Science.gov

Sample records for diverse bacterial community

  1. Opposing phylogenetic diversity gradients of plant and soil bacterial communities

    PubMed Central

    Goberna, Marta; Navarro-Cano, Jose A.; Verdú, Miguel

    2016-01-01

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity. PMID:26888037

  2. Opposing phylogenetic diversity gradients of plant and soil bacterial communities.

    PubMed

    Goberna, Marta; Navarro-Cano, Jose A; Verdú, Miguel

    2016-02-24

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity.

  3. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  4. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  5. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.

  6. Diversity and composition of the bacterial community in Amphioxus feces.

    PubMed

    Pan, Minming; Yuan, Dongjuan; Chen, Shangwu; Xu, Anlong

    2015-11-01

    Amphioxus is a typical filter feeder animal and is confronted with a complex bacterial community in the seawater of its habitat. It has evolved a strong innate immune system to cope with the external bacterial stimulation, however, the ecological system of the bacterial community in Amphioxus remains unknown. Through massive parallel 16S rRNA gene tag pyrosequencing, the investigation indicated that the composition of wild and lab-cultured Amphioxus fecal bacteria was complex with more than 85,000 sequence tags being assigned to 12/13 phyla. The bacterial diversity between the two fecal samples was similar according to OTU richness of V4 tag, Chao1 index, Shannon index and Rarefaction curves, however, the most prominent bacteria in wild feces were genera Pseudoalteromonas (gamma Proteobacteria) and Arcobacter (epsilon Proteobacteria); the highly abundant bacteria in lab-cultured feces were other groups, including Leisingera, Phaeobacter (alpha Proteobacteria), and Vibrio (gamma Proteobacteria). Such difference indicates the complex fecal bacteria with the potential for multi-stability. The bacteria of habitat with 28 assigned phyla had the higher bacterial diversity and species richness than both fecal bacteria. Shared bacteria between wild feces and its habitat reached to approximately 90% (153/169 genera) and 28% (153/548 genera), respectively. As speculative, the less diversity of both fecal bacteria compared to its habitat partly because Amphioxus lives buried and the feces will ultimately end up in the sediment. Therefore, our study comprehensively investigates the complex bacterial community of Amphioxus and provides evidence for understanding the relationship of this basal chordate with the environment.

  7. Temporal variability in detritus resource maintains diversity of bacterial communities

    NASA Astrophysics Data System (ADS)

    Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna

    2008-05-01

    Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.

  8. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  9. Changes in Soil Bacterial Communities and Diversity in ...

    EPA Pesticide Factsheets

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  10. Assessing the Unseen Bacterial Diversity in Microbial Communities

    PubMed Central

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-01-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria—individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach—termed phyloTAGs—that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  11. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis.

    PubMed

    Oakley, Brian B; Fiedler, Tina L; Marrazzo, Jeanne M; Fredricks, David N

    2008-08-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 +/- 0.7 versus 5.2 +/- 0.75 (mean +/- standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities.

  12. Diversity of Human Vaginal Bacterial Communities and Associations with Clinically Defined Bacterial Vaginosis▿ †

    PubMed Central

    Oakley, Brian B.; Fiedler, Tina L.; Marrazzo, Jeanne M.; Fredricks, David N.

    2008-01-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 ± 0.7 versus 5.2 ± 0.75 (mean ± standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities. PMID:18487399

  13. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  14. Bacterial diversity and community composition from seasurface to subseafloor

    PubMed Central

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-01-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  15. Assessing the diversity of bacterial communities associated with plants

    PubMed Central

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  16. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    NASA Astrophysics Data System (ADS)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  17. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  18. Bacterial community diversity in paper mills processing recycled paper.

    PubMed

    Granhall, Ulf; Welsh, Allana; Throbäck, Ingela Noredal; Hjort, Karin; Hansson, Mikael; Hallin, Sara

    2010-10-01

    Paper mills processing recycled paper suffer from biofouling causing problems both in the mill and final product. The total bacterial community composition and identification of specific taxa in the process water and biofilms at the stock preparation and paper machine areas in a mill with recycled paper pulp was described by using a DNA-based approach. Process water in a similar mill was also analyzed to investigate if general trends can be found between mills and over time. Bacterial community profiles, analyzed by terminal-restriction fragment length polymorphism (T-RFLP), in process water showed that the dominant peaks in the profiles were similar between the two mills, although the overall composition was unique for each mill. When comparing process water and biofilm at different locations within one of the mills, we observed a separation according to location and sample type, with the biofilm from the paper machine being most different. 16S rRNA gene clone libraries were generated and 404 clones were screened by RFLP analysis. Grouping of RFLP patterns confirmed that the biofilm from the paper machine was most different. A total of 99 clones representing all RFLP patterns were analyzed, resulting in sequences recovered from nine bacterial phyla, including two candidate phyla. Bacteroidetes represented 45% and Actinobacteria 23% of all the clones. Sequences with similarity to organisms implicated in biofouling, like Chryseobacterium spp. and Brevundimonas spp., were recovered from all samples even though the mill had no process problems during sampling, suggesting that they are part of the natural paper mill community. Moreover, many sequences showed little homology to as yet uncultivated bacteria implying that paper mills are interesting for isolation of new organisms, as well as for bioprospecting.

  19. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe.

  20. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  1. Boom clay borehole water, home of a diverse bacterial community

    SciTech Connect

    Wouters, Katinka; Moors, Hugo; Leys, Natalie

    2013-07-01

    For over two decades, Boom Clay has been studied in the framework of geological disposal of nuclear waste thereby mainly addressing its geochemical properties. Today, also the microbiological properties and the possibility of microbes interacting with radionuclides or repository components including the waste form, in a host formation like Boom Clay are considered [2,3]. In the past, a reference composition for synthetic Boom Clay pore water (BCPW) was derived, based on interstitial water sampled from different layers within the Boom clay [1]. Similarly, the primary aim of this microbiological study was to determine the core BCPW bacterial community and identify representative water samples for future microbial directed lab experiments. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by microscopy and molecular techniques, in search for overall shared and abundant micro-organisms. (authors)

  2. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities.

    PubMed

    Lopez-Velasco, Gabriela; Carder, Phyllis A; Welbaum, Gregory E; Ponder, Monica A

    2013-09-01

    The bacterial diversity of seeds, transmission of bacteria from seed to phyllosphere, and fate of seed-transmitted bacteria on mature plants are poorly characterized. Understanding the dynamics of microbial communities is important for finding bio-control or mitigation strategies for human and plant pathogens. Bacterial populations colonizing spermosphere and phyllosphere of spinach (Spinacia oleracea) seedlings and plants were characterized using pyrosequencing of 16S rRNA gene amplicons. Spinach seed microbiota was composed of three bacterial phyla: Proteobacteria, Firmicutes and Actinobacteria, belonging to > 250 different operational taxonomic units (OTUs). Seed and cotyledon bacterial communities were similar in richness and diversity. Richness of 3-4 leaf-stage of development plants increased markedly to > 850 OTUs classified within 11 phyla. Although some bacterial OTUs were detected on seeds, cotyledons and plants, the breadth of new sequences indicates the importance of multiple sources outside the seed in shaping phyllosphere community. Most classified sequences were from previously undescribed taxa, highlighting the benefits of pyrosequencing in describing seed diversity and phyllosphere bacterial communities. Bacterial community richness increased from 250 different OTUs for spinach seeds and cotyledons, to 800 OTUs for seedlings. To our knowledge this is the first comprehensive characterization of the spinach microbiome, complementing previous culture-based and clone library studies.

  3. Different diversity-functioning relationship in lake and stream bacterial communities.

    PubMed

    Ylla, Irene; Peter, Hannes; Romaní, Anna M; Tranvik, Lars J

    2013-07-01

    Biodiversity patterns have been successfully linked to many ecosystem functions, and microbial communities have been suspected to harbour a large amount of functionally redundant taxa. We manipulated the diversity of stream and lake water column bacterial communities and investigated how the reduction in diversity affects the activities of extracellular enzymes involved in dissolved organic carbon degradation. Dissimilar communities established in cultures inoculated with stream or lake bacteria and utilized different organic matter compounds as indicated by the different extracellular enzyme activities. Stream bacterial communities preferentially used plant-derived organic material such as cellulose and hemicellulose. Communities obtained from the lake, where the longer residence time might permit the organic matter to age, efficiently degraded lignin-like material and also showed higher peptide degradation capacities. The results highlight a stronger negative effect of decreasing diversity on ecosystem multifunctionality for stream than for lake bacterial communities. We found a relatively higher multifunctional redundancy in the lake as compared to the stream-derived cultures and suggest that community assembly might shape diversity-functioning relationships in freshwater bacterial communities.

  4. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?

    PubMed Central

    Canfora, Loredana; Bacci, Giovanni; Pinzari, Flavia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna

    2014-01-01

    In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt concentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061. PMID:25188357

  5. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea.

    PubMed

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.

  6. Shifts in diversity and function of lake bacterial communities upon glacier retreat.

    PubMed

    Peter, Hannes; Sommaruga, Ruben

    2016-07-01

    Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.

  7. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)

    PubMed Central

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-01-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  8. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea).

    PubMed

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-06-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea.

  9. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India

    PubMed Central

    Ghosh, Devanita; Bhadury, Punyasloke; Routh, Joyanto

    2014-01-01

    High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of

  10. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity.

    PubMed

    Yasir, Muhammad; Aslam, Zubair; Kim, Seon Won; Lee, Seon-Woo; Jeon, Che Ok; Chung, Young Ryun

    2009-10-01

    Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi.

  11. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    NASA Astrophysics Data System (ADS)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-09-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  12. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    PubMed Central

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-01-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management. PMID:27650273

  13. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  14. Genetic diversity of bacterial communities and gene transfer agents in northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments.

  15. Diversity of bacterial communities of fitness center surfaces in a U.S. metropolitan area.

    PubMed

    Mukherjee, Nabanita; Dowd, Scot E; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik

    2014-12-03

    Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  16. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    PubMed Central

    Mukherjee, Nabanita; Dowd, Scot E.; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik

    2014-01-01

    Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users. PMID:25479039

  17. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.

    PubMed

    Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C

    2010-03-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.

  18. Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna.

    PubMed

    Pessoa-Filho, Marco; Barreto, Cristine Chaves; dos Reis Junior, Fábio Bueno; Fragoso, Rodrigo Rocha; Costa, Flávio Silva; de Carvalho Mendes, Ieda; de Andrade, Leide Rovênia Miranda

    2015-04-01

    Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes β-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.

  19. Microbial communities and bacterial diversity of spruce, hemlock and grassland soils of Tatachia Forest, Taiwan.

    PubMed

    Selvam, Ammaiyappan; Tsai, Shu-Hsien; Liu, Ching-Piao; Chen, I-Chu; Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2010-07-01

    To evaluate the bacterial diversity of Tatachia Forest soils, 16S rDNA clone libraries of the spruce, hemlock and grassland soils were constructed. Further, the influence of physicochemical and biological properties of soil on microbial ecology, pH, moisture content, microbial population and biomass were also analyzed. The soil pH increased with the increasing of soil depth; whereas the microbial population, biomass, moisture content, total organic carbon and total nitrogen were reverse. Microbial populations were the highest in the summer season which also correlated with the highest moisture content. The phylogenetic analyses revealed that the clones from nine 16S rDNA clone libraries represented Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, candidate division TG1 and candidate division TM7. Members of Proteobacteria, Acidobacteria and Actinobacteria constituted 42.2, 35.1 and 7.8 % of the clone libraries, respectively; whereas the remaining bacterial divisions each comprised <3 %. The spruce site had the highest bacterial diversity among the tested sites, followed by the hemlock sites and the grassland sites with the least. The bacterial community is the more diverse in the organic layer than that in deeper horizons. Further, bacterial diversity through the gradient horizons was different, indicating that the bacterial diversity in the deeper horizons is not simply the diluted analogs of the surface soils and some microbes dominate only in the deeper horizons.

  20. Volcanic ash supports a diverse bacterial community in a marine mesocosm.

    PubMed

    Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G

    2017-03-03

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  1. Volcanic ash supports a diverse bacterial community in a marine mesocosm

    USGS Publications Warehouse

    Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,

    2017-01-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  2. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  3. Diversity and Variation of Bacterial Community Revealed by MiSeq Sequencing in Chinese Dark Teas

    PubMed Central

    Fu, Jianyu; Lv, Haipeng; Chen, Feng

    2016-01-01

    Chinese dark teas (CDTs) are now among the popular tea beverages worldwide due to their unique health benefits. Because the production of CDTs involves fermentation that is characterized by the effect of microbes, microorganisms are believed to play critical roles in the determination of the chemical characteristics of CDTs. Some dominant fungi have been identified from CDTs. In contrast, little, if anything, is known about the composition of bacterial community in CDTs. This study was set to investigate the diversity and variation of bacterial community in four major types of CDTs from China. First, the composition of the bacterial community of CDTs was determined using MiSeq sequencing. From the four typical CDTs, a total of 238 genera that belong to 128 families of bacteria were detected, including most of the families of beneficial bacteria known to be associated with fermented food. While different types of CDTs had generally distinct bacterial structures, the two types of brick teas produced from adjacent regions displayed strong similarity in bacterial composition, suggesting that the producing environment and processing condition perhaps together influence bacterial succession in CDTs. The global characterization of bacterial communities in CDTs is an essential first step for us to understand their function in fermentation and their potential impact on human health. Such knowledge will be important guidance for improving the production of CDTs with higher quality and elevated health benefits. PMID:27690376

  4. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  5. Characterization of the diversity and temporal stability of bacterial communities in human milk.

