«D.H.a. C. Diver subjects All subjects in the SHAD/Nisat program were volunteer naval personnel. Their selection process and all the
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
Spatial variation in seed bank dynamics of two annual brome species in the northern Great Plains
USDA-ARS?s Scientific Manuscript database
Annual bromes decrease forage production in northern central plains rangelands of North America. Early life history stages are when plants are most failure-prone, yet studying death post-germination and prior to emergence is difficult. In seed bank collections conducted over the course of two growin...
C. John Ralph; K. Hollinger
2003-01-01
The Willow (Empidonax traillii) and Pacific-slope (E. dificilis) flycatchers are generally similar in their morphology and foraging, but differ in their habitat and population dynamics. Through a concentration of constant-effort mist-netting stations, we documented the movements and composition of populations over a relatively...
TROPHIC DYNAMICS OF STRIPED BASS IN SMITH MOUNTAIN LAKE, VIRGINIA
We examined the adequacy of the forage base to meet demand of striped bass in Smith Mountain Lake, Virginia. In regards to prey supply, mean alewife biomass from 1993-1998 was 37 kg/ha and mean gizzard shad biomass from 1990-1997 was 112 kg/ha. Mean annual alewife surplus produ...
Managing multi-ungulate systems in disturbance-adapted forest ecosystems in North America
Martin Vavra; Robert A. Riggs
2010-01-01
Understanding how interactions among ungulate populations and their environmental dynamics play out across scales of time and space is a principal obstacle to managing ungulates in western North America. Morphological similarity, forage-base homogeneity and increasing animal density each enhance the likelihood of competitive interactions among sympatric populations....
USDA-ARS?s Scientific Manuscript database
Decomposition and nutrient release of winter annual forages in integrated crop-livestock systems could be affected by the resultant alterations in structure and quality of residues caused by grazing, but little information is available to test this hypothesis. Information on residue dynamics is need...
Plant toxicity, adaptive herbivory, and plant community dynamics
Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.
2009-01-01
We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.
Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin
2017-12-01
The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.
On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model
Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini
2016-01-01
This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589
Components of breeding productivity in a marine bird community: key factors and concordance
Hatch, Scott A.; Hatch, Martha A.
1990-01-01
We estimated components of annual breeding productivity for eight species of marine birds on the Semidi Islands in the western Gulf of Alaska. Mortality of eggs and young, caused primarily by avian predators, accounted for most of the annual variation in productivity. Failure to produce eggs, clutch size variation, and the hatchability of eggs were generally less important. The stage of breeding at which annual productivity was most strongly regulated differed among species. In murres, chick-rearing success accounted for the largest share of annual variation in overall productivity, whereas incubation success was the key factor in fulmars, kittiwakes, and puffins. Although avian predators were the dominant proximate cause of egg and chick losses in some species, food supply seemed ultimately responsible for variation in all the major components of productivity. Concordance of productivity among species was low for the marine bird community as a whole, but selected pairs of species exhibited a greater tendency for high and low productivities to occur in the same years. Compared with the same or similar species outside Alaska, Semidi Islands birds were in one of three categories: (i) species whose productivity was about the same as reported from other areas (fulmars and gulls), (ii) species with comparatively low productivity (murres, puffins, kittiwakes), and (iii) species with similar mean productivity but greater annual variation (cormorants). These patterns suggest that specialized consumers of forage fish experienced food shortages at the Semidi Islands and that surface feeders were more severely affected than divers.
