Sample records for diverse adaptation processes

  1. Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings.

    PubMed

    Carrell, David S; Schoen, Robert E; Leffler, Daniel A; Morris, Michele; Rose, Sherri; Baer, Andrew; Crockett, Seth D; Gourevitch, Rebecca A; Dean, Katie M; Mehrotra, Ateev

    2017-09-01

    Widespread application of clinical natural language processing (NLP) systems requires taking existing NLP systems and adapting them to diverse and heterogeneous settings. We describe the challenges faced and lessons learned in adapting an existing NLP system for measuring colonoscopy quality. Colonoscopy and pathology reports from 4 settings during 2013-2015, varying by geographic location, practice type, compensation structure, and electronic health record. Though successful, adaptation required considerably more time and effort than anticipated. Typical NLP challenges in assembling corpora, diverse report structures, and idiosyncratic linguistic content were greatly magnified. Strategies for addressing adaptation challenges include assessing site-specific diversity, setting realistic timelines, leveraging local electronic health record expertise, and undertaking extensive iterative development. More research is needed on how to make it easier to adapt NLP systems to new clinical settings. A key challenge in widespread application of NLP is adapting existing systems to new clinical settings. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. On optima: the case of myoglobin-facilitated oxygen diffusion.

    PubMed

    Wittenberg, Jonathan B

    2007-08-15

    The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.

  3. Diversity spurs diversification in ecological communities

    PubMed Central

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-01-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss. PMID:28598423

  4. Diversity spurs diversification in ecological communities

    NASA Astrophysics Data System (ADS)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  5. Diversity spurs diversification in ecological communities.

    PubMed

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-09

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  6. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.

    PubMed

    Khani, Mohammad Hossein; Gollisch, Tim

    2017-12-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. Copyright © 2017 the American Physiological Society.

  7. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

    PubMed Central

    Khani, Mohammad Hossein

    2017-01-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. PMID:28904106

  8. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  9. Genetic depletion at adaptive but not neutral loci in an endangered bird species.

    PubMed

    Hartmann, Stefanie A; Schaefer, H Martin; Segelbacher, Gernot

    2014-12-01

    Many endangered species suffer from the loss of genetic diversity, but some populations may be able to thrive even if genetically depleted. To investigate the underlying genetic processes of population bottlenecks, we apply an innovative approach for assessing genetic diversity in the last known population of the endangered Pale-headed Brushfinch (Atlapetes pallidiceps) in Ecuador. First, we measure genetic diversity at eleven neutral microsatellite loci and adaptive SNP variation in five Toll-like receptor (TLR) immune system genes. Bottleneck tests confirm genetic drift as the main force shaping genetic diversity in this species and indicate a 99 % reduction in population size dating back several hundred years. Second, we compare contemporary microsatellite diversity with historic museum samples of A. pallidiceps, finding no change in genetic diversity. Third, we compare genetic diversity in the Pale-headed Brushfinch with two co-occurring-related brushfinch species (Atlapetes latinuchus, Buarremon torquatus), finding a reduction of up to 91% diversity in the immune system genes but not in microsatellites. High TLR diversity is linked to decreased survival probabilities in A. pallidiceps. Low TLR diversity is thus probably an adaptation to the specific selection regime within its currently very restricted distribution (approximately 200 ha), but could severely restrict the adaptive potential of the species in the long run. Our study illustrates the importance of investigating both neutral and adaptive markers to assess the effect of population bottlenecks and for recommending specific management plans in endangered species. © 2014 John Wiley & Sons Ltd.

  10. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation.

    PubMed

    Mace, Ruth; Jordan, Fiona M

    2011-02-12

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.

  11. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation

    PubMed Central

    Mace, Ruth; Jordan, Fiona M.

    2011-01-01

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity. PMID:21199844

  12. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Toolbox or Adjustable Spanner? A Critical Comparison of Two Metaphors for Adaptive Decision Making

    ERIC Educational Resources Information Center

    Söllner, Anke; Bröder, Arndt

    2016-01-01

    For multiattribute decision tasks, different metaphors exist that describe the process of decision making and its adaptation to diverse problems and situations. Multiple strategy models (MSMs) assume that decision makers choose adaptively from a set of different strategies (toolbox metaphor), whereas evidence accumulation models (EAMs) hold that a…

  14. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  15. Trichinella spiralis: the evolution of adaptation and parasitism

    USDA-ARS?s Scientific Manuscript database

    Parasitism among nematodes has occurred in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and a...

  16. Intense natural selection preceded the invasion of new adaptive zones during the radiation of New World leaf-nosed bats.

    PubMed

    Rossoni, Daniela M; Assis, Ana Paula A; Giannini, Norberto P; Marroig, Gabriel

    2017-09-11

    The family Phyllostomidae, which evolved in the New World during the last 30 million years, represents one of the largest and most morphologically diverse mammal families. Due to its uniquely diverse functional morphology, the phyllostomid skull is presumed to have evolved under strong directional selection; however, quantitative estimation of the strength of selection in this extraordinary lineage has not been reported. Here, we used comparative quantitative genetics approaches to elucidate the processes that drove cranial evolution in phyllostomids. We also quantified the strength of selection and explored its association with dietary transitions and specialization along the phyllostomid phylogeny. Our results suggest that natural selection was the evolutionary process responsible for cranial diversification in phyllostomid bats. Remarkably, the strongest selection in the phyllostomid phylogeny was associated with dietary specialization and the origination of novel feeding habits, suggesting that the adaptive diversification of phyllostomid bats was triggered by ecological opportunities. These findings are consistent with Simpson's quantum evolutionary model of transitions between adaptive zones. The multivariate analyses used in this study provides a powerful tool for understanding the role of evolutionary processes in shaping phenotypic diversity in any group on both micro- and macroevolutionary scales.

  17. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution.

    PubMed

    Slater, Graham J

    2015-04-21

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  18. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    NASA Astrophysics Data System (ADS)

    Slater, Graham J.

    2015-04-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  19. Mega-evolutionary dynamics of the adaptive radiation of birds.

    PubMed

    Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H

    2017-02-16

    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.

  20. Predicting ethnic variation in adaptation to later life: styles of socioemotional functioning and constrained heterotypy.

    PubMed

    Consedine, Nathan S; Magai, Carol; Conway, Francine

    2004-06-01

    It is an axiom of social gerontology that populations of older individuals become increasingly differentiated as they age. Adaptations to physical and social losses and the increased dependency that typically accompany greater age are likely to be similarly heterogeneous, with different individuals adjusting to the aging process in widely diverse ways. In this paper we consider how individuals with diverse emotional and regulatory profiles, different levels of religiosity, and varied patterns of social relatedness fare as they age. Specifically, we examine the relation between ethnicity and patterns of socioemotional adaptation in a large, ethnically diverse sample (N = 1118) of community-dwelling older adults. Cluster analysis was applied to 11 measures of socioemotional functioning. Ten qualitatively different profiles were extracted and then related to a measure of physical resiliency. Consistent with ethnographic and psychological theory, individuals from different ethnic backgrounds were unevenly distributed across the clusters. Resilient participants of African descent (African Americans, Jamaicans, Trinidadians, Barbadians) were more likely to manifest patterns of adaptation characterized by religious beliefs, while resilient US-born Whites and Immigrant Whites were more likely to be resilient as a result of non-religious social connectedness. Taken together, although these data underscore the diversity of adaptation to later life, we suggest that patterns of successful adaptation vary systematically across ethnic groups. Implications for the continued study of ethnicity in aging and directions for future research are given.

  1. Different Strokes for Different Folks? Contrasting Approaches to Cultural Adaptation of Parenting Interventions.

    PubMed

    Mejia, Anilena; Leijten, Patty; Lachman, Jamie M; Parra-Cardona, José Ruben

    2017-08-01

    Relevant achievements have been accomplished in prevention science with regard to disseminating efficacious parenting interventions among underserved populations. However, widespread disparities in availability of parenting services continue to negatively impact diverse populations in high-income countries (e.g., the USA) and low- and middle-income countries. As a result, a scholarly debate on cultural adaptation has evolved over the years. Specifically, some scholars have argued that in diverse cultural contexts, existing evidence-based parenting interventions should be delivered with strict fidelity to ensure effectiveness. Others have emphasized the need for cultural adaptations of interventions when disseminated among diverse populations. In this paper, we propose that discussions on cultural adaptation should be conceptualized as a "both-and," rather than an "either-or" process. To justify this stance, we describe three distinct parenting intervention projects to illustrate how cultural adaptation and efficacy of evidence-based interventions can be achieved using contrasting approaches and frameworks, depending on cultural preferences and available resources of local contexts. Further, we suggest the need to develop guidelines for consistent reporting of cultural adaptation procedures as a critical component of future investigations. This discussion is relevant for the broader public health field and prevention science.

  2. General and craniofacial development are complex adaptive processes influenced by diversity.

    PubMed

    Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C

    2014-06-01

    Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understanding and applying complexity theory will bring about substantial advances not only in dental research and education but also in the organization and delivery of oral health care. © 2014 Australian Dental Association.

  3. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards

    PubMed Central

    Horner, Paul; Moritz, Craig

    2016-01-01

    Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus. We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards. PMID:27306048

  4. Concept mapping-An effective method for identifying diversity and congruity in cognitive style.

    PubMed

    Stoyanov, Slavi; Jablokow, Kathryn; Rosas, Scott R; Wopereis, Iwan G J H; Kirschner, Paul A

    2017-02-01

    This paper investigates the effects of cognitive style for decision making on the behaviour of participants in different phases of the group concept mapping process (GCM). It is argued that cognitive style should be included directly in the coordination of the GCM process and not simply considered as yet another demographic variable. The cognitive styles were identified using the Kirton Adaption-Innovation Inventory, which locates each person's style on a continuum ranging from very adaptive to very innovative. Cognitive style could explain diversity in the participants' behaviour in different phases of the GCM process. At the same time, the concept map as a group's common cognitive construct can consolidate individual differences and serves as a tool for managing diversity in groups of participants. Some of the results were that: (a) the more adaptive participants generated ideas that fit to a particular, well-established and consensually agreed paradigm, frame of reference, theory or practice; (b) the more innovative participants produced ideas that were more general in scope and required changing a settled structure (paradigm, frame of reference, theory or practice); and (c) the empirical comparison of the map configurations through Procrustes analysis indicated a strong dissimilarity between cognitive styles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mega-evolutionary dynamics of the adaptive radiation of birds

    PubMed Central

    Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.

    2017-01-01

    The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475

  6. Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks.

    PubMed

    Templeton, A R; Robertson, R J; Brisson, J; Strasburg, J

    2001-05-08

    Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

  7. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire

    PubMed Central

    Simon, Marcelo F.; Grether, Rosaura; de Queiroz, Luciano P.; Skema, Cynthia; Pennington, R. Toby; Hughes, Colin E.

    2009-01-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness. PMID:19918050

  8. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    PubMed

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  9. Collecting, processing, and storing seeds [Chapter 7

    Treesearch

    Tara Luna; Kim M. Wilkinson

    2009-01-01

    Nurseries that work to strengthen and expand the presence of native species are concerned about fostering diverse populations that are strong and well adapted. For many native plants, however, the natural diversity of wild populations has been depleted. Habitat loss has reduced the range and sheer number of plants. For plants with commercial value, unsustainable...

  10. Adapting to and Coping with the Threat and Impacts of Climate Change

    ERIC Educational Resources Information Center

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  11. Cultural adaptation process for international dissemination of the strengthening families program.

    PubMed

    Kumpfer, Karol L; Pinyuchon, Methinin; Teixeira de Melo, Ana; Whiteside, Henry O

    2008-06-01

    The Strengthening Families Program (SFP) is an evidence-based family skills training intervention developed and found efficacious for substance abuse prevention by U.S researchers in the 1980s. In the 1990s, a cultural adaptation process was developed to transport SFP for effectiveness trials with diverse populations (African, Hispanic, Asian, Pacific Islander, and Native American). Since 2003, SFP has been culturally adapted for use in 17 countries. This article reviews the SFP theory and research and a recommended cultural adaptation process. Challenges in international dissemination of evidence-based programs (EBPs) are discussed based on the results of U.N. and U.S. governmental initiatives to transport EBP family interventions to developing countries. The technology transfer and quality assurance system are described, including the language translation and cultural adaptation process for materials development, staff training, and on-site and online Web-based supervision and technical assistance and evaluation services to assure quality implementation and process evaluation feedback for improvements.

  12. Adapting clinical practice guidelines for diabetic retinopathy in Kenya: process and outputs.

    PubMed

    Mwangi, Nyawira; Gachago, Muchai; Gichangi, Michael; Gichuhi, Stephen; Githeko, Kibata; Jalango, Atieno; Karimurio, Jefitha; Kibachio, Joseph; Muthami, Lawrence; Ngugi, Nancy; Nduri, Carmichael; Nyaga, Patrick; Nyamori, Joseph; Zindamoyen, Alain Nazaire Mbongo; Bascaran, Covadonga; Foster, Allen

    2018-06-15

    The use of clinical practice guidelines envisages augmenting quality and best practice in clinical outcomes. Generic guidelines that are not adapted for local use often fail to produce these outcomes. Adaptation is a systematic and rigorous process that should maintain the quality and validity of the guideline, while making it more usable by the targeted users. Diverse skills are required for the task of adaptation. Although adapting a guideline is not a guarantee that it will be implemented, adaptation may improve acceptance and adherence to its recommendations. We describe the process used to adapt clinical guidelines for diabetic retinopathy in Kenya, using validated tools and manuals. A technical working group consisting of volunteers provided leadership. The process was intensive and required more time than anticipated. Flexibility in the process and concurrent health system activities contributed to the success of the adaptation. The outputs from the adaptation include the guidelines in different formats, point of care instruments, as well as tools for training, monitoring, quality assurance and patient education. Guideline adaptation is applicable and feasible at the national level in Kenya. However, it is labor- and time -intensive. It presents a valuable opportunity to develop several additional outputs that are useful at the point of care.

  13. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards.

    PubMed

    Blom, Mozes P K; Horner, Paul; Moritz, Craig

    2016-06-15

    Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards. © 2016 The Author(s).

  14. Testing the mechanisms of diversity-dependent overyielding in a grass species.

    PubMed

    Atwater, Daniel Z; Callaway, Ragan M

    2015-12-01

    Plant diversity enhances many ecosystem processes, including productivity, but these effects have been studied almost exclusively at the taxonomic scale of species. We explore the effect of intraspecific diversity on the productivity of a widespread and dominant grassland species using accessions collected from populations throughout its range. We found that increasing population/ecotype diversity of Pseudoroegneria spicata increased productivity to a similar degree as that reported for species diversity. However, we did not find evidence that overyielding was related to either resource depletion or to pathogenic soil fungi, two causes of overyielding in species-diverse communities. Instead, larger accessions overyielded at low diversity at the expense of smaller accessions, and small accessions overyielded through complementarity at all levels of diversity. Furthermore, overyielding was stronger for accessions from mesic environments, suggesting that local adaptation might predictably influence how plants respond to increases in diversity. This suggests that mass-based competition or other cryptic accession-specific processes had complex but important effects on overyielding. Our results indicate that the effects of diversity within a species can be substantial but that overyielding by intraspecifically diverse populations may not be through the same processes thought to cause overyielding in species diverse communities.

  15. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    PubMed

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.

  16. From genes to ecosystems: Measuring evolutionary diversity and community structure with Forest Inventory and Analysis (FIA) data

    Treesearch

    Kevin M. Potter

    2009-01-01

    Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...

  17. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn

    2008-01-01

    Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...

  18. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    PubMed

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  19. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  20. What is the role of culture, diversity, and community engagement in transdisciplinary translational science?

    PubMed

    Graham, Phillip W; Kim, Mimi M; Clinton-Sherrod, A Monique; Yaros, Anna; Richmond, Alan N; Jackson, Melvin; Corbie-Smith, Giselle

    2016-03-01

    Concepts of culture and diversity are necessary considerations in the scientific application of theory generation and developmental processes of preventive interventions; yet, culture and/or diversity are often overlooked until later stages (e.g., adaptation [T3] and dissemination [T4]) of the translational science process. Here, we present a conceptual framework focused on the seamless incorporation of culture and diversity throughout the various stages of the translational science process (T1-T5). Informed by a community-engaged research approach, this framework guides integration of cultural and diversity considerations at each phase with emphasis on the importance and value of "citizen scientists" being research partners to promote ecological validity. The integrated partnership covers the first phase of intervention development through final phases that ultimately facilitate more global, universal translation of changes in attitudes, norms, and systems. Our comprehensive model for incorporating culture and diversity into translational research provides a basis for further discussion and translational science development.

  1. How fisheries management can benefit from genomics?

    PubMed

    Valenzuela-Quiñonez, Fausto

    2016-09-01

    Fisheries genomics is an emerging field that advocates the application of genomic tools to address questions in fisheries management. Genomic approaches bring a new paradigm for fisheries management by making it possible to integrate adaptive diversity to understand fundamental aspects of fisheries resources. Hence, this review is focused on the relevance of genomic approaches to solve fisheries-specific questions. Particularly the detection of adaptive diversity (outlier loci) provides unprecedented opportunity to understand bio-complexity, increased power to trace processed sample origin to allow enforcement and the potential to understand the genetic basis of micro-evolutionary effects of fisheries-induced evolution and climate change. The understanding of adaptive diversity patterns will be the cornerstone of the future links between fisheries and genomics. These studies will help stakeholders anticipate the potential effects of fishing or climate change on the resilience of fisheries stocks; consequently, in the near future, fisheries sciences might integrate evolutionary principles with fisheries management. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Can we manage for biological diversity in the absence of science?

    USGS Publications Warehouse

    Trauger, D.L.; Hall, R.J.

    1995-01-01

    Conservation of biological diversity is dependent on sound scientific information about underlying ecological processes. Current knowledge of the composition, distribution, abundance and life cycles of most species of plants and animals is incomplete, insufficient, unreliable, or nonexistent. Contemporary managers are also confronted with additional levels of complexity related to varying degrees of knowledge and understanding about interactions of species and ecosystems. Consequently, traditional species-oriented management schemes may have unintended consequences and ecosystem-oriented management initiatives may fail in the face of inadequate or fragmentary information on the structure, function, and dynamics of biotic communities and ecological systems. Nevertheless, resource managers must make decisions and manage based on the best biological information currently available. Adaptive resource management may represent a management paradigm that allows managers to learn something about the species or systems that they are managing while they are managing, but potential pitfalls lurk for such approaches. In addition to lack of control over the primary physical, chemical, and ecological processes, managers also lack control over social, economic, and political parameters affecting resource management options. Moreover, appropriate goals may be difficult to identify and criteria for determining success may be elusive. Some management responsibilities do not lend themselves to adaptive strategies. Finally, the lessons learned from adaptive management are usually obtained from a highly situational context that may limit applicability in a wider range of situations or undermine confidence that problems and solutions were properly diagnosed and addressed. Several scenarios are critically examined where adaptive management approaches may be inappropriate or ineffective and where management for biological diversity may be infeasible or inefficient without a sound scientific basis. Whereas some level of management must exist to meet agency responsibilities, more research is needed to conserve biological diversity.

  3. Empirically Supported Interventions for Sexual and Gender Minority Youth.

    PubMed

    Austin, Ashley; Craig, Shelley L

    2015-01-01

    When empirically supported treatments (ESTs) are effectively adapted for use with minority populations, they may be more efficacious. As such, there is a need to adapt existing ESTs for use with diverse sexual and gender minority youth (SGMY). The unique bias-based challenges faced by SGMY require the integration of affirmative practices into ESTs to effectively address the specific needs of this underserved group of youth. The primary purpose of the authors in this article is to present a clearly articulated stakeholder driven model for developing an affirmative adapted version of cognitive behavioral therapy (CBT) for use with diverse SGMY. The authors' approach to adaptation follows the "adapt and evaluate" framework for enhancing cultural congruence of interventions for minority groups. A community based participatory research approach, consistent with a stakeholder driven process, is utilized to develop the intervention from the ground up through the voices of the target community. Researchers conducted 3 focus groups with culturally diverse SGMY to explore salient aspects of youths' cultural and SGM identities in order to inform the intervention and ensure its applicability to a wide range of SGMY. Focus group data is analyzed and integrated into an existing group-based CBT intervention. The following themes emerge as critical to affirmative work with diverse SGMY: (1) the interplay between cultural norms, gender norms, sexual orientation, and gender identity; (2) the complex role of religious community within the lives of SGMY; and (3) consideration of extended family and cultural community as youth navigate their SGM identities.

  4. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Sego, Landon H.; Lin, Andy

    Adaptive processes in bacterial species can occur rapidly in laboratory culture, leading to genetic divergence between naturally occurring and laboratory-adapted strains. Differentiating wild and closely-related laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to adapted phenotypes. Protein abundance profiles from mass spectrometry-based proteomics analyses are a molecular measure of phenotype. Proteomics data contains sufficient information that powerful statistical methods can uncover signatures that distinguish wild strains of Yersinia pestis from laboratory-adapted strains.

  6. Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution

    PubMed Central

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2013-01-01

    Diversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids. Evolutionary patterns in multivariate functional morphospace were examined using a phylomorphospace approach, disparity-through-time analyses and by comparing Brownian motion (BM) and adaptive peak evolutionary models using maximum likelihood. The most species-rich and functionally disparate clade (CAS) expanded more efficiently in morphospace and evolved more rapidly compared with both BM expectations and its sister clade (GGD). Members of the CAS clade also exhibited an early burst in functional evolution that corresponds to the development of modern ecological roles and may have been related to the colonization of a novel adaptive peak characterized by fast oral jaw mechanics. Furthermore, reduced ecological opportunity following this early burst may have restricted functional evolution in the GGD clade, which is less species-rich and more ecologically specialized. Patterns of evolution in ecologically important functional traits are consistent with a pattern of adaptive radiation within the most diverse clade of Geophagini. PMID:23740780

  7. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen.

    PubMed

    Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.

  8. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen

    PubMed Central

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway. PMID:29432462

  9. Intestinal mucosal atrophy and adaptation

    PubMed Central

    Shaw, Darcy; Gohil, Kartik; Basson, Marc D

    2012-01-01

    Mucosal adaptation is an essential process in gut homeostasis. The intestinal mucosa adapts to a range of pathological conditions including starvation, short-gut syndrome, obesity, and bariatric surgery. Broadly, these adaptive functions can be grouped into proliferation and differentiation. These are influenced by diverse interactions with hormonal, immune, dietary, nervous, and mechanical stimuli. It seems likely that clinical outcomes can be improved by manipulating the physiology of adaptation. This review will summarize current understanding of the basic science surrounding adaptation, delineate the wide range of potential targets for therapeutic intervention, and discuss how these might be incorporated into an overall treatment plan. Deeper insight into the physiologic basis of adaptation will identify further targets for intervention to improve clinical outcomes. PMID:23197881

  10. Understanding Latino Families: Scholarship, Policy, and Practice.

    ERIC Educational Resources Information Center

    Zambrana, Ruth E., Ed.

    This anthology examines the contemporary status of Latino families, especially their great racial and ethnic diversity. The book focuses on the strengths of Latino/Hispanic groups, structural processes that impede their progress, and cultural and familial processes that enhance their intergenerational adaptation and resiliency. Chapter 1,…

  11. Cultural and linguistic adaptation of a multimedia colorectal cancer screening decision aid for Spanish-speaking Latinos.

    PubMed

    Ko, Linda K; Reuland, Daniel; Jolles, Monica; Clay, Rebecca; Pignone, Michael

    2014-01-01

    As the United States becomes more linguistically and culturally diverse, there is a need for effective health communication interventions that target diverse, vulnerable populations, including Latinos. To address such disparities, health communication interventionists often face the challenge to adapt existing interventions from English into Spanish in a way that retains essential elements of the original intervention while also addressing the linguistic needs and cultural perspectives of the target population. The authors describe the conceptual framework, context, rationale, methods, and findings of a formative research process used in creating a Spanish-language version of an evidence-based (English language) multimedia colorectal cancer screening decision aid. The multistep process included identification of essential elements of the existing intervention, literature review, assessment of the regional context and engagement of key stakeholders, and solicitation of direct input from target population. The authors integrated these findings in the creation of the new adapted intervention. They describe how they used this process to identify and integrate sociocultural themes such as personalism (personalismo), familism (familismo), fear (miedo), embarrassment (verguenza), power distance (respeto), machismo, and trust (confianza) into the Spanish-language decision aid.

  12. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    PubMed Central

    Muraille, Eric

    2018-01-01

    Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life. PMID:29487592

  13. Why are marine adaptive radiations rare in Hawai'i?

    PubMed

    Wainwright, Peter C

    2015-02-01

    Islands can be sites of dynamic evolutionary radiations, and the Hawaiian Islands have certainly given us a bounty of insights into the processes and mechanisms of diversification. Adaptive radiations in silverswords and honeycreepers have inspired a generation of biologists with evidence of rapid diversification that resulted in exceptional levels of ecological and morphological diversity. In this issue of Molecular Ecology, tiny waterfall-climbing gobies make a case for their place among Hawaiian evolutionary elite. Moody et al. (2015) present an analysis of gene flow and local adaptation in six goby populations on Kaua'i and Hawai'i measured in three consecutive years to try to disentangle the relative role of local adaptation and gene flow in shaping diversity within Sicyopterus stimpsoni. Their study shows that strong patterns of local selection result in streams with gobies adapted to local conditions in spite of high rates of gene flow between stream populations and no evidence for significant genetic population structure. These results help us understand how local adaptation and gene flow are balanced in gobies, but these fishes also offer themselves as a model that illustrates why adaptive diversification in Hawai'i's marine fauna is so different from the terrestrial fauna. © 2015 John Wiley & Sons Ltd.

  14. Complex Adaptive Systems: The Theater Air Control System in Desert Storm

    DTIC Science & Technology

    2014-05-22

    insight into leverage points of effective and ineffective adaptation of the TACS. Successful adaptation indicates that increased variety or diversity of...encourages innovation and diversity of ideas. 15. SUBJECT TERMS Theater Air Control System, TACS, Complex Adaptive Systems, Adaptation, Desert Storm...increased variety or diversity of agents and purposeful behaviors are beneficial to overcoming complexity. Leaders play a key role in creating an

  15. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water.

    PubMed

    Pan, Xiang; Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-04-10

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.

  16. Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals.

    PubMed

    Weeks, Andrew R; Stoklosa, Jakub; Hoffmann, Ary A

    2016-01-01

    As increasingly fragmented and isolated populations of threatened species become subjected to climate change, invasive species and other stressors, there is an urgent need to consider adaptive potential when making conservation decisions rather than focussing on past processes. In many cases, populations identified as unique and currently managed separately suffer increased risk of extinction through demographic and genetic processes. Other populations currently not at risk are likely to be on a trajectory where declines in population size and fitness soon appear inevitable. Using datasets from natural Australian mammal populations, we show that drift processes are likely to be driving uniqueness in populations of many threatened species as a result of small population size and fragmentation. Conserving and managing such remnant populations separately will therefore often decrease their adaptive potential and increase species extinction risk. These results highlight the need for a paradigm shift in conservation biology practise; strategies need to focus on the preservation of genetic diversity at the species level, rather than population, subspecies or evolutionary significant unit. The introduction of new genetic variants into populations through in situ translocation needs to be considered more broadly in conservation programs as a way of decreasing extinction risk by increasing neutral genetic diversity which may increase the adaptive potential of populations if adaptive variation is also increased.

  17. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?

    PubMed Central

    Mosca, Alexis; Leclerc, Marion; Hugot, Jean P.

    2016-01-01

    Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations, and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability, and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota. PMID:27065999

  18. Microbial diversity--insights from population genetics.

    PubMed

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  19. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    PubMed

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  20. Adapting to and coping with the threat and impacts of climate change.

    PubMed

    Reser, Joseph P; Swim, Janet K

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to adequately communicate and explain how a more psychological framing of the human dimensions of global environmental change can greatly inform and enhance effective and collaborative climate change adaptation and mitigation policies and research. An integrative framework is provided that identifies and considers important mediating and moderating parameters and processes relating to climate change adaptation, with particular emphasis given to environmental stress and stress and coping perspectives. This psychological perspective on climate change adaptation highlights crucial aspects of adaptation that have been neglected in the arena of climate change science. Of particular importance are intra-individual and social "psychological adaptation" processes that powerfully mediate public risk perceptions and understandings, effective coping responses and resilience, overt behavioral adjustment and change, and psychological and social impacts. This psychological window on climate change adaptation is arguably indispensable to genuinely multidisciplinary and interdisciplinary research and policy initiatives addressing the impacts of climate change.

  1. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    PubMed

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  2. Mechanisms of adaptive evolution. Darwinism and Lamarckism restated.

    PubMed

    Aboitiz, F

    1992-07-01

    This article discusses the conceptual basis of the different mechanisms of adaptive evolution. It is argued that only two such mechanisms may conceivably exist, Lamarckism and Darwinism. Darwinism is the fundamental process generating the diversity of species. Some aspects of the gene-centered approach to Darwinism are questioned, since they do not account for the generation of biological diversity. Diversity in biological design must be explained in relation to the diversity of interactions of organisms (or other higher-level units) with their environment. This aspect is usually overlooked in gene-centered views of evolution. A variant of the gene-selectionist approach has been proposed to account for the spread of cultural traits in human societies. Alternatively, I argue that social evolution is rather driven by what I call pseudo-Lamarckian inheritance. Finally, I argue that Lamarckian and pseudo-Lamarckian inheritance are just special cases of faithful replication which are found in the development of some higher-order units, such as multicellular organisms and human societies.

  3. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex.

    PubMed

    Brites, Daniela; Gagneux, Sebastien

    2017-01-01

    The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.