    PubMed

    Hunt, Katherine M; Foster, James A; Forney, Larry J; Schütte, Ursel M E; Beck, Daniel L; Abdo, Zaid; Fox, Lawrence K; Williams, Janet E; McGuire, Michelle K; McGuire, Mark A

    2011-01-01

    Recent investigations have demonstrated that human milk contains a variety of bacterial genera; however, as of yet very little work has been done to characterize the full diversity of these milk bacterial communities and their relative stability over time. To more thoroughly investigate the human milk microbiome, we utilized microbial identification techniques based on pyrosequencing of the 16S ribosomal RNA gene. Specifically, we characterized the bacterial communities present in milk samples collected from 16 women at three time-points over four weeks. Results indicated that milk bacterial communities were generally complex; several genera represented greater than 5% of the relative community abundance, and the community was often, yet not always, stable over time within an individual. These results support the conclusion that human milk, which is recommended as the optimal nutrition source for almost all healthy infants, contains a collection of bacteria more diverse than previously reported. This finding begs the question as to what role this community plays in colonization of the infant gastrointestinal tract and maintaining mammary health.

  6. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood

    PubMed Central

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities. PMID:26824755

  7. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    PubMed

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.

  8. Distinct soil bacterial communities revealed under a diversely managed agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-use change and management are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, soil microbial community complexity after manipulations is still difficult to quantify. In this study, replicate soil samples we...

  9. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen (NH4+-N, p < 0.01), silicate silicon (SiO42--Si, p < 0.01), nitrite nitrogen (NO2--N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  10. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  11. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    PubMed

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming.

  12. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses.

    PubMed

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3-6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1-2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site.

  13. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  14. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary).

    PubMed

    Anda, Dóra; Büki, Gabriella; Krett, Gergely; Makk, Judit; Márialigeti, Károly; Erőss, Anita; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2014-09-01

    The Buda Thermal Karst System is an active hypogenic karst area that offers possibility for the analysis of biogenic cave formation. The aim of the present study was to gain information about morphological structure and genetic diversity of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (DHTS). Using scanning electron microscopy, metal accumulating and unusual reticulated filaments were detected in large numbers in the DHTS biofilm samples. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similarity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial community proved to be somewhat more diverse than that of the water sample and the distribution of the dominant bacterial clones was different between biofilm and water samples. The majority of biofilm clones was affiliated with Deltaproteobacteria and Nitrospirae while the largest group of water clones was related to Betaproteobacteria. Considering the metabolic properties of known species related to the strains and molecular clones from DHTS, it can be assumed that these bacterial communities may participate in the local sulphur and iron cycles, and contribute to biogenic cave formation.

  15. Impact of Arsenite on the Bacterial Community Structure and Diversity in Soil

    PubMed Central

    Dong, Dian-Tao; Yamamura, Shigeki; Amachi, Seigo

    2016-01-01

    The impact of arsenite (As[III]) on the bacterial community structure and diversity in soil was determined by incubating soil slurries with 50, 500, and 5,000 μM As(III). As(III) was oxidized to arsenate (As[V]), and the microbial contribution to As(III) oxidation was 70–100%. PCR-denaturing gradient gel electrophoresis revealed that soil bacterial diversity decreased in the presence of As(III). Bacteria closely related to the family Bacillaceae were predominant in slurry spiked with 5,000 μM As(III). The population size of culturable As(III)-resistant bacteria was 37-fold higher in this slurry than in unspiked slurry (p < 0.01), indicating that high levels of As(III) stimulate the emergence of As(III)-resistant bacteria. As(III)-resistant bacteria isolated from slurry spiked with 5,000 μM As(III) were mainly affiliated with the genus Bacillus; however, no strains showed As(III)-oxidizing capacity. An As(III)-oxidizing bacterial community analysis based on As(III) oxidase gene (aioA) sequences demonstrated that diversity was the lowest in slurry spiked with 5,000 μM As(III). The deduced AioA sequences affiliated with Alphaproteobacteria accounted for 91–93% of all sequences in this slurry, among which those closely related to Bosea spp. were predominant (48–86%). These results suggest that exposure to high levels of As(III) has a significant impact on the composition and diversity of the soil bacterial community, including the As(III)-oxidizing bacterial community. Certain As(III)-oxidizing bacteria with strong As(III) resistance may be enriched under high As(III) levels, while more sensitive As(III) oxidizers are eliminated under these conditions. PMID:26903368

  16. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    PubMed

    Miranda, Lilibeth N; Hutchison, Keith; Grossman, Arthur R; Brawley, Susan H

    2013-01-01

    Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected

  17. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification.

    PubMed

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-06-17

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  18. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-01-01

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities. PMID:26090607

  19. Seasonal fluctuations of bacterial community diversity in agricultural soil and experimental validation by laboratory disturbance experiments.

    PubMed

    Meier, Christoph; Wehrli, Bernhard; van der Meer, Jan Roelof

    2008-08-01

    Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to

  20. Diversity of planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer.

    PubMed

    Rizoulis, Athanasios; Elliott, David R; Rolfe, Stephen A; Thornton, Steven F; Banwart, Steven A; Pickup, Roger W; Scholes, Julie D

    2013-07-01

    Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.

  1. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  2. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone.

    PubMed

    Beman, J Michael; Carolan, Molly T

    2013-01-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  3. Changes in Bacterial And Archaeal Community Structure And Functional Diversity Along a Geochemically Variable Soil Profile

    SciTech Connect

    Hansel, C.M.; Fendorf, S.; Jardine, P.M.; Francis, C.A.

    2009-05-18

    Spatial heterogeneity in physical, chemical, and biological properties of soils allows for the proliferation of diverse microbial communities. Factors influencing the structuring of microbial communities, including availability of nutrients and water, pH, and soil texture, can vary considerably with soil depth and within soil aggregates. Here we investigated changes in the microbial and functional communities within soil aggregates obtained along a soil profile spanning the surface, vadose zone, and saturated soil environments. The composition and diversity of microbial communities and specific functional groups involved in key pathways in the geochemical cycling of nitrogen, Fe, and sulfur were characterized using a coupled approach involving cultivation-independent analysis of both 16S rRNA (bacterial and archaeal) and functional genes (amoA and dsrAB) as well as cultivation-based analysis of Fe(III)-reducing organisms. Here we found that the microbial communities and putative ammonia-oxidizing and Fe(III)-reducing communities varied greatly along the soil profile, likely reflecting differences in carbon availability, water content, and pH. In particular, the Crenarchaeota 16S rRNA sequences are largely unique to each horizon, sharing a distribution and diversity similar to those of the putative (amoA-based) ammonia-oxidizing archaeal community. Anaerobic microenvironments within soil aggregates also appear to allow for both anaerobic- and aerobic-based metabolisms, further highlighting the complexity and spatial heterogeneity impacting microbial community structure and metabolic potential within soils.

  4. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity.

    PubMed

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic-inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen-fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of alpha

  5. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity

    PubMed Central

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic–inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen–fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of

  6. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  7. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    PubMed Central

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud; Sannazzarro, Analia; Hansen, Lars H; Sørensen, Søren J; Smets, Barth F

    2015-01-01

    Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids. PMID:25333461

  8. Bacterial diversity differences along an epigenic cave stream reveal evidence of community dynamics, succession, and stability

    PubMed Central

    Brannen-Donnelly, Kathleen; Engel, Annette S.

    2015-01-01

    Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time. PMID:26257715

  9. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting.

    PubMed

    Guo, Yan; Zhang, Jinliang; Yan, Yongfeng; Wu, Jian; Zhu, Nengwu; Deng, Changyan

    2015-06-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost.

  10. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    PubMed

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring.

  11. Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop.

    PubMed

    Gleeson, Deirdre; McDermott, Frank; Clipson, Nicholas

    2006-03-01

    This laboratory study of a variably mineralized and hydrothermally altered granite outcrop investigated the influences of rock-surface chemistry and heavy metal content on resident bacterial populations. Results indicated that elevated heavy metal concentrations had a profound impact on bacterial community structure, with strong relationships found between certain ribotypes and particular chemical/heavy metal elements. Automated ribosomal intergenic sequence analysis (ARISA) was used to assess the nature and extent of bacterial diversity, and this was combined with chemical analysis and multivariate statistics to identify the main geochemical factors influencing bacterial community structure. A randomization test revealed significant changes in bacterial structure between samples, while canonical correspondence analysis (CCA) related each individual ARISA profile to linear combinations of the chemical variables (mineralogy, major element and heavy metal concentrations) revealing the geochemical factors that correlated with changes in the ARISA data. anova was performed to further explore interactions between individual ribotypes and chemical/heavy metal composition, and revealed that a high proportion of ribotypes correlated significantly with heavy metals.

  12. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones.

    PubMed

    Peng, Yuhong; Yang, Yang; Liu, Yongkang; Nie, Yuanyang; Xu, Peilun; Xia, Baixue; Tian, Fuzhou; Sun, Qun

    2015-01-01

    The prevalence of cholesterol gallstones has increased in recent years. Bacterial infection correlates with the formation of gallstones. We studied the composition and function of bacterial communities in cholesterol gallstones and bile from 22 cholesterol gallstone patients using culture-dependent and culture-independent methods. Altogether fourteen and eight bacterial genera were detected in cholesterol gallstones and bile, respectively. Pseudomonas spp. were the dominant bacteria in both cholesterol gallstones and bile. As judged by diversity indices, hierarchical clustering and principal component analysis, the bacterial communities in gallstones were different from those in bile. The gallstone microbiome was considered more stable than that of bile. The different microbial communities may be partially explained by differences in their habitats. We found that 30% of the culturable strains from cholesterol gallstones secreted β-glucuronidase and phospholipase A2. Pseudomonas aeruginosa strains showed the highest β-glucuronidase activity and produced the highest concentration of phospholipase A2, indicating that Ps. aeruginosa may be a major agent in the formation of cholesterol gallstones.

  13. Diversity Analysis of Bacterial Community from Permafrost Soil of Mo-he in China.

    PubMed

    Dan, Dong; Zhang, Dian-Peng; Liu, Wei-Cheng; Lu, Cai-Ge; Zhang, Tao-Tao

    2014-03-01

    The permafrost soil of Mo-he in Northeast China presents a typical cold environment colonized by psychrophilic microorganisms. This study is aimed at assessing the bacterial communities of permafrost soil of Mo-he in China by sequencing the 16S rRNA genes and Mothur analysis. PCR products with universal 16S rRNA gene primers were cloned and partially sequenced, and bacterial identification at the species was performed by comparative analysis with the GenBank/EMBL/DDBJ database. A total of 266 clones were obtained with the average length of 1,050 bp. Mothur analysis showed that the coverage value of clone library was 53.78 %, Shannon diversity (H) was 4.03, Simpson diversity value was 0.018, and 74 operational taxonomic units were generated. Through phylogenetic assignment using BLASTN by more than 97 % similarity, a total of 87 tentative taxa were identified. The majority of bacterial sequences recovered in this study belonged to the Acidobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, Chloroflexi and Chlorobi. Among them, Acidobacteria are dominant community, accounting for 30.1 % of total bacteria, followed by Proteobacteria which accounted for 22.2 %. This result reflected the acidic characteristics of the permafrost soil of which pH value was 6.0. Our study indicated that the permafrost soil of Mo-he in China has a high diversity of bacteria and represents a vast potential resource of novel bacteria. As far as we knew, this is the first report on bacterial diversity of permafrost soil of Mo-he in China.

  14. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    NASA Astrophysics Data System (ADS)

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  15. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  16. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-23

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  17. Comparative metagenomic and rRNA microbial diversity characterization using Archaeal and Bacterial synthetic communities

    PubMed Central

    Shakya, Migun; Quince, Christopher; Campbell, James H.; Yang, Zamin K.; Schadt, Christopher W.; Podar, Mircea

    2013-01-01

    Summary Next generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities. PMID:23387867

  18. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  19. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains

    PubMed Central

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-01-01

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil. PMID:27811967

  20. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    PubMed

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  1. Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils.