Gerovasileiou, Vasilis; Dailianis, Thanos; Panteri, Emmanouela; Michalakis, Nikitas; Gatti, Giulia; Sini, Maria; Dimitriadis, Charalampos; Issaris, Yiannis; Salomidi, Maria; Filiopoulou, Irene; Doğan, Alper; Thierry de Ville d'Avray, Laure; David, Romain; Ҫinar, Melih Ertan; Koutsoubas, Drosos; Féral, Jean-Pierre; Arvanitidis, Christos
2016-01-01
Over the last decade, inventorying and monitoring of marine biodiversity has significantly benefited from the active engagement of volunteers. Although several Citizen Science projects concern tropical reef ecosystems worldwide, none of the existing initiatives has yet specifically focused on their Mediterranean equivalents. Mediterranean coralline reefs, known as "coralligenous", are bioherms primarily built by calcifying rhodophytes on hard substrates under dim-light conditions; they are considered hotspots of biodiversity and are extremely popular among divers due to their complex structure, conspicuous biological wealth and high aesthetic value. Nevertheless, data on their distribution, structure and conservation status is lacking for several Mediterranean areas while they are vulnerable to an increasing number of threats. In the framework of CIGESMED SeasEra (ERAnet) project a specialized Citizen Science project was launched, aiming to engage enthusiast divers in the study and monitoring of Mediterranean coralligenous assemblages through the gathering of basic information regarding their spatial occurrence, assemblage structure and associated pressures or threats. For its active implementation, a data collection protocol and a multilingual website were developed, comprising an educational module and a data submission platform. Georeferenced data reporting focuses on: (a) basic topographic and abiotic features for the preliminary description of each site, and the creation of data series for sites receiving multiple visits; (b) presence and relative abundance of typical conspicuous species, as well as (c) existence of pressures and imminent threats, for the characterization and assessment of coralligenous assemblages. A variety of tools is provided to facilitate end users, while divers have the choice to report additional information and are encouraged to upload their photographs. The long-term goal is the development of an active community of amateur observers providing widespread and ecologically significant data on coralligenous assemblages.
Variability in circulating gas emboli after a same scuba diving exposure.
Papadopoulou, V; Germonpré, P; Cosgrove, D; Eckersley, R J; Dayton, P A; Obeid, G; Boutros, A; Tang, M-X; Theunissen, S; Balestra, C
2018-06-01
A reduction in ambient pressure or decompression from scuba diving can result in ultrasound-detectable venous gas emboli (VGE). These environmental exposures carry a risk of decompression sickness (DCS) which is mitigated by adherence to decompression schedules; however, bubbles are routinely observed for dives well within these limits and significant inter-personal variability in DCS risk exists. Here, we assess the variability and evolution of VGE for 2 h post-dive using echocardiography, following a standardized pool dive in calm warm conditions. 14 divers performed either one or two (with a 24 h interval) standardized scuba dives to 33 mfw (400 kPa) for 20 min of immersion time at NEMO 33 in Brussels, Belgium. Measurements were performed at 21, 56, 91 and 126 min post-dive: bubbles were counted for all 68 echocardiography recordings and the average over ten consecutive cardiac cycles taken as the bubble score. Significant inter-personal variability was demonstrated despite all divers following the same protocol in controlled pool conditions: in the detection or not of VGE, in the peak VGE score, as well as time to VGE peak. In addition, intra-personal differences in 2/3 of the consecutive day dives were seen (lower VGE counts or faster clearance). Since VGE evolution post-dive varies between people, more work is clearly needed to isolate contributing factors. In this respect, going toward a more continuous evaluation, or developing new means to detect decompression stress markers, may offer the ability to better assess dynamic correlations to other physiological parameters.
Louarn, Gaëtan; Faverjon, Lucas
2018-04-18
Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to community levels without the inconvenience of average plant models.
Models of Eucalypt phenology predict bat population flux.
Giles, John R; Plowright, Raina K; Eby, Peggy; Peel, Alison J; McCallum, Hamish
2016-10-01
Fruit bats (Pteropodidae) have received increased attention after the recent emergence of notable viral pathogens of bat origin. Their vagility hinders data collection on abundance and distribution, which constrains modeling efforts and our understanding of bat ecology, viral dynamics, and spillover. We addressed this knowledge gap with models and data on the occurrence and abundance of nectarivorous fruit bat populations at 3 day roosts in southeast Queensland. We used environmental drivers of nectar production as predictors and explored relationships between bat abundance and virus spillover. Specifically, we developed several novel modeling tools motivated by complexities of fruit bat foraging ecology, including: (1) a dataset of spatial variables comprising Eucalypt-focused vegetation indices, cumulative precipitation, and temperature anomaly; (2) an algorithm that associated bat population response with spatial covariates in a spatially and temporally relevant way given our current understanding of bat foraging behavior; and (3) a thorough statistical learning approach to finding optimal covariate combinations. We identified covariates that classify fruit bat occupancy at each of our three study roosts with 86-93% accuracy. Negative binomial models explained 43-53% of the variation in observed abundance across roosts. Our models suggest that spatiotemporal heterogeneity in Eucalypt-based food resources could drive at least 50% of bat population behavior at the landscape scale. We found that 13 spillover events were observed within the foraging range of our study roosts, and they occurred during times when models predicted low population abundance. Our results suggest that, in southeast Queensland, spillover may not be driven by large aggregations of fruit bats attracted by nectar-based resources, but rather by behavior of smaller resident subpopulations. Our models and data integrated remote sensing and statistical learning to make inferences on bat ecology and disease dynamics. This work provides a foundation for further studies on landscape-scale population movement and spatiotemporal disease dynamics.