  4. Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis

    PubMed Central

    2010-01-01

    Background Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci. Results A total of 106 landrace populations were sampled in the two growing seasons (Meher and Belg; the long and short rainy seasons, respectively), across three districts (Ankober, Mojanawadera and Tarmaber), and within each district along an altitudinal gradient (from 1,798 to 3,324 m a.s.l). Overall, although significant, the divergence (e.g. FST) is very low between seasons and geographical districts, while it is high between different classes of altitude. Selection for adaptation to different altitudes appears to be the main factor that has determined the observed clinal variation, along with population-size effects. Conclusions Our data show that barley landraces from Ethiopia are constituted by highly variable local populations (farmer's fields) that have large within-population diversity. These landraces are also shown to be locally adapted, with the major driving force that has shaped their population structure being consistent with selection for adaptation along an altitudinal gradient. Overall, our study highlights the potential of such landraces as a source of useful alleles. Furthermore, these landraces also represent an ideal system to study the processes of adaptation and for the identification of genes and genomic regions that have adaptive roles in crop species. PMID:20565982

  5. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    PubMed

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.

  7. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe - A call to adapt our conservation measures

    Treesearch

    Constanze Buhk; Martin Alt; Manuel J. Steinbauer; Carl Beierkuhnlein; Steve Warren; Anke Jentsch

    2017-01-01

    The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific...

  8. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia)

    Treesearch

    Helen M. Bothwell; Samuel A. Cushman; Scott A. Woolbright; Erika I. Hersch-Green; Luke M. Evans; Thomas G. Whitham; Gerard J. Allan

    2017-01-01

    Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to...

  9. Whipworm kinomes reflect a unique biology and adaptation to the host animal.

    PubMed

    Stroehlein, Andreas J; Young, Neil D; Korhonen, Pasi K; Chang, Bill C H; Nejsum, Peter; Pozio, Edoardo; La Rosa, Giuseppe; Sternberg, Paul W; Gasser, Robin B

    2017-11-01

    Roundworms belong to a diverse phylum (Nematoda) which is comprised of many parasitic species including whipworms (genus Trichuris). These worms have adapted to a biological niche within the host and exhibit unique morphological characteristics compared with other nematodes. Although these adaptations are known, the underlying molecular mechanisms remain elusive. The availability of genomes and transcriptomes of some whipworms now enables detailed studies of their molecular biology. Here, we defined and curated the full complement of an important class of enzymes, the protein kinases (kinomes) of two species of Trichuris, using an advanced and integrated bioinformatic pipeline. We investigated the transcription of Trichuris suis kinase genes across developmental stages, sexes and tissues, and reveal that selectively transcribed genes can be linked to central roles in developmental and reproductive processes. We also classified and functionally annotated the curated kinomes by integrating evidence from structural modelling and pathway analyses, and compared them with other curated kinomes of phylogenetically diverse nematode species. Our findings suggest unique adaptations in signalling processes governing worm morphology and biology, and provide an important resource that should facilitate experimental investigations of kinases and the biology of signalling pathways in nematodes. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  10. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    PubMed

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Genetic Variation in Populations of a Tropical Mysid, Mysidium gracile

    NASA Astrophysics Data System (ADS)

    Chapina, R.; Ramos-Chavez, J.; Walsh, E.

    2016-02-01

    Genetic diversity allows organisms to adapt to environmental factors such as climate change and ocean acidification. Greater genetic diversity among organisms allows a higher probability of adaptation to changing environments. The mysid Mysidium gracile is a shrimp-like crustacean that aggregates into swarms near coral reefs. They are important in reef systems since they occupy an important intermediate level of marine food webs by transferring energy from planktonic species to reef fishes. Thus, there is concern regarding the tolerance of reef- associated organisms to climatic changes and overall coral reef health. The objective of this study is to determine the level of genetic variation within and among Caribbean M. gracile populations. Mysids from 7 islands were collected and preserved for genetic analysis. The CO1 gene was amplified and sequenced for 100 mysids representing 14 swarms. Haplotype diversity was determined using DnaSP5.0. Twenty- three haplotypes were detected with a haplotype diversity of 0.94, thus indicating a high level of haplotypic variation. Mysids from two populations shared a haplotype, implying that there is potential gene flow between these populations. Mysids from additional swarms are in process of being characterized. Overall, these results show that there is substantial genetic variation within and among mysid populations that may allow them to adapt environmental factors.

  13. Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change.

    PubMed

    Thomas, Luke; Kennington, W Jason; Evans, Richard D; Kendrick, Gary A; Stat, Michael

    2017-06-01

    Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral species. In this study, we apply a genotyping-by-sequencing approach to investigate genome-wide patterns of genetic diversity, gene flow, and local adaptation in a reef-building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high-latitude populations. In addition, genome-wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading-edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity. © 2017 John Wiley & Sons Ltd.

  14. Adaptation to elevated CO2 in different biodiversity contexts

    PubMed Central

    Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.; Vellend, Mark

    2016-01-01

    In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. We tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO2, in communities of low or high species richness. Using biomass as a fitness proxy, we find evidence for local adaptation to elevated CO2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO2. PMID:27510545

  15. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  16. A genomic perspective on the generation and maintenance of genetic diversity in herbivorous insects

    PubMed Central

    Gloss, Andrew D.; Groen, Simon C.; Whiteman, Noah K.

    2017-01-01

    Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales—from variation within populations to divergence among populations—to form a comprehensive view of adaptation in herbivorous insects. PMID:28736510

  17. Sup wit Eval Ext?

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    2008-01-01

    Extension and evaluation share some similar challenges, including working with diverse stakeholders, parallel processes for focusing priorities, meeting common standards of excellence, and adapting to globalization, new technologies, and changing times. Evaluations of extension programs have helped clarify how change occurs, especially the…

  18. Leuconostoc strains isolated from dairy products: Response against food stress conditions.

    PubMed

    D'Angelo, Luisa; Cicotello, Joaquín; Zago, Miriam; Guglielmotti, Daniela; Quiberoni, Andrea; Suárez, Viviana

    2017-09-01

    A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cultural and Linguistic Adaptation of a Multimedia Colorectal Cancer Screening Decision Aid for Spanish Speaking Latinos

    PubMed Central

    Ko, Linda K.; Reuland, Daniel; Jolles, Monica; Clay, Rebecca; Pignone, Michael

    2014-01-01

    As the United States becomes more linguistically and culturally diverse, there is a need for effective health communication interventions that target diverse and most vulnerable populations. Latinos also have the lowest colorectal (CRC) screening rates of any ethnic group in the U.S. To address such disparities, health communication interventionists are often faced with the challenge to adapt existing interventions from English into Spanish in a way that retains essential elements of the original intervention while also addressing the linguistic needs and cultural perspectives of the target population. We describe the conceptual framework, context, rationale, methods, and findings of a formative research process used in creating a Spanish language version of an evidenced-based (English language) multimedia CRC screening decision aid. Our multi-step process included identification of essential elements of the existing intervention, literature review, assessment of the regional context and engagement of key stakeholders, and solicitation of direct input from target population. We integrated these findings in the creation of the new adapted intervention. We describe how we used this process to identify and integrate socio-cultural themes such as personalism (personalismo), familism (familismo), fear (miedo), embarrassment (verguenza), power distance (respeto), machismo, and trust (confianza) into the Spanish language decision aid. PMID:24328496

  20. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between genetic variants and species diversity may be crucial in shaping tree communities.

  1. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine.

    PubMed

    Ma, Zhiyuan; Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina

    2018-03-01

    Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.

  2. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water

    PubMed Central

    Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-01-01

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments. PMID:29642637

  3. The sources of adaptive variation

    PubMed Central

    2017-01-01

    The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis. Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. PMID:28566483

  4. The sources of adaptive variation.

    PubMed

    Charlesworth, Deborah; Barton, Nicholas H; Charlesworth, Brian

    2017-05-31

    The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. © 2017 The Author(s).

  5. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.

    PubMed

    Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K

    2012-02-28

    The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.

  6. FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon

    PubMed Central

    Gutin, Grigoriy; Blackwood, Christopher A.; Kamatkar, Nachiket G.; Lee, Kyung W.; Fishell, Gordon; Wang, Fen

    2017-01-01

    FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1, we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles. SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo. Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages. PMID:28483978

  7. FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon.

    PubMed

    Nandi, Sayan; Gutin, Grigoriy; Blackwood, Christopher A; Kamatkar, Nachiket G; Lee, Kyung W; Fishell, Gordon; Wang, Fen; Goldfarb, Mitchell; Hébert, Jean M

    2017-06-07

    FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1 , we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles. SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages. Copyright © 2017 the authors 0270-6474/17/375690-09$15.00/0.

  8. Adaptation to elevated CO 2 in different biodiversity contexts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.

    In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. For this study, we tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO 2, in communities of low or high species richness. Using biomass as amore » fitness proxy, we find evidence for local adaptation to elevated CO 2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO 2.« less

  9. Adaptation to elevated CO 2 in different biodiversity contexts

    DOE PAGES

    Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.; ...

    2016-08-11

    In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. For this study, we tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO 2, in communities of low or high species richness. Using biomass as amore » fitness proxy, we find evidence for local adaptation to elevated CO 2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO 2.« less

  10. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  11. Sustainable intensification by managing microbial communities and processes in agroecosystems

    USDA-ARS?s Scientific Manuscript database

    By focusing on soil biology and biochemistry, agroecosystem management strategies are implemented which include reduced soil disturbance, diverse and adaptable crop rotations, retention of residue, and incorporation of livestock, cover crops, or both This systems approach is required to sustainably ...

  12. Body mass evolution and diversification within horses (family Equidae).

    PubMed

    Shoemaker, Lauren; Clauset, Aaron

    2014-02-01

    Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60-fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary 'diffusion', can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity-driven and diffusion-driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone. © 2013 John Wiley & Sons Ltd/CNRS.

  13. Biogeographic perspective of speciation among desert tortoises in the genus Gopherus: A preliminary evaluation

    Treesearch

    Taylor Edwards; Mercy Vaughn; Cristina Melendez Torres; Alice E. Karl; Philip C. Rosen; Kristin H. Berry; Robert W. Murph

    2013-01-01

    The enduring processes of time, climate, and adaptation have sculpted the distribution of organisms we observe in the Sonoran Desert. One such organism is Morafka’s desert tortoise, Gopherus morafkai. We apply a genomic approach to identify the evolutionary processes driving diversity in this species and present preliminary findings and emerging hypotheses. The Sonoran...

  14. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.

    PubMed

    Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos

    2018-03-08

    Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.

  15. Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague

    DOE PAGES

    Merkley, Eric D.; Sego, Landon H.; Lin, Andy; ...

    2017-08-30

    Adaptive processes in bacterial species can occur rapidly in laboratory culture, leading to genetic divergence between naturally occurring and laboratory-adapted strains. Differentiating wild and closely-related laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to adapted phenotypes. Protein abundance profiles from mass spectrometry-based proteomics analyses are a molecular measure of phenotype. Proteomics data contains sufficient information that powerful statistical methods can uncover signatures that distinguish wild strains of Yersinia pestis from laboratory-adapted strains.

  16. An overview of stress response proteomes in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes adapts to diverse stress conditions including cold, osmotic, heat, acid, and alkali stresses encountered during food processing and preservation which is a serious food safety threat. In this review, we have presented the major findings on this bacterium’s stress response prot...

  17. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine

    PubMed Central

    Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina

    2018-01-01

    Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy. PMID:29494543

  18. The bud break process and its variation among local populations of boreal black spruce.

    PubMed

    Rossi, Sergio; Bousquet, Jean

    2014-01-01

    Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analyzed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill.) BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points toward a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions.

  19. The bud break process and its variation among local populations of boreal black spruce

    PubMed Central

    Rossi, Sergio; Bousquet, Jean

    2014-01-01

    Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analyzed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill.) BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points toward a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions. PMID:25389430

  20. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.

  1. Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: the Adaptomics of a Single Environmental Transition

    PubMed Central

    Ryall, Ben; Eydallin, Gustavo

    2012-01-01

    Summary: Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior. PMID:22933562

  2. Risk Management in Australian Science Education: A Model for Practice.

    ERIC Educational Resources Information Center

    Forlin, Peter

    1995-01-01

    Provides a framework that incorporates the diverse elements of risk management in science education into a systematic process and is adaptable to changing circumstances. Appendix contains risk management checklist for management, laboratory and storage, extreme biological and chemical hazards, protective equipment, waste disposal, electrical…

  3. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    USDA-ARS?s Scientific Manuscript database

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  4. A two-way street: bridging implementation science and cultural adaptations of mental health treatments

    PubMed Central

    2013-01-01

    Background Racial and ethnic disparities in the United States exist along the entire continuum of mental health care, from access and use of services to the quality and outcomes of care. Efforts to address these inequities in mental health care have focused on adapting evidence-based treatments to clients’ diverse cultural backgrounds. Yet, like many evidence-based treatments, culturally adapted interventions remain largely unused in usual care settings. We propose that a viable avenue to address this critical question is to create a dialogue between the fields of implementation science and cultural adaptation. In this paper, we discuss how integrating these two fields can make significant contributions to reducing racial and ethnic disparities in mental health care. Discussion The use of cultural adaptation models in implementation science can deepen the explicit attention to culture, particularly at the client and provider levels, in implementation studies making evidence-based treatments more responsive to the needs and preferences of diverse populations. The integration of both fields can help clarify and specify what to adapt in order to achieve optimal balance between adaptation and fidelity, and address important implementation outcomes (e.g., acceptability, appropriateness). A dialogue between both fields can help clarify the knowledge, skills and roles of who should facilitate the process of implementation, particularly when cultural adaptations are needed. The ecological perspective of implementation science provides an expanded lens to examine how contextual factors impact how treatments (adapted or not) are ultimately used and sustained in usual care settings. Integrating both fields can also help specify when in the implementation process adaptations may be considered in order to enhance the adoption and sustainability of evidence-based treatments. Summary Implementation science and cultural adaptation bring valuable insights and methods to how and to what extent treatments and/or context should be customized to enhance the implementation of evidence-based treatments across settings and populations. Developing a two-way street between these two fields can provide a better avenue for moving the best available treatments into practice and for helping to reduce racial and ethnic disparities in mental health care. PMID:23958445

  5. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.

  6. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    PubMed

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.

  7. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    PubMed Central

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. PMID:21347280

  8. Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Bonnelycke, B.; Strickland, S.

    1982-01-01

    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.

  9. Evolution of reproductive proteins from animals and plants.

    PubMed

    Clark, Nathaniel L; Aagaard, Jan E; Swanson, Willie J

    2006-01-01

    Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.

  10. Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time.

    PubMed

    Aller, J Y; Aller, R C; Kemp, P F; Chistoserdov, A Y; Madrid, V M

    2010-06-01

    Reworked and fluidized fine-grained deposits in energetic settings are a major modern-day feature of river deltas and estuaries. Similar environments were probably settings for microbial evolution on the early Earth. These sedimentary systems act as efficient biogeochemical reactors with high bacterial phylogenetic diversity and functional redundancy. They are temporally rather than spatially structured, with repeated cycling of redox conditions and successive stages of microbial metabolic processes. Intense reworking of the fluidized bed entrains bacteria from varied habitats providing new, diverse genetic materials to contribute to horizontal gene transfer events and the creation of new bacterial ecotypes. These vast mud environments may act as exporters and promoters of biosphere diversity and novel adaptations, potentially on a globally important scale.

  11. Construction and screening of marine metagenomic libraries.

    PubMed

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  12. Landscape genetics: combining landscape ecology and population genetics

    Treesearch

    Stephanie Manel; Michael K. Schwartz; Gordon Luikart; Pierre Taberlet

    2003-01-01

    Understanding the processes and patterns of gene flow and local adaptation requires a detailed knowledge of how landscape characteristics structure populations. This understanding is crucial, not only for improving ecological knowledge, but also for managing properly the genetic diversity of threatened and endangered populations. For nearly 80 years, population...

  13. Genetic differentiation and diversity upon genotype and phenotype in cowpea (Vigna unguiculata L. Walp.)

    USDA-ARS?s Scientific Manuscript database

    The evolution of species is complex and subtle, which always associates with the genetic variation and environment adaption during active/ passive spread or migration. In crops, this process is usually driven and influenced by human activities such as domestication, cultivation and immigration. One ...

  14. Cultural adaptation in translational research: field experiences.

    PubMed

    Dévieux, Jessy G; Malow, Robert M; Rosenberg, Rhonda; Jean-Gilles, Michèle; Samuels, Deanne; Ergon-Pérez, Emma; Jacobs, Robin

    2005-06-01

    The increase in the incidence of HIV/AIDS among minorities in the United States and in certain developing nations has prompted new intervention priorities, stressing the adaptation of efficacious interventions for diverse and marginalized groups. The experiences of Florida International University's AIDS Prevention Program in translating HIV primary and secondary prevention interventions among these multicultural populations provide insight into the process of cultural adaptations and address the new scientific emphasis on ecological validity. An iterative process involving forward and backward translation, a cultural linguistic committee, focus group discussions, documentation of project procedures, and consultations with other researchers in the field was used to modify interventions. This article presents strategies used to ensure fidelity in implementing the efficacious core components of evidence-based interventions for reducing HIV transmission and drug use behaviors and the challenges posed by making cultural adaptation for participants with low literacy. This experience demonstrates the importance of integrating culturally relevant material in the translation process with intense focus on language and nuance. The process must ensure that the level of intervention is appropriate for the educational level of participants. Furthermore, the rights of participants must be protected during consenting procedures by instituting policies that recognize the socioeconomic, educational, and systemic pressures to participate in research.

  15. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  16. What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation.

    PubMed

    Pincheira-Donoso, Daniel; Harvey, Lilly P; Ruta, Marcello

    2015-08-07

    Adaptive radiation theory posits that ecological opportunity promotes rapid proliferation of phylogenetic and ecological diversity. Given that adaptive radiation proceeds via occupation of available niche space in newly accessed ecological zones, theory predicts that: (i) evolutionary diversification follows an 'early-burst' process, i.e., it accelerates early in the history of a clade (when available niche space facilitates speciation), and subsequently slows down as niche space becomes saturated by new species; and (ii) phylogenetic branching is accompanied by diversification of ecologically relevant phenotypic traits among newly evolving species. Here, we employ macroevolutionary phylogenetic model-selection analyses to address these two predictions about evolutionary diversification using one of the most exceptionally species-rich and ecologically diverse lineages of living vertebrates, the South American lizard genus Liolaemus. Our phylogenetic analyses lend support to a density-dependent lineage diversification model. However, the lineage through-time diversification curve does not provide strong support for an early burst. In contrast, the evolution of phenotypic (body size) relative disparity is high, significantly different from a Brownian model during approximately the last 5 million years of Liolaemus evolution. Model-fitting analyses also reject the 'early-burst' model of phenotypic evolution, and instead favour stabilizing selection (Ornstein-Uhlenbeck, with three peaks identified) as the best model for body size diversification. Finally, diversification rates tend to increase with smaller body size. Liolaemus have diversified under a density-dependent process with slightly pronounced apparent episodic pulses of lineage accumulation, which are compatible with the expected episodic ecological opportunity created by gradual uplifts of the Andes over the last ~25My. We argue that ecological opportunity can be strong and a crucial driver of adaptive radiations in continents, but may emerge less frequently (compared to islands) when major events (e.g., climatic, geographic) significantly modify environments. In contrast, body size diversification conforms to an Ornstein-Uhlenbeck model with multiple trait optima. Despite this asymmetric diversification between both lineages and phenotype, links are expected to exist between the two processes, as shown by our trait-dependent analyses of diversification. We finally suggest that the definition of adaptive radiation should not be conditioned by the existence of early-bursts of diversification, and should instead be generalized to lineages in which species and ecological diversity have evolved from a single ancestor.

  17. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Adapting Strategies of Effective Instruction for Culturally Diverse Preschoolers

    ERIC Educational Resources Information Center

    Yamauchi, Lois A.; Im, Seongah; Schonleber, Nanette S.

    2012-01-01

    This article describes collaboration between preschool and university educators focused on adapting the Center for Research on Education, Diversity, and Excellence (CREDE) standards for Effective Pedagogy for use in early childhood (EC) settings. The CREDE standards are strategies of best practices for culturally diverse K-12 students. Teachers…

  19. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    PubMed

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  20. [Diversity of parasitic protozoan mitochondria and adaptive evolution].

    PubMed

    Tian, Hai-Feng; Wen, Jian-Fan

    2010-02-01

    Eukaryotic mitochondrion generally possess a definite and canonical structure and function. However, in the unicellular parasitic protozoa, various atypical mitochondria with respect to the number, structure, and function, have been discovered consecutively, revealing the variability, plasticity and rich diversity of mitochondrion. Here, we review the mitochondrial diversity in diverse parasitic protozoa, and the underlying reason for such diversity--the adaptive evolution of mitochondrion to the micro-oxygen or anaero parasitic environment of these parasites is also analyzed and discussed.

  1. Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion

    NASA Astrophysics Data System (ADS)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2011-01-01

    Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.

  2. A new hybrid case-based reasoning approach for medical diagnosis systems.

    PubMed

    Sharaf-El-Deen, Dina A; Moawad, Ibrahim F; Khalifa, M E

    2014-02-01

    Case-Based Reasoning (CBR) has been applied in many different medical applications. Due to the complexities and the diversities of this domain, most medical CBR systems become hybrid. Besides, the case adaptation process in CBR is often a challenging issue as it is traditionally carried out manually by domain experts. In this paper, a new hybrid case-based reasoning approach for medical diagnosis systems is proposed to improve the accuracy of the retrieval-only CBR systems. The approach integrates case-based reasoning and rule-based reasoning, and also applies the adaptation process automatically by exploiting adaptation rules. Both adaptation rules and reasoning rules are generated from the case-base. After solving a new case, the case-base is expanded, and both adaptation and reasoning rules are updated. To evaluate the proposed approach, a prototype was implemented and experimented to diagnose breast cancer and thyroid diseases. The final results show that the proposed approach increases the diagnosing accuracy of the retrieval-only CBR systems, and provides a reliable accuracy comparing to the current breast cancer and thyroid diagnosis systems.

  3. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  4. Chinese Immigrant Wealth: Heterogeneity in Adaptation

    PubMed Central

    Agius Vallejo, Jody; Aronson, Brian

    2016-01-01

    Chinese immigrants are a diverse and growing group whose members provide a unique opportunity to examine within-immigrant group differences in adaptation. In this paper, we move beyond thinking of national-origin groups as homogenous and study variation among Chinese immigrants in wealth ownership, a critical indicator of adaptation that attracts relatively little attention in the immigration literature. We develop an analytical approach that considers national origin, tenure in the U.S., and age to examine heterogeneity in economic adaptation among the immigrant generation. Our results show that variations among Chinese immigrants explain within-group differences in net worth, asset ownership, and debt. These differences also account for important variation between Chinese immigrants, natives, and other immigrant groups and provide important, new insight into the processes that lead to immigrant adaptation and long-term class stability. PMID:27977737

  5. Epistasis can accelerate adaptive diversification in haploid asexual populations.

    PubMed

    Griswold, Cortland K

    2015-03-07

    A fundamental goal of the biological sciences is to determine processes that facilitate the evolution of diversity. These processes can be separated into ecological, physiological, developmental and genetic. An ecological process that facilitates diversification is frequency-dependent selection caused by competition. Models of frequency-dependent adaptive diversification have generally assumed a genetic basis of phenotype that is non-epistatic. Here, we present a model that indicates diversification is accelerated by an epistatic basis of phenotype in combination with a competition model that invokes frequency-dependent selection. Our model makes use of a genealogical model of epistasis and insights into the effects of balancing selection on the genealogical structure of a population to understand how epistasis can facilitate diversification. The finding that epistasis facilitates diversification may be informative with respect to empirical results that indicate an epistatic basis of phenotype in experimental bacterial populations that experienced adaptive diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    PubMed

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  7. Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units.

    PubMed

    Leroy, Sabine; Giammarinaro, Philippe; Chacornac, Jean-Paul; Lebert, Isabelle; Talon, Régine

    2010-04-01

    The staphylococcal community of the environments of nine French small-scale processing units and their naturally fermented meat products was identified by analyzing 676 isolates. Fifteen species were accurately identified using validated molecular methods. The three prevalent species were Staphylococcus equorum (58.4%), Staphylococcus saprophyticus (15.7%) and Staphylococcus xylosus (9.3%). S. equorum was isolated in all the processing units in similar proportion in meat and environmental samples. S. saprophyticus was also isolated in all the processing units with a higher percentage in environmental samples. S. xylosus was present sporadically in the processing units and its prevalence was higher in meat samples. The genetic diversity of the strains within the three species isolated from one processing unit was studied by PFGE and revealed a high diversity for S. equorum and S. saprophyticus both in the environment and the meat isolates. The genetic diversity remained high through the manufacturing steps. A small percentage of the strains of the two species share the two ecological niches. These results highlight that some strains, probably introduced by the meat, will persist in the manufacturing environment, while other strains are more adapted to the meat products.

  8. Using Technology to Create a Dynamic Classroom Experience

    ERIC Educational Resources Information Center

    Courts, Bari; Tucker, Jan

    2012-01-01

    There are a multitude of diverse technologies available for integration in the college classroom, but considering how to implement these initiatives can be overwhelming to the instructor. The adaptation of this technology is often very simple and involves little more than the Internet and basic word processing skills. A review of the multimedia…

  9. On Appropriacy of Thanking: Dynamic Compensation and Adaptation

    ERIC Educational Resources Information Center

    Liao, Baiqiu

    2013-01-01

    Appropriacy is the paramount consideration of such an inherently polite speech act as thanking in its use. Traditional study of thanking focuses more on the quantitative investigation of its diverse forms and functions than on interpretation of the process in which it is used appropriately and adequately or not among English native or nonnative…

  10. Hybridization and management of oak populations

    Treesearch

    Oliver Gailing

    2017-01-01

    Hybridization can result in the transfer of adaptations among species and may contribute to speciation processes. On the other hand, hybridization can also result in a loss of species diversity due to asymmetric gene flow between species (genetic swamping) and in low hybrid fitness. An understanding of the outcomes of interspecific hybridization is crucial for the...

  11. Linguistic Diversity in a Deaf Prison Population: Implications for Due Process

    ERIC Educational Resources Information Center

    Miller, Katrina R.

    2004-01-01

    The entire deaf prison population in the state of Texas formed the basis for this research. The linguistic skills of prison inmates were assessed using the following measures: (1) Kannapell's categories of bilingualism, (2) adaptation of the diagnostic criteria for Primitive Personality Disorder, (3) reading scores on the Test of Adult Basic…

  12. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes.

    PubMed

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-11-11

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome.Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs.Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  14. The DEPICT model for participatory qualitative health promotion research analysis piloted in Canada, Zambia and South Africa

    PubMed Central

    Flicker, Sarah; Nixon, Stephanie A.

    2015-01-01

    Health promotion researchers are increasingly conducting Community-Based Participatory Research in an effort to reduce health disparities. Despite efforts towards greater inclusion, research teams continue to regularly exclude diverse representation from data analysis efforts. The DEPICT model for collaborative qualitative analysis is a democratic approach to enhancing rigour through inclusion of diverse stakeholders. It is broken down into six sequential steps. Strong leadership, coordination and facilitation skills are needed; however, the process is flexible enough to adapt to most environments and varying levels of expertise. Including diverse stakeholders on an analysis team can enrich data analysis and provide more nuanced understandings of complicated health problems. PMID:24418997

  15. How interdisciplinary teams can create multi-disciplinary education: the interplay between team processes and educational quality.

    PubMed

    Stalmeijer, Renee E; Gijselaers, Wim H; Wolfhagen, Ineke H A P; Harendza, Sigrid; Scherpbier, Albert J J A

    2007-11-01

    Many undergraduate medical education programmes offer integrated multi-disciplinary courses, which are generally developed by a team of teachers from different disciplines. Research has shown that multi-disciplinary teams may encounter problems, which can be detrimental to productive co-operation, which in turn may diminish educational quality. Because we expected that charting these problems might yield suggestions for addressing them, we examined the relationships between team diversity, team processes and course quality. We administered a questionnaire to participants from 21 interdisciplinary teams from 1 Dutch and 1 German medical school, both of which were reforming their curriculum. An adapted questionnaire on team learning behaviours, which had been validated in business contexts, was used to collect data on team processes, team learning behaviours and diversity within teams. We examined the relationship between the team factors and educational quality measures of the courses designed by the teams. A total of 84 teachers (60%) completed the questionnaire. Bivariate correlation analysis showed that several aspects of diversity, conflict, working climate and learning behaviour were correlated with course quality. The negative effects of the diversity measures, notably, value diversity, on other team processes and course quality and the positive association between psychological safety and team learning suggest that educational quality might be improved by enhancing the functioning of multi-disciplinary teams responsible for course development. The relationship between team processes and educational quality should be studied among larger study populations. Student ratings should also be considered in measuring educational quality.

  16. A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift

    NASA Astrophysics Data System (ADS)

    Arfan Jaffar, M.

    2017-01-01

    In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.

  17. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    NASA Astrophysics Data System (ADS)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main coniferous species for a sustainable forest management in the context of climate change), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding, grant number PN-II-PC-PCCA-2013-4-0695.

  18. Make Change Happen at the Program or Institutional Scale: Converting Community Expertise into Practical Guidance

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Orr, C. H.

    2016-12-01

    As geoscience and STEM programs address common challenges like increasing the diversity of graduates or implementing active learning pedagogies, it is important to learn from the experiences of others in the community. Individual faculty members embody a wealth of experience on these topics but distilling that experience into practical guidance that has value for a broad audience is not as simple as knowing exactly what one person did. Context is important, not only because activities used in similar contexts are easier to adapt, but also because activities that work across multiple contexts are more robust. The development of any best practices guidance benefits from the engagement of a community. Synthesizing across multiple viewpoints leads to a consensus that builds on the diversity of individual experiences. The Science Education Resource Center (SERC) at Carleton College has had success generating such resources in geoscience and STEM education. Working with different groups of educators, we have helped develop content around making change happen at the program or institutional levels, increasing the diversity of students graduating in geoscience and STEM, fostering interdisciplinary learning, translating the results of education research into practice, and several others. These resources draw out common practices, situate them in the education research base, and highlight examples of their use in the real world but also communicate the different ways individuals or institutions have adapted these practices for their particular situation. These resources were developed through a group synthesis process involving the contribution of individual or group expertise, a face-to-face meeting of teams working on themes drawn from the contributed work, and asynchronous group revision and review following the meeting. The materials developed via this process provide reliable and adaptable guidance firmly rooted in the community's experience. This presentation will showcase these materials and describe the development process in detail. The materials that have been developed are being added to SERC's For Higher Ed portal (serc.carleton.edu/highered/index.html).