    PubMed

    Li, Jing; Hu, Hang-Wei; Ma, Yi-Bing; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-07-01

    Nickel pollution imposes deleterious effects on soil ecosystem. The responses of soil microorganisms to long-term nickel pollution under field conditions remain largely unknown. Here, we used high-throughput sequencing to elucidate the impacts of long-term nickel pollution on soil bacterial communities in two contrasting agricultural soils. Our results found that the soil microbial biomass carbon consistently decreased along the nickel gradients in both soils. Nickel pollution selectively favored or impeded the prevalence of several dominant bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Planctomycetes displayed sensitivity. Despite the apparent shifts in the bacterial community composition, no clear tendency in the bacterial diversity and abundance was identified along the nickel gradients in either soil. Collectively, we provide evidence that long-term nickel pollution shifted the soil bacterial communities, resulting in the decrease of microbial biomass although the bacterial diversity was not significantly changed.

  2. Soil bacterial community composition and diversity respond to cultivation in Karst ecosystems.

    PubMed

    Chen, Xiangbi; Su, Yirong; He, Xunyang; Wei, Yawei; Wei, Wenxue; Wu, Jinshui

    2012-01-01

    Soil microorganisms play vital roles in recovering and maintaining the health of ecosystems, particularly in fragile Karst ecosystems that are easily degraded after cultivation. We investigated the composition and diversity of soil bacterial communities, based on RFLP and 16S rDNA sequencing, in a cropland, a naturally revegetated land with former cultivation disturbance and a primeval forest in the subtropical Karst of southwest China. Our results illustrated that Proteobacteria accounted for 44.8% of the 600 tested clones, making it the most dominant phylum observed. This phylum was followed by Acidobacteria and Planctomycetes for the three Karst soils analyzed. Compared with the primeval forest soil, the proportions of Proteobacteria were decreased by 30.2 and 37.9%, while Acidobacteria increased by 93.9 and 87.9%, and the Shannon-Wiener diversity indices and the physicochemical parameters declined in the cropland and the revegetated land, respectively. Among the three soils, the proportion of dominant bacterial phyla and the diversity indices in the revegetated land were similar to the cropland, implying the bacterial community in the cropland was relatively stable, and the after-effects of cultivation were difficult to eliminate. However, similar distributions of the four Proteobacteria subphyla were observed between the revegetated land and the primeval forest soil. Furthermore, the proportion of Rhizobiales belonging to α-Proteobacteria was sharply decreased with cultivation compared to the primeval forest soil, while a small cluster of Rhizobiales recurred with vegetation recovery. These results indicated that although the subphyla of the dominant bacterial phylum had some positive responses to 20 years of vegetation recovery, it is a slow process. Our results suggest that priority should be given to conserve the primeval forest and inoculation of functional microorganisms on the basis of vegetation recovery may be more effective for the restoration of

  3. Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts.

    PubMed

    Johnson, Wesley R; Torralba, Manolito; Fair, Patricia A; Bossart, Gregory D; Nelson, Karen E; Morris, Pamela J

    2009-12-01

    Respiratory illness is thought to be most the common cause of death in both wild and captive populations of bottlenose dolphins (Tursiops truncatus). The suspected pathogens that have been isolated from diseased animals have also been isolated from healthy individuals, suggesting they may be part of the normal flora. Our current understanding of the bacteria associated with the upper respiratory tract (URT) of bottlenose dolphins is based exclusively upon culture-based isolation and identification. Because < 1% of naturally occurring bacteria are culturable, a substantial fraction of the bacterial community associated with the dolphin URT remains to be described. The dolphin URT microbiota revealed by sequencing of bacterial 16S rDNA exhibits almost no overlap with the taxa indicated in culture-based studies. The most abundant sequences in our libraries were similar among all of our study animals and shared the greatest homology to sequences of bacteria belonging to the genera Cardiobacterium, Suttonella, Psychrobacter, Tenacibaculum, Fluviicola and Flavobacterium; however, they were sufficiently different from database sequences from both cultured and uncultured organisms to suggest they represent novel genera and species. Our findings also demonstrate the dominance of three of the four bacterial phyla that dominate other mammalian microbiomes, including those of humans, and show tremendous diversity at the species/strain level, suggesting tight coevolution of the dolphin host and its URT bacterial community.

  4. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges.

    PubMed

    Schöttner, Sandra; Hoffmann, Friederike; Cárdenas, Paco; Rapp, Hans Tore; Boetius, Antje; Ramette, Alban

    2013-01-01

    Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level), as well as sponge type (high versus low microbial abundance), and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that as many as 345 (79%) of the 437 different bacterial operational taxonomic units (OTUs) detected in the dataset were shared between sponges and sediments, while only 70 (16%) appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation), sponge family (52%) or sponge type (30%), whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each). In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems.

  5. Diverse microbial communities in non-aerated compost teas suppress bacterial wilt.

    PubMed

    Mengesha, W K; Powell, S M; Evans, K J; Barry, K M

    2017-03-01

    Non-aerated compost teas (NCTs) are water extracts of composted organic materials and are used to suppress soil borne and foliar disease in many pathosystems. Greenhouse trials were used to test the effectiveness of NCTs to suppress potato bacterial wilt caused by Ralstonia solanacearum on plants grown in soils inoculated with a virulent isolate of the pathogen (biovar II). NCTs prepared from matured compost sources: agricultural waste (AWCT), vermicompost (VCT) and solid municipal waste (SMWCT) were evaluated at three initial application times (7 days before inoculation, at time of inoculation and 7 days after inoculation) prior to weekly applications, in a randomized complete-block design. AWCT applied initially at the time of inoculation resulted in the greatest disease suppression, with the disease severity index 2.5-fold less than the non-treated plants and the "area under the disease progress curve" (AUDPC) 3.2-fold less. VCT and SMWCT were less suppressive than AWCT regardless of initial application time. Next generation sequencing of the v4 region of 16S rRNA gene and the internal transcribed spacer region (ITS1) revealed that diversity and composition of the bacterial and fungal communities across the NCTs varied significantly. Dominant bacterial phyla such as Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, Chloroflexi, Planctomycetes, Acidobacteria, and a fungal phylum Ascomycota were detected in all NCTs. AWCT had optimum physico-chemical measurements with higher bacterial Shannon diversity indices (H) and fungal richness (S) than the other treatments. We conclude that bacterial wilt of potatoes grown in controlled conditions can be suppressed by a non-aerated compost tea with a high microbial diversity when applied at planting and weekly thereafter.

  6. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.

    PubMed

    Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela

    2015-10-01

    Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant.

  7. Petroleum-influenced beach sediments of the Campeche Bank, Mexico: diversity and bacterial community structure assessment.

    PubMed

    Rosano-Hernández, María C; Ramírez-Saad, Hugo; Fernández-Linares, Luis

    2012-03-01

    The bacterial diversity and community structure were surveyed in intertidal petroleum-influenced sediments of ≈ 100 km of a beach, in the southern Gulf of Mexico. The beach was divided in twenty sampling sites according to high, moderate and low petroleum influence. Densities of cultured heterotrophic (HAB) and hydrocarbon degrading bacteria (HDB) were highly variable in sediments, with little morphological assortment in colonies. PCR-RISA banding patterns differentiated distinct communities along the beach, and the bacterial diversity changed inversely to the degree of petroleum hydrocarbon influence: the higher TPH concentration, the lower genotype diversity. Seven DNA sequences (Genbank EF191394 -EF191396 and EF191398 -EF191401) were affiliated to uncultured members of Gemmatimonas, Acidobacterium, Desulfobacteraceae, Rubrobacterales, Actinobacterium and the Fibrobacteres/Acidobacteria group; all the above taxa are known for having members with active roles in biogeochemical transformations. The remaining sequences (EF191388 - EF191393 and EF191397) affiliated to Pseudoalteromonas, and to oil-degrading genera such as Pseudomonas, Vibrio and Marinobacter, being the last one an obligate oil-degrading bacterium. An exchange of bacteria between the beach and the oil seep environment, and the potential cleaning-up role of bacteria at the southern Gulf of Mexico are discussed.

  8. Effects of Fertilization and Sampling Time on Composition and Diversity of Entire and Active Bacterial Communities in German Grassland Soils

    PubMed Central

    Herzog, Sarah; Wemheuer, Franziska; Wemheuer, Bernd; Daniel, Rolf

    2015-01-01

    Soil bacteria are major players in driving and regulating ecosystem processes. Thus, the identification of factors shaping the diversity and structure of these communities is crucial for understanding bacterial-mediated processes such as nutrient transformation and cycling. As most studies only target the entire soil bacterial community, the response of active community members to environmental changes is still poorly understood. The objective of this study was to investigate the effect of fertilizer application and sampling time on structure and diversity of potentially active (RNA-based) and the entire (DNA-based) bacterial communities in German grassland soils. Analysis of more than 2.3 million 16S rRNA transcripts and gene sequences derived from amplicon-based sequencing of 16S rRNA genes revealed that fertilizer application and sampling time significantly altered the diversity and composition of entire and active bacterial communities. Although the composition of both the entire and the active bacterial community was correlated with environmental factors such as pH or C/N ratio, the active community showed a higher sensitivity to environmental changes than the entire community. In addition, functional analyses were performed based on predictions derived from 16S rRNA data. Genes encoding the uptake of nitrate/nitrite, nitrification, and denitrification were significantly more abundant in fertilized plots compared to non-fertilized plots. Hence, this study provided novel insights into changes in dynamics and functions of soil bacterial communities as response to season and fertilizer application. PMID:26694644

  9. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity.

    PubMed

    Zul, Delita; Denzel, Sabine; Kotz, Andrea; Overmann, Jörg

    2007-11-01

    Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that

  10. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata.

    PubMed

    Sunagawa, Shinichi; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; DeSalvo, Michael K; Voolstra, Christian R; Weil, Ernesto; Andersen, Gary L; Medina, Mónica

    2009-05-01

    Increasing evidence confirms the crucial role bacteria and archaea play within the coral holobiont, that is, the coral host and its associated microbial community. The bacterial component constitutes a community of high diversity, which appears to change in structure in response to disease events. In this study, we highlight the limitation of 16S rRNA gene (16S rDNA) clone library sequencing as the sole method to comprehensively describe coral-associated communities. This limitation was addressed by combining a high-density 16S rRNA gene microarray with, clone library sequencing as a novel approach to study bacterial communities in healthy versus diseased corals. We determined an increase in diversity as well as a significant shift in community structure in Montastraea faveolata colonies displaying phenotypic signs of White Plague Disease type II (WPD-II). An accumulation of species that belong to families that include known coral pathogens (Alteromonadaceae, Vibrionaceae), bacteria previously isolated from diseased, stressed or injured marine invertebrates (for example, Rhodobacteraceae), and other species (for example, Campylobacteraceae) was observed. Some of these species were also present in healthy tissue samples, but the putative primary pathogen, Aurantimonas corallicida, was not detected in any sample by either method. Although an ecological succession of bacteria during disease progression after causation by a primary agent represents a possible explanation for our observations, we also discuss the possibility that a disease of yet to be determined etiology may have affected M. faveolata colonies and resulted in (or be a result of) an increase in opportunistic pathogens.

  11. Effects of Abiotic Factors on the Phylogenetic Diversity of Bacterial Communities in Acidic Thermal Springs▿

    PubMed Central

    Mathur, Jayanti; Bizzoco, Richard W.; Ellis, Dean G.; Lipson, David A.; Poole, Alexander W.; Levine, Richard; Kelley, Scott T.

    2007-01-01

    Acidic thermal springs offer ideal environments for studying processes underlying extremophile microbial diversity. We used a carefully designed comparative analysis of acidic thermal springs in Yellowstone National Park to determine how abiotic factors (chemistry and temperature) shape acidophile microbial communities. Small-subunit rRNA gene sequences were PCR amplified, cloned, and sequenced, by using evolutionarily conserved bacterium-specific primers, directly from environmental DNA extracted from Amphitheater Springs and Roaring Mountain sediment samples. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and colorimetric assays were used to analyze sediment chemistry, while an optical emission spectrometer was used to evaluate water chemistry and electronic probes were used to measure the pH, temperature, and Eh of the spring waters. Phylogenetic-statistical analyses found exceptionally strong correlations between bacterial community composition and sediment mineral chemistry, followed by weaker but significant correlations with temperature gradients. For example, sulfur-rich sediment samples contained a high diversity of uncultured organisms related to Hydrogenobaculum spp., while iron-rich sediments were dominated by uncultured organisms related to a diverse array of gram-positive iron oxidizers. A detailed analysis of redox chemistry indicated that the available energy sources and electron acceptors were sufficient to support the metabolic potential of Hydrogenobaculum spp. and iron oxidizers, respectively. Principal-component analysis found that two factors explained 95% of the genetic diversity, with most of the variance attributable to mineral chemistry and a smaller fraction attributable to temperature. PMID:17220248

  12. An Assessment of Urea-Formaldehyde Fertilizer on the Diversity of Bacterial Communities in Onion and Sugar Beet

    PubMed Central

    Ikeda, Seishi; Suzuki, Keijiro; Kawahara, Makoto; Noshiro, Masao; Takahashi, Naokazu

    2014-01-01

    The impact of a urea-formaldehyde (UF) fertilizer on bacterial diversity in onion bulbs and main roots of sugar beet were examined using a 16S rRNA gene clone library. The UF fertilizer markedly increased bacterial diversity in both plants. The results of principal coordinates analysis (PCoA) revealed that nearly 30% of the variance observed in bacterial diversity in both the onion and sugar beet was attributed to the fertilization conditions and also that the community structures in both plants shifted unidirectionally in response to the UF fertilizer. PMID:24882062

  13. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  14. Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand

    USGS Publications Warehouse

    Hamdan, L.J.; Gillevet, P.M.; Pohlman, J.W.; Sikaroodi, M.; Greinert, J.; Coffin, R.B.