Blake, Stephen; Guézou, Anne; Deem, Sharon L.; Yackulic, Charles B.; Cabrera, Fredy
2015-01-01
The distribution of resources and food selection are fundamental to the ecology, life history, physiology, population dynamics, and conservation of animals. Introduced plants are changing foraging dynamics of herbivores in many ecosystems often with unknown consequences. Galapagos tortoises, like many herbivores, undertake migrations along elevation gradients driven by variability in vegetation productivity which take them into upland areas dominated by introduced plants. We sought to characterize diet composition of two species of Galapagos tortoises, focussing on how the role of introduced forage species changes over space and the implications for tortoise conservation. We quantified the distribution of tortoises with elevation using GPS telemetry. Along the elevation gradient, we quantified the abundance of introduced and native plant species, estimated diet composition by recording foods consumed by tortoises, and assessed tortoise physical condition from body weights and blood parameter values. Tortoises ranged between 0 and 429 m in elevation over which they consumed at least 64 plant species from 26 families, 44 percent of which were introduced species. Cover of introduced species and the proportion of introduced species in tortoise diets increased with elevation. Introduced species were positively selected for by tortoises at all elevations. Tortoise physical condition was either consistent or increased with elevation at the least biologically productive season on Galapagos. Santa Cruz tortoises are generalist herbivores that have adapted their feeding behavior to consume many introduced plant species that has likely made a positive contribution to tortoise nutrition. Some transformed habitats that contain an abundance of introduced forage species are compatible with tortoise conservation.
Prediction of human adaptation and performance in underwater environments.
Colodro Plaza, Joaquín; Garcés de los Fayos Ruiz, Enrique J; López García, Juan J; Colodro Conde, Lucía
2014-01-01
Environmental stressors require the professional diver to undergo a complex process of psychophysiological adaptation in order to overcome the demands of an extreme environment and carry out effective and efficient work under water. The influence of cognitive and personality traits in predicting underwater performance and adaptation has been a common concern for diving psychology, and definitive conclusions have not been reached. In this ex post facto study, psychological and academic data were analyzed from a large sample of personnel participating in scuba diving courses carried out in the Spanish Navy Diving Center. In order to verify the relevance of individual differences in adaptation to a hostile environment, we evaluated the predictive validity of general mental ability and personality traits with regression techniques. The data indicated the existence of psychological variables that can predict the performance ( R² = .30, p <.001) and adaptation ( R²(N) = .51, p <.001) of divers in underwater environment. These findings support the hypothesis that individual differences are related to the probability of successful adaptation and effective performance in professional diving. These results also verify that dispositional traits play a decisive role in diving training and are significant factors in divers' psychological fitness.
Devastating Transboundary Impacts of Sea Star Wasting Disease on Subtidal Asteroids.
Montecino-Latorre, Diego; Eisenlord, Morgan E; Turner, Margaret; Yoshioka, Reyn; Harvell, C Drew; Pattengill-Semmens, Christy V; Nichols, Janna D; Gaydos, Joseph K
2016-01-01
Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013-15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006-15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington's outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator.
Devastating Transboundary Impacts of Sea Star Wasting Disease on Subtidal Asteroids
Montecino-Latorre, Diego; Eisenlord, Morgan E.; Turner, Margaret; Yoshioka, Reyn; Harvell, C. Drew; Pattengill-Semmens, Christy V.; Nichols, Janna D.
2016-01-01
Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013–15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006–15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington’s outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator. PMID:27783620
Improved corrosion control by coating in the splash zone and subsea
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, R.C.; VanHooff, W.
1989-01-01
The splash zone around offshore structures is without doubt one of nature's most hostile and corrosive environments. Apart from the wave impacts, plentiful supplies of oxygen, lack of cathodic protection, and the salt spray that continually wets and then dries upon objects, the region is difficult and sometimes dangerous to access. This article reviews the performance of two new offshore repair coatings recently installed on North Sea and Gulf of Mexico installations. The first coating, a reinforced heat-shrinkable sleeve, is designed to be installed over properly cleaned and dried steel surfaces. Suitable conditions for the application of this coating existmore » during low tide and calm weather when certain exposed sections of the splash zone are accessible. Alternatively, by using a special remote-controlled cofferdam chamber to create an artificial local environment, subsea coating application can proceed under ideal conditions. Cofferdam chamber installations are diver-free and can be made throughout the entire splash zone, even during rough weather. When a remote-controlled cofferdam is not available and repairs are needed in subsea or wet areas, diver assistance is usually required. The second coating system, a gel-based, diver-applied tape, has been developed specifically for such applications.« less
DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers
NASA Astrophysics Data System (ADS)
Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.