  19. Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations

    PubMed Central

    Miner, Brooks E.; Kerr, Benjamin

    2011-01-01

    Understanding the historical processes that generated current patterns of phenotypic diversity in nature is particularly challenging in subdivided populations. Populations often exhibit heritable genetic differences that correlate with environmental variables, but the non-independence among neighbouring populations complicates statistical inference of adaptation. To understand the relative influence of adaptive and non-adaptive processes in generating phenotypes requires joint evaluation of genetic and phenotypic divergence in an integrated and statistically appropriate analysis. We investigated phenotypic divergence, population-genetic structure and potential fitness trade-offs in populations of Daphnia melanica inhabiting neighbouring subalpine ponds of widely differing transparency to ultraviolet radiation (UVR). Using a combination of experimental, population-genetic and statistical techniques, we separated the effects of shared population ancestry and environmental variables in predicting phenotypic divergence among populations. We found that native water transparency significantly predicted divergence in phenotypes among populations even after accounting for significant population structure. This result demonstrates that environmental factors such as UVR can at least partially account for phenotypic divergence. However, a lack of evidence for a hypothesized trade-off between UVR tolerance and growth rates in the absence of UVR prevents us from ruling out the possibility that non-adaptive processes are partially responsible for phenotypic differentiation in this system. PMID:20943691

  20. Interactions between concentric form-from-structure and face perception revealed by visual masking but not adaptation

    PubMed Central

    Feczko, Eric; Shulman, Gordon L.; Petersen, Steven E.; Pruett, John R.

    2014-01-01

    Findings from diverse subfields of vision research suggest a potential link between high-level aspects of face perception and concentric form-from-structure perception. To explore this relationship, typical adults performed two adaptation experiments and two masking experiments to test whether concentric, but not nonconcentric, Glass patterns (a type of form-from-structure stimulus) utilize a processing mechanism shared by face perception. For the adaptation experiments, subjects were presented with an adaptor for 5 or 20 s, prior to discriminating a target. In the masking experiments, subjects saw a mask, then a target, and then a second mask. Measures of discriminability and bias were derived and repeated measures analysis of variance tested for pattern-specific masking and adaptation effects. Results from Experiment 1 show no Glass pattern-specific effect of adaptation to faces; results from Experiment 2 show concentric Glass pattern masking, but not adaptation, may impair upright/inverted face discrimination; results from Experiment 3 show concentric and radial Glass pattern masking impaired subsequent upright/inverted face discrimination more than translational Glass pattern masking; and results from Experiment 4 show concentric and radial Glass pattern masking impaired subsequent face gender discrimination more than translational Glass pattern masking. Taken together, these findings demonstrate interactions between concentric form-from-structure and face processing, suggesting a possible common processing pathway. PMID:24563526

  1. Ecological opportunity and predator–prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations

    PubMed Central

    2018-01-01

    Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. PMID:29514970

  2. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies.

    PubMed

    Takahashi, Yuma; Kagawa, Kotaro; Svensson, Erik I; Kawata, Masakado

    2014-07-18

    The effect of evolutionary changes in traits and phenotypic/genetic diversity on ecological dynamics has received much theoretical attention; however, the mechanisms and ecological consequences are usually unknown. Female-limited colour polymorphism in damselflies is a counter-adaptation to male mating harassment, and thus, is expected to alter population dynamics through relaxing sexual conflict. Here we show the side effect of the evolution of female morph diversity on population performance (for example, population productivity and sustainability) in damselflies. Our theoretical model incorporating key features of the sexual interaction predicts that the evolution of increased phenotypic diversity will reduce overall fitness costs to females from sexual conflict, which in turn will increase productivity, density and stability of a population. Field data and mesocosm experiments support these model predictions. Our study suggests that increased phenotypic diversity can enhance population performance that can potentially reduce extinction rates and thereby influence macroevolutionary processes.

  3. Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.

    2016-12-01

    The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.

  4. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  5. American Indian/Alaska Native Voices in the Model of Institutional Adaptation to Student Diversity

    ERIC Educational Resources Information Center

    Guillory, Raphael; Wolverton, Mimi; Appleton, Valerie

    2008-01-01

    Richardson and Skinner (1991) in their Model of Institutional Adaptation to Student Diversity (MIASD) assert that state higher education boards have significant influence on the degree to which institutions respond to student diversity. The purpose of the study (conducted in the 2001-2002 school year) reported in this article was to determine…

  6. The California Health Interview Survey 2001: translation of a major survey for California's multiethnic population.

    PubMed

    Ponce, Ninez A; Lavarreda, Shana Alex; Yen, Wei; Brown, E Richard; DiSogra, Charles; Satter, Delight E

    2004-01-01

    The cultural and linguistic diversity of the U.S. population presents challenges to the design and implementation of population-based surveys that serve to inform public policies. Information derived from such surveys may be less than representative if groups with limited or no English language skills are not included. The California Health Interview Survey (CHIS), first administered in 2001, is a population-based health survey of more than 55,000 California households. This article describes the process that the designers of CHIS 2001 underwent in culturally adapting the survey and translating it into an unprecedented number of languages: Spanish, Chinese, Vietnamese, Korean, and Khmer. The multiethnic and multilingual CHIS 2001 illustrates the importance of cultural and linguistic adaptation in raising the quality of population-based surveys, especially when the populations they intend to represent are as diverse as California's.

  7. Ecological partitioning and diversity in tropical planktonic foraminifera

    PubMed Central

    2012-01-01

    Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer) monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms. PMID:22507289

  8. CRISPR-Cas: Adapting to change.

    PubMed

    Jackson, Simon A; McKenzie, Rebecca E; Fagerlund, Robert D; Kieper, Sebastian N; Fineran, Peter C; Brouns, Stan J J

    2017-04-07

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems. Copyright © 2017, American Association for the Advancement of Science.

  9. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  10. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  11. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations.

    PubMed

    Tobler, M; Plath, M; Riesch, R; Schlupp, I; Grasse, A; Munimanda, G K; Setzer, C; Penn, D J; Moodley, Y

    2014-05-01

    The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci.

    PubMed

    Mitsui, Yuki; Setoguchi, Hiroaki

    2012-12-28

    Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence.

  13. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful. PMID:25210204

  14. Trusted computation through biologically inspired processes

    NASA Astrophysics Data System (ADS)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  15. Climate Adaptation is About More Than Climate: Value-Driven Science Delivery

    NASA Astrophysics Data System (ADS)

    Swanston, C.

    2015-12-01

    Efforts to deliver relevant scientific information and tools to diverse stakeholders have dramatically increased in recent years with the intention of promoting climate change adaptation. Much work has been done to understand the barriers to action, but these largely overlook the need to frame the discussion in terms of stakeholder values and co-create innovative solutions that meet their individual needs. A partnership-based effort in the upper Midwest and Northeast called the Climate Change Response Framework (CCRF; www.forestadaptation.org) ensures relevance, breadth, and credibility of its products through stakeholder inclusion at all levels. The fundamental role of the CCRF is to help people meet their land stewardship goals while minimizing climate risk. This represents a subtle but important shift in focus to people and their values, as opposed to climate change and its effects. The CCRF uses a climate planning tool, the Adaptation Workbook (www.adaptationworkbook.org), along with ecosystem vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit conservation objectives. These tools are integrated into an Adaptation Planning and Practices workshop that leads organizations through this structured process of designing adaptation tactics for their projects and plans. All of these tools were developed with stakeholders, or in response to their direct and continuing feedback. The CCRF has involved thousands of people and over 100 organizations, published six ecoregional vulnerability assessments with more than 130 authors, and generated more than 125 intentional adaptation demonstrations in real-world land management projects on federal, state, tribal, county, conservancy, and private lands. The CCRF contributes strongly to the USDA Regional Climate Hubs, working on the applied end of the continuum of climate services occupied by providers such as the CSCs, LCCs, RISAs, and RCCs.

  16. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  17. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  18. Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2009-01-01

    A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.

  19. An adaptive semantic based mediation system for data interoperability among Health Information Systems.

    PubMed

    Khan, Wajahat Ali; Khattak, Asad Masood; Hussain, Maqbool; Amin, Muhammad Bilal; Afzal, Muhammad; Nugent, Christopher; Lee, Sungyoung

    2014-08-01

    Heterogeneity in the management of the complex medical data, obstructs the attainment of data level interoperability among Health Information Systems (HIS). This diversity is dependent on the compliance of HISs with different healthcare standards. Its solution demands a mediation system for the accurate interpretation of data in different heterogeneous formats for achieving data interoperability. We propose an adaptive AdapteR Interoperability ENgine mediation system called ARIEN, that arbitrates between HISs compliant to different healthcare standards for accurate and seamless information exchange to achieve data interoperability. ARIEN stores the semantic mapping information between different standards in the Mediation Bridge Ontology (MBO) using ontology matching techniques. These mappings are provided by our System for Parallel Heterogeneity (SPHeRe) matching system and Personalized-Detailed Clinical Model (P-DCM) approach to guarantee accuracy of mappings. The realization of the effectiveness of the mappings stored in the MBO is evaluation of the accuracy in transformation process among different standard formats. We evaluated our proposed system with the transformation process of medical records between Clinical Document Architecture (CDA) and Virtual Medical Record (vMR) standards. The transformation process achieved over 90 % of accuracy level in conversion process between CDA and vMR standards using pattern oriented approach from the MBO. The proposed mediation system improves the overall communication process between HISs. It provides an accurate and seamless medical information exchange to ensure data interoperability and timely healthcare services to patients.

  20. Influence of technology on magnetic tape storage device characteristics

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.; Vogel, Stephen M.

    1994-01-01

    There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.

  1. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions.

    PubMed

    Liu, Zhaohua; Ji, Zhibin; Wang, Guizhi; Chao, Tianle; Hou, Lei; Wang, Jianmin

    2016-11-03

    Throughout a long period of adaptation and selection, sheep have thrived in a diverse range of ecological environments. Mongolian sheep is the common ancestor of the Chinese short fat-tailed sheep. Migration to different ecoregions leads to changes in selection pressures and results in microevolution. Mongolian sheep and its subspecies differ in a number of important traits, especially reproductive traits. Genome-wide intraspecific variation is required to dissect the genetic basis of these traits. This research resequenced 3 short fat-tailed sheep breeds with a 43.2-fold coverage of the sheep genome. We report more than 17 million single nucleotide polymorphisms and 2.9 million indels and identify 143 genomic regions with reduced pooled heterozygosity or increased genetic distance to each other breed that represent likely targets for selection during the migration. These regions harbor genes related to developmental processes, cellular processes, multicellular organismal processes, biological regulation, metabolic processes, reproduction, localization, growth and various components of the stress responses. Furthermore, we examined the haplotype diversity of 3 genomic regions involved in reproduction and found significant differences in TSHR and PRL gene regions among 8 sheep breeds. Our results provide useful genomic information for identifying genes or causal mutations associated with important economic traits in sheep and for understanding the genetic basis of adaptation to different ecological environments.

  2. A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

    PubMed

    Heger, Thierry J; Edgcomb, Virginia P; Kim, Eunsoo; Lukeš, Julius; Leander, Brian S; Yubuki, Naoji

    2014-01-01

    The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with "field protistology", defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  3. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies.

    PubMed

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians.

  4. Adaptations to local environments in modern human populations.

    PubMed

    Jeong, Choongwon; Di Rienzo, Anna

    2014-12-01

    After leaving sub-Saharan Africa around 50000-100000 years ago, anatomically modern humans have quickly occupied extremely diverse environments. Human populations were exposed to further environmental changes resulting from cultural innovations, such as the spread of farming, which gave rise to new selective pressures related to pathogen exposures and dietary shifts. In addition to changing the frequency of individual adaptive alleles, natural selection may also shape the overall genetic architecture of adaptive traits. Here, we review recent advances in understanding the genetic architecture of adaptive human phenotypes based on insights from the studies of lactase persistence, skin pigmentation and high-altitude adaptation. These adaptations evolved in parallel in multiple human populations, providing a chance to investigate independent realizations of the evolutionary process. We suggest that the outcome of adaptive evolution is often highly variable even under similar selective pressures. Finally, we highlight a growing need for detecting adaptations that did not follow the classical sweep model and for incorporating new sources of genetic evidence such as information from ancient DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The DEPICT model for participatory qualitative health promotion research analysis piloted in Canada, Zambia and South Africa.

    PubMed

    Flicker, Sarah; Nixon, Stephanie A

    2015-09-01

    Health promotion researchers are increasingly conducting Community-Based Participatory Research in an effort to reduce health disparities. Despite efforts towards greater inclusion, research teams continue to regularly exclude diverse representation from data analysis efforts. The DEPICT model for collaborative qualitative analysis is a democratic approach to enhancing rigour through inclusion of diverse stakeholders. It is broken down into six sequential steps. Strong leadership, coordination and facilitation skills are needed; however, the process is flexible enough to adapt to most environments and varying levels of expertise. Including diverse stakeholders on an analysis team can enrich data analysis and provide more nuanced understandings of complicated health problems. © The Author (2014). Published by Oxford University Press.

  6. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  7. Interactive effects of body-size structure and adaptive foraging on food-web stability.

    PubMed

    Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian

    2012-03-01

    Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.

  8. Characterisation of the Transcriptomes of Genetically Diverse Listeria monocytogenes Exposed to Hyperosmotic and Low Temperature Conditions Reveal Global Stress-Adaptation Mechanisms

    PubMed Central

    Durack, Juliana; Ross, Tom; Bowman, John P.

    2013-01-01

    The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation. PMID:24023890

  9. Dechlorination of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid in anaerobic freshwater sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, F.O.; Rogers, J.E.

    1990-02-01

    Pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid were transformed by microbial reductive dechlorination in freshwater, anaerobic sediments from such diverse locations as Georgia, Florida, New York and the Soviet Union. The reductive dechlorination process involves removal of a chlorine and replacement with a hydrogen. Sediments previously adapted to dechlorinate dichlorophenols were found to mediate dechlorination at much faster rates than unadapted sediments. Pentachlorophenol dechlorination in dichlorophenol-adapted sediments generated tetra-, tri-, di-, and monochlorophenol and phenol. Concentrations of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid up to 100 ppm were dechlorinated by adapted sediments. Reductive dechlorination of PCP, 2,4-D, and 2,4,5-T was regionmore » specific for chlorine removal as determined by the dichlorophenol isomer used to adapt the sediment. Sediment adapted to 2,4-dichlorophenol preferentially removed chlorines from the ortho position; whereas sediment adapted to 3,4-dichlorophenol preferentially removed chlorines from the para position.« less

  10. D-loop haplotype diversity in Brazilian horse breeds

    PubMed Central

    Ianella, Patrícia; Albuquerque, Maria do Socorro Maués; Paiva, Samuel Rezende; do Egito, Andréa Alves; Almeida, Leonardo Daniel; Sereno, Fabiana T. P. S.; Carvalho, Luiz Felipe Ramos; Mariante, Arthur da Silva; McManus, Concepta Margaret

    2017-01-01

    Abstract The first horses were brought to Brazil by the colonizers after 1534. Over the centuries, these animals evolved and adapted to local environmental conditions usually unsuitable for exotic breeds, thereby originating locally adapted Brazilian breeds. The present work represents the first description of maternal genetic diversity in these horse breeds based on D-loop sequences. A D-Loop HSV-I fragment of 252 bp, from 141 horses belonging to ten Brazilian breeds / genetic groups (locally adapted and specialized breeds) were analysed. Thirty-five different haplotypes belonging to 18 haplogroups were identified with 33 polymorphic sites. Haplotype diversity (varying from 0.20 to 0.96) and nucleotide diversity (varying from 0.0039 to 0.0239) was lower for locally adapted than for specialized breeds, with the same pattern observed for FST values. Haplogroups identified in Brazilian breeds are in agreement with previous findings in South American samples. The low variability observed mainly in locally adapted breeds, indicates that, to ensure conservation of these breeds, careful reproductive management is needed. Additional genetic characterization studies are required to support accurate decision-making. PMID:28863209

  11. Prespacer processing and specific integration in a Type I-A CRISPR system

    PubMed Central

    Rollie, Clare; Graham, Shirley; Rouillon, Christophe

    2018-01-01

    Abstract The CRISPR–Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3′ ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3′ ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR–Cas elements and host proteins across CRISPR types. PMID:29228332

  12. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  13. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties.

    PubMed

    Vogel, Anja; Eisenhauer, Nico; Weigelt, Alexandra; Scherer-Lorenzen, Michael

    2013-09-01

    Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes. © 2013 John Wiley & Sons Ltd.

  14. Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces

    USDA-ARS?s Scientific Manuscript database

    The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the wheat resistance gene pool available for germplasm ...

  15. Extensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains.

    PubMed

    Steenwyk, Jacob; Rokas, Antonis

    2017-05-05

    Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance ( CUP ), flocculation ( FLO ), and glucose metabolism ( HXT ), as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation. Copyright © 2017 Steenwyk and Rokas.

  16. Implications of complex adaptive systems theory for interpreting research about health care organizations.

    PubMed

    Jordon, Michelle; Lanham, Holly Jordan; Anderson, Ruth A; McDaniel, Reuben R

    2010-02-01

    Data about health care organizations (HCOs) are not useful until they are interpreted. Such interpretations are influenced by the theoretical lenses used by the researcher. Our purpose was to suggest the usefulness of theories of complex adaptive systems (CASs) in guiding research interpretation. Specifically, we addressed two questions: (1) What are the implications for interpreting research observations in HCOs of the fact that we are observing relationships among diverse agents? (2) What are the implications for interpreting research observations in HCOs of the fact that we are observing relationships among agents that learn? We defined diversity and learning and the implications of the non-linear relationships among agents from a CAS perspective. We then identified some common analytical practices that were problematic and may lead to conceptual and methodological errors. Then we described strategies for interpreting the results of research observations. We suggest that the task of interpreting research observations of HCOs could be improved if researchers take into account that the systems they study are CASs with non-linear relationships among diverse, learning agents. Our analysis points out how interpretation of research results might be shaped by the fact that HCOs are CASs. We described how learning is, in fact, the result of interactions among diverse agents and that learning can, by itself, reduce or increase agent diversity. We encouraged researchers to be persistent in their attempts to reason about complex systems and learn to attend not only to structures, but also to processes and functions of complex systems.

  17. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation

    PubMed Central

    Steenwyk, Jacob L.; Rokas, Antonis

    2018-01-01

    In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond. PMID:29520259

  18. Waveform Design and Diversity for Advanced Space-Time Adaptive Processing and Multiple Input Multiple Output Systems

    DTIC Science & Technology

    2012-08-01

    It suggests that a smart use of some a-priori information about the operating environment, when processing the received signal and designing the...random variable with the same variance of the backscattering target amplitude αT , and D ( αT , α G T ) is the Kullback − Leibler divergence, see [65...MI . Proof. See Appendix 3.6.6. Thus, we can use the optimization procedure of Algorithm 4 to optimize the Mutual Information between the target

  19. Reengineering a database for clinical trials management: lessons for system architects.

    PubMed

    Brandt, C A; Nadkarni, P; Marenco, L; Karras, B T; Lu, C; Schacter, L; Fisk, J M; Miller, P L

    2000-10-01

    This paper describes the process of enhancing Trial/DB, a database system for clinical studies management. The system's enhancements have been driven by the need to maximize the effectiveness of developer personnel in supporting numerous and diverse users, of study designers in setting up new studies, and of administrators in managing ongoing studies. Trial/DB was originally designed to work over a local area network within a single institution, and basic architectural changes were necessary to make it work over the Internet efficiently as well as securely. Further, as its use spread to diverse communities of users, changes were made to let the processes of study design and project management adapt to the working styles of the principal investigators and administrators for each study. The lessons learned in the process should prove instructive for system architects as well as managers of electronic patient record systems.

  20. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies. PMID:16242022

  1. Stress-induced O-GlcNAcylation: an adaptive process of injured cells.

    PubMed

    Martinez, Marissa R; Dias, Thiago Braido; Natov, Peter S; Zachara, Natasha E

    2017-02-08

    In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O -GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O -GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O -GlcNAc, the mechanisms by which O -GlcNAc promotes cytoprotection, and the clinical significance of these data. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Food security experiences of displaced North Korean households

    PubMed Central

    Nam, So-Young

    2014-01-01

    BACKGROUND/OBJECTIVES Food shortage situation in North Korea has gained much interest, however food insecurity caused by the food shortage in North Korean households has not been much investigated. This study examined food security experiences and food consumption pattern of displaced North Korean households currently living in South Korea. SUBJECTS/METHODS Food security experience among 51 North Korean households living in South Korea was examined using the Household Food Insecurity Access Scale (HFIAS) in three time points: immediately before childbirth, immediately before leaving North Korea, and immediately before entering South Korea. Meal/snack consumption frequencies and food diversity were also examined. RESULTS Food security situation was the worst at the time of immediately before leaving North Korea with the average HFIAS score of 10.05. The households that were food insecure, they tended to be "severely" insecure. Although majority of the subjects reported having three or more meals a day, food diversity in their diet was very low with the average food diversity score of 2.17 immediately before childbirth and 1.74 immediately before leaving North Korea. Their diet appeared to heavily rely on grain and vegetable. CONCLUSIONS This study is one of few that specifically examined food security of North Korean households with a pre-developed scale, and that demonstrated food security situation at different time points in quantified terms. Replicating this study with different groups of North Korean households for different time points would allow more complete understanding of impacts of food shortage. Food diversity score could provide a good way to examine changes of food consumption occurring to North Koreans in the process of adaptation. More attention to the changes occurring during adaption to South Korea should be given to understand the process and impact and to prepare public nutrition policy for the re-unified Korea. PMID:24741405

  3. Food security experiences of displaced North Korean households.

    PubMed

    Lee, Soo-Kyung; Nam, So-Young

    2014-04-01

    Food shortage situation in North Korea has gained much interest, however food insecurity caused by the food shortage in North Korean households has not been much investigated. This study examined food security experiences and food consumption pattern of displaced North Korean households currently living in South Korea. Food security experience among 51 North Korean households living in South Korea was examined using the Household Food Insecurity Access Scale (HFIAS) in three time points: immediately before childbirth, immediately before leaving North Korea, and immediately before entering South Korea. Meal/snack consumption frequencies and food diversity were also examined. Food security situation was the worst at the time of immediately before leaving North Korea with the average HFIAS score of 10.05. The households that were food insecure, they tended to be "severely" insecure. Although majority of the subjects reported having three or more meals a day, food diversity in their diet was very low with the average food diversity score of 2.17 immediately before childbirth and 1.74 immediately before leaving North Korea. Their diet appeared to heavily rely on grain and vegetable. This study is one of few that specifically examined food security of North Korean households with a pre-developed scale, and that demonstrated food security situation at different time points in quantified terms. Replicating this study with different groups of North Korean households for different time points would allow more complete understanding of impacts of food shortage. Food diversity score could provide a good way to examine changes of food consumption occurring to North Koreans in the process of adaptation. More attention to the changes occurring during adaption to South Korea should be given to understand the process and impact and to prepare public nutrition policy for the re-unified Korea.

  4. The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2012-03-20

    The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less

  5. ALLOZYME ANALYSIS OF THE RELATIONSHIP AMONG CONTAMINANT-TOLERANT AND CONTAMINANT SENSITIVE POPULATIONS OF FUNDULUS HETEROCLITUS

    EPA Science Inventory

    Genetic diversity is essential for adaptation to environmental change. Exposure to toxic chemicals causes directional selection that can reduce genetic diversity, rendering exposed populations less able to adapt to environmental change. Populations of the estuarine killifish Fund...

  6. Culture, the Crack'd Mirror, and the Neuroethics of Disease.

    PubMed

    Gillett, Grant

    2016-10-01

    Human beings are sensorimotor coupled to the actual world and also attuned to the symbolic world of culture and the techniques of adaptation that culture provides. The self-image and self-shaping mediated by that mirror directly affects the neurocognitive structures that integrate human neural activity and reshape its processing capacities through top-down or autopoietic effects. Thus a crack'd mirror, which disrupts the processes of enactive self-configuration, can be disabling for an individual. That is exactly what happens in postcolonial or immigration contexts in which individuals' cultural adaptations are marginalized and disconnected in diverse and often painful and disorienting ways. The crack'd mirror is therefore a powerful trope for neuroethics and helps us understand the social and moral pathologies of many indigenous and immigrant communities.

  7. More than just orphans: are taxonomically-restricted genes important in evolution?

    PubMed

    Khalturin, Konstantin; Hemmrich, Georg; Fraune, Sebastian; Augustin, René; Bosch, Thomas C G

    2009-09-01

    Comparative genome analyses indicate that every taxonomic group so far studied contains 10-20% of genes that lack recognizable homologs in other species. Do such 'orphan' or 'taxonomically-restricted' genes comprise spurious, non-functional ORFs, or does their presence reflect important evolutionary processes? Recent studies in basal metazoans such as Nematostella, Acropora and Hydra have shed light on the function of these genes, and now indicate that they are involved in important species-specific adaptive processes. Here we focus on evidence from Hydra suggesting that taxonomically-restricted genes play a role in the creation of phylum-specific novelties such as cnidocytes, in the generation of morphological diversity, and in the innate defence system. We propose that taxon-specific genes drive morphological specification, enabling organisms to adapt to changing conditions.

  8. The genome landscape of indigenous African cattle.

    PubMed

    Kim, Jaemin; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Bashir, Salim; Diallo, Boubacar; Agaba, Morris; Kim, Kwondo; Kwak, Woori; Sung, Samsun; Seo, Minseok; Jeong, Hyeonsoo; Kwon, Taehyung; Taye, Mengistie; Song, Ki-Duk; Lim, Dajeong; Cho, Seoae; Lee, Hyun-Jeong; Yoon, Duhak; Oh, Sung Jong; Kemp, Stephen; Lee, Hak-Kyo; Kim, Heebal

    2017-02-20

    The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.

  9. Parallel evolution of passive and active defence in land snails.

    PubMed

    Morii, Yuta; Prozorova, Larisa; Chiba, Satoshi

    2016-11-11

    Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains unclear how predation causes morphological and behavioural diversity in prey species and how it might lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species has occurred among closely related land snails as a result of adaptation to predator attacks. This caused the divergence of defensive strategies into two alternatives: passive defence and active defence. Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented two alternative defence behaviours against predation by malacophagous beetles. Furthermore, the behaviours are potentially associated with differences in shell morphology. In addition, molecular phylogenetic analyses indicated that these alternative strategies against predation arose independently on the islands and on the continent suggesting that anti-predator adaptation is a major cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix snails as a result of the divergence of defensive strategies into passive and active behaviours and the possibility of species radiation due to anti-predatory adaptations.

  10. Polar Marine Microorganisms and Climate Change.

    PubMed

    Verde, C; Giordano, D; Bellas, C M; di Prisco, G; Anesio, A M

    2016-01-01

    The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors. © 2016 Elsevier Ltd All rights reserved.

  11. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Research lessons learned: occupational therapy with culturally diverse mothers of premature infants.

    PubMed

    Reid, Denise T; Chiu, Teresa M L

    2011-06-01

    Evaluation studies of the effectiveness of home-based occupational therapy are scarce but are needed to justify the impact of occupational therapy intervention. When the intervention is for persons from diverse cultural backgrounds, additional research challenges arise. To share lessons learned in conducting home-based occupational therapy research with Canadian, and immigrant South Asian and Chinese mothers of premature infants in a large Canadian city. Lessons learned were to implement a culturally sensitive recruitment process, change the research design to include more interviews and focus groups, and be aware of the need for culturally appropriate instruments. Researchers need to be sensitized to the Western cultural values upon which most research designs and instrumentation are constructed. Involvement of a culturally diverse research team, openness to feedback, adaptability, and critical reflection on what is important to the cultural groups are among the suggestions for researchers planning home-based occupational therapy research with culturally diverse populations.

  13. Metabolite recycling and bidirectional C fluxes: Revolutionizing our view on microbial C cycling in soils

    NASA Astrophysics Data System (ADS)

    Dippold, M. A.; Apostel, C.; Kuzyakov, Y.

    2016-12-01

    Biogeochemists' view on microbial C transformation in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the anabolism. However, life in a C limited environment as challenging as soil requires microbial adaptation strategies at all levels of metabolism. By coupling of position-specific labeling of core metabolites with compound-specific isotope analysis we demonstrated that catabolic oxidation of these metabolites exists in parallel to reductive, energy consuming pathways, reducing them for anabolic purposes. Up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in the citric acid cycle. Furthermore, position-specific labeling of rather `cost-intensive' biomass compounds such as fatty acids revealed that intact recycling of metabolites is a crucial microbial adaptation to C scarcity in soils. Both processes are unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. To understand how microorganisms catalyze the biogeochemical fluxes in soil, a profound understanding of their metabolic adaptation strategies such as recycling or switching between bidirectional fluxes is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.

  14. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.

  15. Giving Context to the Physician Competency Reference Set: Adapting to the Needs of Diverse Populations

    PubMed Central

    Eckstrand, Kristen L.; Potter, Jennifer; Bayer, Carey Roth; Englander, Robert

    2016-01-01

    Delineating the requisite competencies of a 21st-century physician is the first step in the paradigm shift to competency-based medical education. Over the past two decades, more than 150 lists of competencies have emerged. In a synthesis of these lists, the Physician Competency Reference Set (PCRS) provided a unifying framework of competencies that define the general physician. The PCRS is not context or population specific; however, competently caring for certain underrepresented populations or specific medical conditions can require more specific context. Previously developed competency lists describing care for these populations have been disconnected from an overarching competency framework, limiting their uptake. To address this gap, the Association of American Medical Colleges Advisory Committee on Sexual Orientation, Gender Identity, and Sex Development adapted the PCRS by adding context- and content-specific qualifying statements to existing PCRS competencies to better meet the needs of diverse patient populations. This Article describes the committee’s process in developing these qualifiers of competence. To facilitate widespread adoption of the contextualized competencies in U.S. medical schools, the committee used an established competency framework to develop qualifiers of competence to improve the health of individuals who are lesbian, gay, bisexual, transgender; gender nonconforming; or born with differences in sexual development. This process can be applied to other underrepresented populations or medical conditions, ensuring that relevant topics are included in medical education and, ultimately, health care outcomes are improved for all patients inclusive of diversity, background, and ability. PMID:26796092

  16. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales

    PubMed Central

    De Kort, H; Vandepitte, K; Mergeay, J; Mijnsbrugge, K V; Honnay, O

    2015-01-01

    The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the ‘intermediate' and ‘regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation. PMID:25944466

  17. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  18. DEVELOPMENT OF AQUATIC MODELS FOR TESTING THE RELATIONSHIP BETWEEN GENETIC DIVERSITY AND POPULATION EXTINCTION RISK

    EPA Science Inventory

    The relationship between population adaptive potential and extinction risk in a changing environment is not well understood. Although the expectation is that genetic diversity is directly related to the capacity of populations to adapt, the statistical and predictive aspects of ...