    2011-01-01

    Sediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge. Gas-charged and organic-rich sediments further landward had the highest overall diversity. Surface sediments, with the exception of those from the basin, were dominated by Rhodobacterales sequences associated with organic matter deposition. Taxa related to the Desulfosarcina/Desulfococcus and the JS1 candidates were highly abundant at the sulfate-methane transition zone (SMTZ) at three sites. To determine how community structure was influenced by terrestrial, pelagic and in situ substrates, sequence data were statistically analyzed against geochemical data (e.g. sulfate, chloride, nitrogen, phosphorous, methane, bulk inorganic and organic carbon pools) using the Biota-Environmental matching procedure. Landward of the ridge, sulfate was among the most significant structuring factors. Seaward of the ridge, silica and ammonium were important structuring factors. Regardless of the transect location, methane was the principal structuring factor on SMTZ communities. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  15. Diversity of bacterial communities in the lakes of Schirmacher Oasis, Antarctica

    NASA Astrophysics Data System (ADS)

    Mojib, Nazia; Huang, Jonathan; Hoover, Richard B.; Pikuta, Elena V.; Storrie-Lombardi, Michael; Sattler, Birgit; Andersen, Dale; Bej, Asim K.

    2009-08-01

    Extreme conditions such as low temperature, aridness, low availability of organic matter, high salinity and UV-radiation in terrestrial Antarctica are key factors limiting the habitation of biotic communities and ecosystem dynamics. In recent studies, it has been discovered that the bacterial communities are highly diverse and distributed widely in the extreme ecosystem of Antarctica. Besides available morphometric data, geology, and thermal profile, limited study on the microbial identification, phylogenetic analysis, diversity and distribution of microorganisms in different lakes of Schirmacher Oasis in East Antarctica has been reported. The objective of this study was to assess the microbial biodiversity and distribution using culture-independent and culture-dependent methodologies based upon bacterial 16S rRNA gene analysis in three categories of lakes, i.e., the land-locked (L), epi-shelf (E), and pro-glacial (P) lakes in Schirmacher Oasis. The water and ice samples were collected during the 2008 Tawani International Scientific Expedition. Direct culturing of the samples on R2A agar media exhibited a wide variety of pigmented bacteria. Two of the pigmented bacteria that were cultured belong to the genera, Hymenobacter, and Flavobacterium. Cultureindependent methodology of one of the land-locked lakes L27C identified a rich microbial diversity consisting of six different phyla of bacteria. The majority of bacteria (56%) belong to the Class γ-proteobacteria within the phylum Proteobacteria. Within the Class γ-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Characterization of the microbial diversity within the three different types of Antarctic lakes is important because it will help give us a better understanding of the survival mechanisms and the functionality of these bacteria in extremely cold and harsh Antarctic ecosystems.

  16. [Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China].

    PubMed

    Yang, Shan; Li, Xiao-bing; Wang, Ru-zhen; Cai, Jiang-ping; Xu, Zhu-wen; Zhang, Yu-ge; Li, Hui; Jiang, Yong

    2015-03-01

    In this study, we measured the responses of soil bacterial diversity and community structure to nitrogen (N) and water addition in the typical temperate grassland in northern China. Results showed that N addition significantly reduced microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) under regular precipitation treatment. Similar declined trends of MBC and MBN caused by N addition were also found under increased precipitation condition. Nevertheless, water addition alleviated the inhibition by N addition. N addition exerted no significant effects. on bacterial α-diversity indices, including richness, Shannon diversity and evenness index under regular precipitation condition. Precipitation increment tended to increase bacterial α-diversity, and the diversity indices of each N gradient under regular precipitation were much lower than that of the corresponding N addition rate under increased precipitation. Correlation analysis showed that soil moisture, nitrate (NO3(-)-N) and ammonium (NH4+-N) were significantly negatively correlated with bacterial evenness index, and MBC and MBN had a significant positive correlation with bacterial richness and evenness. Non-metric multidimensional scaling (NMDS) ordination illustrated that the bacterial communities were significantly separated by N addition rates, under both water ambient and water addition treatments. Redundancy analysis (RDA) revealed that soil MBC, MBN, pH and NH4+-N were the key environmental factors for shaping bacterial communities.

  17. Topographical Mapping of the Rainbow Trout (Oncorhynchus mykiss) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the Skin

    PubMed Central

    Lowrey, Liam; Woodhams, Douglas C.; Tacchi, Luca

    2015-01-01

    The mucosal surfaces of wild and farmed aquatic vertebrates face the threat of many aquatic pathogens, including fungi. These surfaces are colonized by diverse symbiotic bacterial communities that may contribute to fight infection. Whereas the gut microbiome of teleosts has been extensively studied using pyrosequencing, this tool has rarely been employed to study the compositions of the bacterial communities present on other teleost mucosal surfaces. Here we provide a topographical map of the mucosal microbiome of an aquatic vertebrate, the rainbow trout (Oncorhynchus mykiss). Using 16S rRNA pyrosequencing, we revealed novel bacterial diversity at each of the five body sites sampled and showed that body site is a strong predictor of community composition. The skin exhibited the highest diversity, followed by the olfactory organ, gills, and gut. Flectobacillus was highly represented within skin and gill communities. Principal coordinate analysis and plots revealed clustering of external sites apart from internal sites. A highly diverse community was present within the epithelium, as demonstrated by confocal microscopy and pyrosequencing. Using in vitro assays, we demonstrated that two Arthrobacter sp. skin isolates, a Psychrobacter sp. strain, and a combined skin aerobic bacterial sample inhibit the growth of Saprolegnia australis and Mucor hiemalis, two important aquatic fungal pathogens. These results underscore the importance of symbiotic bacterial communities of fish and their potential role for the control of aquatic fungal diseases. PMID:26209676

  18. Assessment of changes in community level physiological profile and molecular diversity of bacterial communities in different stages of jute retting.

    PubMed

    Das, Biswapriya; Chakrabarti, Kalyan; Ghosh, Sagarmoy; Chakraborty, Ashis; Saha, Manabendra Nath

    2013-12-01

    Retting of jute is essentially microbiological and biochemical in nature. Community Level Physiological Profiles (CLPP) as well as genomic diversity of bacterial communities were assessed in water samples collected during pre-retting, after 1st and 2nd charges of retting. The water samples were collected from two widely cultivated jute growing locations, Sonatikari (22 degrees 41'27"N; 88 degrees 35'44"E) and Baduria (22 degrees 44'24"N; 88 degrees 47'24"E), West Bengal, India. The CLPP, expressed as net area under substrate utilization curve, was studied by carbon source utilization patterns in BIOLOG Ecoplates. Molecular diversity was studied by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) of total DNA from water samples. Both between locations and stages of retting, substrate utilizations pattern were carbohydrates > carboxylic acids > polymers > amino acids > amines/amides > phenolic compounds. Differential substrate utilization pattern as well as variation in banding pattern in DGGE profiles was observed between the two locations and at different stages of retting. The variations in CLPP in different stages of retting were due to the change in bacterial communities.

  19. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community.

    PubMed

    Li, Xin; Sun, Minglong; Zhang, Huihui; Xu, Nan; Sun, Guangyu

    2016-05-01

    Diverse intercropping system has been used to control disease and improve productivity in the field. In this research, the bacterial communities in salt-alkali soils of monoculture and intercropping mulberry and soybean were studied using 454-pyrosequencing of the 16S rDNA gene. The dominant taxonomic groups were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Gemmatimonadetes and these were present across all samples. However, the diversity and composition of bacterial communities varied between monoculture and intercropping samples. The estimated bacterial diversity (H') was higher with intercropping soybean than in monoculture soybean, whereas H' showed an opposite pattern in monoculture and intercropping mulberry. Populations of Actinobacteria, Acidobacteria, and Proteobacteria were variable, depending on growth of plants as monoculture or intercropped. Most of Actinobacteria and Chloroflexi were found in intercropping samples, while Acidobacteria and Proteobacteria were present at a higher percentage in monoculture samples. The plant diversity of aboveground and microbial diversity of belowground was linked and soil pH seemed to influence the bacterial community. Finally, the specific plant species was the major factor that determined the bacterial community in the salt-alkali soils.

  20. Diverse bacterial communities exist on canine skin and are impacted by cohabitation and time

    PubMed Central

    Torres, Sheila; Danzeisen, Jessica L.; Ward, Tonya; Knights, Dan

    2017-01-01

    It has previously been shown that domestic dogs and their household owners share bacterial populations, and that sharing of bacteria between humans is facilitated through the presence of dogs in the household. However, less is known regarding the bacterial communities of dogs, how these communities vary by location and over time, and how cohabitation of dogs themselves influences their bacterial community. Furthermore, the effects of factors such as breed, hair coat length, sex, shedding, and age on the canine skin microbiome is unknown. This study sampled the skin bacterial communities of 40 dogs belonging to 20 households longitudinally across three seasons (spring, summer, and winter). Significant differences in bacterial community structure between samples were identified when stratified by season, but not by dog sex, age, breed, hair type, or skin site. Cohabitating dogs were more likely to share bacteria of the skin than non-cohabitating dogs. Similar to human bacterial microbiomes, dogs’ microbiomes were more similar to their own microbiomes over time than to microbiomes of other individuals. Dogs sampled during the same season were also more similar to each other than to dogs from different seasons, irrespective of household. However, there were very few core operational taxonomic units (OTUs) identified across all dogs sampled. Taxonomic classification revealed Propionibacterium acnes and Haemophilus sp. as key members of the dog skin bacterial community, along with Corynebacterium sp. and Staphylococcus epidermidis. This study shows that the skin bacterial community structure of dogs is highly individualized, but can be shared among dogs through cohabitation. PMID:28289569

  1. Diverse bacterial communities exist on canine skin and are impacted by cohabitation and time.

    PubMed

    Torres, Sheila; Clayton, Jonathan B; Danzeisen, Jessica L; Ward, Tonya; Huang, Hu; Knights, Dan; Johnson, Timothy J

    2017-01-01

    It has previously been shown that domestic dogs and their household owners share bacterial populations, and that sharing of bacteria between humans is facilitated through the presence of dogs in the household. However, less is known regarding the bacterial communities of dogs, how these communities vary by location and over time, and how cohabitation of dogs themselves influences their bacterial community. Furthermore, the effects of factors such as breed, hair coat length, sex, shedding, and age on the canine skin microbiome is unknown. This study sampled the skin bacterial communities of 40 dogs belonging to 20 households longitudinally across three seasons (spring, summer, and winter). Significant differences in bacterial community structure between samples were identified when stratified by season, but not by dog sex, age, breed, hair type, or skin site. Cohabitating dogs were more likely to share bacteria of the skin than non-cohabitating dogs. Similar to human bacterial microbiomes, dogs' microbiomes were more similar to their own microbiomes over time than to microbiomes of other individuals. Dogs sampled during the same season were also more similar to each other than to dogs from different seasons, irrespective of household. However, there were very few core operational taxonomic units (OTUs) identified across all dogs sampled. Taxonomic classification revealed Propionibacterium acnes and Haemophilus sp. as key members of the dog skin bacterial community, along with Corynebacterium sp. and Staphylococcus epidermidis. This study shows that the skin bacterial community structure of dogs is highly individualized, but can be shared among dogs through cohabitation.

  2. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    PubMed

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate.

  3. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  4. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    PubMed Central

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-01-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing. PMID:27934957

  5. Occurrence and diversity of both bacterial and fungal communities in dental unit waterlines subjected to disinfectants.

    PubMed

    Costa, Damien; Mercier, Anne; Gravouil, Kevin; Lesobre, Jérôme; Verdon, Julien; Imbert, Christine

    2016-10-01

    Chemical disinfectants are widely advocated to reduce the microbial contamination in dental unit waterlines (DUWL). However, until now their efficacy has been poorly examined after long-term application. In this study, through quantitative PCR and high-throughput sequencing, both bacterial and fungal communities were profiled from 8- to 12-year-old DUWL treated with disinfectants commonly used by European dentists. Water was collected from the tap water supplying units to the output exposure point of the turbine handpiece following a stagnation period and dental care activity. Results showed that (i) the unit itself is the principal source of microbial contamination and (ii) water stagnation, DU maintenance practices and quality of water supplying DU appeared as parameters driving the water quality. Despite disinfecting treatment combined to flushing process, the microbial contamination remained relevant in the studied output water, in association with a high bacterial and fungal diversity. The occurrence of potentially pathogenic microorganisms in these treated DUWL demonstrated a potential infectious risk for both patients and dental staff. A disinfectant shock before a prolonged stagnation period could limit the microbial proliferation inside DUWL. Necessity to proceed to regular water quality control of DUWL was highlighted.