2016-08-01
With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.
Provisional report on diving-related fatalities in Australian waters 2008.
Lippmann, John; Walker, Douglas; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Harris, Richard; Jamieson, Scott
2013-03-01
An individual case review of diving-related deaths, reported as occurring in Australia in 2008, was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 19 reported fatalities (the same as for 2007), 17 involving males. Twelve deaths occurred while snorkelling and/or breath-hold diving,and six while scuba diving. One diver died while using surface-supply breathing apparatus. Two breath-hold divers appear to have died as a result of apnoeic hypoxia, at least one case likely associated with hyperventilation. Two deaths resulted from trauma: one from impact with a boat and the other from an encounter with a great white shark. Cardiac-related issues were thought to have contributed to the deaths of five snorkellers and at least two, possibly three, scuba divers. Trauma from a marine creature, snorkelling or diving alone, apnoeic hypoxia and pre-existing medical conditions were once again features in several deaths in this series.
A prospective analysis of injury rates, patterns and causes in Cliff and Splash Diving.
Ernstbrunner, Lukas; Runer, Armin; Siegert, Paul; Ernstbrunner, Matthäus; Becker, Johannes; Freude, Thomas; Resch, Herbert; Moroder, Philipp
2017-10-01
Information about injuries and its differences in Cliff Diving (CD) and Splash Diving (SD) are unknown. It was the aim to analyse (1) injury rates, patterns and causes; (2) differences (in injuries) between both disciplines; and to (3) identify targets for future injury prevention interventions. From April to November 2013, 81 cliff and 51 splash divers were prospectively surveyed with an encrypted, monthly e-mail-based questionnaire. During a total of 7857h diving with an average diving height of 13 (±7)m, an overall injury rate of 7.9 injuries/1000h of sport exposure was reported. Cliff divers most commonly suffered from injuries of the foot and ankle (18%; n=24) and neck and cervical spine (14%; n=19). In SD, the lower limb (52%; n=43) and lower back (23%; n=19) were most frequently involved. In 79% (n=49) of the cases, the injury happened while entering the water. Cliff divers were in 52% (n=15) of the injuries in a feet-first and in 14% (n=4) in a head-first position. Splash divers were in 45% (n=9) of the injuries in a back- or buttocks-first position. Most of the injuries were bruises (47%; n=104) and muscle strains (13%; n=28). The injury risk during practice was significantly higher than in competition (11.3 vs. 4.5 injuries/1000h; OR 2.5; p=0.001). The injury risk of experts (15.4/1000h exposure) was significantly higher than in professionals (6.3/1000h exposure; OR 2.4; 95% CI, 3.3-1.9; p<0.001), although the average diving height was significantly higher in professionals (19m±8 vs. 12m±6; p<0.001). Significantly more professionals performed dryland training compared to experts (p=0.006). Most of the injuries are related to the water entry. The entry position plays a key role in injury patterns with pursuant differences comparing CD with SD. Although most of the injuries involved soft-tissue only, severe injuries have been reported. Targets for future injury prevention strategies include protection for the increased impaction at entry; adaption of the diving conditions in practice to those in competition; dryland training courses; and instruction of non-professional divers to teach appropriate diving techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Signal processing for passive detection and classification of underwater acoustic signals
NASA Astrophysics Data System (ADS)
Chung, Kil Woo
2011-12-01
This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship spectra and were measured at distances up to 7 km. The combination of cross-correlation and DEMON methods allows separation of the acoustic signatures of ships in busy urban environments. Finally, we consider the extension of this algorithm for vessel tracking using phase measurement of the DEMON signal recorded by two or more hydrophones. Tests conducted in the Hudson River and NY Bay confirmed opportunity of Direction of Arrival (DOA) funding using the phase DEMON method.