  19. Trade-off Mechanisms Shaping the Diversity of Bacteria.

    PubMed

    Ferenci, Thomas

    2016-03-01

    Strain-to-strain variations in bacterial biofilm formation, metabolism, motility, virulence, evolvability, DNA repair and resistance (to phage, antibiotics, or environmental stresses) each contribute to bacterial diversity. Microbiologists should be aware that all of these traits are subject to constraints imposed by trade-offs, so adaptations improving one trait may be at the cost of another. A deeper appreciation of trade-offs is thus crucial for assessing the mechanistic limits on important bacterial characteristics. Studies of the negative correlations between various traits have revealed three molecular mechanisms, namely, trade-offs involving resource allocation, design constraint, and information processing. This review further discusses why these trade-off mechanisms are important in the establishment of models capable of predicting bacterial competition, coexistence, and sources of diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Advancing diversity through inclusive excellence in nursing education.

    PubMed

    Bleich, Michael R; MacWilliams, Brent R; Schmidt, Bonnie J

    2015-01-01

    Nurse leaders call for a more diverse nursing workforce, but too few address the concept of inclusion as a recruitment and retention strategy or as part of improving the academic learning milieu. This article addresses organizational considerations of diversity and inclusion as part of the agenda established by the Association of American Colleges and Universities for inclusive excellence, building on the idea that academic environments only become excellent when an inclusive climate is reached. Six organizational strategies to inclusion are presented from the authors' experiences, some structural and others behavioral: admissions processes, invisibility, absence of community, promotion and tenure, exclusion, and tokenism. A call for structural and behavioral adaptions within nursing education to advance an inclusive excellence agenda is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ecological range shift in the polyploid members of the South American genus Fosterella (Bromeliaceae).

    PubMed

    Paule, Juraj; Wagner, Natascha D; Weising, Kurt; Zizka, Georg

    2017-08-01

    The distribution of polyploidy along a relatively steep Andean elevation and climatic gradient is studied using the genus Fosterella L.B. Sm. (Bromeliaceae) as a model system. Ecological differentiation of cytotypes and the link of polyploidy with historical biogeographic processes such as dispersal events and range shift are assessed. 4',6-Diamidino-2-phenylindole (DAPI) staining of nuclei and flow cytometry were used to estimate the ploidy levels of 159 plants from 22 species sampled throughout the distribution range of the genus. Ecological differentiation among ploidy levels was tested by comparing the sets of climatic variables. Ancestral chromosome number reconstruction was carried out on the basis of a previously generated phylogeographic framework. This study represents the first assessment of intrageneric, intraspecific and partially intrapopulational cytotype diversity in a genus of the Bromeliaceae family. In Fosterella , the occurrence of polyploidy was limited to the phylogenetically isolated penduliflora and rusbyi groups. Cytotypes were found to be ecologically differentiated, showing that polyploids preferentially occupy colder habitats with high annual temperature variability (seasonality). The combined effects of biogeographic history and adaptive processes are presumed to have shaped the current cytotype distribution in the genus. The results provide indirect evidence for both adaptive ecological and non-adaptive historical processes that jointly influenced the cytotype distribution in the predominantly Andean genus Fosterella (Bromeliaceae). The results also exemplify the role of polyploidy as an important driver of speciation in a topographically highly structured and thus climatically diverse landscape. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Life on the edge: insect ecology in arctic environments.

    PubMed

    Strathdee, A T; Bale, J S

    1998-01-01

    The restricted Arctic insect fauna is usually explained by a lack of recolonization since the last glacial period, inadequate supply of suitable resources, or insufficient adaptation to such a harsh environment. These hypotheses and others that attempt to explain the latitudinal gradient of species distributions and abundance are reviewed. Arctic habitats available to insects are strongly heterogeneous, requiring a similarly diverse array of adaptive responses, characteristic of those species that have colonized and survived in such a stressful climate. Important adaptations in morphology (size, wings), behavior (activity patterns, thermoregulation), life cycles, and ecophysiology (cold hardiness, anaerobiosis, desiccation resistance) are discussed. The current focus of global climate change research on polar regions is identified, particularly the opportunity to study fundamental ecological processes and spatial dynamics in the relatively simple Arctic ecosystems.

  3. Circles of Influence and Chains of Command: The Social Processes Whereby Ethnic Communities Influence Host Societies

    ERIC Educational Resources Information Center

    Orum, Anthony M.

    2005-01-01

    Research into immigration has for many years focused most of its attention on the issue of how immigrants adapt to host societies. This tendency is especially true in the work of sociologists. Yet if we acknowledge the growing ethnic diversity today in the United States and elsewhere, the most interesting questions arise as to how immigrants…

  4. Resident and family member perceptions of cultural diversity in aged care homes.

    PubMed

    Xiao, Lily Dongxia; Willis, Eileen; Harrington, Ann; Gillham, David; De Bellis, Anita; Morey, Wendy; Jeffers, Lesley

    2017-03-01

    Similar to many developed nations, older people living in residential aged care homes in Australia and the staff who care for them have become increasingly multicultural. This cultural diversity adds challenges for residents in adapting to the care home. This study explores: (i) residents' and family members' perceptions about staff and cultural diversity, and (ii) culturally and linguistically diverse residents' and family members' experiences. An interpretive study design employing a thematic analysis was applied. Twenty-three residents and seven family members participated in interviews. Four themes were identified from interpreting residents and family members' perceptions of the impact of cultural diversity on their adaptation to aged care homes: (i) perceiving diversity as an attraction; (ii) adapting to cross-cultural communication; (iii) adjusting to diet in the residential care home; and (iv) anticipating individualized psychosocial interactions. The findings have implications for identifying strategies to support staff from all cultural backgrounds in order to create a caring environment that facilitates positive relationships with residents and supports residents to adjust to the care home. © 2016 John Wiley & Sons Australia, Ltd.

  5. Adaptive governance good practice: Show me the evidence!

    PubMed

    Sharma-Wallace, Lisa; Velarde, Sandra J; Wreford, Anita

    2018-09-15

    Adaptive governance has emerged in the last decade as an intriguing avenue of theory and practice for the holistic management of complex environmental problems. Research on adaptive governance has flourished since the field's inception, probing the process and mechanisms underpinning the new approach while offering various justifications and prescriptions for empirical use. Nevertheless, recent reviews of adaptive governance reveal some important conceptual and practical gaps in the field, particularly concerning challenges in its application to real-world cases. In this paper, we respond directly to the empirical challenge of adaptive governance, specifically asking: which methods contribute to the implementation of successful adaptive governance process and outcomes in practice and across cases and contexts? We adopt a systematic literature review methodology which considers the current body of empirical literature on adaptive governance of social-ecological systems in order to assess and analyse the methods affecting successful adaptive governance practice across the range of existing cases. We find that methods contributing to adaptive governance in practice resemble the design recommendations outlined in previous adaptive governance scholarship, including meaningful collaboration across actors and scales; effective coordination between stakeholders and levels; building social capital; community empowerment and engagement; capacity development; linking knowledge and decision-making through data collection and monitoring; promoting leadership capacity; and exploiting or creating governance opportunities. However, we critically contextualise these methods by analysing and summarising their patterns-in-use, drawing examples from the cases to explore the specific ways they were successfully or unsuccessfully applied to governance issues on-the-ground. Our results indicate some important underlying shared patterns, trajectories, and lessons learned for evidence-based adaptive governance good practice within and across diverse sectors, issues, and contexts. Copyright © 2018. Published by Elsevier Ltd.

  6. Framework for culturally competent decisionmaking in child welfare.

    PubMed

    Cohen, Elena P

    2003-01-01

    This article provides a framework to understand the cultural, social, political, and economic factors that affect decisionmaking when working with ethnically and racially diverse families in the child welfare system. The article describes external factors affecting the decisionmaking process, including community environment, agency structure, and family characteristics. It then reviews the core stages of the casework process, describing key decisions during intake, assessment, service planning, implementation, evaluation, and closure. Although the framework is based on casework process in the child welfare system, it can be adapted to other child-serving systems, including education, mental health, and juvenile justice.

  7. Rapid Evolution of piRNA Pathway in the Teleost Fish: Implication for an Adaptation to Transposon Diversity

    PubMed Central

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-01-01

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. PMID:24846630

  8. Culturally Adaptive Walking Intervention for Korean-Chinese Female Migrant Workers.

    PubMed

    Cho, Sunghye; Lee, Hyeonkyeong; Kim, Jung Hee; Lee, Meenhye; Lee, Young-Me

    2017-05-01

    Although the literature has commonly cited that development of culturally adaptive interventions is key to improving the health outcomes of culturally and linguistically diverse populations, there have been limited culturally adaptive walking interventions specific to Korean-Chinese (KC) migrants. The objective of this study is to describe the process in development of culturally adaptive walking interventions for KC female migrant workers, using the intervention mapping (IM) method. The culturally adaptive walking intervention was developed using the IM method, which is a stepwise theory and evidence-based approach for planning interventions. The IM method process has six steps, including needs assessment, formulation of change objectives, selection of theory-based methods and practical strategies, development of an intervention program, development of an adoption and implementation plan, and development of an evaluation design. The determinants of walking behavior, including knowledge, self-efficacy, social support, and acculturation, were identified through an extensive literature review, community leader interviews, and a survey of female KC migrant workers. Appropriate intervention methods and strategies were identified based on relevant theories. Acculturation was a determinant of exercise behavior, and various methods to improve cultural adaptation were identified in the context of the lifestyles and working environments of the target population. The IM method provided a foundation for creating a health intervention for KC female migrant workers. This method could easily be useful for health care providers working with other groups.

  9. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage

    PubMed Central

    Wojcieszak, Martyna; Pyzik, Adam; Poszytek, Krzysztof; Krawczyk, Pawel S.; Sobczak, Adam; Lipinski, Leszek; Roubinek, Otton; Palige, Jacek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-01-01

    A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage. PMID:29033919

  10. A Word to the Wise: Advice for Scientists Engaged in Collaborative Adaptive Management

    NASA Astrophysics Data System (ADS)

    Hopkinson, Peter; Huber, Ann; Saah, David S.; Battles, John J.

    2017-05-01

    Collaborative adaptive management is a process for making decisions about the environment in the face of uncertainty and conflict. Scientists have a central role to play in these decisions. However, while scientists are well trained to reduce uncertainty by discovering new knowledge, most lack experience with the means to mitigate conflict in contested situations. To address this gap, we drew from our efforts coordinating a large collaborative adaptive management effort, the Sierra Nevada Adaptive Management Project, to offer advice to our fellow environmental scientists. Key challenges posed by collaborative adaptive management include the confusion caused by multiple institutional cultures, the need to provide information at management-relevant scales, frequent turnover in participants, fluctuations in enthusiasm among key constituencies, and diverse definitions of success among partners. Effective strategies included a dedication to consistency, a commitment to transparency, the willingness to communicate frequently via multiple forums, and the capacity for flexibility. Collaborative adaptive management represents a promising, new model for scientific engagement with the public. Learning the lessons of effective collaboration in environmental management is an essential task to achieve the shared goal of a sustainable future.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koniges, A.E.; Craddock, G.G.; Schnack, D.D.

    The purpose of the workshop was to assemble workers, both within and outside of the fusion-related computations areas, for discussion regarding the issues of dynamically adaptive gridding. There were three invited talks related to adaptive gridding application experiences in various related fields of computational fluid dynamics (CFD), and nine short talks reporting on the progress of adaptive techniques in the specific areas of scrape-off-layer (SOL) modeling and magnetohydrodynamic (MHD) stability. Adaptive mesh methods have been successful in a number of diverse fields of CFD for over a decade. The method involves dynamic refinement of computed field profiles in a waymore » that disperses uniformly the numerical errors associated with discrete approximations. Because the process optimizes computational effort, adaptive mesh methods can be used to study otherwise the intractable physical problems that involve complex boundary shapes or multiple spatial/temporal scales. Recent results indicate that these adaptive techniques will be required for tokamak fluid-based simulations involving the diverted tokamak SOL modeling and MHD simulations problems related to the highest priority ITER relevant issues.Individual papers are indexed separately on the energy data bases.« less

  12. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  13. The influence of surround suppression on adaptation effects in primary visual cortex

    PubMed Central

    Wissig, Stephanie C.

    2012-01-01

    Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects. PMID:22423001

  14. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning

    PubMed Central

    Theobald, David M.; Harrison-Atlas, Dylan; Monahan, William B.; Albano, Christine M.

    2015-01-01

    Key to understanding the implications of climate and land use change on biodiversity and natural resources is to incorporate the physiographic platform on which changes in ecological systems unfold. Here, we advance a detailed classification and high-resolution map of physiography, built by combining landforms and lithology (soil parent material) at multiple spatial scales. We used only relatively static abiotic variables (i.e., excluded climatic and biotic factors) to prevent confounding current ecological patterns and processes with enduring landscape features, and to make the physiographic classification more interpretable for climate adaptation planning. We generated novel spatial databases for 15 landform and 269 physiographic types across the conterminous United States of America. We examined their potential use by natural resource managers by placing them within a contemporary climate change adaptation framework, and found our physiographic databases could play key roles in four of seven general adaptation strategies. We also calculated correlations with common empirical measures of biodiversity to examine the degree to which the physiographic setting explains various aspects of current biodiversity patterns. Additionally, we evaluated the relationship between landform diversity and measures of climate change to explore how changes may unfold across a geophysical template. We found landform types are particularly sensitive to spatial scale, and so we recommend using high-resolution datasets when possible, as well as generating metrics using multiple neighborhood sizes to both minimize and characterize potential unknown biases. We illustrate how our work can inform current strategies for climate change adaptation. The analytical framework and classification of landforms and parent material are easily extendable to other geographies and may be used to promote climate change adaptation in other settings. PMID:26641818

  15. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

    DOE PAGES

    Peris, David; Moriarty, Ryan V.; Alexander, William G.; ...

    2017-03-27

    Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less

  16. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peris, David; Moriarty, Ryan V.; Alexander, William G.

    Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less

  17. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci

    PubMed Central

    2012-01-01

    Background Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. Results The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. Conclusions This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence. PMID:23273287

  18. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks

    PubMed Central

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C.; Pepper, John W.

    2017-01-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of “cancer” and for why this convergent condition becomes life-threatening. PMID:28148564

  19. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks.

    PubMed

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C; Pepper, John W

    2017-02-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    PubMed Central

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  1. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding.

    PubMed

    Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio

    2015-11-16

    The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  3. Stability and diversity in collective adaptation

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Akiyama, Eizo; Crutchfield, James P.

    2005-10-01

    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.

  4. Closed-form Capacity Expressions for the α-μ Fading Channel with SC Diversity under Different Adaptive Transmission Strategies

    NASA Astrophysics Data System (ADS)

    Mohamed, Refaat; Ismail, Mahmoud H.; Newagy, Fatma; Mourad, Heba M.

    2013-03-01

    Stemming from the fact that the α-μ fading distribution is one of the very general fading models used in the literature to describe the small scale fading phenomenon, in this paper, closed-form expressions for the Shannon capacity of the α-μ fading channel operating under four main adaptive transmission strategies are derived assuming integer values for μ. These expressions are derived for the case of no diversity as well as for selection combining diversity with independent and identically distributed branches. The obtained expressions reduce to those previously derived in the literature for the Weibull as well as the Rayleigh fading cases, which are both special cases of the α-μ channel. Numerical results are presented for the capacity under the four adaptive transmission strategies and the effect of the fading parameter as well as the number of diversity branches is studied.

  5. Geocoded data structures and their applications to Earth science investigations

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  6. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    PubMed

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  7. Range-wide parallel climate-associated genomic clines in Atlantic salmon

    PubMed Central

    Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.

    2017-01-01

    Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123

  8. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  9. Epigenetic regulation of adaptive responses of forest tree species to the environment

    PubMed Central

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  10. Brain shape convergence in the adaptive radiation of New World monkeys

    PubMed Central

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan

    2016-01-01

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427

  11. Physiological constraints on organismal response to global warming: Mechanistic insights from clinally varying populations and implications for assessing endangerment.

    PubMed

    Bernardo, Joseph; Spotila, James R

    2006-03-22

    Recent syntheses indicate that global warming affects diverse biological processes, but also highlight the potential for some species to adapt behaviourally or evolutionarily to rapid climate change. Far less attention has addressed the alternative, that organisms lacking this ability may face extinction, a fate projected to befall one-quarter of global biodiversity. This conclusion is controversial, in part because there exist few mechanistic studies that show how climate change could precipitate extinction. We provide a concrete, mechanistic example of warming as a stressor of organisms that are closely adapted to cool climates from a comparative analysis of organismal tolerance among clinally varying populations along a natural thermal gradient. We found that two montane salamanders exhibit significant metabolic depression at temperatures within the natural thermal range experienced by low and middle elevation populations. Moreover, the magnitude of depression was inversely related to native elevation, suggesting that low elevation populations are already living near the limit of their physiological tolerances. If this finding generally applies to other montane specialists, the prognosis for biodiversity loss in typically diverse montane systems is sobering. We propose that indices of warming-induced stress tolerance may provide a critical new tool for quantitative assessments of endangerment due to anthropogenic climate change across diverse species.

  12. Adaptations for Culturally and Linguistically Diverse Families of English Language Learning Students with Autisim Spectrum Disorders

    ERIC Educational Resources Information Center

    Mitchell, Deborah J.

    2012-01-01

    The purpose of this qualitative, grounded theory study was to describe adaptations for culturally and linguistically diverse families of English language learning students with autism spectrum disorders. Each family's parent was interviewed three separate times to gather information to understand the needs and experiences regarding their…

  13. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of generations. Diversity plays an important role in thermal adaptation: While monoclonal strains adapt via acquisition and rapid fixation of new early mutations, wild population adapt via standing genetic variations, and they are more robust against thermal shocks due to greater diversity within the initial population.

  14. HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification.

    PubMed

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K N

    2014-04-24

    The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8(+) T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity.

    PubMed

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-05-19

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    PubMed

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  17. Relationships between Adaptive Behaviours, Personal Factors, and Participation of Young Children.

    PubMed

    Killeen, Hazel; Shiel, Agnes; Law, Mary; O'Donovan, Donough J; Segurado, Ricardo; Anaby, Dana

    2017-12-19

    To examine the extent to which personal factors (age, socioeconomic grouping, and preterm birth) and adaptive behaviour explain the participation patterns of young children. 65 Children 2-5 years old with and without a history of preterm birth and no physical or intellectual disability were selected by convenience sampling from Galway University Hospital, Ireland. Interviews with parents were conducted using the Adaptive Behaviour Assessment System, Second Edition (ABAS-II) and the Assessment of Preschool Children's Participation (APCP). Linear regression models were used to identify associations between the ABAS-II scores, personal factors, and APCP scores for intensity and diversity of participation. Adaptive behaviour explained 21% of variance in intensity of play, 18% in intensity of Skill Development, 7% in intensity of Active Physical Recreation, and 6% in intensity of Social Activities controlling for age, preterm birth, and socioeconomic grouping. Age explained between 1% and 11% of variance in intensity of participation scores. Adapted behaviour (13%), Age (17%), and socioeconomic grouping (5%) explained a significant percentage of variance in diversity of participation controlling for the other variables.  Adaptive behaviour had a unique contribution to children's intensity and diversity of participation, suggesting its importance.

  18. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.

    PubMed

    Warschefsky, Emily; Penmetsa, R Varma; Cook, Douglas R; von Wettberg, Eric J B

    2014-10-01

    The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings. © 2014 Botanical Society of America, Inc.

  19. Image Re-Ranking Based on Topic Diversity.

    PubMed

    Qian, Xueming; Lu, Dan; Wang, Yaxiong; Zhu, Li; Tang, Yuan Yan; Wang, Meng

    2017-08-01

    Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.

  20. Tinkering with the tinkerer: pollution versus evolution.

    PubMed Central

    Fox, G A

    1995-01-01

    Pollutants can act as powerful selective forces by altering genetic variability, its intergenerational transfer, and the size, functional viability, adaptability, and survival of future generations. It is at the level of the cell and the individual that meiosis occurs, that genetic diversity is maintained, and behavior, reproduction, growth, and survival occur and are regulated. It is at this level that evolutionary processes occur and most pollutants exert their toxic effects. Chronic exposure to chemicals contributes to the cumulative stress on individuals and disrupts physiological processes and chemically mediated communication thereby threatening the diversity and long-term survival of sexually reproducing biota. Regional or global effects of pollution on the atmosphere, hydrosphere, and lithosphere have indirectly altered Earth's life-support systems, thereby modifying trace metal balance, reproduction, and incidence of UV-B-induced DNA damage in biota. By altering the competitive ability and survival of species, chemical pollutants potentially threaten evolutionary processes and the biodiversity and function of intercepting ecosystems. PMID:7556031

  1. Demographic history, selection and functional diversity of the canine genome.

    PubMed

    Ostrander, Elaine A; Wayne, Robert K; Freedman, Adam H; Davis, Brian W

    2017-12-01

    The domestic dog represents one of the most dramatic long-term evolutionary experiments undertaken by humans. From a large wolf-like progenitor, unparalleled diversity in phenotype and behaviour has developed in dogs, providing a model for understanding the developmental and genomic mechanisms of diversification. We discuss pattern and process in domestication, beginning with general findings about early domestication and problems in documenting selection at the genomic level. Furthermore, we summarize genotype-phenotype studies based first on single nucleotide polymorphism (SNP) genotyping and then with whole-genome data and show how an understanding of evolution informs topics as different as human history, adaptive and deleterious variation, morphological development, ageing, cancer and behaviour.

  2. The challenges of tumor genetic diversity.

    PubMed

    Mroz, Edmund A; Rocco, James W

    2017-05-15

    The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.

  3. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae)

    PubMed Central

    Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa

    2015-01-01

    Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258

  4. Mechanics and Activation of Unconventional Myosins.

    PubMed

    Batters, Christopher; Veigel, Claudia

    2016-08-01

    Many types of cellular motility are based on the myosin family of motor proteins ranging from muscle contraction to exo- and endocytosis, cytokinesis, cell locomotion or signal transduction in hearing. At the center of this wide range of motile processes lies the adaptation of the myosins for each specific mechanical task and the ability to coordinate the timing of motor protein mobilization and targeting. In recent years, great progress has been made in developing single molecule technology to characterize the diverse mechanical properties of the unconventional myosins. Here, we discuss the basic mechanisms and mechanical adaptations of unconventional myosins, and emerging principles regulating motor mobilization and targeting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Adaptive algorithm of magnetic heading detection

    NASA Astrophysics Data System (ADS)

    Liu, Gong-Xu; Shi, Ling-Feng

    2017-11-01

    Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.

  6. Frequency-dependent selection predicts patterns of radiations and biodiversity.

    PubMed

    Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano

    2010-08-26

    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.

  7. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  8. Human nature, cultural diversity and evolutionary theory

    PubMed Central

    Plotkin, Henry

    2011-01-01

    Incorporating culture into an expanded theory of evolution will provide the foundation for a universal account of human diversity. Two requirements must be met. The first is to see learning as an extension of the processes of evolution. The second is to understand that there are specific components of human culture, viz. higher order knowledge structures and social constructions, which give rise to culture as invented knowledge. These components, which are products of psychological processes and mechanisms, make human culture different from the forms of shared knowledge observed in other species. One serious difficulty for such an expanded theory is that social constructions may not add to the fitness of all humans exposed to them. This may be because human culture has existed for only a relatively short time in evolutionary terms. Or it may be that, as some maintain, adaptation is a limited, even a flawed, aspect of evolutionary theory. PMID:21199849

  9. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  10. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  11. Ecological adaptation of diverse honey bee (Apis mellifera) populations.

    PubMed

    Parker, Robert; Melathopoulos, Andony P; White, Rick; Pernal, Stephen F; Guarna, M Marta; Foster, Leonard J

    2010-06-15

    Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context.

  12. Invoking adaptation to decipher the genetic legacy of past climate change.

    PubMed

    de Lafontaine, Guillaume; Napier, Joseph D; Petit, Rémy J; Hu, Feng Sheng

    2018-05-05

    Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    PubMed

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  14. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence.

    PubMed

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-05-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence-favorably evaluated in the West-for Chinese HIV-positive patients. The adaptation process was theory-driven and covered several key issues of cultural adaptation. We considered the importance of interpersonal relationships and family in China and cultural notions of health. Using an evidence-based treatment protocol originally designed for Western HIV-positive patients, we developed an 11-step Chinese Life-Steps program with an additional culture-specific intervention option. We describe in detail how the cultural elements were incorporated into the intervention and put into practice at each stage. Clinical considerations are also outlined and followed by two case examples that are provided to illustrate our application of the intervention. Finally, we discuss practical and research issues and limitations emerging from our field experiments in a HIV clinic in Beijing. The intervention was tailored to address both universal and culturally specific barriers to adherence and is readily applicable to generalized clinical settings. This evidence-based intervention provides a case example of the process of adapting behavioral interventions to culturally diverse communities with limited resources.

  15. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence

    PubMed Central

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-01-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence—favorably evaluated in the West—for Chinese HIV-positive patients. The adaptation process was theory-driven and covered several key issues of cultural adaptation. We considered the importance of interpersonal relationships and family in China and cultural notions of health. Using an evidence-based treatment protocol originally designed for Western HIV-positive patients, we developed an 11-step Chinese Life-Steps program with an additional culture-specific intervention option. We describe in detail how the cultural elements were incorporated into the intervention and put into practice at each stage. Clinical considerations are also outlined and followed by two case examples that are provided to illustrate our application of the intervention. Finally, we discuss practical and research issues and limitations emerging from our field experiments in a HIV clinic in Beijing. The intervention was tailored to address both universal and culturally specific barriers to adherence and is readily applicable to generalized clinical settings. This evidence-based intervention provides a case example of the process of adapting behavioral interventions to culturally diverse communities with limited resources. PMID:23667305

  16. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  17. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

    PubMed

    Roller, Devin G; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J; Conaway, Mark R; Petricoin, Emanuel F; Gioeli, Daniel; Weber, Michael J

    2016-01-19

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes ("back-seat drivers") and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway.

  18. Multilocus genetics to reconstruct aeromonad evolution

    PubMed Central

    2012-01-01

    Background Aeromonas spp. are versatile bacteria that exhibit a wide variety of lifestyles. In an attempt to improve the understanding of human aeromonosis, we investigated whether clinical isolates displayed specific characteristics in terms of genetic diversity, population structure and mode of evolution among Aeromonas spp. A collection of 195 Aeromonas isolates from human, animal and environmental sources was therefore genotyped using multilocus sequence analysis (MLSA) based on the dnaK, gltA, gyrB, radA, rpoB, tsf and zipA genes. Results The MLSA showed a high level of genetic diversity among the population, and multilocus-based phylogenetic analysis (MLPA) revealed 3 major clades: the A. veronii, A. hydrophila and A. caviae clades, among the eleven clades detected. Lower genetic diversity was observed within the A. caviae clade as well as among clinical isolates compared to environmental isolates. Clonal complexes, each of which included a limited number of strains, mainly corresponded to host-associated subsclusters of strains, i.e., a fish-associated subset within A. salmonicida and 11 human-associated subsets, 9 of which included only disease-associated strains. The population structure was shown to be clonal, with modes of evolution that involved mutations in general and recombination events locally. Recombination was detected in 5 genes in the MLSA scheme and concerned approximately 50% of the STs. Therefore, these recombination events could explain the observed phylogenetic incongruities and low robustness. However, the MLPA globally confirmed the current systematics of the genus Aeromonas. Conclusions Evolution in the genus Aeromonas has resulted in exceptionally high genetic diversity. Emerging from this diversity, subsets of strains appeared to be host adapted and/or “disease specialized” while the A. caviae clade displayed an atypical tempo of evolution among aeromonads. Considering that A. salmonicida has been described as a genetically uniform pathogen that has adapted to fish through evolution from a variable ancestral population, we hypothesize that the population structure of aeromonads described herein suggested an ongoing process of adaptation to specialized niches associated with different degrees of advancement according to clades and clusters. PMID:22545815

  19. Digging deeper on "deep" learning: A computational ecology approach.

    PubMed

    Buscema, Massimo; Sacco, Pier Luigi

    2017-01-01

    We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.

  20. Feast or famine: the host-pathogen battle over amino acids.

    PubMed

    Zhang, Yanjia J; Rubin, Eric J

    2013-07-01

    Intracellular bacterial pathogens often rely on their hosts for essential nutrients. Host cells, in turn, attempt to limit nutrient availability, using starvation as a mechanism of innate immunity. Here we discuss both host mechanisms of amino acid starvation and the diverse adaptations of pathogens to their nutrient-deprived environments. These processes provide both key insights into immune subversion and new targets for drug development. © 2013 John Wiley & Sons Ltd.

  1. A two level mutation-selection model of cultural evolution and diversity.

    PubMed

    Salazar-Ciudad, Isaac

    2010-11-21

    Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual's level) or the relative success of transmission (called the idea's level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea's level, when it is driven by the individual's level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual's capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of "selfish" ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill

    PubMed Central

    González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.

    2017-01-01

    Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988

  3. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  4. Genetic Diversity and Population Structure of Rice Varieties Cultivated in Temperate Regions.