  6. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils.

    PubMed

    Makonde, Huxley M; Mwirichia, Romano; Osiemo, Zipporah; Boga, Hamadi I; Klenk, Hans-Peter

    2015-01-01

    Termites constitute part of diverse and economically important termite fauna in Africa, but information on gut microbiota and their associated soil microbiome is still inadequate. In this study, we assessed and compared the bacterial diversity and community structure between termites' gut, their mounds and surrounding soil using the 454 pyrosequencing-based analysis of 16S rRNA gene sequences. A wood-feeder termite (Microcerotermes sp.), three fungus-cultivating termites (Macrotermes michaelseni, Odontotermes sp. and Microtermes sp.), their associated mounds and corresponding savannah soil samples were analyzed. The pH of the gut homogenates and soil physico-chemical properties were determined. The results indicated significant difference in bacterial community composition and structure between the gut and corresponding soil samples. Soil samples (Chao1 index ranged from 1359 to 2619) had higher species richness than gut samples (Chao1 index ranged from 461 to 1527). The bacterial composition and community structure in the gut of Macrotermes michaelseni and Odontotermes sp. were almost identical but different from that of Microtermes and Microcerotermes species, which had unique community structures. The most predominant bacterial phyla in the gut were Bacteroidetes (40-58 %), Spirochaetes (10-70 %), Firmicutes (17-27 %) and Fibrobacteres (13 %) while in the soil samples were Acidobacteria (28-45 %), Actinobacteria (20-40 %) and Proteobacteria (18-24 %). Some termite gut-specific bacterial lineages belonging to the genera Dysgonomonas, Parabacteroides, Paludibacter, Tannerella, Alistipes, BCf9-17 termite group and Termite Treponema cluster were observed. The results not only demonstrated a high level of bacterial diversity in the gut and surrounding soil environments, but also presence of distinct bacterial communities that are yet to be cultivated. Therefore, combined efforts using both culture and culture-independent methods are suggested to

  7. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing.

    PubMed

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-12

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  8. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    PubMed Central

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-01-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions. PMID:26067561

  9. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    NASA Astrophysics Data System (ADS)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  10. Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines.

    PubMed

    Liu, Yang; Zuo, Shan; Xu, Liwen; Zou, Yuanyuan; Song, Wei

    2012-12-01

    The seeds of plants are carriers of a variety of beneficial bacteria and pathogens. Using the non-culture methods of building 16S rDNA libraries, we investigated the endophytic bacterial communities of seeds of four hybrid maize offspring and their respective parents. The results of this study show that the hybrid offspring Yuyu 23, Zhengdan958, Jingdan 28 and Jingyu 11 had 3, 33, 38 and 2 OTUs of bacteria, respectively. The parents Ye 478, Chang 7-2, Zheng 58, Jing 24 and Jing 89 had 12, 36, 6, 12 and 2 OTUs, respectively. In the hybrid Yuyu 23, the dominant bacterium Pantoea (73.38 %) was detected in its female parent Ye 478, and the second dominant bacterium of Sphingomonas (26.62 %) was detected in both its female (Ye 478) and male (Chang 7-2) parent. In the hybrid Zhengdan 958, the first dominant bacterium Stenotrophomonas (41.67 %) was detected in both the female (Zheng 58) and male (Chang 7-2) parent. The second dominant bacterium Acinetobacter (9.26 %) was also the second dominant bacterium of its male parent. In the hybrid Jingdan 28, the second dominant bacterium Pseudomonas (12.78 %) was also the second dominant bacterium of its female parent, and its third dominant bacterium Sphingomonas (9.90 %) was the second dominant bacterium of its male parent and detected in its female parent. In the hybrid Jingyu 11, the first dominant bacterium Leclercia (73.85 %) was the third dominant bacterium of its male parent, and the second dominant bacterium Enterobacter (26.15 %) was detected in its male parent. As far as we know, this was the first research reported in China on the diversity of the endophytic bacterial communities of the seeds of various maize hybrids with different genotypes.

  11. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    USGS Publications Warehouse

    Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  12. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    PubMed Central

    Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community. PMID:27703865

  13. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest

    PubMed Central

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  14. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    PubMed

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery.

  15. Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values.

    PubMed

    Mahbub, Khandaker Rayhan; Subashchandrabose, Suresh Ramraj; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-03-01

    This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils-neutral, alkaline and acidic-were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg(-1) and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  16. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    PubMed

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

  17. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA.

    PubMed

    Zhou, J; Davey, M E; Figueras, J B; Rivkina, E; Gilichinsky, D; Tiedje, J M

    1997-12-01

    Genomic DNA was isolated from the active layer of tundra soil collected from the Kolyma lowland, Northeast Eurasia, near the Arctic Ocean coast. The SSU (small subunit) rRNA genes were amplified with eubacterial primers from the bulk genomic community DNA and cloned into plasmid vectors. Forty-three SSU rDNA clones were obtained, and all of them had different RFLP patterns. Phylogenetic analysis based on partial sequences (about 300 bp) established with the maximum likelihood method revealed the presence of three major and several minor groups that fell into 11 of the established lines of bacteria, and one sequence that could not be assigned to any of the described groups. Most of the clones belonged to the alpha (20.9%) and delta (25.6%) subdivisions of the Proteobacteria, with lesser proportions in the beta (9.3%) and gamma (4.7%) subdivisions, groups typically isolated from soil by culture methods. Fewer than 12% of the clones belonged to Gram-positive bacteria, and 16% of the clones were related to Fibrobacter. The majority of the clones (70%) had sequences that were 5-15% different from those in the current databases, and 7% of the clones had sequences that differed by more than 20% from those in the database. The results suggest that these tundra-derived clones are very diverse in phylogeny, and that many probably reflect new genera or families. Hence, most of the tundra soil bacterial community has never been isolated and thus the physiology and function of its dominant members appears to be unknown.

  18. Insights into Diversity and Imputed Metabolic Potential of Bacterial Communities in the Continental Shelf of Agatti Island

    PubMed Central

    Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A.; Shouche, Yogesh S.; Sharma, Avinash

    2015-01-01

    Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1–40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1–20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25–40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity. PMID:26066038

  19. Insights into Diversity and Imputed Metabolic Potential of Bacterial Communities in the Continental Shelf of Agatti Island.

    PubMed

    Kumbhare, Shreyas V; Dhotre, Dhiraj P; Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A; Shouche, Yogesh S; Sharma, Avinash

    2015-01-01

    Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1-40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1-20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25-40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity.

  20. Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine

    PubMed Central

    Wu, Shangong; Wang, Guitang; Angert, Esther R.; Wang, Weiwei; Li, Wenxiang; Zou, Hong

    2012-01-01

    Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota. PMID:22363439

  1. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    SciTech Connect

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito; Ansley, R J; Boutton, Thomas W

    2010-01-01

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

  2. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhao, Z.; Dai, M.; Jiao, N.

    2013-12-01

    Very few studies have been devoted to understanding microbial biogeography from the viewpoint of active versus total bacterial communities. Here, we examined the bacterial community along two transects, one from the inner Pearl River estuary to the open water of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and rDNA. Bacterial community composition was strongly correlated with environmental factors and weakly correlated with geographical distance between sites, although the diversity and biogeographic patterns differed substantially between the total and active communities. Compared to the total community, the active heterotrophic bacterial community displayed higher environmental sensitivity and a greater distance effect that was in fact mainly contributed by the active assemblage from deep waters. Taken together, the 16S rRNA versus rDNA relationships and community network models implied that the active heterotrophic bacteria, in high competition with each other, have high growth rates and high loss rates from predation, and hence are less-abundant in the SCS. Thereinto, most of the taxa act as specialists in the ecosystem and the others as generalists, which could cause some dispersal limitations such that some species could not become successfully established in the new location as they were moved through drift and, therefore, the active bacterial community could be determined to have a distinct distance-decay relationship. Altogether, our results supported the proposal that the current distributions of bacteria in the SCS were actually the result of both contemporary selection and historical drift processes.

  3. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    SciTech Connect

    Hodkinson, Brendan P; Gottel, Neil R; Schadt, Christopher Warren; Lutzoni, Francois

    2011-01-01

    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.

  4. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  5. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots.

    PubMed

    Manter, Daniel K; Delgado, Jorge A; Holm, David G; Stong, Rachel A

    2010-07-01

    In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 +/- 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 +/- 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (integral-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 +/- 0.019) and abundance (0.420 +/- 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < -0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.

  6. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    PubMed

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  7. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  8. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-02-23

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  9. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer.

    PubMed

    Boyd, Eric S; Cummings, David E; Geesey, Gill G

    2007-07-01

    Our understanding of mineralogical influences on subsurface microbial community structure and diversity has been difficult to assess due to difficulties in isolating this variable from others in the subsurface environment. In this study, biofilm coupons were used to isolate specific geological substrata from the surrounding geological matrix during colonization by microorganisms suspended in the surrounding groundwater for an 8-week period. Upon retrieval, the structure and diversity of the microbial community associated with each type of substratum was evaluated using 16S rDNA-based terminal-restriction fragment length polymorphism (T-RFLP). Phylogenetic affiliations of the populations associated with each type of substratum were established based on sequence analysis of near full-length 16S rDNA obtained through construction of a clone library. Hematite, quartz, and saprolite each harbored a community dominated by members of the division Proteobacteria (>67% of community). However, the different substrata selected for different subdivisions of bacteria within the Proteobacteria. After accounting for the influence exerted by substratum type on recovery of DNA from the attached populations, both phylogenetic data and Jaccard and Bray-Curtis similarity indices derived from terminal-restriction fragment (T-RF) profiles suggested a strong mineralogical influence on the structure and composition of the solid phase-associated community. The results suggest that mineralogical heterogeneity influences microbial community structure and diversity in pristine aquifers.

  10. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing.

    PubMed

    Wang, Neng Fei; Zhang, Tao; Zhang, Fang; Wang, En Tao; He, Jian Feng; Ding, Hui; Zhang, Bo Tao; Liu, Jie; Ran, Xiang Bin; Zang, Jia Ye

    2015-01-01

    This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil) in the Fildes Region (King George Island, Antarctica) using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas, and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01), phosphate phosphorus (p < 0.01), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.

  11. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers.

    PubMed

    Drury, Bradley; Rosi-Marshall, Emma; Kelly, John J

    2013-03-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.

  12. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Zhang, Fang; Wang, En Tao; He, Jian Feng; Ding, Hui; Zhang, Bo Tao; Liu, Jie; Ran, Xiang Bin; Zang, Jia Ye

    2015-01-01

    This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil) in the Fildes Region (King George Island, Antarctica) using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas, and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01), phosphate phosphorus (p < 0.01), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing. PMID:26579095

  13. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital

    PubMed Central

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Felix, Alvina Clara; Sanabani, Sabri Saeed

    2016-01-01

    Frequently used hand-touch surfaces in hospital settings have been implicated as a vehicle of microbial transmission. In this study, we aimed to investigate the overall bacterial population on four frequently used surfaces using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Surface samples were collected from four sites, namely elevator buttons (EB), bank machine keyboard buttons (BMKB), restroom surfaces, and the employee biometric time clock system (EBTCS), in a large public and teaching hospital in São Paulo. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Actinobacteria and Proteobacteria, with a total of 926 bacterial families and 2832 bacterial genera. Moreover, our analysis revealed the presence of some potential pathogenic bacterial genera, including Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus. The presence of these pathogens in frequently used surfaces enhances the risk of exposure to any susceptible individuals. Some of the factors that may contribute to the richness of bacterial diversity on these surfaces are poor personal hygiene and ineffective routine schedules of cleaning, sanitizing, and disinfecting. Strict standards of infection control in hospitals and increased public education about hand hygiene are recommended to decrease the risk of transmission in hospitals among patients. PMID:26805866

  14. Bacterial community composition and diversity in an ancestral ant fungus symbiosis.

    PubMed

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G

    2015-07-01

    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.

  15. Impacts of mariculture on the diversity of bacterial communities within intertidal sediments in the Northeast of China.

    PubMed

    Li, Jialin; Li, Fuchao; Yu, Shuxian; Qin, Song; Wang, Guangyi

    2013-11-01

    Mariculture is one of the major seafood supplies worldwide and has caused serious environmental concerns on the coastal zone. Its rapid development has been shown to disrupt the sediment ecosystems and thus influence the benthic bacterial communities. Bacterial diversity and community structure within both adjacent farms and non-cultured zones intertidal sediments along the coasts of Qinhuangdao and Dalian, China, were investigated using full-length 16S rRNA gene-based T-RFLP analyses and clone library construction. Richness and Shannon-Wiener index were significantly increased at sites adjacent the mariculture farm with mean values of 29 and 2.97 from peak profiles of T-RFLP result. Clustering analyses suggested that impacts of mariculture on bacterial diversity of sediment were significantly larger than those resulted from temporal and spatial scales. Upon comparisons of RFLP patterns from 602 clones from libraries of the selected five samples, 137 OTUs were retrieved. Members of γ- and δ-Proteobacteria, Bacilli, Flavobacteria, and Actinobacteria were recorded in all libraries. In addition, γ-Proteobacteria were dominant in all samples (21.7~45.0 %). Redundancy analysis revealed that the distribution of bacterial composition seemed to be determined by the variables of salinity, PO4 (3-)-P, NH4 (+)-N, and Chlorophyll a content. The phyla of γ-Proteobacteria, Clostridia, Flavobacteria, Bacilli, and Planctomycetes were principal components to contribute to the bacterial differences of clone libraries. Our finding demonstrated that these phyla could display variations of bacterial composition linked to environmental disturbance resulted from mariculture.