A Dynamic Model of California's Hardwood Rangelands
Richard B. Standiford; Richard E. Howitt
1991-01-01
Low profitability of hardwood rangeland management, and oak tree harvesting for firewood markets and forage enhancement has led to concern about the long-term sustainability of the oak resource on rangelands. New markets for recreational hunting may give value to oaks for the habitat they provide for game species, and broaden the economic base for managers. A ranch...
Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria
2018-02-19
Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.
James, J; Davidson, K E; Richardson, G; Grimstead, C; Cable, J
2015-11-17
Biological invasions are a principal threat to global biodiversity and identifying the determinants of non-native species' success is a conservation priority. Through their ability to regulate host populations, parasites are increasingly considered as important in determining the outcome of species' invasions. Here, we present novel evidence that the common crayfish ecto-symbiont, Xironogiton victoriensis (Annelida: Clitellata) can affect the behaviour of a widespread and ecologically important invader, the signal crayfish (Pacifastacus leniusculus). To assess the signal crayfish-X. victoriensis relationship naïve crayfish were infested with an intensity of worms typically observed under natural conditions. Over a 10-week period the growth rate and survivorship of these animals was monitored and compared to those of uninfested counterparts. Complementary dyadic competition and foraging experiments were run to assess the behaviour of infested compared to uninfested animals. These data were analysed using General Linear Models and Generalized Linear Mixed Models. Whilst X. victoriensis did not affect the growth rate or survivorship of signal crayfish under laboratory conditions, infested animals were significantly less aggressive and poorer foragers than uninfested individuals. Through reducing aggression and foraging efficiency, infestation with X. victoriensis may disrupt the social structure, and potentially growth rate and/or dispersal of afflicted crayfish populations, with potential effects on their invasion dynamics. This is important given the widespread invasive range of crayfish and their functional roles as ecosystem engineers and keystone species.
Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska
McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.
2018-01-01
Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.
Individual lifetime pollen and nectar foraging preferences in bumble bees
NASA Astrophysics Data System (ADS)
Hagbery, Jessica; Nieh, James C.
2012-10-01
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.
Caracheo, Barak F.; Emberly, Eldon; Hadizadeh, Shirin; Hyman, James M.; Seamans, Jeremy K.
2013-01-01
Foraging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC) when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM) when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment. PMID:23745102
On salesmen and tourists: Two-step optimization in deterministic foragers
NASA Astrophysics Data System (ADS)
Maya, Miguel; Miramontes, Octavio; Boyer, Denis
2017-02-01
We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
Distributed leadership and adaptive decision-making in the ant Tetramorium caespitum.
Collignon, B; Detrain, C
2010-04-22
In the ant species Tetramorium caespitum, communication and foraging patterns rely on group-mass recruitment. Scouts having discovered food recruit nestmates and behave as leaders by guiding groups of recruits to the food location. After a while, a mass recruitment takes place in which foragers follow a chemical trail. Since group recruitment is crucial to the whole foraging process, we investigated whether food characteristics induce a tuning of recruiting stimuli by leaders that act upon the dynamics and size of recruited groups. High sucrose concentration triggers the exit of a higher number of groups that contain twice as many ants and reach the food source twice as fast than towards a weakly concentrated one. Similar trends were found depending on food accessibility: for a cut mealworm, accessibility to haemolymph results in a faster formation of larger groups than for an entire mealworm. These data provide the background for developing a stochastic model accounting for exploitation patterns by group-mass recruiting species. This model demonstrates how the modulations performed by leaders drive the colony to select the most profitable food source among several ones. Our results highlight how a minority of individuals can influence collective decisions in societies based on a distributed leadership.
NASA Astrophysics Data System (ADS)
Hazen, E. L.
2016-02-01
Highly migratory species regularly traverse human-imposed boundaries including exclusive economic zones and marine protected areas, thus are difficult to manage using traditional spatial approaches. Blue whales (Balaenoptera musculus) are seasonal visitors to the California Current System that target a single prey resource, krill (Euphausia pacifica, Thysanoessa spinifera), and migrate large distances to find and exploit ephemeral prey patches. Successful management of blue whales requires improved understanding of how fine-scale foraging ecology translates to population abundances. Specifically, sub-lethal factors such as anthropogenic noise and climate change, and lethal factors such as ship strikes may be limiting recovery and can be difficult to account for in current management strategies. Here we use an extensive dataset of fine-scale accelerometers (55) and broad-scale satellite tags (104) deployed on Northeast Pacific blue whales to examine the energetics of foraging, overlap with human risk, and projections of future habitat with climate change. We quantify the importance of dense prey patches (> 100 krill per cubic meter) for blue whale energetics and fitness. Distribution models can be used in concert with industry and regional offices to produce dynamic rules to reduce vessel interactions. We propose telemetry data are ripe for use in establishing dynamic management approaches that account for daily to seasonal management areas to minimize anthropogenic risks, and are also adaptable to long-term climate-driven changes in habitat.