    PubMed

    Reig-Valiente, Juan L; Viruel, Juan; Sales, Ester; Marqués, Luis; Terol, Javier; Gut, Marta; Derdak, Sophia; Talón, Manuel; Domingo, Concha

    2016-12-01

    After its domestication, rice cultivation expanded from tropical regions towards northern latitudes with temperate climate in a progressive process to overcome limiting photoperiod and temperature conditions. This process has originated a wide range of diversity that can be regarded as a valuable resource for crop improvement. In general, current rice breeding programs have to deal with a lack of both germplasm accessions specifically adapted to local agro-environmental conditions and adapted donors carrying desired agronomical traits. Comprehensive maps of genome variability and population structure would facilitate genome-wide association studies of complex traits, functional gene investigations and the selection of appropriate donors for breeding purposes. A collection of 217 rice varieties mainly cultivated in temperate regions was generated. The collection encompasses modern elite and old cultivars, as well as traditional landraces covering a wide genetic diversity available for rice breeders. Whole Genome Sequencing was performed on 14 cultivars representative of the collection and the genomic profiles of all cultivars were constructed using a panel of 2697 SNPs with wide coverage throughout the rice genome, obtained from the sequencing data. The population structure and genetic relationship analyses showed a strong substructure in the temperate rice population, predominantly based on grain type and the origin of the cultivars. Dendrogram also agrees population structure results. Based on SNP markers, we have elucidated the genetic relationship and the degree of genetic diversity among a collection of 217 temperate rice varieties possessing an enormous variety of agromorphological and physiological characters. Taken together, the data indicated the occurrence of relatively high gene flow and elevated rates of admixture between cultivars grown in remote regions, probably favoured by local breeding activities. The results of this study significantly expand the current genetic resources available for temperate varieties of rice, providing a valuable tool for future association mapping studies.

  5. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection

    PubMed Central

    Guillamón, José M.; Barrio, Eladio

    2017-01-01

    The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties. PMID:28522998

  6. A phylogenomic analysis of the role and timing of molecular adaptation in the aquatic transition of cetartiodactyl mammals.

    PubMed

    Tsagkogeorga, Georgia; McGowen, Michael R; Davies, Kalina T J; Jarman, Simon; Polanowski, Andrea; Bertelsen, Mads F; Rossiter, Stephen J

    2015-09-01

    Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein-protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids.

  7. A phylogenomic analysis of the role and timing of molecular adaptation in the aquatic transition of cetartiodactyl mammals

    PubMed Central

    Tsagkogeorga, Georgia; McGowen, Michael R.; Davies, Kalina T. J.; Jarman, Simon; Polanowski, Andrea; Bertelsen, Mads F.; Rossiter, Stephen J.

    2015-01-01

    Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein–protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids. PMID:26473040

  8. TAMU: A New Space Mission Operations Paradigm

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  9. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics.

    PubMed

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2016-08-17

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).

  10. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics

    PubMed Central

    López-Fernández, Hernán

    2016-01-01

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by ‘ecological opportunity’ are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram–suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram–suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. PMID:27512144

  11. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence.

    PubMed

    Etienne, Rampal S; Haegeman, Bart

    2012-10-01

    In this article we propose a new framework for studying adaptive radiations in the context of diversity-dependent diversification. Diversity dependence causes diversification to decelerate at the end of an adaptive radiation but also plays a key role in the initial pulse of diversification. In particular, key innovations (which in our definition include novel traits as well as new environments) may cause decoupling of the diversity-dependent dynamics of the innovative clade from the diversity-dependent dynamics of its ancestral clade. We present a likelihood-based inference method to test for decoupling of diversity dependence using molecular phylogenies. The method, which can handle incomplete phylogenies, identifies when the decoupling took place and which diversification parameters are affected. We illustrate our approach by applying it to the molecular phylogeny of the North American clade of the legume tribe Psoraleeae (47 extant species, of which 4 are missing). Two diversification rate shifts were previously identified for this clade; our analysis shows that the first, positive shift can be associated with decoupling of two Pediomelum subgenera from the other Psoraleeae lineages, while we argue that the second, negative shift can be attributed to speciation being protracted. The latter explanation yields nonzero extinction rates, in contrast to previous findings. Our framework offers a new perspective on macroevolution: new environments and novel traits (ecological opportunity) and diversity dependence (ecological limits) cannot be considered separately.

  12. Ecological genomics of natural plant populations: the Israeli perspective.

    PubMed

    Nevo, Eviatar

    2009-01-01

    The genomic era revolutionized evolutionary population biology. The ecological genomics of the wild progenitors of wheat and barley reviewed here was central in the research program of the Institute of Evolution, University of Haifa, since 1975 ( http://evolution.haifa.ac.il ). We explored the following questions: (1) How much of the genomic and phenomic diversity of wild progenitors of cultivars (wild emmer wheat, Triticum dicoccoides, the progenitor of most wheat, plus wild relatives of the Aegilops species; wild barley, Hordeum spontaneum, the progenitor of cultivated barley; wild oat, Avena sterilis, the progenitor of cultivated oats; and wild lettuce species, Lactuca, the progenitor and relatives of cultivated lettuce) are adaptive and processed by natural selection at both coding and noncoding genomic regions? (2) What is the origin and evolution of genomic adaptation and speciation processes and their regulation by mutation, recombination, and transposons under spatiotemporal variables and stressful macrogeographic and microgeographic environments? (3) How much genetic resources are harbored in the wild progenitors for crop improvement? We advanced ecological genetics into ecological genomics and analyzed (regionally across Israel and the entire Near East Fertile Crescent and locally at microsites, focusing on the "Evolution Canyon" model) hundreds of populations and thousands of genotypes for protein (allozyme) and deoxyribonucleic acid (DNA) (coding and noncoding) diversity, partly combined with phenotypic diversity. The environmental stresses analyzed included abiotic (climatic and microclimatic, edaphic) and biotic (pathogens, demographic) stresses. Recently, we introduced genetic maps, cloning, and transformation of candidate genes. Our results indicate abundant genotypic and phenotypic diversity in natural plant populations. The organization and evolution of molecular and organismal diversity in plant populations, at all genomic regions and geographical scales, are nonrandom and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection including diversifying, balancing, cyclical, and purifying selection regimes interacting with, but, ultimately, overriding the effects of mutation, migration, and stochasticity. The progenitors of cultivated plants harbor rich genetic resources and are the best hope for crop improvement by both classical and modern biotechnological methods. Future studies should focus on the interplay between structural and functional genome organization focusing on gene regulation.

  13. Natural Selection Causes Adaptive Genetic Resistance in Wild Emmer Wheat against Powdery Mildew at “Evolution Canyon” Microsite, Mt. Carmel, Israel

    PubMed Central

    Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang

    2015-01-01

    Background “Evolution Canyon” (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric “African” slope (AS) and the temperate-mesic “European” slope (ES), separated on average by 250 m. Methods We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. Results In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Conclusion/Significance Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance. PMID:25856164

  14. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    PubMed

    Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang

    2015-01-01

    "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS) and the temperate-mesic "European" slope (ES), separated on average by 250 m. We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  15. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  16. Short-Term Local Adaptation of Historical Common Bean (Phaseolus vulgaris L.) Varieties and Implications for In Situ Management of Bean Diversity.

    PubMed

    Klaedtke, Stephanie M; Caproni, Leonardo; Klauck, Julia; de la Grandville, Paul; Dutartre, Martin; Stassart, Pierre M; Chable, Véronique; Negri, Valeria; Raggi, Lorenzo

    2017-02-28

    Recognizing both the stakes of traditional European common bean diversity and the role farmers' and gardeners' networks play in maintaining this diversity, the present study examines the role that local adaptation plays for the management of common bean diversity in situ. To the purpose, four historical bean varieties and one modern control were multiplied on two organic farms for three growing seasons. The fifteen resulting populations, the initial ones and two populations of each variety obtained after the three years of multiplication, were then grown in a common garden. Twenty-two Simple Sequence Repeat (SSR) markers and 13 phenotypic traits were assessed. In total, 68.2% of tested markers were polymorphic and a total of 66 different alleles were identified. F ST analysis showed that the genetic composition of two varieties multiplied in different environments changed. At the phenotypic level, differences were observed in flowering date and leaf length. Results indicate that three years of multiplication suffice for local adaptation to occur. The spatial dynamics of genetic and phenotypic bean diversity imply that the maintenance of diversity should be considered at the scale of the network, rather than individual farms and gardens. The microevolution of bean populations within networks of gardens and farms emerges as a research perspective.

  17. Adaptation of health care for migrants: whose responsibility?

    PubMed

    Dauvrin, Marie; Lorant, Vincent

    2014-07-08

    In a context of increasing ethnic diversity, culturally competent strategies have been recommended to improve care quality and access to health care for ethnic minorities and migrants; their implementation by health professionals, however, has remained patchy. Most programs of cultural competence assume that health professionals accept that they have a responsibility to adapt to migrants, but this assumption has often remained at the level of theory. In this paper, we surveyed health professionals' views on their responsibility to adapt. Five hundred-and-sixty-nine health professionals from twenty-four inpatient and outpatient health services were selected according to their geographic location. All health care professionals were requested to complete a questionnaire about who should adapt to ethnic diversity: health professionals or patients. After a factorial analysis to identify the underlying responsibility dimensions, we performed a multilevel regression model in order to investigate individual and service covariates of responsibility attribution. Three dimensions emerged from the factor analysis: responsibility for the adaptation of communication, responsibility for the adaptation to the negotiation of values, and responsibility for the adaptation to health beliefs. Our results showed that the sense of responsibility for the adaptation of health care depended on the nature of the adaptation required: when the adaptation directly concerned communication with the patient, health professionals declared that they should be the ones to adapt; in relation to cultural preferences, however, the responsibility felt on the patient's shoulders. Most respondents were unclear in relation to adaptation to health beliefs. Regression indicated that being Belgian, not being a physician, and working in a primary-care service were associated with placing the burden of responsibility on the patient. Health care professionals do not consider it to be their responsibility to adapt to ethnic diversity. If health professionals do not feel a responsibility to adapt, they are less likely to be involved in culturally competent health care.

  18. Adaptation of health care for migrants: whose responsibility?

    PubMed Central

    2014-01-01

    Background In a context of increasing ethnic diversity, culturally competent strategies have been recommended to improve care quality and access to health care for ethnic minorities and migrants; their implementation by health professionals, however, has remained patchy. Most programs of cultural competence assume that health professionals accept that they have a responsibility to adapt to migrants, but this assumption has often remained at the level of theory. In this paper, we surveyed health professionals’ views on their responsibility to adapt. Methods Five hundred-and-sixty-nine health professionals from twenty-four inpatient and outpatient health services were selected according to their geographic location. All health care professionals were requested to complete a questionnaire about who should adapt to ethnic diversity: health professionals or patients. After a factorial analysis to identify the underlying responsibility dimensions, we performed a multilevel regression model in order to investigate individual and service covariates of responsibility attribution. Results Three dimensions emerged from the factor analysis: responsibility for the adaptation of communication, responsibility for the adaptation to the negotiation of values, and responsibility for the adaptation to health beliefs. Our results showed that the sense of responsibility for the adaptation of health care depended on the nature of the adaptation required: when the adaptation directly concerned communication with the patient, health professionals declared that they should be the ones to adapt; in relation to cultural preferences, however, the responsibility felt on the patient’s shoulders. Most respondents were unclear in relation to adaptation to health beliefs. Regression indicated that being Belgian, not being a physician, and working in a primary-care service were associated with placing the burden of responsibility on the patient. Conclusions Health care professionals do not consider it to be their responsibility to adapt to ethnic diversity. If health professionals do not feel a responsibility to adapt, they are less likely to be involved in culturally competent health care. PMID:25005021

  19. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    PubMed Central

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  20. A biophysical signature of network affiliation and sensory processing in mitral cells

    PubMed Central

    Angelo, Kamilla; Rancz, Ede A.; Pimentel, Diogo; Hundahl, Christian; Hannibal, Jens; Fleischmann, Alexander; Pichler, Bruno; Margrie, Troy W.

    2012-01-01

    One defining characteristic of the mammalian brain is its neuronal diversity1. For a given region, substructure or layer and even cell type2, variability in neuronal morphology and connectivity2-5 persists. While it is well established that such cellular properties vary considerably according to neuronal type, the significant biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked membrane potential sag recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells reveal that the amount of hyperpolarization-evoked sag potential and current6 is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 subunit of the hyperpolarization-activated current (Ih) channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so only one type of odorant receptor is universally expressed7. We therefore suggest that population diversity in the intrinsic profile of mitral cells reflect functional adaptations of distinct local circuits dedicated to processing subtly different odor-related information. PMID:22820253

  1. Converging evolution leads to near maximal junction diversity through parallel mechanisms in B and T cell receptors

    NASA Astrophysics Data System (ADS)

    Benichou, Jennifer I. C.; van Heijst, Jeroen W. J.; Glanville, Jacob; Louzoun, Yoram

    2017-08-01

    T and B cell receptor (TCR and BCR) complementarity determining region 3 (CDR3) genetic diversity is produced through multiple diversification and selection stages. Potential holes in the CDR3 repertoire were argued to be linked to immunodeficiencies and diseases. In contrast with BCRs, TCRs have practically no Dβ germline genetic diversity, and the question emerges as to whether they can produce a diverse CDR3 repertoire. In order to address the genetic diversity of the adaptive immune system, appropriate quantitative measures for diversity and large-scale sequencing are required. Such a diversity method should incorporate the complex diversification mechanisms of the adaptive immune response and the BCR and TCR loci structure. We combined large-scale sequencing and diversity measures to show that TCRs have a near maximal CDR3 genetic diversity. Specifically, TCR have a larger junctional and V germline diversity, which starts more 5‧ in Vβ than BCRs. Selection decreases the TCR repertoire diversity, but does not affect BCR repertoire. As a result, TCR is as diverse as BCR repertoire, with a biased CDR3 length toward short TCRs and long BCRs. These differences suggest parallel converging evolutionary tracks to reach the required diversity to avoid holes in the CDR3 repertoire.

  2. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier

    PubMed Central

    Tian, Jianqing; Qiao, Yuchen; Wu, Bing; Chen, Huai; Li, Wei; Jiang, Na; Zhang, Xiaoling; Liu, Xingzhong

    2017-01-01

    Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2–188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 (Cryptococcus terricola) increased with successional distance, whereas that of OTU65 (Tolypocladium tundrense) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and NH4+–N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario. PMID:28649234

  3. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier.

    PubMed

    Tian, Jianqing; Qiao, Yuchen; Wu, Bing; Chen, Huai; Li, Wei; Jiang, Na; Zhang, Xiaoling; Liu, Xingzhong

    2017-01-01

    Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2-188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 ( Cryptococcus terricola ) increased with successional distance, whereas that of OTU65 ( Tolypocladium tundrense ) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and [Formula: see text]-N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario.

  4. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adaptation to climate change--exploring the potential of locally adapted breeds.

    PubMed

    Hoffmann, Irene

    2013-06-01

    The livestock sector and agriculture as a whole face unprecedented challenges to increase production while improving the environment. On the basis of a literature review, the paper first discusses challenges related to climate change, food security and other drivers of change in livestock production. On the basis of a recent discourse in ecology, a framework for assessing livestock species' and breeds' vulnerability to climate change is presented. The second part of the paper draws on an analysis of data on breed qualities obtained from the Food and Agriculture Organization's Domestic Animal Diversity Information System (DAD-IS) to explore the range of adaptation traits present in today's breed diversity. The analysis produced a first mapping of a range of ascribed adaptation traits of national breed populations. It allowed to explore what National Coordinators understand by 'locally adapted' and other terms that describe general adaptation, to better understand the habitat, fodder and temperature range of each species and to shed light on the environments in which targeted search for adaptation traits could focus.

  6. The Building Wellness project: a case history of partnership, power sharing, and compromise.

    PubMed

    Jones, Drew; Franklin, Charla; Butler, Brittany T; Williams, Pluscedia; Wells, Kenneth B; Rodríguez, Michael A

    2006-01-01

    The Institute of Medicine has recommended development of community-focused strategies to alleviate the disproportionate burden of illness on minorities, including depression. So far, limited data exist on the process of developing such partnerships within diverse racial/ethnic environments as they strive to develop community-driven, evidence-based action plans to improve the quality of outreach services. We describe such an effort around depression in south Los Angeles and explore the issues of the process in the hopes of informing future partnership development. Community meetings, presentations, feedback, discussion groups, and consensus-based action items were implemented over an 18-month period. A writing subcommittee was designated to develop a description of the group's work and process, as well as the diverse perspectives in the partnership. Data sources included meeting minutes, materials for members and community feedback presentations, scribe notes, and the reflections of the authors. Development was seen on the formal group level, in the process, and on the realization of three categories of action plans. Designed to assist social service caseworkers in the recognition of and referral for depression, the action plans included developing a website, a tool kit (modified Delphi process), and a one-page depression "fact sheet" with region-specific referrals. Through the process of developing a means to combat depression in a racially/ ethnically diverse population, the community is not only better informed about depression but has become a true partner with the academic element in adapting these programs for local service providers, resulting in improved understanding of the partnership process.

  7. Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes.

    PubMed

    Herbeck, Joshua T; Rolland, Morgane; Liu, Yi; McLaughlin, Sherry; McNevin, John; Zhao, Hong; Wong, Kim; Stoddard, Julia N; Raugi, Dana; Sorensen, Stephanie; Genowati, Indira; Birditt, Brian; McKay, Angela; Diem, Kurt; Maust, Brandon S; Deng, Wenjie; Collier, Ann C; Stekler, Joanne D; McElrath, M Juliana; Mullins, James I

    2011-08-01

    HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.

  8. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity.

    PubMed

    Granados-Cifuentes, Camila; Bellantuono, Anthony J; Ridgway, Tyrone; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2013-04-08

    Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.

  9. Evolution mediates the effects of apex predation on aquatic food webs

    PubMed Central

    Urban, Mark C.

    2013-01-01

    Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548

  10. Evolution mediates the effects of apex predation on aquatic food webs.

    PubMed

    Urban, Mark C

    2013-07-22

    Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.

  11. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  12. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  13. Evolving Tale of TCPs: New Paradigms and Old Lacunae

    PubMed Central

    Dhaka, Namrata; Bhardwaj, Vasudha; Sharma, Manoj K.; Sharma, Rita

    2017-01-01

    Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research. PMID:28421104

  14. Evolving Tale of TCPs: New Paradigms and Old Lacunae.

    PubMed

    Dhaka, Namrata; Bhardwaj, Vasudha; Sharma, Manoj K; Sharma, Rita

    2017-01-01

    Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research.

  15. The What and How of Prefrontal Cortical Organization

    PubMed Central

    O’Reilly, Randall C.

    2010-01-01

    How is the prefrontal cortex (PFC) organized such that it is capable of making people more flexible and in control of their behavior? Is there any systematic organization across the many diverse areas that comprise the PFC, or is it uniquely adaptive such that no fixed representation structure can develop? Going against the current tide, this paper argues that there is indeed a systematic organization across PFC areas, with an important functional distinction between ventral and dorsal regions characterized as processing What vs. How information, respectively. This distinction has implications for the rostro-caudal and medial-lateral axes of organization as well. The resulting large-scale functional map of PFC may prove useful in integrating diverse data, and generating novel predictions. PMID:20573407

  16. Regulation of potassium transport and signaling in plants.

    PubMed

    Wang, Yi; Wu, Wei-Hua

    2017-10-01

    As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Psychrophiles

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo

    2013-05-01

    Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.

  18. CLONAL EVOLUTION IN CANCER

    PubMed Central

    Greaves, Mel; Maley, Carlo C.

    2012-01-01

    Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609

  19. Genome-wide patterns of genetic distances reveal candidate Loci contributing to human population-specific traits.

    PubMed

    de Magalhães, João Pedro; Matsuda, Alex

    2012-03-01

    Modern humans originated in Africa before migrating across the world with founder effects and adaptations to new environments contributing to their present phenotypic diversity. Determining the genetic basis of differences between populations may provide clues about our evolutionary history and may have clinical implications. Herein, we develop a method to detect genes and biological processes in which populations most differ by calculating the genetic distance between modern populations and a hypothetical ancestral population. We apply our method to large-scale single nucleotide polymorphism (SNP) data from human populations of African, European and Asian origin. As expected, ancestral alleles were more conserved in the African populations and we found evidence of high divergence in genes previously suggested as targets of selection related to skin pigmentation, immune response, senses and dietary adaptations. Our genome-wide scan also reveals novel candidates for contributing to population-specific traits. These include genes related to neuronal development and behavior that may have been influenced by cultural processes. Moreover, in the African populations, we found a high divergence in genes related to UV protection and to the male reproductive system. Taken together, these results confirm and expand previous findings, providing new clues about the evolution and genetics of human phenotypic diversity. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.

  20. Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica.

    PubMed

    Wei, Sean T S; Lacap-Bugler, Donnabella C; Lau, Maggie C Y; Caruso, Tancredi; Rao, Subramanya; de Los Rios, Asunción; Archer, Stephen K; Chiu, Jill M Y; Higgins, Colleen; Van Nostrand, Joy D; Zhou, Jizhong; Hopkins, David W; Pointing, Stephen B

    2016-01-01

    The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

  1. Processes underpinning development and maintenance of diversity in rice in West Africa: evidence from combining morphological and molecular markers.

    PubMed

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development.

  2. Processes Underpinning Development and Maintenance of Diversity in Rice in West Africa: Evidence from Combining Morphological and Molecular Markers

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development. PMID:24465809

  3. Adaptive neural coding: from biological to behavioral decision-making

    PubMed Central

    Louie, Kenway; Glimcher, Paul W.; Webb, Ryan

    2015-01-01

    Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior. PMID:26722666

  4. From social liminality to cultural negotiation: Transformative processes in immigrant mental wellbeing.

    PubMed

    Simich, Laura; Maiter, Sarah; Ochocka, Joanna

    2009-12-01

    The underlying psychosocial processes that produce immigrant mental wellbeing are understudied in anthropology and medicine. This paper provides insights into these processes by describing culturally diverse immigrants' perceptions of mental health and adaptation strategies. Qualitative data were collected from 21 focus groups as part of a large, multidisciplinary, participatory action research project about mental health with five ethnolinguistic groups (Mandarin-speaking Chinese, Polish, Punjabi Sikh, Somali and Spanish-speaking Latin American) in Ontario, Canada. In framing the analysis, transformative concepts are applied to address dimensions of power and culture - social liminality and cultural negotiation - to the ongoing psychosocial processes of coping with mental distress. 'Social liminality' describes how immigrants perceive themselves to be in a psychologically stressful, transitional state, whereas 'cultural negotiation' describes how they actively cope with cultural tensions and respond to mental health challenges. Study findings show that while social liminality and cultural negotiation are stressful, they also have the potential to help individuals adapt by producing a positive synthesis of ideas about mental health in new social and cultural contexts. The study contributes to the shift from problem identification using a biomedical model of mental illness to a more psychosocial and ecological approach that reveals the potential for resolving some mental health problems experienced in immigrant communities. Describing active psychosocial process of adaptation also reinforces the therapeutic and educational value of partnerships between practitioners and clients and immigrant communities and mental health systems.

  5. Variations on a Theme: Antennal Lobe Architecture across Coleoptera

    PubMed Central

    Kollmann, Martin; Schmidt, Rovenna; Heuer, Carsten M.

    2016-01-01

    Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system. PMID:27973569

  6. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  7. Genetic Considerations for the Restoration of Smooth Cordgrass (Spartina alterniflora) Within Its Native Range

    USGS Publications Warehouse

    Travis, Steven E.; Proffitt, C. Edward; Edwards, Keith R.

    2006-01-01

    In order to remain viable over many generations, plant populations require the ability to respond adaptively to a changing environment. Such adaptive potential is directly controlled by underlying genetic variation, which can be measured in terms of both heterozygosity at the individual level and clonal, or genotypic diversity at the population level. This report summarizes research relating to the importance of genetic diversity in the restoration of salt marsh smooth cordgrass, Spartina alterniflora, a dominant member of low elevation intertidal marshes throughout the northern Gulf of Mexico and Atlantic Coasts of North America. Recent research has indicated that S. alterniflora is a partially clonal species characterized by the recruitment of seedlings exclusively during the initial colonization phase of population establishment. A major consequence of this finding is that clonal diversity generally peaks rather early in the development of a restored marsh, depending on the rate of natural immigration and/or the clonal diversity of planting units, and then undergoes a steady decline over geological time spans because of stochastic mortality and intraspecific competition. Low levels of clonal diversity resulting from restricted immigration or clonally depauperate planting materials in turn places strict limits on opportunities for outcrossing in a species known to suffer from severe inbreeding depression. Low clonal diversity may further lead to declining levels of heterozyosity of individual clones, which directly affects competitive ability. In addition, the planting of genetically diverse plant materials should take into account the genetic and adaptive differentiation that takes place when plant populations are widely separated in space and/or dwell under varying sets of environmental conditions. Thus, steps should be taken to ensure that S. alterniflora clones developed for restorative plantings are both genetically diverse and sufficiently pre-adapted to environmental conditions at the proposed restoration site. This can be achieved by growing plant materials collected from local sources and by either taking care to maintain relatively high levels of clonal diversity or by planting clones at sufficiently low densities that they will not quickly grow to monopolize a restoration site without first producing several generations of sexual recruits through crosses with nearby native populations.

  8. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  9. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato

    PubMed Central

    Hardigan, Michael A.; Laimbeer, F. Parker E.; Newton, Linsey; Crisovan, Emily; Hamilton, John P.; Vaillancourt, Brieanne; Wiegert-Rininger, Krystle; Wood, Joshua C.; Douches, David S.; Farré, Eva M.; Veilleux, Richard E.; Buell, C. Robin

    2017-01-01

    Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid S. tuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14–16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (S. tuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato’s maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly S. microdontum in long-day–adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day–adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential. PMID:29087343

  10. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    PubMed Central

    Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm

    2013-01-01

    Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841

  11. Introducing the chronic disease self-management program in Switzerland and other German-speaking countries: findings of a cross-border adaptation using a multiple-methods approach.

    PubMed

    Haslbeck, Jörg; Zanoni, Sylvie; Hartung, Uwe; Klein, Margot; Gabriel, Edith; Eicher, Manuela; Schulz, Peter J

    2015-12-28

    Stanford's Chronic Disease Self-Management Program (CDSMP) stands out as having a large evidence-base and being broadly disseminated across various countries. To date, neither evidence nor practice exists of its systematic adaptation into a German-speaking context. The objective of this paper is to describe the systematic German adaptation and implementation process of the CDSMP (2010-2014), report the language-specific adaptation of Franco-Canadian CDSMP for the French-speaking part of Switzerland and report findings from the initial evaluation process. Multiple research methods were integrated to explore the perspective of workshop attendees, combining a longitudinal quantitative survey with self-report questionnaires, qualitative focus groups, and interviews. The evaluation process was conducted in for both the German and French adapted versions to gain insights into participants' experiences in the program and to evaluate its impact. Perceived self-efficacy was measured using the German version of the Self-Efficacy for Managing Chronic Disease 6-Item Scale (SES6G). Two hundred seventy eight people attending 35 workshops in Switzerland and Austria participated in the study. The study participants were receptive to the program content, peer-led approach and found principal methods useful, yet the structured approach did not address all their needs or expectations. Both short and long-term impact on self-efficacy were observed following the workshop participation (albeit with a minor decrease at 6-months). Participants reported positive impacts on aspects of coping and self-care, but limited effects on healthcare service utilization. Our findings suggest that the process for cross-border adaptation was effective, and that the CDSMP can successfully be implemented in diverse healthcare and community settings. The adapted CDSMP can be considered an asset for supporting self-management in both German-and French-speaking central European countries. It could have meaningful, wide-ranging implications for chronic illness care and primary prevention and potentially tertiary prevention of chronic disease. Further investigations are needed to tailor the program for better access to vulnerable and disadvantaged groups who might benefit the most, in terms of facilitating their health literacy in chronic illness.

  12. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    PubMed

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  13. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change.

    PubMed

    Lopes, Marta S; El-Basyoni, Ibrahim; Baenziger, Peter S; Singh, Sukhwinder; Royo, Conxita; Ozbek, Kursad; Aktas, Husnu; Ozer, Emel; Ozdemir, Fatih; Manickavelu, Alagu; Ban, Tomohiro; Vikram, Prashant

    2015-06-01

    Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  15. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  16. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  17. Fungal diversity in the Atacama Desert.

    PubMed

    Santiago, Iara F; Gonçalves, Vívian N; Gómez-Silva, Benito; Galetovic, Alexandra; Rosa, Luiz H

    2018-03-07

    Fungi are generally easily dispersed, able to colonise a wide variety of substrata and can tolerate diverse environmental conditions. However, despite these abilities, the diversity of fungi in the Atacama Desert is practically unknown. Most of the resident fungi in desert regions are ubiquitous. Some of them, however, seem to display specific adaptations that enable them to survive under the variety of extreme conditions of these regions, such as high temperature, low availability of water, osmotic stress, desiccation, low availability of nutrients, and exposure to high levels of UV radiation. For these reasons, fungal communities living in the Atacama Desert represent an unknown part of global fungal diversity and, consequently, may be source of new species that could be potential sources for new biotechnological products. In this review, we focus on the current knowledge of the diversity, ecology, adaptive strategies, and biotechnological potential of the fungi reported in the different ecosystems of the Atacama Desert.

  18. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    PubMed Central

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  19. Cultural and Contextual Adaptation of an eHealth Intervention for Youth Receiving Services for First-Episode Psychosis: Adaptation Framework and Protocol for Horyzons-Canada Phase 1.