  16. Local and Regional Diversity Reveals Dispersal Limitation and Drift as Drivers for Groundwater Bacterial Communities from a Fractured Granite Formation.

    PubMed

    Beaton, E D; Stevenson, Bradley S; King-Sharp, Karen J; Stamps, Blake W; Nunn, Heather S; Stuart, Marilyne

    2016-01-01

    Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth's biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the

  17. Local and Regional Diversity Reveals Dispersal Limitation and Drift as Drivers for Groundwater Bacterial Communities from a Fractured Granite Formation

    PubMed Central

    Beaton, E. D.; Stevenson, Bradley S.; King-Sharp, Karen J.; Stamps, Blake W.; Nunn, Heather S.; Stuart, Marilyne

    2016-01-01

    Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth’s biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the

  18. Sulfate reduction, molecular diversity, and copper amendment effects in bacterial communities enriched from sediments exposed to copper mining residues.

    PubMed

    Pavissich, Juan P; Silva, Macarena; González, Bernardo

    2010-02-01

    Sulfate-reducing bacterial communities from coastal sediments with a long-term exposure to copper (Cu)-mining residues were studied in lactate enrichments. The toxicity of excess copper may affect sulfate-reducing bacterial communities. Sulfate reduction was monitored by sulfate and organic acid measurements. Molecular diversity was analyzed by 16S rRNA, dissimilatory sulfate reduction dsrAB, and Cu translocating phospho-type adenosine triphosphatases (P-ATPases) cop-like gene sequence profiling. The influence of Cu amendment was tested in these enrichments. Results showed fast sulfate reduction mostly coupled to incomplete organic carbon oxidation and partial sulfate reduction inhibition due to copper amendment. The 16S rRNA clonal libraries analysis indicated that delta- and gamma-Proteobacteria and Cytophaga-Flexibacter-Bacteroides dominated the enrichments. The dsrAB libraries revealed the presence of Desulfobacteraceae and Desulfovibrionaceae families-related sequences. Copper produced significant shifts (i.e., a decrease in the relative abundance of sulfate-reducing microorganisms) in the enriched bacterial community structure as determined by terminal-restriction fragment length polymorphism (T-RFLP) profiling and multivariate analyses. Clonal libraries of cop-like sequences showed low richness in the enriched microbial communities, and a strong effect of copper on its relative abundance. Novel Cu-P(IB)-ATPase sequences encoding Cu resistance were detected. The present study indicates that Cu does not significantly affect sulfate reduction and genetic diversity of taxonomic and dissimilatory sulfate-reduction molecular markers. However, the diversity of Cu resistance genetic determinants was strongly modified by this toxic metal.

  19. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides

    PubMed Central

    Sharp, Koty H; Distel, Dan; Paul, Valerie J

    2012-01-01

    In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival. PMID:22113375

  20. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides.

    PubMed

    Sharp, Koty H; Distel, Dan; Paul, Valerie J

    2012-04-01

    In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival.

  1. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor.

    PubMed

    Omri, Ilhem; Bouallagui, Hassib; Aouidi, Fathia; Godon, Jean-Jacques; Hamdi, Moktar

    2011-11-01

    The objective of this study was to assess the feasibility of using a biofilter system to treat hydrogen sulfide (H2S) contaminated air and to characterize its microbial community. The biofilter system was packed with peat. During the experimental work, the peat was divided in three layers (down, middle, and up). Satisfactory removal efficiencies of H2S were proved and reached 99% for the majority of the run time at an empty bed retention time (EBRT) of 60 s. The polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method was used to uncover the changes in the microbial community between the different layers. Analysis of SSCP profiles demonstrated significant differences in community structure from a layer to another with a strong decrease in species diversity towards the up layer. It was found that the used support was suitable for microorganism growth, and may have a potential application in H2S biofiltration system.

  2. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash.

    PubMed

    Joa, Jae Ho; Weon, Hang Yeon; Hyun, Hae Nam; Jeun, Young Chull; Koh, Sang Wook

    2014-12-01

    This study was conducted to assess bacterial species richness, diversity and community distribution according to different fertilization regimes for 16 years in citrus orchard soil of volcanic ash. Soil samples were collected and analyzed from Compost (cattle manure, 2,000 kg/10a), 1/2 NPK+compost (14-20-14+2,000 kg/10a), NPK+compost (28-40-28+2,000 kg/10a), NPK (28-40-28 kg/10a), 3 NPK (84-120-84 kg/10a), and Control (no fertilization) plot which have been managed in the same manners with compost and different amount of chemical fertilization. The range of pyrosequencing reads and OTUs were 4,687-7,330 and 1,790-3,695, respectively. Species richness estimates such as Ace, Chao1, and Shannon index were higher in 1/2 NPK+compost than other treatments, which were 15,202, 9,112, 7.7, respectively. Dominant bacterial groups at level of phylum were Proteobacteria, Acidobacteria, and Actinobacteria. Those were occupied at 70.9% in 1/2 NPK+compost. Dominant bacterial groups at level of genus were Pseudolabrys, Bradyrhizobium, and Acidobacteria. Those were distributed at 14.4% of a total of bacteria in Compost. Soil pH displayed significantly closely related to bacterial species richness estimates such as Ace, Chao1 (p<0.05) and Shannon index (p<0.01). However, it showed the negative correlation with exchangeable aluminum contents (p<0.05). In conclusion, diversity of bacterial community in citrus orchard soil was affected by fertilization management, soil pH changes and characteristics of volcanic ash.

  3. Phylogenetic Analysis of a Spontaneous Cocoa Bean Fermentation Metagenome Reveals New Insights into Its Bacterial and Fungal Community Diversity

    PubMed Central

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques. PMID:22666442

  4. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera.

    PubMed

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds.

  5. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke.

    PubMed

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-08

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K(+), Na(+), Mg(2+) and particularly Ca(2+) were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  6. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0–20 cm soil layer vertically and 0–30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0–5 cm and 5–10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  7. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    PubMed Central

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0–20 cm soil layer vertically and 0–30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0–5 cm and 5–10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities. PMID:26852800

  8. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique.

    PubMed

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2009-07-01

    An experiment was conducted under laboratory conditions to investigate the effect of increasing concentrations of fenitrothion (2, 10 and 200 mg a.i./kg soil), diuron (1.5, 7.5 and 150 mg a.i./kg soil) and thiram (3.5, 17.5 and 350 mg a.i./kg soil) on soil respiration, bacterial counts and changes in culturable fraction of soil bacteria. To ascertain these changes, the community structure, bacterial biodiversity and process of colony formation, based on the r/K strategy concept, EP- and CD-indices and the FOR model, respectively, were determined. The results showed that the measured parameters were generally unaffected by the lowest dosages of pesticides, corresponding to the recommended field rates. The highest dosages of fenitrothion and thiram suppressed the peak SIR by 15-70% and 20-80%, respectively, while diuron increased respiration rate by 17-25% during the 28-day experiment. Also, the total numbers of bacteria increased in pesticide-treated soils. However, the reverse effect on day 1 and, in addition, in case of the highest dosages of insecticide on days 14 and 28, was observed. Analysis of the community structure revealed that in all soil treatments bacterial communities were generally dominated by K-strategists. Moreover, differences in the distribution of individual bacteria classes and the gradual domination of bacteria populations belonging to r-strategists during the experiment, as compared to control, was observed. However, on day 1, at the highest pesticide dosages, fast growing bacteria constituted only 1-10% of the total colonies number during 48 h of plate incubation, whereas in remaining samples they reached from 20 to 40% of total cfu. This effect, in case of fenitrothion, lasted till the end of the experiment. At the highest dosages of fenitrothion, diuron and at all dosages of thiram the decrease of biodiversity, as indicated by EP- and CD-indices on day 1, was found. At the next sampling time, no significant retarding or stimulating effect

  9. Phylogenetic Profiling and Diversity of Bacterial Communities in the Death Valley, an Extreme Habitat in the Atacama Desert.

    PubMed

    Piubeli, Francine; de Lourdes Moreno, María; Kishi, Luciano Takeshi; Henrique-Silva, Flavio; García, María Teresa; Mellado, Encarnación

    2015-12-01

    The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

  10. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    PubMed

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems.

  11. Diversity of bacterial communities that colonize the filter units used for controlling plant pathogens in soilless cultures.

    PubMed

    Renault, David; Vallance, Jessica; Déniel, Franck; Wery, Nathalie; Godon, Jean Jacques; Barbier, Georges; Rey, Patrice

    2012-01-01

    In recent years, increasing the level of suppressiveness by the addition of antagonistic bacteria in slow filters has become a promising strategy to control plant pathogens in the recycled solutions used in soilless cultures. However, knowledge about the microflora that colonize the filtering columns is still limited. In order to get information on this issue, the present study was carried out over a 4-year period and includes filters inoculated or not with suppressive bacteria at the start of the filtering process (two or three filters were used each year). After 9 months of filtration, polymerase chain reaction (PCR)-single strand conformation polymorphism analyses point out that, for the same year of experiment, the bacterial communities from control filters were relatively similar but that they were significantly different between the bacteria-amended and control filters. To characterize the changes in bacterial communities within the filters, this microflora was studied by quantitative PCR, community-level physiological profiles, and sequencing 16SrRNA clone libraries (filters used in year 1). Quantitative PCR evidenced a denser bacterial colonization of the P-filter (amended with Pseudomonas putida strains) than control and B-filter (amended with Bacillus cereus strains). Functional analysis focused on the cultivable bacterial communities pointed out that bacteria from the control filter metabolized more carbohydrates than those from the amended filters whose trophic behaviors were more targeted towards carboxylic acids and amino acids. The bacterial communities in P- and B-filters both exhibited significantly more phylotype diversity and markedly distinct phylogenetic compositions than those in the C-filter. Although there were far fewer Proteobacteria in B- and P-filters than in the C-filter (22% and 22% rather than 69% of sequences, respectively), the percentages of Firmicutes was much higher (44% and 55% against 9%, respectively). Many Pseudomonas

  12. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem.

    PubMed

    Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that

  13. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  14. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster

    PubMed Central

    Wong, Chun Nin Adam; Ng, Patrick; Douglas, Angela E.

    2012-01-01

    Summary The bacteria in the fruitfly Drosophila melanogaster of different life stages was quantified by 454 pyrosequencing of 16S rRNA gene amplicons. The sequence reads were dominated by 5 operational taxonomic units (OTUs) at ≤ 97% sequence identity that could be assigned to Acetobacter pomorum, A. tropicalis, Lactobacillus brevis, L. fructivorans and L. plantarum. The saturated rarefaction curves and species richness indices indicated that the sampling (85 000–159 000 reads per sample) was comprehensive. Parallel diagnostic PCR assays revealed only minor variation in the complement of the five bacterial species across individual insects and three D. melanogaster strains. Other gut-associated bacteria included 6 OTUs with low %ID to previously reported sequences, raising the possibility that they represent novel taxa within the genera Acetobacter and Lactobacillus. A developmental change in the most abundant species, from L. fructivorans in young adults to A. pomorum in aged adults was identified; changes in gut oxygen tension or immune system function might account for this effect. Host immune responses and disturbance may also contribute to the low bacterial diversity in the Drosophila gut habitat. PMID:21631690

  15. Diversity of the bacterial community in Myanmar traditional salted fish yegyo ngapi.

    PubMed

    Kobayashi, Takeshi; Taguchi, Chihiro; Kida, Kakeru; Matsuda, Hiroko; Terahara, Takeshi; Imada, Chiaki; Moe, Nant Kay Thwe; Thwe, Su Myo

    2016-10-01

    The distribution and characterization of bacteria including lactic acid bacteria (LAB) in the traditional and popular salted fish yegyo ngapi in Myanmar were studied to clarify the contribution of these bacteria to the curing and ripening of this product. Samples of yegyo ngapi purchased from a market in Yangon were used. Most of the isolates obtained using de Man, Rogosa and Sharpe medium containing 10 % NaCl were identified as coccoid LAB on the basis of their basic phenotypic characteristics. From the results of 16S rRNA gene sequencing and PCR-restriction fragment length polymorphism analysis of this gene, most of the isolates were identified as the halophilic LAB Tetragenococcus muriaticus. Analyses of the 16S rRNA gene based on the clone library using DNA extracted from salted fish products were also performed. The results of these molecular-analysis-based techniques showed that spore-forming and non-spore-forming anaerobic bacteria including the genera Clostridium and Halanaerobium in addition to T. muriaticus were also frequently found in bacterial communities. These findings suggest that the anaerobic condition during curing and ripening resulted in bacterial communities composed of strictly anaerobic bacteria and halophilic LAB, and that these bacteria might also contribute to the manufacturing processes of this product. In addition, DNA sequences similar to that of Clostridium botulinum were found in the clone library analysis. Therefore, despite no reports of botulism poisoning from the region where the samples were taken, closer surveillance should be carried out from the viewpoint of food safety.