NASA Astrophysics Data System (ADS)
Hazen, E. L.
2016-12-01
Highly migratory species regularly traverse human-imposed boundaries including exclusive economic zones and marine protected areas, thus are difficult to manage using traditional spatial approaches. Blue whales (Balaenoptera musculus) are seasonal visitors to the California Current System that target a single prey resource, krill (Euphausia pacifica, Thysanoessa spinifera), and migrate large distances to find and exploit ephemeral prey patches. Successful management of blue whales requires improved understanding of how fine-scale foraging ecology translates to population abundances. Specifically, sub-lethal factors such as anthropogenic noise and climate change, and lethal factors such as ship strikes may be limiting recovery and can be difficult to account for in current management strategies. Here we use an extensive dataset of fine-scale accelerometers (55) and broad-scale satellite tags (104) deployed on Northeast Pacific blue whales to examine the energetics of foraging, overlap with human risk, and projections of future habitat with climate change. We quantify the importance of dense prey patches (> 100 krill per cubic meter) for blue whale energetics and fitness. Distribution models can be used in concert with industry and regional offices to produce dynamic rules to reduce vessel interactions. We propose telemetry data are ripe for use in establishing dynamic management approaches that account for daily to seasonal management areas to minimize anthropogenic risks, and are also adaptable to long-term climate-driven changes in habitat.
Caplan, Joshua S; Stone, Bram W G; Faillace, Cara A; Lafond, Jonathan J; Baumgarten, Joni M; Mozdzer, Thomas J; Dighton, John; Meiners, Scott J; Grabosky, Jason C; Ehrenfeld, Joan G
2017-04-01
Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have root traits associated with rapid uptake of soil nutrients may be more likely to increase in abundance, while species without such traits may be less likely to keep pace with more productive species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Sympatric cattle grazing and desert bighorn sheep foraging
Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.
2015-01-01
Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by feeding only in areas where adequate forage remains.
Interactions Increase Forager Availability and Activity in Harvester Ants.
Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M
2015-01-01
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.
NASA Astrophysics Data System (ADS)
Benoit-Bird, K. J.
2016-02-01
We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.
Bohrer, Gil; Beck, Pieter Sa; Ngene, Shadrack M; Skidmore, Andrew K; Douglas-Hamilton, Ian
2014-01-01
This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.
Beekman, Madeleine
2005-12-01
Honey bees utilise floral food sources that vary temporally in their relative and absolute quality. Via a sophisticated colony organisation, a honey bee colony allocates its foragers such that the colony focuses on the most profitable forage sites while keeping track of changes within its foraging environment. One important mechanism of the allocation of foragers is the ability of experienced foragers to revisit past-profitable forage sites after a period of temporary dearth caused by, for example, inclement weather. The scent of past-profitable forage within the colony brought back by other foragers is sufficient to reactivate these experienced foragers. Here I determine for how long bees react to the scent of a past-profitable forage site. I show that the ability of foragers to revisit the location of a past-profitable food source diminishes rapidly over a period of 10 days, until no forager reacts to the cue (scent). I discuss the implications of these findings with respect to the colony's ability to react rapidly to changing foraging conditions.
Are Caribbean reef sharks, Carcharhinus perezi, able to perceive human body orientation?
Ritter, Erich K; Amin, Raid
2014-05-01
The present study examines the potential capability of Caribbean reef sharks to perceive human body orientation, as well as discussing the sharks' swimming patterns in a person's vicinity. A standardized video method was used to record the scenario of single SCUBA divers kneeling in the sand and the approach patterns of sharks, combined with a control group of two divers kneeling back-to-back. When approaching a single test-subject, significantly more sharks preferred to swim outside the person's field of vision. The results suggest that these sharks are able to identify human body orientation, but the mechanisms used and factors affecting nearest distance of approach remain unclear.