    PubMed

    Lal, Shalini; Gleeson, John; Malla, Ashok; Rivard, Lysanne; Joober, Ridha; Chandrasena, Ranjith; Alvarez-Jimenez, Mario

    2018-04-23

    eHealth interventions have the potential to address challenges related to access, service engagement, and continuity of care in the delivery of mental health services. However, the initial development and evaluation of such interventions can require substantive amounts of financial and human resource investments to bring them to scale. Therefore, it may be warranted to pay greater attention to policy, services, and research with respect to eHealth platforms that have the potential to be adapted for use across settings. Yet, limited attention has been placed on the methods and processes for adapting eHealth interventions to improve their applicability across cultural, geographical, and contextual boundaries. In this paper, we describe an adaptation framework and protocol to adapt an eHealth intervention designed to promote recovery and prevent relapses in youth receiving specialized services for first-episode psychosis. The Web-based platform, called Horyzons, was initially developed and tested in Australia and is now being prepared for evaluation in Canada. Service users and service providers from 2 specialized early intervention programs for first-episode psychosis located in different provinces will explore a beta-version of the eHealth intervention through focus group discussions and extended personal explorations to identify the need for, and content of contextual and cultural adaptations. An iterative consultation process will then take place with service providers and users to develop and assess platform adaptations in preparation for a pilot study with a live version of the platform. Data collection was completed in August 2017, and analysis and adaptation are in process. The first results of the study will be submitted for publication in 2018 and will provide preliminary insights into the acceptability of the Web-based platform (eg, perceived use and perceived usefulness) from service provider and service user perspectives. The project will also provide knowledge about the adaptations and process needed to prepare the platform for evaluation in Canada. This study contributes to an important gap in the literature pertaining to the specific principles, methods, and steps involved in adapting eHealth interventions for implementation and evaluation across a diverse range of cultural, geographical, and health care settings. ©Shalini Lal, John Gleeson, Ashok Malla, Lysanne Rivard, Ridha Joober, Ranjith Chandrasena, Mario Alvarez-Jimenez. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.04.2018.

  20. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    PubMed

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-09-11

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice.

    PubMed

    Song, Xianwei; Cao, Xiaofeng

    2017-04-01

    Transposable elements (TEs) have long been regarded as 'selfish DNA', and are generally silenced by epigenetic mechanisms. However, work in the past decade has identified positive roles for TEs in generating genomic novelty and diversity in plants. In particular, recent studies suggested that TE-induced epigenetic alterations and modification of gene expression contribute to phenotypic variation and adaptation to geography or stress. These findings have led many to regard TEs, not as junk DNA, but as sources of control elements and genomic diversity. As a staple food crop and model system for genomic research on monocot plants, rice (Oryza sativa) has a modest-sized genome that harbors massive numbers of DNA transposons (class II transposable elements) scattered across the genome, which may make TE regulation of genes more prevalent. In this review, we summarize recent progress in research on the functions of rice TEs in modulating gene expression and creating new genes. We also examine the contributions of TEs to phenotypic diversity and adaptation to environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adaptability of non-genetic diversity in bacterial chemotaxis

    PubMed Central

    Frankel, Nicholas W; Pontius, William; Dufour, Yann S; Long, Junjiajia; Hernandez-Nunez, Luis; Emonet, Thierry

    2014-01-01

    Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI: http://dx.doi.org/10.7554/eLife.03526.001 PMID:25279698

  3. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs

    PubMed Central

    Li, Hu; Leavengood, John M.; Chapman, Eric G.; Burkhardt, Daniel; Song, Fan; Jiang, Pei; Liu, Jinpeng; Cai, Wanzhi

    2017-01-01

    Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats. PMID:28878063

  4. Gendered medicinal plant knowledge contributions to adaptive capacity and health sovereignty in Amazonia.

    PubMed

    Díaz-Reviriego, Isabel; Fernández-Llamazares, Álvaro; Salpeteur, Matthieu; Howard, Patricia L; Reyes-García, Victoria

    2016-12-01

    Local medical systems are key elements of social-ecological systems as they provide culturally appropriate and locally accessible health care options, especially for populations with scarce access to biomedicine. The adaptive capacity of local medical systems generally rests on two pillars: species diversity and a robust local knowledge system, both threatened by local and global environmental change. We first present a conceptual framework to guide the assessment of knowledge diversity and redundancy in local medicinal knowledge systems through a gender lens. Then, we apply this conceptual framework to our research on the local medicinal plant knowledge of the Tsimane' Amerindians. Our results suggest that Tsimane' medicinal plant knowledge is gendered and that the frequency of reported ailments and the redundancy of knowledge used to treat them are positively associated. We discuss the implications of knowledge diversity and redundancy for local knowledge systems' adaptive capacity, resilience, and health sovereignty.

  5. Understanding plant reproductive diversity.

    PubMed

    Barrett, Spencer C H

    2010-01-12

    Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology.

  6. Chemical Ecology of Stingless Bees.

    PubMed

    Leonhardt, Sara Diana

    2017-04-01

    Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.

  7. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers

    PubMed Central

    Chen, Yu; Peng, Zhuqing; Wu, Chao; Ma, Zhihui; Ding, Guochang; Cao, Guangqiu; Ruan, Shaoning; Lin, Sizu

    2017-01-01

    Genetic diversity and variation among 11 populations of Chinese fir from Fujian province and Taiwan were assessed using inter-simple sequence repeat (ISSR) markers to reveal the evolutionary relationship in their distribution range in this report. Analysis of genetic parameters of the different populations showed that populations in Fujian province exhibited a greater level of genetic diversity than did the populations in Taiwan. Compared to Taiwan populations, significant limited gene flow were observed among Fujian populations. An UPGMA cluster analysis showed that the most individuals of Taiwan populations formed a single cluster, whereas 6 discrete clusters were formed by each population from Fujian. All populations were divided into 3 main groups and that all 5 populations from Taiwan were gathered into a subgroup combined with 2 populations, Dehua and Liancheng, formed one of the 3 main groups, which indicated relative stronger relatedness. It is supported by a genetic structure analysis. All those results are suggesting different levels of genetic diversity and variation of Chinese fir between Fujian and Taiwan, and indicating different patterns of evolutionary process and local environmental adaption. PMID:28406956

  8. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers.

    PubMed

    Chen, Yu; Peng, Zhuqing; Wu, Chao; Ma, Zhihui; Ding, Guochang; Cao, Guangqiu; Ruan, Shaoning; Lin, Sizu

    2017-01-01

    Genetic diversity and variation among 11 populations of Chinese fir from Fujian province and Taiwan were assessed using inter-simple sequence repeat (ISSR) markers to reveal the evolutionary relationship in their distribution range in this report. Analysis of genetic parameters of the different populations showed that populations in Fujian province exhibited a greater level of genetic diversity than did the populations in Taiwan. Compared to Taiwan populations, significant limited gene flow were observed among Fujian populations. An UPGMA cluster analysis showed that the most individuals of Taiwan populations formed a single cluster, whereas 6 discrete clusters were formed by each population from Fujian. All populations were divided into 3 main groups and that all 5 populations from Taiwan were gathered into a subgroup combined with 2 populations, Dehua and Liancheng, formed one of the 3 main groups, which indicated relative stronger relatedness. It is supported by a genetic structure analysis. All those results are suggesting different levels of genetic diversity and variation of Chinese fir between Fujian and Taiwan, and indicating different patterns of evolutionary process and local environmental adaption.

  9. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    PubMed

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  10. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  11. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing.

    PubMed

    Lee, Seul; Lee, Ju Hun; Chung, Hyun-Jung

    2017-08-01

    The objective of this study was to determine the molecular and crystalline structures of starches from diverse rice cultivars for three major food processing in Korea (cooked rice, brewing and rice cake). Rice starches were isolated from 10 different rice varieties grown in Korea. Apparent amylose contents of rice starches from cooked rice, brewing and rice cake varieties were 21.1-22.4%, 22.9-24.6%, and 20.1-22.0%, respectively. Rice starches from rice cake varieties showed higher peak viscosity but lower pasting temperature than those from cooked rice and brewing varieties. Swelling factor at 80°C of rice starches from cooked rice, brewing and rice cake varieties was 16.6-19.0, 17.8-19.3, and 17.8-19.2, respectively. Based on structure and physicochemical properties of rice starches extracted from different rice varieties, principal component analysis (PCA) results showed that these rice varieties could be clearly classified according to processing adaptability for cooked rice and rice cake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mediterranean blue tits as a case study of local adaptation.

    PubMed

    Charmantier, Anne; Doutrelant, Claire; Dubuc-Messier, Gabrielle; Fargevieille, Amélie; Szulkin, Marta

    2016-01-01

    While the study of the origins of biological diversity across species has provided numerous examples of adaptive divergence, the realization that it can occur at microgeographic scales despite gene flow is recent, and scarcely illustrated. We review here evidence suggesting that the striking phenotypic differentiation in ecologically relevant traits exhibited by blue tits Cyanistes caeruleus in their southern range-edge putatively reflects adaptation to the heterogeneity of the Mediterranean habitats. We first summarize the phenotypic divergence for a series of life history, morphological, behavioural, acoustic and colour ornament traits in blue tit populations of evergreen and deciduous forests. For each divergent trait, we review the evidence obtained from common garden experiments regarding a possible genetic origin of the observed phenotypic differentiation as well as evidence for heterogeneous selection. Second, we argue that most phenotypically differentiated traits display heritable variation, a fundamental requirement for evolution to occur. Third, we discuss nonrandom dispersal, selective barriers and assortative mating as processes that could reinforce local adaptation. Finally, we show how population genomics supports isolation - by - environment across landscapes. Overall, the combination of approaches converges to the conclusion that the strong phenotypic differentiation observed in Mediterranean blue tits is a fascinating case of local adaptation.

  13. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    PubMed Central

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  14. A review of cetacean lung morphology and mechanics.

    PubMed

    Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E

    2013-12-01

    Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.

  15. Measuring Helicase Inhibition of the DEAD-box Protein Dbp2 by Yra1

    PubMed Central

    Ma, Wai Kit; Tran, Elizabeth J.

    2016-01-01

    Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to RNA helicase and purified co-factor. PMID:25579587

  16. UNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekar, Alexander

    The final report on New York City College of Technology (City Tech) DURA (Diverse | Urban | Resilient | Adaptable) home project. City Tech has participated in the Solar Decathlon 2015 project as DURA. The DURA team consists of students, faculty, volunteers, Service Corps participants, Industry advisers, recent graduates and others. The DURA team researched, designed, and constructed a zero energy prototype house. This process was a valuable opportunity for City Tech as a project of such scale has not been completed before with the integration of so many departments and their students.

  17. Livelihoods, power, and food insecurity: adaptation of social capital portfolios in protracted crises--case study Burundi.

    PubMed

    Vervisch, Thomas G A; Vlassenroot, Koen; Braeckman, Johan

    2013-04-01

    The failure of food security and livelihood interventions to adapt to conflict settings remains a key challenge in humanitarian responses to protracted crises. This paper proposes a social capital analysis to address this policy gap, adding a political economy dimension on food security and conflict to the actor-based livelihood framework. A case study of three hillsides in north Burundi provides an ethnographic basis for this hypothesis. While relying on a theoretical framework in which different combinations of social capital (bonding, bridging, and linking) account for a diverse range of outcomes, the findings offer empirical insights into how social capital portfolios adapt to a protracted crisis. It is argued that these social capital adaptations have the effect of changing livelihood policies, institutions, and processes (PIPs), and clarify the impact of the distribution of power and powerlessness on food security issues. In addition, they represent a solid way of integrating political economy concerns into the livelihood framework. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  18. Successional convergence in experimentally disturbed intertidal communities.

    PubMed

    Martins, Gustavo M; Arenas, Francisco; Tuya, Fernando; Ramírez, Rubén; Neto, Ana I; Jenkins, Stuart R

    2018-02-01

    Determining the causes of variation in community assembly is a central question in ecology. Analysis of β-diversity can provide insight by relating the extent of regional to local variation in diversity, allowing inference of the relative importance of deterministic versus stochastic processes. We investigated the effects of disturbance timing on community assembly at three distinct regions with varying environmental conditions: Northern Portugal, Azores and Canaries. On the lower rocky intertidal, quadrats were experimentally cleared of biota at three distinct times of the year and community assembly followed for 1 year. Similar levels of α- and γ-diversity were found in all regions, which remained constant throughout succession. When Jaccard (incidence-based) and Bray-Curtis (abundance-based) metrics were used, β-diversity (the mean dissimilarity among plots cleared at the different times) was larger during early stages of community assembly but decreased over time. The adaptation of the Raup-Crick's metric, which accounts for changes in species richness, showed that the structure of assemblages disturbed at different times of the year was similar to the null model of random community assembly during early stages of succession but became more similar than expected by chance. This pattern was observed in all regions despite differences in the regional species pool, suggesting that priority effects are likely weak and deterministic processes determine community structure despite stochasticity during early stages of community assembly.

  19. Diversity and Intercultural Communication in Continuing Professional Education.

    ERIC Educational Resources Information Center

    Ziegahn, Linda

    2001-01-01

    Responds to common myths about workplace diversity: (1) there is not much diversity in the workplace; (2) the way business is done is neutral; and (3) it is the responsibility of minority cultures to adapt to the dominant culture. Suggests responses for continuing professional educators. (JOW)

  20. Adaptation to fragmentation: evolutionary dynamics driven by human influences.

    PubMed

    Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans

    2017-01-19

    Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  1. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

    NASA Astrophysics Data System (ADS)

    Zanphorlin, Leticia Maria; de Giuseppe, Priscila Oliveira; Honorato, Rodrigo Vargas; Tonoli, Celisa Caldana Costa; Fattori, Juliana; Crespim, Elaine; de Oliveira, Paulo Sergio Lopes; Ruller, Roberto; Murakami, Mario Tyago

    2016-03-01

    Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.

  2. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickett, Jeffery T., E-mail: J.Spickett@curtin.edu.a; Brown, Helen L., E-mail: h.brown@curtin.edu.a; Katscherian, Dianne, E-mail: Dianne.Katscherian@health.wa.gov.a

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location.more » Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to address the potential health impacts of climate change.« less

  3. The diversity of gendered adaptation strategies to climate change of Indian farmers: A feminist intersectional approach.

    PubMed

    Ravera, Federica; Martín-López, Berta; Pascual, Unai; Drucker, Adam

    2016-12-01

    This paper examines climate change adaptation and gender issues through an application of a feminist intersectional approach. This approach permits the identification of diverse adaptation responses arising from the existence of multiple and fragmented dimensions of identity (including gender) that intersect with power relations to shape situation-specific interactions between farmers and ecosystems. Based on results from contrasting research cases in Bihar and Uttarakhand, India, this paper demonstrates, inter alia, that there are geographically determined gendered preferences and adoption strategies regarding adaptation options and that these are influenced by the socio-ecological context and institutional dynamics. Intersecting identities, such as caste, wealth, age and gender, influence decisions and reveal power dynamics and negotiation within the household and the community, as well as barriers to adaptation among groups. Overall, the findings suggest that a feminist intersectional approach does appear to be useful and worth further exploration in the context of climate change adaptation. In particular, future research could benefit from more emphasis on a nuanced analysis of the intra-gender differences that shape adaptive capacity to climate change.

  4. Microbial ecology and biogeochemistry of continental Antarctic soils.

    PubMed

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  5. Diverse exocytic pathways for mast cell mediators.

    PubMed

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation.

    PubMed

    Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander

    2012-12-07

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.

  7. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation

    PubMed Central

    Burbrink, Frank T.; Chen, Xin; Myers, Edward A.; Brandley, Matthew C.; Pyron, R. Alexander

    2012-01-01

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification. PMID:23034709

  8. Genetic Diversity and Population Structure in a Legacy Collection of Spring Barley Landraces Adapted to a Wide Range of Climates

    PubMed Central

    Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin

    2014-01-01

    Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702

  9. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    NASA Astrophysics Data System (ADS)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  10. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  11. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis.

    PubMed

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-02-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes.

  12. Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A.

    PubMed

    Zhang, Changyu; Meng, Jianyu

    2018-06-23

    Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.

  13. TULIPs: tunable, light-controlled interacting protein tags for cell biology.

    PubMed

    Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael

    2012-03-04

    Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.

  14. Teaching about Biodiversity. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    There are three aspects to biodiversity: (1) genetic diversity within species that enables organisms to evolve and adapt to new conditions; (2) species diversity that refers to the number and kind of organisms distributed within an ecosystem; and (3) ecosystem diversity that refers to the variety of habitats and communities interacting in complex…

  15. Celebrate diversity, the one true thing we all have in common

    USDA-ARS?s Scientific Manuscript database

    In this article the author describes his experiences and invaluable lessons on the benefits of cultural diversity by completing two 60-day details at the Washington, DC USDA Headquarters. In the end he concludes that diversity awareness brings flexibility and adaptability in one's character, adds in...

  16. Turnover and accumulation of genetic diversity across large time-scale cycles of isolation and connection of populations

    PubMed Central

    Alcala, Nicolas; Vuilleumier, Séverine

    2014-01-01

    Major climatic and geological events but also population history (secondary contacts) have generated cycles of population isolation and connection of long and short periods. Recent empirical and theoretical studies suggest that fast evolutionary processes might be triggered by such events, as commonly illustrated in ecology by the adaptive radiation of cichlid fishes (isolation and reconnection of lakes and watersheds) and in epidemiology by the fast adaptation of the influenza virus (isolation and reconnection in hosts). We test whether cyclic population isolation and connection provide the raw material (standing genetic variation) for species evolution and diversification. Our analytical results demonstrate that population isolation and connection can provide, to populations, a high excess of genetic diversity compared with what is expected at equilibrium. This excess is either cyclic (high allele turnover) or cumulates with time depending on the duration of the isolation and the connection periods and the mutation rate. We show that diversification rates of animal clades are associated with specific periods of climatic cycles in the Quaternary. We finally discuss the importance of our results for macroevolutionary patterns and for the inference of population history from genomic data. PMID:25253456

  17. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars.

    PubMed

    Pallotta, Margaret; Schnurbusch, Thorsten; Hayes, Julie; Hay, Alison; Baumann, Ute; Paull, Jeff; Langridge, Peter; Sutton, Tim

    2014-10-02

    Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.

  18. The pervasive role of social learning in primate lifetime development.

    PubMed

    Whiten, Andrew; van de Waal, Erica

    2018-01-01

    In recent decades, an accelerating research effort has exploited a substantial diversity of methodologies to garner mounting evidence for social learning and culture in many species of primate. As in humans, the evidence suggests that the juvenile phases of non-human primates' lives represent a period of particular intensity in adaptive learning from others, yet the relevant research remains scattered in the literature. Accordingly, we here offer what we believe to be the first substantial collation and review of this body of work and its implications for the lifetime behavioral ecology of primates. We divide our analysis into three main phases: a first phase of learning focused on primary attachment figures, typically the mother; a second phase of selective learning from a widening array of group members, including some with expertise that the primary figures may lack; and a third phase following later dispersal, when a migrant individual encounters new ecological and social circumstances about which the existing residents possess expertise that can be learned from. Collating a diversity of discoveries about this lifetime process leads us to conclude that social learning pervades primate ontogenetic development, importantly shaping locally adaptive knowledge and skills that span multiple aspects of the behavioral repertoire.

  19. Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy.

    PubMed

    Bowen, B W

    1999-12-01

    The scientific foundations of conservation policy are the subject of a recent tripolar debate, with systematists arguing for the primacy of phylogenetic rankings, ecologists arguing for protection at the level of populations or ecosystems, and evolutionary biologists urging more attention for the factors that enhance adaptation and biodiversity. In the field of conservation genetics, this controversy is manifested in the diverse viewpoints of molecular systematists, population biologists, and evolutionary (and quantitative) geneticists. A resolution of these viewpoints is proposed here, based on the premise that preserving particular objects (genes, species, or ecosystems) is not the ultimate goal of conservation. In order to be successful, conservation efforts must preserve the processes of life. This task requires the identification and protection of diverse branches in the tree of life (phylogenetics), the maintenance of life-support systems for organisms (ecology), and the continued adaptation of organisms to changing environments (evolution). None of these objectives alone is sufficient to preserve the threads of life across time. Under this temporal perspective, molecular genetic technologies have applications in all three conservation agendas; DNA sequence comparisons serve the phylogenetic goals, population genetic markers serve the ecological goals, quantitative genetics and genome explorations serve the evolutionary goals.

  20. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  1. Human and ecological determinants of the spatial structure of local breed diversity.

    PubMed

    Colino-Rabanal, Victor J; Rodríguez-Díaz, Roberto; Blanco-Villegas, María José; Peris, Salvador J; Lizana, Miguel

    2018-04-24

    Since domestication, a large number of livestock breeds adapted to local conditions have been created by natural and artificial selection, representing one of the most powerful ways in which human groups have constructed niches to meet their need. Although many authors have described local breeds as the result of culturally and environmentally mediated processes, this study, located in mainland Spain, is the first aimed at identifying and quantifying the environmental and human contributions to the spatial structure of local breed diversity, which we refer to as livestock niche. We found that the more similar two provinces were in terms of human population, ecological characteristics, historical ties, and geographic distance, the more similar the composition of local breeds in their territories. Isolation by human population distance showed the strongest effect, followed by isolation by the environment, thus supporting the view of livestock niche as a socio-cultural product adapted to the local environment, in whose construction humans make good use of their ecological and cultural inheritances. These findings provide a useful framework to understand and to envisage the effects of climate change and globalization on local breeds and their livestock niches.

  2. Adaptation pathways: ecoregion and land ownership influences on climate adaptation decision-making in forest management

    Treesearch

    Todd A. Ontl; Chris Swanston; Leslie A. Brandt; Patricia R. Butler; Anthony W. D’Amato; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon

    2018-01-01

    Climate adaptation planning and implementation are likely to increase rapidly within the forest sector not only as climate continues to change but also as we intentionally learn from real-world examples. We sought to better understand how adaptation is being incorporated in land management decision-making across diverse land ownership types in the Midwest by evaluating...

  3. Digital equalization of time-delay array receivers on coherent laser communications.

    PubMed

    Belmonte, Aniceto

    2017-01-15

    Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.

  4. Molecular aspects of stress-gene regulation during spaceflight

    NASA Technical Reports Server (NTRS)

    Paul, Anna-Lisa; Ferl, Robert J.

    2002-01-01

    Spaceflight-associated stress has been the topic of investigation since the first terrestrial organisms were exposed to this unique environment. Organisms that evolved under the selection pressures of earth-normal environments can perceive spaceflight as a stress, either directly because gravity influences an intrinsic biological process, or indirectly because of secondary effects imparted by spaceflight upon environmental conditions. Different organisms and even different organs within an organism adapt to a spaceflight environment with a diversity of tactics. Plants are keenly sensitive to gravity for directed development, and are also sensitive to other stresses associated with closed-system spaceflight environments. Within the past decade, the tools of molecular biology have begun to provide a sophisticated evaluation of spaceflight-associated stress and the genetic responses that accompany metabolic adaptation to spaceflight.

  5. Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall.

    PubMed Central

    Napolitano, Michael J; Shain, Daniel H

    2004-01-01

    A diverse group of glacially obligate organisms coexist on temperate glaciers between Washington State and Alaska. A fundamental challenge for these and other cold-adapted species is the necessity to maintain an energy flux capable of sustaining life at low physiological temperatures. We show here that ice-adapted psychrophiles from four kingdoms (Animalia, Eubacteria, Fungi, Protista) respond to temperature fluctuations in a similar manner; namely, ATP levels and the total adenylate pool increase as temperatures fall (within their viable temperature limits, respectively), yet growth rate increases with temperature. By contrast, mesophilic representatives of each kingdom respond in an opposite manner (i.e. adenylates increase with temperature). These observations suggest that elevated adenylate levels in psychrophiles may offset inherent reductions in molecular diffusion at low physiological temperatures. PMID:15503992

  6. Designing monitoring programs in an adaptive management context for regional multiple species conservation plans

    USGS Publications Warehouse

    Atkinson, A.J.; Trenham, P.C.; Fisher, R.N.; Hathaway, S.A.; Johnson, B.S.; Torres, S.G.; Moore, Y.C.

    2004-01-01

    critical management uncertainties; and 3) implementing long-term monitoring and adaptive management. Ultimately, the success of regional conservation planning depends on the ability of monitoring programs to confront the challenges of adaptively managing and monitoring complex ecosystems and diverse arrays of sensitive species.

  7. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  8. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  9. Interspecific hybridization contributes to high genetic diversity and apparent effective population size in an endemic population of mottled ducks (Anas fulvigula maculosa)

    USGS Publications Warehouse

    Peters, Jeffrey L.; Sonsthagen, Sarah A.; Lavretsky, Philip; Rezsutek, Michael; Johnson, William P.; McCracken, Kevin G.

    2014-01-01

    Under drift-mutation equilibrium, genetic diversity is expected to be correlated with effective population size (Ne). Changes in population size and gene flow are two important processes that can cause populations to deviate from this expected relationship. In this study, we used DNA sequences from six independent loci to examine the influence of these processes on standing genetic diversity in endemic mottled ducks (Anas fulvigula) and geographically widespread mallards (A. platyrhynchos), two species known to hybridize. Mottled ducks have an estimated census size that is about two orders-of-magnitude smaller than that of mallards, yet these two species have similar levels of genetic diversity, especially at nuclear DNA. Coalescent analyses suggest that a population expansion in the mallard at least partly explains this discrepancy, but the mottled duck harbors higher genetic diversity and apparent N e than expected for its census size even after accounting for a population decline. Incorporating gene flow into the model, however, reduced the estimated Ne of mottled ducks to 33 % of the equilibrium Ne and yielded an estimated Ne consistent with census size. We also examined the utility of these loci to distinguish among mallards, mottled ducks, and their hybrids. Most putatively pure individuals were correctly assigned to species, but the power for detecting hybrids was low. Although hybridization with mallards potentially poses a conservation threat to mottled ducks by creating a risk of extinction by hybridization, introgression of mallard alleles has helped maintain high genetic diversity in mottled ducks and might be important for the adaptability and survival of this species.

  10. 75 FR 35440 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... productivity and intra-population diversity and promote local adaptation, and (3) use Chinook salmon... hatchery-origin Chinook salmon removal on natural Chinook salmon productivity and develop an adaptive...

  11. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia).

    PubMed

    Bothwell, Helen M; Cushman, Samuel A; Woolbright, Scott A; Hersch-Green, Erika I; Evans, Luke M; Whitham, Thomas G; Allan, Gerard J

    2017-10-01

    Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R 2  = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long-term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support. © 2017 John Wiley & Sons Ltd.

  12. Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape

    PubMed Central

    Morris, Geoffrey P.; Grabowski, Paul; Borevitz, Justin O.

    2011-01-01

    Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, across a continental and landscape scale. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species’ range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4 to 127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistoscene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper-Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (~150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. PMID:22060816

  13. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    PubMed

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Auxin and the integration of environmental signals into plant root development

    PubMed Central

    Kazan, Kemal

    2013-01-01

    Background Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. Scope This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. Conclusions The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments. PMID:24136877

  15. Auxin and the integration of environmental signals into plant root development.

    PubMed

    Kazan, Kemal

    2013-12-01

    Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments.

  16. Understanding global health governance as a complex adaptive system.

    PubMed

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  17. Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region

    PubMed Central

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-01-01

    Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management. PMID:29342852

  18. Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region.

    PubMed

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-01-13

    Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.

  19. Adaptive management for soil ecosystem services

    USGS Publications Warehouse

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  20. HIF-2α is essential for carotid body development and function

    PubMed Central

    Cowburn, Andrew S; Torres-Torrelo, Hortensia; Ortega-Sáenz, Patricia; López-Barneo, José

    2018-01-01

    Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function. PMID:29671738

  1. Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae).

    PubMed

    Susoy, V; Herrmann, M

    2014-05-01

    Host-symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Evolution of flexibility and rigidity in retaliatory punishment

    PubMed Central

    MacGlashan, James; Littman, Michael L.

    2017-01-01

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game—a “thief” and a “victim”—must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension—and the adaptation of social behavior in this game—hinges on the game’s learning dynamics. Our findings clarify punishment’s adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts. PMID:28893996

  3. Evolution of flexibility and rigidity in retaliatory punishment.

    PubMed

    Morris, Adam; MacGlashan, James; Littman, Michael L; Cushman, Fiery

    2017-09-26

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game-a "thief" and a "victim"-must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension-and the adaptation of social behavior in this game-hinges on the game's learning dynamics. Our findings clarify punishment's adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts.

  4. Genotypic diversity in root-endophytic fungi reflects efficient dispersal and environmental adaptation.

    PubMed

    Glynou, Kyriaki; Ali, Tahir; Kia, Sevda Haghi; Thines, Marco; Maciá-Vicente, Jose G

    2017-09-01

    Studying community structure and dynamics of plant-associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS-based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta-tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter- and intraspecific biotic interactions, may be more important for the local assembly of their communities. © 2017 John Wiley & Sons Ltd.

  5. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  6. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    PubMed

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-08-01

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Correlates of depressive symptoms among North Korean refugees adapting to South Korean society: the moderating role of perceived discrimination.

    PubMed

    Um, Mee Young; Chi, Iris; Kim, Hee Jin; Palinkas, Lawrence A; Kim, Jae Yop

    2015-04-01

    Although the prevalence of depressive disorders among North Korean (NK) refugees living in South Korea has been reported to be twice the rate of their South Korean counterparts, little is known about the correlates of depressive symptoms among this population. Despite their escape from a politically and economically repressive setting, NK refugees continue to face multidimensional hardships during their adaptation process in South Korea, which can adversely affect their mental health. However, to our knowledge, no empirical research exists to date on depressive symptoms in the context of adaptation or perceived discrimination among NK refugees. To fill this gap, this study used a sample of 261 NK refugees in South Korea from the 2010 National Survey on Family Violence to examine associations between sociocultural adaptation, perceived discrimination, and depressive symptoms, as well as the moderation effect of discrimination on adaptation to depressive symptoms. We found that poor sociocultural adaptation and perception of discrimination were associated with increased levels of depressive symptoms. Perception of discrimination attenuated the association between better adaptation and fewer depressive symptoms, when compared to no perception of discrimination. These findings highlight the need to improve NK refugees' adaptation and integration as well as their psychological well-being in a culturally sensitive and comprehensive manner. They also underscore the importance of educating South Koreans to become accepting hosts who value diversity, yet in a homogeneous society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice

    PubMed Central

    Wilson, David L.; Rathinam, Vijay A. K.; Qi, Weihong; Wick, Lukas M.; Landgraf, Jeff; Bell, Julia A.; Plovanich-Jones, Anne; Parrish, Jodi; Finley, Russell L.; Mansfield, Linda S.; Linz, John E.