  16. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    PubMed Central

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1–2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100–530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed

  17. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay.

    PubMed

    Allen, M A; Goh, F; Burns, B P; Neilan, B A

    2009-01-01

    The bacterial, archaeal and eukaryotic populations of nonlithifying mats with pustular and smooth morphology from Hamelin Pool, Shark Bay were characterised using small subunit rRNA gene analysis and microbial isolation. A highly diverse bacterial population was detected for each mat, with 16S rDNA clones related to Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonas, Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia and candidate division TM6 present in each mat. Spirochaetes were detected in the smooth mat only, whereas candidate division OP11 was only detected in the pustular mat. Targeting populations with specific primers revealed additional cyanobacterial diversity. The archaeal population of the pustular mat was comprised purely of Halobacteriales, whereas the smooth mat contained 16S rDNA clones from the Halobacteriales, two groups of Euryarchaea with no close characterised matches, and the Thaumarchaea. Nematodes and fungi were present in each mat type, with diatom 18S rDNA clones only obtained from the smooth mat, and tardigrade and microalgae clones only retrieved from the pustular mat. Cultured isolates belonged to the Firmicutes, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Halobacteriales. The mat populations were significantly more diverse than those previously reported for Hamelin Pool stromatolites, suggesting specific microbial populations may be associated with the nonlithifying and lithifying microbial communities of Hamelin Pool.

  18. Effects of rodent community diversity and composition on prevalence of an endemic bacterial pathogen - Bartonella

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Calisher, C.H.; Cully, J.F.; Collinge, S.K.

    2009-01-01

    By studying Bartonella prevalence in rodent communities from 23 geographic sites in the western United States and one site in northern Mexico, the present study focused on the effects of rodent community diversity (measured by richness and Shannon index) and composition on prevalence of Bartonella infections. The analysis showed negative correlations of Bartonella prevalence with rodent richness and Shannon index. Further, Bartonella prevalence varied among rodent genera/species. Three models were applied to explain the observations. (1) Within-species/genus transmission: Bartonella strains usually are host-specific and adding non-host species would decrease Bartonella prevalence in its principal host through reduction of host contact (encounter reduction); (2) Frequency-dependence: Adding hosts would decrease the proportion of all infected individuals in the community, resulting in a reduction in the number of contacts between susceptible and infected individuals that usually leads to transmission (transmission reduction); and (3) Dominant species effect: Dominant species, if not susceptible to Bartonellae, can constrain the abundance of susceptible hosts (susceptible host regulation). These mechanisms work in concert; and the level of Bartonella prevalence is an outcome of regulation of all of these mechanisms on the entire system.

  19. Survival of bacterial indicators and the functional diversity of native microbial communities in the Floridan aquifer system, south Florida

    USGS Publications Warehouse

    Lisle, John T.

    2014-01-01

    model than when exposed to groundwater from the APPZ (range: 0.540–0.684 h-1). The inactivation rates for the first phase of the models for P. aeruginosa were not significantly different between the UFA (range: 0.144–0.770 h-1) and APPZ (range: 0.159–0.772 h-1) aquifer zones. The inactivation rates for the second phase of the model for this P. aeruginosa were also similar between UFA (range: 0.003–0.008 h-1) and APPZ (0.004–0.005 h-1) zones, although significantly slower than the model’s first phase rates for this bacterial species. Geochemical data were used to determine which dissimilatory biogeochemical reactions were most likely to occur under the native conditions in the UFA and APPZ zones using thermodynamics principles to calculate free energy yields and other cell-related energetics data. The biogeochemical processes of acetotrophic and hydrogenotrophic sulfate reduction, methanogenesis and anaerobic oxidation of methane dominated in all six groundwater sites. A high throughput DNA microarray sequencing technology was used to characterize the diversity in the native aquifer bacterial communities (bacteria and archaea) and assign putative physiological capabilities to the members of those communities. The bacterial communities in both zones of the aquifer were shown to possess the capabilities for primary and secondary fermentation, acetogenesis, methanogenesis, anaerobic methane oxidation, syntrophy with methanogens, ammonification, and sulfate reduction. The data from this study provide the first determination of bacterial indicator survival during exposure to native geochemical conditions of the Floridan aquifer in south Florida. Additionally, the energetics and functional bacterial diversity characterizations are the first descriptions of native bacterial communities in this region of the Floridan aquifer and reveal how these communities persist under such extreme conditions. Collectively, these types of data can be used to develop and refine

  20. Effects of sulfur-metabolizing bacterial community diversity on H2S emission behavior in landfills with different operation modes.

    PubMed

    Fang, Yuan; Du, Yao; Hu, Lifang; Xu, Jing; Long, Yuyang; Shen, Dongsheng

    2016-11-01

    Hydrogen sulfide (H2S) is one of the major contributors to offensive odors from landfills, and its concentration differs under different operation modes. This study examined the distribution of H2S emission from different landfill depths under different operation modes (anaerobic, semi-aerobic, semi-aerobic transformation, and the three operation modes with additional leachate recirculation). The microbial community (especially the sulfur-metabolizing bacterial community) was investigated using high-throughput sequencing technology. The results showed that the semi-aerobic mode could substantially lower the risks of H2S pollution in landfills, which might be because of the difference in biological processes related to sulfur metabolism driven by functional microbes. A myriad of factors are responsible for mutually shaping the sulfur-metabolizing bacterial community composition in landfills that might subsequently affect the behavior of H2S emission in landfills. The differences in abundance of the genera Acinetobacter and Paracoccus (phylum Proteobacteria) caused by environmental factors might explain the differences in H2S emission. H2S odor control could be realized if the related functional microbe diversity can be influenced by adjustments to landfill operation.

  1. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils.

    PubMed

    Tolli, J; King, G M

    2005-12-01

    Obligate lithotrophs (e.g., ammonia oxidizers) and facultative lithotrophs (e.g., CO and hydrogen oxidizers) collectively comprise a phylogenetically diverse functional group that contributes significantly to carbon and nitrogen cycles in soils and plays important roles in trace gas dynamics (e.g., carbon monoxide and nitrous and nitric oxides) that affect tropospheric chemistry and radiative forcing. In spite of their diverse physiologies, facultative and obligate lithotrophs typically possess the Calvin-Benson-Bassham cycle enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisCO). In an effort designed to understand the structure of lithotrophic communities in soil, genomic DNA extracts from surface (0 to 2 cm) and subsurface (5 to 7 cm) soils have been obtained from two sites in a Georgia agroecosystem (peanut and cotton plots) and an unmanaged pine stand (>50 years old). The extracts have been used in PCR amplifications of the cbbL gene for the rubisCO large subunit protein. cbbL PCR products were cloned, sequenced, and subjected to phylogenetic and statistical analyses. Numerous novel lineages affiliated with the form IC clade (one of four form I rubisCO clades), which is typified by facultative lithotrophs, comprised lithotrophic communities from all soils. One of the form IC clone sequences clustered with a form IC clade of ammonia-oxidizing Nitrosospira. Distinct assemblages were obtained from each of the sites and from surface and subsurface soils. The results suggest that lithotrophic populations respond differentially to plant type and land use, perhaps forming characteristic associations. The paucity of clone sequences attributed to ammonia-oxidizing bacteria indicates that even though ammonia oxidation occurs in the various soils, the relevant populations are small compared to those of facultative lithotrophs.

  2. Semiconductor Sequencing Reveals the Diversity of Bacterial Communities in an Amazon Reservoir Considered as a Methane Source

    NASA Astrophysics Data System (ADS)

    Graças, D. A.; Ramos, R. T.; Sá, P. G.; Baraúna, R. A.; Schneider, M. C.; Silva, A.

    2013-05-01

    oxygen production is considerable in this layer. The oxygen produced by Cyanobacteria coupled to atmospheric oxygen provides the ideal environment for the methanotrophic bacteria oxidize methane. Indeed, methanotrophic bacteria represented approximately 10% in the upper layers. Another bacterial phylum well represented in the upper layers was Bacteroidetes, which accounted for about 3% in the layers of 0-30m. Rarefaction analyses, using a cutoff of 3%, tell us the existence of 3212, 6657, 10171, 4209, 10533, 74, 24345 and 64683 OTUs for the layers of 0, 10, 20, 30, 40, 50, 60 and 70 meters, respectively. Bacterial diversity seems to increase with depth, probably due to the large amount of organic matter deposited in the pellet. The 50 meter depth layer showed the lowest diversity due to low quality sequencing of this barcode, which hampered the analysis. The abundance of methanotrophic bacteria shows that the microbial profile of the reservoir is able to consume much of the methane produced by methanogenic archaea in the sediment and that there is a huge diversity whose function is still unknown. The use of semiconductor sequencing proved to be a robust tool to analysis of the microbial community, as an alternative to pyrosequencing.

  3. High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species.

    PubMed

    Chiarello, Marlène; Villéger, Sébastien; Bouvier, Corinne; Bettarel, Yvan; Bouvier, Thierry

    2015-07-01

    Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).

  4. Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China

    PubMed Central

    Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting

    2014-01-01

    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important

  5. Diversity and structure of a bacterial community in grassland soils disturbed by sheep grazing, in the Loess Plateau of northwestern China.

    PubMed

    Gou, Y N; Nan, Z B; Hou, F J

    2015-12-15

    The relationship between disturbance, biodiversity, and ecosystem function has been a hot topic recently in international ecological research, and a universally applicable model remains elusive. In this study, we assessed the diversity and structure of a bacterial community in grassland soils along a disturbance gradient due to sheep grazing. Bacteria were identified based on 16S rDNA gene libraries prepared from a 12-year field experiment that included four grazing, intensity treatments: no grazing, light grazing, moderate grazing and heavy grazing in the Loess Plateau of northwestern China. We found that diversity indices of bacterial 16S rDNA increased with grazing intensity, suggesting that disturbance led to higher bacterial diversity. The bacterial community structure, measured as species composition, was also affected by grazing. In addition, the change in soil bacterial community composition was maximum under heavy grazing, based on the Sorensen similarity index. Overall, the relationship between disturbance and bacterial diversity is complex, therefore, more studies are required to determine the possibility of using microbial diversity as an indicator of ecosystem stability.

  6. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa.

    PubMed

    Beauregard, M S; Hamel, C; Atul-Nayyar; St-Arnaud, M

    2010-02-01

    Soil function may be affected by cropping practices impacting the soil microbial community. The effect of different phosphorus (P) fertilization rates (0, 20, or 40 kg P(2)O(5) ha(-1)) on soil microbial diversity was studied in 8-year-old alfalfa monocultures. The hypothesis that P fertilization modifies soil microbial community was tested using denaturing gradient gel electrophoresis and phospholipids fatty acid (PLFA) profiling to describe soil bacteria, fungi, and arbuscular mycorrhizal (AM) fungi diversity. Soil parameters related to fertility (soil phosphate flux, soluble P, moisture, phosphatase and dehydrogenase assays, and carbon and nitrogen content of the light fraction of soil organic matter) were also monitored and related to soil microbial ribotype profiles. Change in soil P fertility with the application of fertilizer had no effect on crop yield in 8 years, but on the year of this study was associated with shifts in the composition of fungal and bacterial communities without affecting their richness, as evidenced by the absence of effect on the average number of ribotypes detected. However, variation in soil P level created by a history of differential fertilization did not significantly influence AM fungi ribotype assemblages nor AM fungi biomass measured with the PLFA 16:1omega5. Fertilization increased P flux and soil soluble P level but reduced soil moisture and soil microbial activity, as revealed by dehydrogenase assay. Results suggest that soil P fertility management could influence soil processes involving soil microorganisms. Seasonal variations were also recorded in microbial activity, soil soluble P level as well as in the abundance of specific bacterial and fungal PLFA indicators of soil microbial biomass.