Orion Neutral Buoyancy Lab (NBL) Activities
2016-09-20
NASA astronaut Dan Burbank speaks to a group of U.S. Navy divers at the Neutral Buoyancy Laboratory (NBL) at the agency’s Johnson Space Center in Houston. Navy divers, Air Force pararescuemen and Coast Guard rescue swimmers are preparing to practice Orion underway recovery techniques with a test version of the Orion spacecraft. Training will help the team prepare for Underway Recovery Test 5 for Exploration Mission 1 aboard the USS San Diego in the Pacific Ocean off the coast of California in October. The Ground Systems Development and Operations Program, along with the U.S. Navy and Lockheed Martin, are preparing the recovery team, hardware and operations to support EM-1 recovery.
Vegetation dynamics after a prescribed fire in the southern Appalachians
Katherine J. Elliott; Ronald L. Hendrick; Amy E. Major; James M. Vose; Wayne T. Swank
1999-01-01
In April 1995, the USDA Forest Service conducted a prescribed burn along with a south-facing slope of Southern Appalachian watershed, Nantahala National Forest, western NC. Fire had been excluded for over 70 years and the purpose of the burn was to create a mosaic of fire intensities to restore a degraded pine/hardwood community and to stimulate forage production and...
Condition and deterioration rate of precommercial thinning slash at False Island, Alaska.
Michael H. McClellan; Paul E. Hennon; Patrick G. Heuer; Kenneth W. Coffin
2014-01-01
We examined slash from thinning treatments in a 21-year chronosequence of young-growth stands in southeast Alaska to determine the strength and persistence of slash effects on two key features of deer habitat quality: forage availability and deer mobility within thinned areas. We describe the main deterioration processes and their dynamics over time. We measured wood...
Short-Term Gains, Long-Term Pains: How Cues about State Aid Learning in Dynamic Environments
ERIC Educational Resources Information Center
Gureckis, Todd M.; Love, Bradley C.
2009-01-01
Successful investors seeking returns, animals foraging for food, and pilots controlling aircraft all must take into account how their current decisions will impact their future standing. One challenge facing decision makers is that options that appear attractive in the short-term may not turn out best in the long run. In this paper, we explore…
Kyle Joly; F. Stuart III Chapin; David R. Klein
2010-01-01
Lichens are an important winter forage for large, migratory herds of caribou (Rangifer tarandus granti) that can influence population dynamics through effects on body condition and in turn calf recruitment and survival. We investigated the vegetative and physiographic characteristics of winter range of the Western Arctic Herd in northwest Alaska, one...
Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"
Gerald J. Gottfried
2004-01-01
Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...
Dynamics of NH4 and NO3 in Cropped Soils Irrigated with Wastewater. A Field Study.
1980-06-01
concentrations in the soil solution . It was also assumed that the plants (forage grasses) had no preference for either form (S. Barber, personal...spring. Movement of NH -N in soil solution to4 depths of 150 cm in the same soils has been reported (Iskandar et al. 1976, Jenkins et al. 1978) and
Sobol' sensitivity analysis for stressor impacts on honeybee ...
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more
NASA Technical Reports Server (NTRS)
Gary, N. E.; Westerdahl, B. B.
1980-01-01
Post treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw sq cm for 30 minutes. Post treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw sq cm for 30 minutes. Post treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw sq cm for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw sq cm during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave exposed areas versus control areas.
Graystock, Peter; Hughes, William O.H.
2016-01-01
Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH). However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER), or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging. PMID:27812411
Garcia Párraga, Daniel; Moore, Michael; Fahlman, Andreas
2018-04-25
Hydrostatic lung compression in diving marine mammals, with collapsing alveoli blocking gas exchange at depth, has been the main theoretical basis for limiting N 2 uptake and avoiding gas emboli (GE) as they ascend. However, studies of beached and bycaught cetaceans and sea turtles imply that air-breathing marine vertebrates may, under unusual circumstances, develop GE that result in decompression sickness (DCS) symptoms. Theoretical modelling of tissue and blood gas dynamics of breath-hold divers suggests that changes in perfusion and blood flow distribution may also play a significant role. The results from the modelling work suggest that our current understanding of diving physiology in many species is poor, as the models predict blood and tissue N 2 levels that would result in severe DCS symptoms (chokes, paralysis and death) in a large fraction of natural dive profiles. In this review, we combine published results from marine mammals and turtles to propose alternative mechanisms for how marine vertebrates control gas exchange in the lung, through management of the pulmonary distribution of alveolar ventilation ([Formula: see text]) and cardiac output/lung perfusion ([Formula: see text]), varying the level of [Formula: see text] in different regions of the lung. Man-made disturbances, causing stress, could alter the [Formula: see text] mismatch level in the lung, resulting in an abnormally elevated uptake of N 2 , increasing the risk for GE. Our hypothesis provides avenues for new areas of research, offers an explanation for how sonar exposure may alter physiology causing GE and provides a new mechanism for how air-breathing marine vertebrates usually avoid the diving-related problems observed in human divers. © 2018 The Authors.