    2010-01-01

    Previous studies have demonstrated that Campylobacter jejuni, the leading causative agent of bacterial food-borne disease in the USA, exhibits high-frequency genetic variation that is associated with changes in cell-surface antigens and ability to colonize chickens. To expand our understanding of the role of genetic diversity in the disease process, we analysed the ability of three C. jejuni human disease isolates (strains 11168, 33292 and 81-176) and genetically marked derivatives to colonize Ross 308 broilers and C57BL/6J IL10-deficient mice. C. jejuni colonized broilers at much higher efficiency (all three strains, 23 of 24 broilers) than mice (11168 only, 8 of 24 mice). C. jejuni 11168 genetically marked strains colonized mice at very low efficiency (2 of 42 mice); however, C. jejuni reisolated from mice colonized both mice and broilers at high efficiency, suggesting that this pathogen can adapt genetically in the mouse. We compared the genome composition in the three wild-type C. jejuni strains and derivatives by microarray DNA/DNA hybridization analysis; the data demonstrated a high degree of genetic diversity in three gene clusters associated with synthesis and modification of the cell-surface structures capsule, flagella and lipo-oligosaccharide. Finally, we analysed the frequency of mutation in homopolymeric tracts associated with the contingency genes wlaN (GC tract) and flgR (AT tracts) in culture and after passage through broilers and mice. C. jejuni adapted genetically in culture at high frequency and the degree of genetic diversity was increased by passage through broilers but was nearly eliminated in the gastrointestinal tract of mice. The data suggest that the broiler gastrointestinal tract provides an environment which promotes outgrowth and genetic variation in C. jejuni; the enhancement of genetic diversity at this location may contribute to its importance as a human disease reservoir. PMID:20360176

  9. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    PubMed

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  10. The emotion system promotes diversity and evolvability

    PubMed Central

    Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J.; Aksnes, Dag L.; Mangel, Marc; Jørgensen, Christian

    2014-01-01

    Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels. PMID:25100697

  11. The emotion system promotes diversity and evolvability.

    PubMed

    Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J; Aksnes, Dag L; Mangel, Marc; Jørgensen, Christian

    2014-09-22

    Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels.

  12. Structural equation models based on multivariate diversity assessment of diploid and tetraploid hulled wheat species

    USDA-ARS?s Scientific Manuscript database

    Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...

  13. Cognitive Adaptation to the Experience of Social and Cultural Diversity

    ERIC Educational Resources Information Center

    Crisp, Richard J.; Turner, Rhiannon N.

    2011-01-01

    Diversity is a defining characteristic of modern society, yet there remains considerable debate over the benefits that it brings. The authors argue that positive psychological and behavioral outcomes will be observed only when social and cultural diversity is experienced in a way that challenges stereotypical expectations and that when this…

  14. sGD software for estimating spatially explicit indices of genetic diversity

    Treesearch

    A. J. Shirk; Samuel Cushman

    2011-01-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is...

  15. Adaptive Reception for Underwater Communications

    DTIC Science & Technology

    2011-06-01

    Experimental results prove the effectiveness of the receiver. 14. SUBJECT TERMS Underwater acoustic communications, adaptive algorithms , Kalman filter...the update algorithm design and the value of the spatial diversity are addressed. In this research, an adaptive multichannel equalizer made up of a...for the time-varying nature of the channel is to use an Adaptive Decision Feedback Equalizer based on either the RLS or LMS algorithm . Although this

  16. An Innovative Infrastructure with a Universal Geo-spatiotemporal Data Representation Supporting Cost-effective Integration of Diverse Earth Science Data

    NASA Astrophysics Data System (ADS)

    Kuo, K. S.; Rilee, M. L.

    2017-12-01

    Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic ease of combining diametrically different datasets, i.e. gridded (NMQ radar) vs. spacecraft swath (TRMM). SciDB+STARE is an important step towards a computational infrastructure for integrating and sharing diverse, complex Earth Science data and science products derived from them.

  17. Systematic, Multimethod Assessment of Adaptations Across Four Diverse Health Systems Interventions.

    PubMed

    Rabin, Borsika A; McCreight, Marina; Battaglia, Catherine; Ayele, Roman; Burke, Robert E; Hess, Paul L; Frank, Joseph W; Glasgow, Russell E

    2018-01-01

    Many health outcomes and implementation science studies have demonstrated the importance of tailoring evidence-based care interventions to local context to improve fit. By adapting to local culture, history, resources, characteristics, and priorities, interventions are more likely to lead to improved outcomes. However, it is unclear how best to adapt evidence-based programs and promising innovations. There are few guides or examples of how to best categorize or assess health-care adaptations, and even fewer that are brief and practical for use by non-researchers. This study describes the importance and potential of assessing adaptations before, during, and after the implementation of health systems interventions. We present a promising multilevel and multimethod approach developed and being applied across four different health systems interventions. Finally, we discuss implications and opportunities for future research. The four case studies are diverse in the conditions addressed, interventions, and implementation strategies. They include two nurse coordinator-based transition of care interventions, a data and training-driven multimodal pain management project, and a cardiovascular patient-reported outcomes project, all of which are using audit and feedback. We used the same modified adaptation framework to document changes made to the interventions and implementation strategies. To create the modified framework, we started with the adaptation and modification model developed by Stirman and colleagues and expanded it by adding concepts from the RE-AIM framework. Our assessments address the intuitive domains of Who, How, When, What, and Why to classify and organize adaptations. For each case study, we discuss how the modified framework was operationalized, the multiple methods used to collect data, results to date and approaches utilized for data analysis. These methods include a real-time tracking system and structured interviews at key times during the intervention. We provide descriptive data on the types and categories of adaptations made and discuss lessons learned. The multimethod approaches demonstrate utility across diverse health systems interventions. The modified adaptations model adequately captures adaptations across the various projects and content areas. We recommend systematic documentation of adaptations in future clinical and public health research and have made our assessment materials publicly available.

  18. AN ADAPTIVE RADIATION OF FROGS IN A SOUTHEAST ASIAN ISLAND ARCHIPELAGO

    PubMed Central

    Blackburn, David C; Siler, Cameron D; Diesmos, Arvin C; McGuire, Jimmy A; Cannatella, David C; Brown, Rafe M

    2013-01-01

    Living amphibians exhibit a diversity of ecologies, life histories, and species-rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species-level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well-supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations. PMID:24033172

  19. Wavefront Control and Image Restoration with Less Computing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial-frequency (Fourier-transform) domain to obtain measures of the piston, tip, and tilt errors over each segment or subaperture. Once these measures are known, they are fed back to the actuators to correct the errors. In addition, measures of errors that remain after correction by use of the actuators are further utilized in an algorithm in which the image is phase-corrected in the spatial-frequency domain and then transformed back to the spatial domain at each time step and summed with the images from all previous time steps to obtain a final image having a greater signal-to-noise ratio (and, hence, a visual quality) higher than would otherwise be attainable.

  20. Adaptive Teaching for English Language Arts: Following the Pathway of Classroom Data in Preservice Teacher Inquiry

    ERIC Educational Resources Information Center

    Athanases, Steven Z.; Bennett, Lisa H.; Wahleithner, Juliet Michelsen

    2015-01-01

    Consensus exists that effective teaching includes capacity to adapt instruction to respond to student learning challenges as they arise. Adaptive teachers may keep pace with rapidly evolving youth literacies and students' increasing cultural and linguistic diversity. Teachers are challenged to critically examine pedagogy when some contexts expect…

  1. Pedagogical Content Knowledge of Experienced Teachers in Physical Education: Functional Analysis of Adaptations

    ERIC Educational Resources Information Center

    Ayvazo, Shiri; Ward, Phillip

    2011-01-01

    Pedagogical content knowledge (PCK) is the teacher's ability to pedagogically adapt content to students of diverse abilities. In this study, we investigated how teachers' adaptations of instruction for individual students differed when teaching stronger and weaker instructional units. We used functional analysis (Hanley, Iwata, & McCord, 2003) of…

  2. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion

    PubMed Central

    Twyford, Alex D.; Friedman, Jannice

    2015-01-01

    Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large‐scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow. PMID:25879251

  3. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus

    PubMed Central

    De Kort, Hanne; Mergeay, Joachim; Jacquemyn, Hans; Honnay, Olivier

    2016-01-01

    Background and Aims Many invasive species severely threaten native biodiversity and ecosystem functioning. One of the most prominent questions in invasion genetics is how invasive populations can overcome genetic founder effects to establish stable populations after colonization of new habitats. High native genetic diversity and multiple introductions are expected to increase genetic diversity and adaptive potential in the invasive range. Our aim was to identify the European source populations of Frangula alnus (glossy buckthorn), an ornamental and highly invasive woody species that was deliberately introduced into North America at the end of the 18th century. A second aim of this study was to assess the adaptive potential as an explanation for the invasion success of this species. Methods Using a set of annotated single-nucleotide polymorphisms (SNPs) that were assigned a putative function based on sequence comparison with model species, a total of 38 native European and 21 invasive North American populations were subjected to distance-based structure and assignment analyses combined with population genomic tools. Genetic diversity at SNPs with ecologically relevant functions was considered as a proxy for adaptive potential. Key Results Patterns of invasion coincided with early modern transatlantic trading routes. Multiple introductions through transatlantic trade from a limited number of European port regions to American urban areas led to the establishment of bridgehead populations with high allelic richness and expected heterozygosity, allowing continuous secondary migration to natural areas. Conclusions Targeted eradication of the urban populations, where the highest genetic diversity and adaptive potential were observed, offers a promising strategy to arrest further invasion of native American prairies and forests. PMID:27539599

  4. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21

    PubMed Central

    Wang, Yuefeng; Fisher, John C.; Mathew, Rose; Ou, Li; Otieno, Steve; Sublett, Jack; Xiao, Limin; Chen, Jianhan; Roussel, Martine F.; Kriwacki, Richard W.

    2011-01-01

    Traditionally, well-defined three-dimensional structure was thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently exhibit “binding diversity” by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and herein report that the cyclin-dependent kinase (Cdk) inhibitor, p21Cip1, adaptively binds to and inhibits the various Cdk/cyclin complexes that regulate eukaryotic cell division. Based on results from NMR spectroscopy, and biochemical and cellular assays, we show that structural adaptability of a helical sub-domain within p21 termed LH enables two other sub-domains termed D1 and D2 to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk/cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes. PMID:21358637

  5. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city.

    PubMed

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M; Ramón, Daniel; Porcar, Manuel

    2016-07-05

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels' surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation.

  6. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

    PubMed Central

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M.; Ramón, Daniel; Porcar, Manuel

    2016-01-01

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels’ surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation. PMID:27378552

  7. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas.

    PubMed

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Wirth, Stephan; Zhang, Yanming; Zhao, Xinquan; Li, Xiangzhen

    2018-06-03

    The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.

  8. Assessing and Validating an Educational Resource Package for Health Professionals to Improve Smoking Cessation Care in Aboriginal and Torres Strait Islander Pregnant Women.

    PubMed

    Bar-Zeev, Yael; Bovill, Michelle; Bonevski, Billie; Gruppetta, Maree; Reath, Jennifer; Gould, Gillian S

    2017-09-29

    Australian Aboriginal pregnant women have a high smoking prevalence (45%). Health professionals lack adequate educational resources to manage smoking. Resources need to be tailored to ensure saliency, cultural-sensitivity and account for diversity of Indigenous populations. As part of an intervention to improve health professionals' smoking cessation care in Aboriginal pregnant women, a resource package was developed collaboratively with two Aboriginal Medical Services. The purpose of this study was to assess and validate this resource package. A multi-centred community-based participatory 4-step process (with three Aboriginal Medical Services from three Australian states), included: (1) Scientific review by an expert panel (2) 'Suitability of Materials' scoring by two Aboriginal Health Workers (3) Readability scores (4) Focus groups with health professionals. Content was analysed using six pre-determined themes (attraction, comprehension, self-efficacy, graphics and layout, cultural acceptability, and persuasion), with further inductive analysis for emerging themes. Suitability of Material scoring was adequate or superior. Average readability was grade 6.4 for patient resources (range 5.1-7.2), and 9.8 for health provider resources (range 8.5-10.6). Emergent themes included 'Getting the message right'; 'Engaging with family'; 'Needing visual aids'; and 'Requiring practicality under a tight timeframe'. Results were presented back to a Stakeholder and Consumer Aboriginal Advisory Panel and resources were adjusted accordingly. This process ensured materials used for the intervention were culturally responsive, evidence-based and useful. This novel formative evaluation protocol could be adapted for other Indigenous and culturally diverse interventions. The added value of this time-consuming and costly process is yet to be justified in research, and might impact the potential adaption by other projects.

  9. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  10. Ecological mechanisms underpinning climate adaptation services.

    PubMed

    Lavorel, Sandra; Colloff, Matthew J; McIntyre, Sue; Doherty, Michael D; Murphy, Helen T; Metcalfe, Daniel J; Dunlop, Michael; Williams, Richard J; Wise, Russell M; Williams, Kristen J

    2015-01-01

    Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning. © 2014 John Wiley & Sons Ltd.

  11. Using community archetypes to better understand differential community adaptation to wildfire risk.

    PubMed

    Carroll, Matthew; Paveglio, Travis

    2016-06-05

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating 'fire-adapted communities' (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland-Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  12. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.

    PubMed

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-08-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.

  13. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures

    PubMed Central

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-01-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971

  14. Genomic variation among populations of threatened coral: Acropora cervicornis.

    PubMed

    Drury, C; Dale, K E; Panlilio, J M; Miller, S V; Lirman, D; Larson, E A; Bartels, E; Crawford, D L; Oleksiak, M F

    2016-04-13

    Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with evolutionary implications.

  15. Using an architectural approach to integrate heterogeneous, distributed software components

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Purtilo, James M.

    1995-01-01

    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.

  16. Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution.

    PubMed

    Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei

    2016-12-01

    Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Adapting California’s ecosystems to a changing climate

    USGS Publications Warehouse

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  18. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    PubMed

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. Copyright © 2016 by the Genetics Society of America.

  19. ED becomes 'lean' and cuts LBTC, LOS times.

    PubMed

    2008-04-01

    Lean manufacturing techniques, first developed by Toyota, can be successfully adapted to help improve processes in your ED. St. Luke's Episcopal Hospital in Houston, has used Lean to reduce median length of stay, frequency of diversions, and the percentage of patients who left before treatment was complete (LBTC). Here's why "Lean" can help improve the performance of your ED: It enables you and your staff to see things from the patient's point of view. Lean tools enable you to view the status of your department in real-time and to compare that status with your performance goals. Exercises help identify areas where your processes break down and determine the most likely solutions.

  20. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  1. Class Size and Student Diversity: Two Sides of the Same Coin. Teacher Voice

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie; Riel, Rick; McGahey, Bob

    2012-01-01

    Among Canadian teacher unions, discussions of class size are increasingly being informed by the importance of considering the diversity of student needs within the classroom (often referred to as class composition). For teachers, both class size and diversity matter. Teachers consistently adapt their teaching to address the individual needs of the…

  2. Race/Ethnicity and Social Adjustment of Adolescents: How (Not if) School Diversity Matters

    ERIC Educational Resources Information Center

    Graham, Sandra

    2018-01-01

    In this article, I describe a program of research on the psychosocial benefits of racial/ethnic diversity in urban middle schools. It is hypothesized that greater diversity can benefit students' mental health, intergroup attitudes, and school adaptation via three mediating mechanisms: (a) the formation and maintenance of cross-ethnic friendships,…

  3. Trait-specific processes of convergence and conservatism shape ecomorphological evolution in ground-dwelling squirrels.

    PubMed

    McLean, Bryan S; Helgen, Kristofer M; Goodwin, H Thomas; Cook, Joseph A

    2018-03-01

    Our understanding of mechanisms operating over deep timescales to shape phenotypic diversity often hinges on linking variation in one or few trait(s) to specific evolutionary processes. When distinct processes are capable of similar phenotypic signatures, however, identifying these drivers is difficult. We explored ecomorphological evolution across a radiation of ground-dwelling squirrels whose history includes convergence and constraint, two processes that can yield similar signatures of standing phenotypic diversity. Using four ecologically relevant trait datasets (body size, cranial, mandibular, and molariform tooth shape), we compared and contrasted variation, covariation, and disparity patterns in a new phylogenetic framework. Strong correlations existed between body size and two skull traits (allometry) and among skull traits themselves (integration). Inferred evolutionary modes were also concordant across traits (Ornstein-Uhlenbeck with two adaptive regimes). However, despite these broad similarities, we found divergent dynamics on the macroevolutionary landscape, with phenotypic disparity being differentially shaped by convergence and conservatism. Such among-trait heterogeneity in process (but not always pattern) reiterates the mosaic nature of morphological evolution, and suggests ground squirrel evolution is poorly captured by single process descriptors. Our results also highlight how use of single traits can bias macroevolutionary inference, affirming the importance of broader trait-bases in understanding phenotypic evolutionary dynamics. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  4. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks.

    PubMed

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.

  5. Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    PubMed Central

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F.; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A.

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone. PMID:25874617

  6. Evolutionary approaches to cultural and linguistic diversity.

    PubMed

    Steele, James; Jordan, Peter; Cochrane, Ethan

    2010-12-12

    Evolutionary approaches to cultural change are increasingly influential, and many scientists believe that a 'grand synthesis' is now in sight. The papers in this Theme Issue, which derives from a symposium held by the AHRC Centre for the Evolution of Cultural Diversity (University College London) in December 2008, focus on how the phylogenetic tree-building and network-based techniques used to estimate descent relationships in biology can be adapted to reconstruct cultural histories, where some degree of inter-societal diffusion will almost inevitably be superimposed on any deeper signal of a historical branching process. The disciplines represented include the three most purely 'cultural' fields from the four-field model of anthropology (cultural anthropology, archaeology and linguistic anthropology). In this short introduction, some context is provided from the history of anthropology, and key issues raised by the papers are highlighted.

  7. Evolutionary approaches to cultural and linguistic diversity

    PubMed Central

    Steele, James; Jordan, Peter; Cochrane, Ethan

    2010-01-01

    Evolutionary approaches to cultural change are increasingly influential, and many scientists believe that a ‘grand synthesis’ is now in sight. The papers in this Theme Issue, which derives from a symposium held by the AHRC Centre for the Evolution of Cultural Diversity (University College London) in December 2008, focus on how the phylogenetic tree-building and network-based techniques used to estimate descent relationships in biology can be adapted to reconstruct cultural histories, where some degree of inter-societal diffusion will almost inevitably be superimposed on any deeper signal of a historical branching process. The disciplines represented include the three most purely ‘cultural’ fields from the four-field model of anthropology (cultural anthropology, archaeology and linguistic anthropology). In this short introduction, some context is provided from the history of anthropology, and key issues raised by the papers are highlighted. PMID:21041203

  8. Illuminating Cell Biology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  9. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity

    PubMed Central

    2013-01-01

    Background Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. Results We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. Conclusion Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown. PMID:23565725

  10. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    PubMed Central

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  11. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  12. Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA.

    PubMed

    Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-07-01

    Hydraulic fracturing is used to increase the permeability of shale gas formations and involves pumping large volumes of fluids into these formations. A portion of the frac fluid remains in the formation after the fracturing process is complete, which could potentially contribute to deleterious microbially induced processes in natural gas wells. Here, we report on the geochemical and microbiological properties of frac and flowback waters from two newly drilled natural gas wells in the Barnett Shale in North Central Texas. Most probable number studies showed that biocide treatments did not kill all the bacteria in the fracturing fluids. Pyrosequencing-based 16S rRNA diversity analyses indicated that the microbial communities in the flowback waters were less diverse and completely distinct from the communities in frac waters. These differences in frac and flowback water communities appeared to reflect changes in the geochemistry of fracturing fluids that occurred during the frac process. The flowback communities also appeared well adapted to survive biocide treatments and the anoxic conditions and high temperatures encountered in the Barnett Shale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. DnaSAM: Software to perform neutrality testing for large datasets with complex null models.

    PubMed

    Eckert, Andrew J; Liechty, John D; Tearse, Brandon R; Pande, Barnaly; Neale, David B

    2010-05-01

    Patterns of DNA sequence polymorphisms can be used to understand the processes of demography and adaptation within natural populations. High-throughput generation of DNA sequence data has historically been the bottleneck with respect to data processing and experimental inference. Advances in marker technologies have largely solved this problem. Currently, the limiting step is computational, with most molecular population genetic software allowing a gene-by-gene analysis through a graphical user interface. An easy-to-use analysis program that allows both high-throughput processing of multiple sequence alignments along with the flexibility to simulate data under complex demographic scenarios is currently lacking. We introduce a new program, named DnaSAM, which allows high-throughput estimation of DNA sequence diversity and neutrality statistics from experimental data along with the ability to test those statistics via Monte Carlo coalescent simulations. These simulations are conducted using the ms program, which is able to incorporate several genetic parameters (e.g. recombination) and demographic scenarios (e.g. population bottlenecks). The output is a set of diversity and neutrality statistics with associated probability values under a user-specified null model that are stored in easy to manipulate text file. © 2009 Blackwell Publishing Ltd.

  14. Tinnitus What and Where: An Ecological Framework

    PubMed Central

    Searchfield, Grant D.

    2014-01-01

    Tinnitus is an interaction of the environment, cognition, and plasticity. The connection between the individual with tinnitus and their world seldom receives attention in neurophysiological research. As well as changes in cell excitability, an individual’s culture and beliefs, and work and social environs may all influence how tinnitus is perceived. In this review, an ecological framework for current neurophysiological evidence is considered. The model defines tinnitus as the perception of an auditory object in the absence of an acoustic event. It is hypothesized that following deafferentation: adaptive feature extraction, schema, and semantic object formation processes lead to tinnitus in a manner predicted by Adaptation Level Theory (1, 2). Evidence from physiological studies is compared to the tenants of the proposed ecological model. The consideration of diverse events within an ecological context may unite seemingly disparate neurophysiological models. PMID:25566177

  15. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide assured water supplies and hydroelectricity constrains the opportunities for rehabilitation and limits the management objectives to focus either on restoring predam physical processes or recovering native fish fauna and/or recovering native plant communities.

  16. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  17. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  18. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  19. Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.

    PubMed

    Holper, L; Van Brussel, L D; Schmidt, L; Schulthess, S; Burke, C J; Louie, K; Seifritz, E; Tobler, P N

    2017-01-01

    Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.

  20. The functional and palaeoecological implications of tooth morphology and wear for the megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    PubMed

    Mallon, Jordan C; Anderson, Jason S

    2014-01-01

    Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, including the first use of quantitative dental microwear analysis in the context of Cretaceous palaeosynecology, are used to infer the mechanical properties of the foods these dinosaurs consumed. The phylliform teeth of ankylosaurs were poorly adapted for habitually processing high-fibre plant matter. Nevertheless, ankylosaur diets were likely more varied than traditionally assumed: the relatively large, bladed teeth of nodosaurids would have been better adapted to processing a tougher, more fibrous diet than the smaller, cusp-like teeth of ankylosaurids. Ankylosaur microwear is characterized by a preponderance of pits and scratches, akin to modern mixed feeders, but offers no support for interspecific dietary differences. The shearing tooth batteries of ceratopsids are much better adapted to high-fibre herbivory, attested by their scratch-dominated microwear signature. There is tentative microwear evidence to suggest differences in the feeding habits of centrosaurines and chasmosaurines, but statistical support is not significant. The tooth batteries of hadrosaurids were capable of both shearing and crushing functions, suggestive of a broad dietary range. Their microwear signal overlaps broadly with that of ankylosaurs, and suggests possible dietary differences between hadrosaurines and lambeosaurines. Tooth wear evidence further indicates that all forms considered here exhibited some degree of masticatory propaliny. Our findings reveal that tooth morphology and wear exhibit different, but complimentary, dietary signals that combine to support the hypothesis of dietary niche partitioning. The inferred mechanical and dietary patterns appear constant over the 1.5 Myr timespan of the Dinosaur Park Formation megaherbivore chronofauna, despite continual species turnover.

  1. The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada

    PubMed Central

    Mallon, Jordan C.; Anderson, Jason S.

    2014-01-01

    Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, including the first use of quantitative dental microwear analysis in the context of Cretaceous palaeosynecology, are used to infer the mechanical properties of the foods these dinosaurs consumed. The phylliform teeth of ankylosaurs were poorly adapted for habitually processing high-fibre plant matter. Nevertheless, ankylosaur diets were likely more varied than traditionally assumed: the relatively large, bladed teeth of nodosaurids would have been better adapted to processing a tougher, more fibrous diet than the smaller, cusp-like teeth of ankylosaurids. Ankylosaur microwear is characterized by a preponderance of pits and scratches, akin to modern mixed feeders, but offers no support for interspecific dietary differences. The shearing tooth batteries of ceratopsids are much better adapted to high-fibre herbivory, attested by their scratch-dominated microwear signature. There is tentative microwear evidence to suggest differences in the feeding habits of centrosaurines and chasmosaurines, but statistical support is not significant. The tooth batteries of hadrosaurids were capable of both shearing and crushing functions, suggestive of a broad dietary range. Their microwear signal overlaps broadly with that of ankylosaurs, and suggests possible dietary differences between hadrosaurines and lambeosaurines. Tooth wear evidence further indicates that all forms considered here exhibited some degree of masticatory propaliny. Our findings reveal that tooth morphology and wear exhibit different, but complimentary, dietary signals that combine to support the hypothesis of dietary niche partitioning. The inferred mechanical and dietary patterns appear constant over the 1.5 Myr timespan of the Dinosaur Park Formation megaherbivore chronofauna, despite continual species turnover. PMID:24918431

  2. Reframing the challenges to integrated care: a complex-adaptive systems perspective.

    PubMed

    Tsasis, Peter; Evans, Jenna M; Owen, Susan

    2012-01-01

    Despite over two decades of international experience and research on health systems integration, integrated care has not developed widely. We hypothesized that part of the problem may lie in how we conceptualize the integration process and the complex systems within which integrated care is enacted. This study aims to contribute to discourse regarding the relevance and utility of a complex-adaptive systems (CAS) perspective on integrated care. In the Canadian province of Ontario, government mandated the development of fourteen Local Health Integration Networks in 2006. Against the backdrop of these efforts to integrate care, we collected focus group data from a diverse sample of healthcare professionals in the Greater Toronto Area using convenience and snowball sampling. A semi-structured interview guide was used to elicit participant views and experiences of health systems integration. We use a CAS framework to describe and analyze the data, and to assess the theoretical fit of a CAS perspective with the dominant themes in participant responses. Our findings indicate that integration is challenged by system complexity, weak ties and poor alignment among professionals and organizations, a lack of funding incentives to support collaborative work, and a bureaucratic environment based on a command and control approach to management. Using a CAS framework, we identified several characteristics of CAS in our data, including diverse, interdependent and semi-autonomous actors; embedded co-evolutionary systems; emergent behaviours and non-linearity; and self-organizing capacity. One possible explanation for the lack of systems change towards integration is that we have failed to treat the healthcare system as complex-adaptive. The data suggest that future integration initiatives must be anchored in a CAS perspective, and focus on building the system's capacity to self-organize. We conclude that integrating care requires policies and management practices that promote system awareness, relationship-building and information-sharing, and that recognize change as an evolving learning process rather than a series of programmatic steps.

  3. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribemore » process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  4. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  5. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    NASA Astrophysics Data System (ADS)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  6. An adaptable architecture for patient cohort identification from diverse data sources.

    PubMed

    Bache, Richard; Miles, Simon; Taweel, Adel

    2013-12-01

    We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity.

  7. Improving the Effectiveness of Speaker Verification Domain Adaptation With Inadequate In-Domain Data

    DTIC Science & Technology

    2017-08-20

    Improving the Effectiveness of Speaker Verification Domain Adaptation With Inadequate In-Domain Data Bengt J. Borgström1, Elliot Singer1, Douglas...ll.mit.edu.edu, dar@ll.mit.edu, es@ll.mit.edu, omid.sadjadi@nist.gov Abstract This paper addresses speaker verification domain adaptation with...contain speakers with low channel diversity. Existing domain adaptation methods are reviewed, and their shortcomings are discussed. We derive an

  8. Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    PubMed Central

    Sanborn, Allen F.; Heath, James E.; Phillips, Polly K.; Heath, Maxine S.; Noriega, Fernando G.

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors. PMID:22242117

  9. A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-01-01

    Behavioral diversity is an essential feature of living systems, enabling them to exhibit adaptive behavior in hostile and dynamically changing environments. However, traditional engineering approaches strive to avoid, or suppress, the behavioral diversity in artificial systems to achieve high performance in specific environments for given tasks. The goals of this research include understanding how living systems exhibit behavioral diversity and using these findings to build lifelike robots that exhibit truly adaptive behaviors. To this end, we have focused on one of the most primitive forms of intelligence concerning behavioral diversity, namely, a plasmodium of true slime mold. The plasmodium is a large amoeba-like unicellular organism that does not possess any nervous system or specialized organs. However, it exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously between these. Inspired by the plasmodium, we built a mathematical model that exhibits versatile oscillatory patterns and spontaneously transitions between these patterns. This model demonstrates that, in contrast to coupled nonlinear oscillators with a well-designed complex diffusion network, physically interacting mechanosensory oscillators are capable of generating versatile oscillatory patterns without changing any parameters. Thus, the results are expected to shed new light on the design scheme for lifelike robots that exhibit amazingly versatile and adaptive behaviors.

  10. Effects of payoff functions and preference distributions in an adaptive population

    NASA Astrophysics Data System (ADS)

    Yang, H. M.; Ting, Y. S.; Wong, K. Y. Michael

    2008-03-01

    Adaptive populations such as those in financial markets and distributed control can be modeled by the Minority Game. We consider how their dynamics depends on the agents’ initial preferences of strategies, when the agents use linear or quadratic payoff functions to evaluate their strategies. We find that the fluctuations of the population making certain decisions (the volatility) depends on the diversity of the distribution of the initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. In systems with linear payoffs, this results in dynamical transitions from vanishing volatility to a nonvanishing one. For low signal dimensions, the dynamical transitions for the different signals do not take place at the same critical diversity. Rather, a cascade of dynamical transitions takes place when the diversity is reduced. In contrast, no phase transitions are found in systems with the quadratic payoffs. Instead, a basin boundary of attraction separates two groups of samples in the space of the agents’ decisions. Initial states inside this boundary converge to small volatility, while those outside diverge to a large one. Furthermore, when the preference distribution becomes more polarized, the dynamics becomes more erratic. All the above results are supported by good agreement between simulations and theory.