Interactions Increase Forager Availability and Activity in Harvester Ants
Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B.; Gordon, Deborah M.
2015-01-01
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724
Evaluation of fins used in underwater swimming.
Pendergast, D R; Mollendorf, J; Logue, C; Samimy, S
2003-01-01
Underwater swimmers use fins which augment thrust to overcome drag and propel the diver. The VdotO2 of swimming as a function of speed, velocity as a function of kick frequency, maximal speed (v), maximal oxygen consumption (VdotO2) and the maximal thrust were determined for eight fins in 10 male divers swimming at 1.25 m depth in a 60 m annular pool. A theoretical analysis of fin cycles was also performed. VdotO2 increased as a second order polynomial as a function of velocity; VdotO2 = 0.045 + 1.65B V + 1.66 (2) V2 (r2 = 0.997), VdotO2 = 0.25 + 1.03 V + 1.83 V2 (r2 = 0.997) and VdotO2 = -0.15 + 2.26 V + 1.49 V2 (r2 = 0.997), for least, average and most economical fins respectively. Kick frequency increased linearly with velocity and had a unique movement path (signature), giving theoretical values that agreed with the measured thrust, drag and efficiency. In conclusion, virtually all thrust comes from the downward power stroke, with rigid fins kicked deep (high drag), while flexible fins are kicked less deep but with higher frequency (low efficiency). Kick depth and frequency explain the performance of the eight tested fins, and should be optimized to enhance diver performance.
Delayed treatment of decompression sickness with short, no-air-break tables: review of 140 cases.
Cianci, Paul; Slade, John B
2006-10-01
Most cases of decompression sickness (DCS) in the U.S. are treated with hyperbaric oxygen using U.S. Navy Treatment Tables 5 and 6, although detailed analysis shows that those tables were based on limited data. We reviewed the development of these protocols and offer an alternative treatment table more suitable for monoplace chambers that has proven effective in the treatment of DCS in patients presenting to our facility. We reviewed the outcomes for 140 cases of DCS in civilian divers treated with the shorter tables at our facility from January 1983 through December 2002. Onset of symptoms averaged 9.3 h after surfacing. At presentation, 44% of the patients demonstrated mental aberration. The average delay from onset of symptoms to treatment was 93.5 h; median delay was 48 h. Complete recovery in the total group of 140 patients was 87%. When 30 patients with low probability of DCS were excluded, the recovery rate was 98%. All patients with cerebral symptoms recovered. Patients with the highest severity scores showed a high rate of complete recovery (97.5%). Short oxygen treatment tables as originally described by Hart are effective in the treatment of DCS, even with long delays to definitive recompression that often occur among civilian divers presenting to a major Divers Alert Network referral center.
Tan, Ken; Latty, Tanya; Dong, Shihao; Liu, Xiwen; Wang, Chao; Oldroyd, Benjamin P
2015-11-09
Animals may adjust their behavior according to their perception of risk. Here we show that free-flying honey bee (Apis cerana) foragers mitigate the risk of starvation in the field when foraging on a food source that offers variable rewards by carrying more 'fuel' food on their outward journey. We trained foragers to a feeder located 1.2 km from each of four colonies. On average foragers carried 12.7% greater volume of fuel, equivalent to 30.2% more glucose when foraging on a variable source (a random sequence of 0.5, 1.5 and 2.5 M sucrose solution, average sucrose content 1.5 M) than when forging on a consistent source (constant 1.5 M sucrose solution). Our findings complement an earlier study that showed that foragers decrease their fuel load as they become more familiar with a foraging place. We suggest that honey bee foragers are risk sensitive, and carry more fuel to minimize the risk of starvation in the field when a foraging trip is perceived as being risky, either because the forager is unfamiliar with the foraging site, or because the forage available at a familiar site offers variable rewards.
Foraging behavior by Daphnia in stoichiometric gradients of food quality.
Schatz, Greg S; McCauley, Edward
2007-10-01
Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore-plant systems in lakes and ponds where spatial variation in food quality is present.