  11. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Saccharomyces cerevisiae under basal and stress conditions.

    PubMed

    Gergondey, Rachel; Garcia, Camille; Marchand, Christophe H; Lemaire, Stephane D; Camadro, Jean-Michel; Auchère, Françoise

    2017-03-15

    The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the -SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast Saccharomyces cerevisiae and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in S. cerevisiae under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, H 2 O 2 , or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. Changes in the genetic diversity of eastern hemlock as a result of different forest management practices

    Treesearch

    Gary J. Hawley; Donald H. DeHayes; John C. Brissette

    2000-01-01

    Loss of populations and individuals within species to human-induced selective forces can result in loss of specific genes and overall genetic diversity upon which productivity, ecosystem stability, long-term survival, and evolution depend. This is particularly true for long-lived organisms, such as forest trees, because genetic diversity confers adaptability necessary...

  13. Periodic Pattern of Genetic and Fitness Diversity during Evolution of an Artificial Cell-Like System.

    PubMed

    Ichihashi, Norikazu; Aita, Takuyo; Motooka, Daisuke; Nakamura, Shota; Yomo, Tetsuya

    2015-12-01

    Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Visible light high-resolution imaging system for large aperture telescope by liquid crystal adaptive optics with phase diversity technique.

    PubMed

    Xu, Zihao; Yang, Chengliang; Zhang, Peiguang; Zhang, Xingyun; Cao, Zhaoliang; Mu, Quanquan; Sun, Qiang; Xuan, Li

    2017-08-30

    There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.

  15. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae)

    PubMed Central

    Givnish, Thomas J.; Millam, Kendra C.; Mast, Austin R.; Paterson, Thomas B.; Theim, Terra J.; Hipp, Andrew L.; Henss, Jillian M.; Smith, James F.; Wood, Kenneth R.; Sytsma, Kenneth J.

    2008-01-01

    The endemic Hawaiian lobeliads are exceptionally species rich and exhibit striking diversity in habitat, growth form, pollination biology and seed dispersal, but their origins and pattern of diversification remain shrouded in mystery. Up to five independent colonizations have been proposed based on morphological differences among extant taxa. We present a molecular phylogeny showing that the Hawaiian lobeliads are the product of one immigration event; that they are the largest plant clade on any single oceanic island or archipelago; that their ancestor arrived roughly 13 Myr ago; and that this ancestor was most likely woody, wind-dispersed, bird-pollinated, and adapted to open habitats at mid-elevations. Invasion of closed tropical forests is associated with evolution of fleshy fruits. Limited dispersal of such fruits in wet-forest understoreys appears to have accelerated speciation and led to a series of parallel adaptive radiations in Cyanea, with most species restricted to single islands. Consistency of Cyanea diversity across all tall islands except Hawai `i suggests that diversification of Cyanea saturates in less than 1.5 Myr. Lobeliad diversity appears to reflect a hierarchical adaptive radiation in habitat, then elevation and flower-tube length, and provides important insights into the pattern and tempo of diversification in a species-rich clade of tropical plants. PMID:18854299

  16. An adaptive radiation of frogs in a southeast Asian island archipelago.

    PubMed

    Blackburn, David C; Siler, Cameron D; Diesmos, Arvin C; McGuire, Jimmy A; Cannatella, David C; Brown, Rafe M

    2013-09-01

    Living amphibians exhibit a diversity of ecologies, life histories, and species-rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species-level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well-supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  17. Does Wildfire Open a Policy Window? Local Government and Community Adaptation After Fire in the United States.

    PubMed

    Mockrin, Miranda H; Fishler, Hillary K; Stewart, Susan I

    2018-05-15

    Becoming a fire adapted community that can coexist with wildfire is envisioned as a continuous, iterative process of adaptation, but it is unclear how communities may pursue adaptation. Experience with wildfire and other natural hazards suggests that disasters may open a "window of opportunity" leading to local government policy changes. We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.

  18. The Unusual Genetics and Biochemistry of Bovine Immunoglobulins.

    PubMed

    Stanfield, Robyn L; Haakenson, Jeremy; Deiss, Thaddeus C; Criscitiello, Michael F; Wilson, Ian A; Smider, Vaughn V

    2018-01-01

    Antibodies are the key circulating molecules that have evolved to fight infection by the adaptive immune system of vertebrates. Typical antibodies of most species contain six complementarity-determining regions (CDRs), where the third CDR of the heavy chain (CDR H3) has the greatest diversity and often makes the most significant contact with antigen. Generally, the process of V(D)J recombination produces a vast repertoire of antibodies; multiple V, D, and J gene segments recombine with additional junctional diversity at the V-D and D-J joints, and additional combinatorial possibilities occur through heavy- and light-chain pairing. Despite these processes, the overall structure of the resulting antibody is largely conserved, and binding to antigen occurs predominantly through the CDR loops of the immunoglobulin V domains. Bovines have deviated from this general paradigm by having few VH regions and thus little germline combinatorial diversity, but their antibodies contain long CDR H3 regions, with substantial diversity generated through somatic hypermutation. A subset of the repertoire comprises antibodies with ultralong CDR H3s, which can reach over 70 amino acids in length. Structurally, these unusual antibodies form a β-ribbon "stalk" and disulfide-bonded "knob" that protrude far from the antibody surface. These long CDR H3s allow cows to mount a particularly robust immune response when immunized with viral antigens, particularly to broadly neutralizing epitopes on a stabilized HIV gp140 trimer, which has been a challenge for other species. The unusual genetics and structural biology of cows provide for a unique paradigm for creation of immune diversity and could enable generation of antibodies against especially challenging targets and epitopes. © 2018 Elsevier Inc. All rights reserved.

  19. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    ERIC Educational Resources Information Center

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  20. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards.

    PubMed

    Reaney, Ashley M; Saldarriaga-Córdoba, Mónica; Pincheira-Donoso, Daniel

    2018-02-06

    Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel environments. This mode of diversification contrasts dramatically with its sister lineage Liolaemus, which geographically overlaps with Phymaturus, but exploits all possible microhabitats in these and other bioclimatic areas. Our study contributes importantly to consolidate these lizards (liolaemids) as promising model systems to investigate the entire spectrum of modes of species formations, from the adaptive to the non-adaptive extremes of the continuum.

  1. Phylogenomic Relationships between Amylolytic Enzymes from 85 Strains of Fungi

    PubMed Central

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-01-01

    Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions. PMID:23166747

  2. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    PubMed

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  3. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    PubMed Central

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  4. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  5. Degeneracy allows for both apparent homogeneity and diversification in populations

    PubMed Central

    Whitacre, James M.; Atamas, Sergei P.

    2013-01-01

    Trait diversity – the substrate for natural selection – is necessary for adaptation through selection, particularly in populations faced with environmental changes that diminish population fitness. In habitats that remain unchanged for many generations, stabilizing selection maximizes exploitation of resources by reducing trait diversity to a narrow optimal range. One might expect that such ostensibly homogeneous populations would have a reduced potential for heritable adaptive responses when faced with fitness-reducing environmental changes. However, field studies have documented populations that, even after long periods of evolutionary stasis, can still rapidly evolve in response to changed environmental conditions. We argue that degeneracy, the ability of diverse population elements to function similarly, can satisfy both the current need to maximize fitness and the future need for diversity. Degenerate ensembles appear functionally redundant in certain environmental contexts and functionally diverse in others. We propose that genetic variation not contributing to the observed range of phenotypes in a current population, also known as cryptic genetic variation (CGV), is a specific case of degeneracy. We argue that CGV, which gradually accumulates in static populations in stable environments, reveals hidden trait differences when environments change. By allowing CGV accumulation, static populations prepare themselves for future rapid adaptations to environmental novelty. A greater appreciation of degeneracy’s role in resolving the inherent tension between current stabilizing selection and future directional selection has implications in conservation biology and may be applied in social and technological systems to maximize current performance while strengthening the potential for future changes. PMID:22910487

  6. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    PubMed Central

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia MA; S Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-01-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds. PMID:23702515

  7. Apprendre par le dialogue : le cas des pharmaciens d'officine en interaction avec leurs clients

    NASA Astrophysics Data System (ADS)

    Cohen-Scali, Valérie; Ramsamy-Prat, Padma

    2015-12-01

    Learning through dialogue: the case of retail pharmacists' interactions with their customers - This article seeks to highlight certain identity processes that are mobilized through dialogue in the workplace and that promote learning (or information gathering) in this context. These processes are studied in the population of retail pharmacists, much of whose work centres on interactions with customers. Dutch psychologist Hubert Hermans' theory of the dialogical self is used as a theoretical framework. The main hypothesis developed in the article is that to understand the problems of the customers who come into their pharmacies and adapt to their requests, pharmacists must adopt a series of I positions in their dialogues with them. French pharmacists in Paris and the Paris region were observed and interviewed. The four dialogue extracts studied here underline the diversity of I-positions implemented in pharmacist-customer dialogues. The diversity of registers that pharmacists are able to deploy in their interactions appears to be inherent to their professionalism and a necessary aspect of their work. These results open up perspectives for further research into the association of workplace learning and identity transformation.

  8. Why geodiversity matters in valuing nature's stage.

    PubMed

    Hjort, Jan; Gordon, John E; Gray, Murray; Hunter, Malcolm L

    2015-06-01

    Geodiversity--the variability of Earth's surface materials, forms, and physical processes-is an integral part of nature and crucial for sustaining ecosystems and their services. It provides the substrates, landform mosaics, and dynamic physical processes for habitat development and maintenance. By determining the heterogeneity of the physical environment in conjunction with climate interactions, geodiversity has a crucial influence on biodiversity across a wide range of scales. From a literature review, we identified the diverse values of geodiversity; examined examples of the dependencies of biodiversity on geodiversity at a site-specific scale (for geosites <1 km(2) in area); and evaluated various human-induced threats to geosites and geodiversity. We found that geosites are important to biodiversity because they often support rare or unique biota adapted to distinctive environmental conditions or create a diversity of microenvironments that enhance species richness. Conservation of geodiversity in the face of a range of threats is critical both for effective management of nature's stage and for its own particular values. This requires approaches to nature conservation that integrate climate, biodiversity, and geodiversity at all spatial scales. © 2015 Society for Conservation Biology.

  9. Modeling the Population-Level Processes of Biodiversity Gain and Loss at Geological Timescales.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Raia, Pasquale; Toivonen, Jaakko

    2015-12-01

    The path of species diversification is commonly observed by inspecting the fossil record. Yet, how species diversity changes at geological timescales relate to lower-level processes remains poorly understood. Here we use mathematical models of spatially structured populations to show that natural selection and gradual environmental change give rise to discontinuous phenotype changes that can be connected to speciation and extinction at the macroevolutionary level. In our model, new phenotypes arise in the middle of the environmental gradient, while newly appearing environments are filled by existing phenotypes shifting their adaptive optima. Slow environmental change leads to loss of phenotypes in the middle of the extant environmental range, whereas fast change causes extinction at one extreme of the environmental range. We compared our model predictions against a well-known yet partially unexplained pattern of intense hoofed mammal diversification associated with grassland expansion during the Late Miocene. We additionally used the model outcomes to cast new insight into Cope's law of the unspecialized. Our general finding is that the rate of environmental change determines where generation and loss of diversity occur in the phenotypic and physical spaces.

  10. The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis

    NASA Astrophysics Data System (ADS)

    di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.

    2014-09-01

    In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.

  11. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition.

    PubMed

    Heitlinger, Emanuel; Ferreira, Susana C M; Thierer, Dagmar; Hofer, Heribert; East, Marion L

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena ( Crocuta crocuta ), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.

  12. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition

    PubMed Central

    Heitlinger, Emanuel; Ferreira, Susana C. M.; Thierer, Dagmar; Hofer, Heribert; East, Marion L.

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes. PMID:28670573

  13. Adaptive management of natural resources: theory, concepts, and management institutions.

    Treesearch

    George H. Stankey; Roger N. Clark; Bernard T. Bormann

    2005-01-01

    This report reviews the extensive and growing literature on the concept and application of adaptive management. Adaptive management is a central element of the Northwest Forest Plan and there is a need for an informed understanding of the key theories, concepts, and frameworks upon which it is founded. Literature from a diverse range of fields including social learning...

  14. Climate change adaptation strategies for federal forests of the Pacific Northwest, USA: ecological, policy, and socio-economic perspectives

    Treesearch

    Thomas A. Spies; Thomas W. Giesen; Frederick J. Swanson; Jerry F. Franklin; Denise Lach; K. Norman Johnson

    2010-01-01

    Conserving biological diversity in a changing climate poses major challenges for land managers and society. Effective adaptive strategies for dealing with climate change require a socioecological systems perspective. We highlight some of the projected ecological responses to climate change in the Pacific Northwest, U.S.A and identify possible adaptive actions that...

  15. Demographic source-sink dynamics restrict local adaptation in Elliott's blueberry (Vaccinium elliottii).

    PubMed

    Anderson, Jill T; Geber, Monica A

    2010-02-01

    In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation.

  16. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function.

    PubMed

    Prunier, Julien; Verta, Jukka-Pekka; MacKay, John J

    2016-01-01

    Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Genealogies of rapidly adapting populations

    PubMed Central

    Neher, Richard A.; Hallatschek, Oskar

    2013-01-01

    The genetic diversity of a species is shaped by its recent evolutionary history and can be used to infer demographic events or selective sweeps. Most inference methods are based on the null hypothesis that natural selection is a weak or infrequent evolutionary force. However, many species, particularly pathogens, are under continuous pressure to adapt in response to changing environments. A statistical framework for inference from diversity data of such populations is currently lacking. Towards this goal, we explore the properties of genealogies in a model of continual adaptation in asexual populations. We show that lineages trace back to a small pool of highly fit ancestors, in which almost simultaneous coalescence of more than two lineages frequently occurs. Whereas such multiple mergers are unlikely under the neutral coalescent, they create a unique genetic footprint in adapting populations. The site frequency spectrum of derived neutral alleles, for example, is nonmonotonic and has a peak at high frequencies, whereas Tajima’s D becomes more and more negative with increasing sample size. Because multiple merger coalescents emerge in many models of rapid adaptation, we argue that they should be considered as a null model for adapting populations. PMID:23269838

  18. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion.

    PubMed

    Twyford, Alex D; Friedman, Jannice

    2015-06-01

    Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large-scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. Collaboration Across Worldviews: Managers and Scientists on Hawai'i Island Utilize Knowledge Coproduction to Facilitate Climate Change Adaptation.

    PubMed

    Laursen, Scott; Puniwai, Noelani; Genz, Ayesha S; Nash, Sarah A B; Canale, Lisa K; Ziegler-Chong, Sharon

    2018-05-30

    Complex socio-ecological issues, such as climate change have historically been addressed through technical problem solving methods. Yet today, climate science approaches are increasingly accounting for the roles of diverse social perceptions, experiences, cultural norms, and worldviews. In support of this shift, we developed a research program on Hawai'i Island that utilizes knowledge coproduction to integrate the diverse worldviews of natural and cultural resource managers, policy professionals, and researchers within actionable science products. Through their work, local field managers regularly experience discrete land and waterscapes. Additionally, in highly interconnected rural communities, such as Hawai'i Island, managers often participate in the social norms and values of communities that utilize these ecosystems. Such local manager networks offer powerful frameworks within which to co-develop and implement actionable science. We interviewed a diverse set of local managers with the aim of incorporating their perspectives into the development of a collaborative climate change research agenda that builds upon existing professional networks utilized by managers and scientists while developing new research products. We report our manager needs assessment, the development process of our climate change program, our interactive forums, and our ongoing research products. Our needs assessment showed that the managers' primary source of information were other professional colleagues, and our in-person forums informed us that local managers are very interested in interacting with a wider range of networks to build upon their management capacities. Our initial programmatic progress suggests that co-created research products and in-person forums strengthen the capacities of local managers to adapt to change.

  20. Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant.

    PubMed

    Rabeling, Christian; Gonzales, Omar; Schultz, Ted R; Bacci, Maurício; Garcia, Marcos V B; Verhaagh, Manfred; Ishak, Heather D; Mueller, Ulrich G

    2011-07-26

    Sex and recombination are central processes in life generating genetic diversity. Organisms that rely on asexual propagation risk extinction due to the loss of genetic diversity and the inability to adapt to changing environmental conditions. The fungus-growing ant species Mycocepurus smithii was thought to be obligately asexual because only parthenogenetic populations have been collected from widely separated geographic localities. Nonetheless, M. smithii is ecologically successful, with the most extensive distribution and the highest population densities of any fungus-growing ant. Here we report that M. smithii actually consists of a mosaic of asexual and sexual populations that are nonrandomly distributed geographically. The sexual populations cluster along the Rio Amazonas and the Rio Negro and appear to be the source of independently evolved and widely distributed asexual lineages, or clones. Either apomixis or automixis with central fusion and low recombination rates is inferred to be the cytogenetic mechanism underlying parthenogenesis in M. smithii. Males appear to be entirely absent from asexual populations, but their existence in sexual populations is indicated by the presence of sperm in the reproductive tracts of queens. A phylogenetic analysis of the genus suggests that M. smithii is monophyletic, rendering a hybrid origin of asexuality unlikely. Instead, a mitochondrial phylogeny of sexual and asexual populations suggests multiple independent origins of asexual reproduction, and a divergence-dating analysis indicates that M. smithii evolved 0.5-1.65 million years ago. Understanding the evolutionary origin and maintenance of asexual reproduction in this species contributes to a general understanding of the adaptive significance of sex.

  1. The genetic pattern of population threat and loss: a case study of butterflies.

    PubMed

    Schmitt, T; Hewitt, G M

    2004-01-01

    Recent decreases in biodiversity in Europe are commonly thought to be due to land use and climate change. However, the genetic diversity of populations is also seen as one essential factor for their fitness. Genetic diversity in species across the continent of Europe has been recognized as being in part a consequence of ice age isolation in southern refugia and postglacial colonization northwards, and these phylogeographical patterns may themselves affect the adaptability of populations. Recent work on butterfly species with different refugia, colonization paths and genetic structures allows this idea to be examined. The 'chalk-hill blue' pattern is one of decreasing genetic diversity from south to north, whereas the 'woodland ringlet' pattern shows greater genetic diversity in eastern than in western lineages. Comparison of population demographic trends in species with these biogeographical patterns reveals higher rates of decrease with lower genetic diversity. This indicates reduced adaptability due to genetic impoverishment as a result of glacial and postglacial range changes. Analysis of phylogeographical pattern may be a useful guide to interpreting demographic trends and in conservation planning.

  2. Distribution patterns of haplotypes for symbionts from Umbilicaria esculenta and U. muehlenbergii reflect the importance of reproductive strategy in shaping population genetic structure.

    PubMed

    Cao, Shunan; Zhang, Fang; Liu, Chuanpeng; Hao, Zhihua; Tian, Yuan; Zhu, Lingxiang; Zhou, Qiming

    2015-10-15

    The diversity of lichen fungal components and their photosynthetic partners reflects both ecological and evolutionary factors. In present study, molecular investigations of the internal transcribed spacer of the nuclear ribosomal DNA (ITS nrDNA) region were conducted to analyze the genetic diversity of Umbilicaria esculenta and U. muehlenbergii together with their associated green algae. It was here demonstrated that the reproductive strategy is a principal reason for fungal selectivity to algae. U. muehlenbergii, which disperses via sexual spores, exhibits lower selectivity to its photosynthetic partners than U. esculenta, which has a vegetative reproductive strategy. The difference of genotypic diversity (both fungal and algal) between these two Umbilicaria species is low, although their nucleotide diversity can vary greatly. The present study illustrates that lichen-forming fungi with sexual reproductive strategies are less selective with respect to their photobionts; and reveals that both sexual and vegetative reproduction allow lichens to generate similar amounts of diversity to adapt to the environments. The current study will be helpful for elucidating how lichens with different reproductive strategies adapt to changing environments.

  3. Niche specialization of terrestrial archaeal ammonia oxidizers.

    PubMed

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C; James, Phillip; Schloter, Michael; Griffiths, Robert I; Prosser, James I; Nicol, Graeme W

    2011-12-27

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5 ≤ pH <7), or alkalinophilic (pH ≥ 7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5-8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5-7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling.

  4. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes.

    PubMed

    Karl, Zachary J; Scharf, Michael E

    2015-10-01

    Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding. © 2015 Wiley Periodicals, Inc.

  5. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty

    PubMed Central

    Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications. PMID:28961262

  6. A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics

    PubMed Central

    Axenie, Cristian; Richter, Christoph; Conradt, Jörg

    2016-01-01

    Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621

  7. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis

    PubMed Central

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-01-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes. PMID:27983482

  8. Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum.

    PubMed

    Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Durán, David; Nadendla, Suvarna; Albareda, Marta; Rubio-Sanz, Laura; Lanza, Mónica; González-Guerrero, Manuel; Prieto, Rosa Isabel; Brito, Belén; Giglio, Michelle G; Rey, Luis; Ruiz-Argüeso, Tomás; Palacios, José M; Imperial, Juan

    2018-01-24

    Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae , 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.

  9. Analyzing Immunoglobulin Repertoires

    PubMed Central

    Chaudhary, Neha; Wesemann, Duane R.

    2018-01-01

    Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis. PMID:29593723

  10. A global analysis of adaptive evolution of operons in cyanobacteria.

    PubMed

    Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-02-01

    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

  11. Sequential divergence and the multiplicative origin of community diversity

    PubMed Central

    Hood, Glen R.; Forbes, Andrew A.; Powell, Thomas H. Q.; Egan, Scott P.; Hamerlinck, Gabriela; Smith, James J.; Feder, Jeffrey L.

    2015-01-01

    Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed “sequential divergence.” Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life. PMID:26499247

  12. The role of extreme events in evolution

    NASA Astrophysics Data System (ADS)

    Combes, Claude

    2008-09-01

    Evolutionists have often had a marked tendency to think that, in the course of time, planetary events were not very different from those occurring during a human life. However, when a 'non-human' timescale is used, the history of our planet appears profoundly and frequently disturbed by extreme events. These events, even not always instantaneous, impose - because of their amplitude - a severe sorting, not between individuals of a species, but between species, or even between phyla. In the face of an extreme event, intraspecific diversity counts little: it is the interspecific diversity that makes the difference. As shown by mass extinctions, extreme events open ecological niches and redistribute the cards of life, giving survivors opportunities to radiate. The capacity to cope with extreme ecological conditions favours certain species in ecosystems, not certain individuals in populations. This is not a macroevolutionary process in terms of acquiring new adaptations, but a macroevolutionary process in terms of sorting entire sections of life. The most important is perhaps that the current 'mediatisation' of a limited number of mass extinctions dissimulates less important extinctions caused by less extreme and more localized events that were possibly responsible for many changes in the composition and structure of communities throughout the evolution. The term of 'pre-adaptation' has been neglected, because it gives an impression of finalism, but it expresses well that, when an unexpected event occurs, a particular species has or has not the 'right genes' to continue to sustain viable populations. The role of extreme events in modifying the course of evolution should not be underestimated.

  13. The mental health of married immigrant women in South Korea and its risk and protective factors: A literature review.

    PubMed

    Lee, Yeeun; Park, Subin

    2018-02-01

    Married immigrant women in South Korea undergo a wide array of psychosocial challenges in the process of adapting to a new culture and marriage with a Korean husband. For an integrative understanding of women's mental health status and to determine the key risk and protective factors, we systematically reviewed empirical articles about the mental health of married immigrant women. We searched and reviewed articles from nine online databases: PubMed, Scopus, PsycINFO, Embase, DBpia, KISS, KMbase, KoreaMed and RISS, which were published up until January 2017. We identified 38 quantitative studies that examined psychiatric symptoms and pertinent factors for this population. The relative risks of psychiatric symptoms among married immigrant women varied across diverse samples. We summarized the associated factors existing prior to and after marriage migration that may moderate their mental health consequences. We identified five key risk factors: acculturative stress, country of origin, family stress, domestic violence and extended family structure, and two protective factors: social support and marriage satisfaction, which were consistently supported by the included studies. With the paucity of prospective studies, longitudinal research is needed that addresses the long-term processes of married immigrant women's psychological adaptation and the underlying risk and protective factors at diverse settlement phases. Furthermore, we suggest that future research should focus on how women's personal attributes interact with macro-level, socio-cultural contexts, including familial relationship and the community social-support system. Future evidence-based policy and interventions should comprehensively address married immigrant women's socio-cultural, economic and mental health needs.

  14. Single cell transcriptomics to explore the immune system in health and disease†

    PubMed Central

    Regev, Aviv; Teichmann, Sarah A.

    2017-01-01

    The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043

  15. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  16. Implementing health promotion activities using community-engaged approaches in Asian American faith-based organizations in New York City and New Jersey.

    PubMed

    Kwon, S C; Patel, S; Choy, C; Zanowiak, J; Rideout, C; Yi, S; Wyatt, L; Taher, M D; Garcia-Dia, M J; Kim, S S; Denholm, T K; Kavathe, R; Islam, N S

    2017-09-01

    Faith-based organizations (FBOs) (e.g., churches, mosques, and gurdwaras) can play a vital role in health promotion. The Racial and Ethnic Approaches to Community Health for Asian Americans (REACH FAR) Project is implementing a multi-level and evidence-based health promotion and hypertension (HTN) control program in faith-based organizations serving Asian American (AA) communities (Bangladeshi, Filipino, Korean, Asian Indian) across multiple denominations (Christian, Muslim, and Sikh) in New York/New Jersey (NY/NJ). This paper presents baseline results and describes the cultural adaptation and implementation process of the REACH FAR program across diverse FBOs and religious denominations serving AA subgroups. Working with 12 FBOs, informed by implementation research and guided by a cultural adaptation framework and community-engaged approaches, REACH FAR strategies included (1) implementing healthy food policies for communal meals and (2) delivering a culturally-linguistically adapted HTN management coaching program. Using the Ecological Validity Model (EVM), the program was culturally adapted across congregation and faith settings. Baseline measures include (i) Congregant surveys assessing social norms and diet (n = 946), (ii) HTN participant program surveys (n = 725), (iii) FBO environmental strategy checklists (n = 13), and (iv) community partner in-depth interviews assessing project feasibility (n = 5). We describe the adaptation process and baseline assessments of FBOs. In year 1, we reached 3790 (nutritional strategies) and 725 (HTN program) via AA FBO sites. Most AA FBOs lack nutrition policies and present prime opportunities for evidence-based multi-level interventions. REACH FAR presents a promising health promotion implementation program that may result in significant community reach.

  17. Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck

    PubMed Central

    Zaraket, Hassan; Baranovich, Tatiana; Kaplan, Bryan S.; Carter, Robert; Song, Min-Suk; Paulson, James C.; Rehg, Jerold E.; Bahl, Justin; Crumpton, Jeri C.; Seiler, Jon; Edmonson, Michael; Wu, Gang; Karlsson, Erik; Fabrizio, Thomas; Zhu, Huachen; Guan, Yi; Husain, Matloob; Schultz-Cherry, Stacey; Krauss, Scott; McBride, Ryan; Webster, Robert G.; Govorkova, Elena A.; Zhang, Jinghui; Russell, Charles J.; Webby, Richard J.

    2015-01-01

    Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness. PMID:25850788

  18. GENETIC DIVERSITY AND STRUCTURE OF AN ESTUARINE FISH (FUNDULUS HETEROCLITUS) INDIGENOUS TO A HIGHLY CONTAMINATED URBAN HARBOR

    EPA Science Inventory

    Intense directional selection on isolated populations can result in loss of genetic diversity, which if persistent, reduces adaptive potential and increases extinction probability. Phenotypic evidence of inherited tolerance suggests that toxic pollutants, specifically, polychlor...

  19. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

    PubMed Central

    Sunyer, Oriol J.

    2016-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384

  20. Best Practices for Managing Organizational Diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreitz, Patricia A.; /SLAC

    2007-05-18

    In the twentieth century, ecologists and agriculturists developed an increasingly sophisticated understanding of the value of biological diversity, specifically the resilience and adaptability it brings to ecosystems. In the twenty-first century, the ecosystem model has been applied to human systems, particularly to understanding how organizations are structured and how they operate. Twenty-first century organizations are challenged by diversity in many arenas. Demographic changes in workforce composition and customer populations, combined with globalized markets and international competition are increasing the amount of diversity organizations must manage, both internally and externally. Many diversity specialists and business leaders argue that businesses and organizationsmore » interested in surviving and thriving in the twenty-first century need to take competitive advantage of a diverse workplace (Soutar, 2004; Yang, 2005). But to do so successfully, leaders and human resources (HR) managers must redefine management and leadership (Jones, 1989). Just as mono-cropping destroys biological diversity, and, in extreme cases, such as the Irish potato famine--human as well as natural ecosystems (Keohane, n.d.), so does mono-managing similarly destroy diversity within organizations. Leaders wanting to build strong, diverse organizations will not be successful if they rely on one approach or solution. Single-threaded diversity solutions, such as focusing only on recruitment or single-approach management techniques, such as requiring every employee to take diversity training, do not create lasting change (Kossek & Lobel, 1996; McMahon, 2006; Thomas, 1990). Bringing about the changes needed to build and sustain diversity requires commitment, strategy, communication, and concrete changes in organizational structure and processes. How, then, can managers and leaders develop diverse organizations and ensure that they are managed to take optimum advantage of diversity? What role should human resource specialists play in creating and managing diverse organizations? What are the best practices they should apply? The purpose of this review is to define workplace diversity, to identify best practices, and to identify how diversity management best practices can be applied in academic libraries. Finally, this review will provide a resource list for HR managers and leaders to learn more about those best practices with the goal of optimizing their organization's approach to diversity.« less

Top