  7. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event

    PubMed Central

    Cha, Seho; Srinivasan, Sathiyaraj; Jang, Jun Hyeong; Lee, Dongwook; Lim, Sora; Kim, Kyung Sang; Jheong, Weonhwa; Lee, Dong-Won; Park, Eung-Roh; Chung, Hyun-Mi; Choe, Joonho; Kim, Myung Kyum; Seo, Taegun

    2017-01-01

    Asian dust or yellow sand events in East Asia are a major issue of environmental contamination and human health, causing increasing concern. A high amount of dust particles, especially called as particulate matter 10 (PM10), is transported by the wind from the arid and semi-arid tracks to the Korean peninsula, bringing a bacterial population that alters the terrestrial and atmospheric microbial communities. In this study, we aimed to explore the bacterial populations of Asian dust samples collected during November–December 2014. The dust samples were collected using the impinger method, and the hypervariable regions of the 16S rRNA gene were amplified using PCR followed by pyrosequencing. Analysis of the sequencing data were performed using Mothur software. The data showed that the number of operational taxonomic units and diversity index during Asian dust events were higher than those during non-Asian dust events. At the phylum level, the proportions of Proteobacteria, Actinobacteria, and Firmicutes were different between Asian dust and non-Asian dust samples. At the genus level, the proportions of the genus Bacillus (6.9%), Arthrobacter (3.6%), Blastocatella (2%), Planomicrobium (1.4%) were increased during Asian dust compared to those in non-Asian dust samples. This study showed that the significant relationship between bacterial populations of Asian dust samples and non-Asian dust samples in Korea, which could significantly affect the microbial population in the environment. PMID:28122054

  8. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  9. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  10. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  11. Phylogenetic Diversity of Bacterial and Archaeal Communities in the Anoxic Zone of the Cariaco Basin†

    PubMed Central

    Madrid, Vanessa M.; Taylor, Gordon T.; Scranton, Mary I.; Chistoserdov, Andrei Y.

    2001-01-01

    Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the ɛ subdivision of the Proteobacteria (ɛ-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the division Verrucomicrobia, the division Proteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, ɛ and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the ɛ-proteobacteria belonged to the ESR group. The genus Fibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the ɛ-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the Proteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and ɛ-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to

  12. Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster.

    PubMed

    Feinman, Sarah G; Unzueta Martínez, Andrea; Bowen, Jennifer L; Tlusty, Michael F

    2017-03-30

    The American lobster Homarus americanus supports a valuable commercial fishery in the Northeastern USA and Maritime Canada; however, stocks in the southern portion of the lobster's range have shown declines, in part due to the emergence of shell disease. Epizootic shell disease is a bacterially induced cuticular erosion that renders even mildly affected lobsters unmarketable because of their appearance, and in more severe cases can cause mortality. Despite the importance of this disease, the associated bacterial communities have not yet been fully characterized. We sampled 2 yr old, laboratory-reared lobsters that displayed signs of shell disease at the site of disease as well as at 0.5, 1, and 1.5 cm away from the site of disease to determine how the bacterial community changed over this fine spatial scale. Illumina sequencing of the 16S rRNA gene revealed a distinct bacterial community at the site of disease, with significant reductions in bacterial diversity and richness compared to more distant sampling locations. The bacterial community composition 0.5 cm from the site of disease was also altered, and there was an observable decrease in bacterial diversity and richness, even though there were no signs of disease at that location. Given the distinctiveness of the bacterial community at the site of disease and 0.5 cm from the site of disease, we refer to these communities as affected and transitionary, and suggest that these bacteria, including the previously proposed causative agent, Aquimarina 'homaria', are important for the initiation and progression of this laboratory model of shell disease.

  13. Characterizing the structural diversity of a bacterial community associated with filter materials in recirculating aquaculture systems of Scortum barcoo.

    PubMed

    Zhu, Peng; Ye, Yangfang; Pei, Fangfang; Lu, Kaihong

    2012-03-01

    The bacterial community structure associated with filter materials in the recirculating aquaculture system of Scortum barcoo was investigated using the 16S rRNA gene clone library method. Preliminary results showed that the clone library constructed from the initial operation condition was characterized by 31 taxa of bacteria belonging to eight phyla including Proteobacteria, Acidobacteria, Firmicutes, Fusobacteria, Sphingobacteria, Bacteroidetes, Verrucomicrobiae, and Actinobacteria. There were 14 taxa of bacteria belonging to four phyla including Proteobacteria, Acidobacteria, Planctomycetacia, and Nitrospirae from the stable operation condition where the water quality was well maintained. Nitrospirae was only found under the stable operation condition in this study. Our results further indicated that Nitrospira was dominated by members of the Nitrospira sp. lineages, with a minor fraction related to Nitrospira moscoviensis and an unknown Nitrospira cluster. These great differences of both diversity and composition between two operation conditions suggested that the composition of the microbial community varied with the degree of water quality in the recirculating aquaculture system of S. barcoo.

  14. Does adaptive radiation of a host lineage promote ecological diversity of its bacterial communities? A test using gut microbiota of Anolis lizards.

    PubMed

    Ren, Tiantian; Kahrl, Ariel F; Wu, Martin; Cox, Robert M

    2016-10-01

    Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct 'ecomorphs' related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk-crown, trunk-ground, grass-bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk-ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.

  15. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste.

    PubMed

    Vivas, A; Moreno, B; Garcia-Rodriguez, S; Benitez, E

    2009-02-01

    The aim of this study was to couple biochemical and molecular methodologies for evaluating the impact of two recycling technologies (composting and vermicomposting) on a toxic organic waste. To do this, six enzyme activities controlling the key metabolic pathways of the breakdown of organic matter, real-time PCR assays targeting 16S rRNA genes, and denaturing gradient gel electrophoresis (DGGE) profiling-sequence analysis of PCR-amplified 16S rRNA fragments have been used to determine the functional diversity, bacterial number, and bacterial community structure, respectively, in a mixture of olive waste and sheep manure, and in the derived compost and vermicompost. Both the recycling technologies were effective in activating the microbial parameters of the toxic waste, the vermicomposting being the best process to produce greater bacterial diversity, greater bacterial numbers and greater functional diversity. Although several identical populations were detected in the processed and non-processed materials, each technology modified the original microbial communities of the waste in a diverse way, indicating the different roles of each one in the bacterial selection.

  16. Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania).

    PubMed

    Andrei, Adrian-Ştefan; Păuşan, Manuela R; Tămaş, Tudor; Har, Nicolae; Barbu-Tudoran, Lucian; Leopold, Nicolae; Banciu, Horia L

    2017-01-01

    In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization.

  17. Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania)

    PubMed Central

    Andrei, Adrian-Ştefan; Păuşan, Manuela R.; Tămaş, Tudor; Har, Nicolae; Barbu-Tudoran, Lucian; Leopold, Nicolae; Banciu, Horia L.

    2017-01-01

    In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization. PMID:28326074

  18. Molecular diversity of drinking water bacterial communities using 16S rRNA gene sequence analyses

    EPA Science Inventory

    Our understanding of the microbial community structure of drinking water distribution system has relied on culture-based methods. However, recent studies have suggested that the majority of bacteria inhabiting distribution systems are unable to grow on artificial media. The goal ...

  19. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition

    PubMed Central

    Terrat, Sebastien; Plassart, Pierre; Bourgeois, Emilie; Ferreira, Stéphanie; Dequiedt, Samuel; Adele-Dit-De-Renseville, Nathalie; Lemanceau, Philippe; Bispo, Antonio; Chabbi, Abad; Maron, Pierre-Alain; Ranjard, Lionel

    2015-01-01

    This study was designed to assess the influence of three soil DNA extraction procedures, namely the International Organization for Standardization (ISO-11063, GnS-GII and modified ISO procedure (ISOm), on the taxonomic diversity and composition of soil bacterial and fungal communities. The efficacy of each soil DNA extraction method was assessed on five soils, differing in their physico-chemical characteristics and land use. A meta-barcoded pyrosequencing approach targeting 16S and 18S rRNA genes was applied to characterize soil microbial communities. We first observed that the GnS-GII introduced some heterogeneity in bacterial composition between replicates. Then, although no major difference was observed between extraction procedures for soil bacterial diversity, we saw that the number of fungal genera could be underestimated by the ISO-11063. In particular, this procedure underestimated the detection in several soils of the genera Cryptococcus, Pseudallescheria, Hypocrea and Plectosphaerella, which are of ecological interest. Based on these results, we recommend using the ISOm method for studies focusing on both the bacterial and fungal communities. Indeed, the ISOm procedure provides a better evaluation of bacterial and fungal communities and is limited to the modification of the mechanical lysis step of the existing ISO-11063 standard. PMID:25195809

  20. Diverse UV-B resistance of culturable bacterial community from high-altitude wetland water.

    PubMed

    Zenoff, Veronica Fernández; Heredia, Judith; Ferrero, Marcela; Siñeriz, Faustino; Farías, María Eugenia

    2006-05-01

    Isolation of most ultraviolet B (UV-B)-resistant culturable bacteria that occur in the habitat of Laguna Azul, a high-altitude wetland [4554 m above sea level (asl)] from the Northwestern Argentinean Andes, was carried out by culture-based methods. Water from this environment was exposed to UV-B radiation under laboratory conditions during 36 h, at an irradiance of 4.94 W/m2. It was found that the total number of bacteria in water samples decreased; however, most of the community survived long-term irradiation (312 nm) (53.3 kJ/m2). The percentage of bacteria belonging to dominant species did not vary significantly, depending on the number of UV irradiation doses. The most resistant microbes in the culturable community were Gram-positive pigmented species (Bacillus megaterium [endospores and/or vegetative cells], Staphylococcus saprophyticus, and Nocardia sp.). Only one Gram-negative bacterium could be cultivated (Acinetobacter johnsonii). Nocardia sp. that survived doses of 3201 kJ/m2 were the most resistant bacteria to UV-B treatment. This study is the first report on UV-B resistance of a microbial community isolated from high-altitude extreme environments, and proposes a method for direct isolation of UV-B-resistant bacteria from extreme irradiated environments.

  1. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices.

    PubMed

    Battini, Fabio; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2016-02-01

    Arbuscular Mycorrhizal Fungi (AMF) live in symbiosis with most crop plants and represent essential elements of soil fertility and plant nutrition and productivity, facilitating soil mineral nutrient uptake and protecting plants from biotic and abiotic stresses. These beneficial services may be mediated by the dense and active spore-associated bacterial communities, which sustain diverse functions, such as the promotion of mycorrhizal activity, biological control of soilborne diseases, nitrogen fixation, and the supply of nutrients and growth factors. In this work, we utilised culture-dependent methods to isolate and functionally characterize the microbiota strictly associated to Rhizophagus intraradices spores, and molecularly identified the strains with best potential plant growth promoting (PGP) activities by 16S rDNA sequence analysis. We isolated in pure culture 374 bacterial strains belonging to different functional groups-actinobacteria, spore-forming, chitinolytic and N2-fixing bacteria-and screened 122 strains for their potential PGP activities. The most common PGP trait was represented by P solubilization from phytate (69.7%), followed by siderophore production (65.6%), mineral P solubilization (49.2%) and IAA production (42.6%). About 76% of actinobacteria and 65% of chitinolytic bacteria displayed multiple PGP activities. Nineteen strains with best potential PGP activities, assigned to Sinorhizobium meliloti, Streptomyces spp., Arthrobacter phenanthrenivorans, Nocardiodes albus, Bacillus sp. pumilus group, Fictibacillus barbaricus and Lysinibacillus fusiformis, showed the ability to produce IAA and siderophores and to solubilize P from mineral phosphate and phytate, representing suitable candidates as biocontrol agents, biofertilisers and bioenhancers, in the perspective of targeted management of beneficial symbionts and their associated bacteria in sustainable food production systems.

  2. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China.

    PubMed

    Liu, Min; Cui, Ying; Chen, Yuqing; Lin, Xiangzhi; Huang, Huiqin; Bao, Shixiang

    2017-03-01

    Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101(T) and Paenibacillus xylanilyticus XIL14(T) with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.

  3. Phylogenetic diversity of dominant bacterial and archaeal communities in plant-microbial fuel cells using rice plants.

    PubMed

    Ahn, Jae-Hyung; Jeong, Woo-Suk; Choi, Min-Young; Kim, Byung-Yong; Song, Jaekyeong; Weon, Hang-Yeon

    2014-12-28

    In this study, the phylogenetic diversities of bacterial and archaeal communities in a plantmicrobial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

  4. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP).

    PubMed

    Zhao, Dayong; Huang, Rui; Zeng, Jin; Yan, Wenming; Wang, Jianqun; Ma, Ting; Wang, Meng; Wu, Qinglong L

    2012-11-01

    Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7 % of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4 % of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.

  5. Effect of earthworm loads on organic matter and nutrient removal efficiencies in synthetic domestic wastewater, and on bacterial community structure and diversity in vermifiltration.

    PubMed

    Wang, L M; Luo, X Z; Zhang, Y M; Lian, J J; Gao, Y X; Zheng, Z

    2013-01-01

    In this paper, we studied the effect of earthworm loads on the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen, and total phosphorus from synthetic domestic sewage and on the bacterial community structure and diversity of substrates in earthworm packing beds. The different vermifiltrations (VFs), including the control, are successful in removing both organic matter (OM) and nutrients. The removal rate of NH3-N at 12.5 g of earthworm/L of soil VF is higher compared with that at 0 and 4.5 earthworm load VFs. The highest Shannon index, in the earthworm packing bed, occurred at 16.5 earthworm load VF. Furthermore, the COD removal rate is significantly correlated with the Shannon index, which reveals that OM removal for synthetic domestic sewage treatment at VF might be more dependent on bacterial diversity at the earthworm packing bed. The band distributions and diversities of the bacterial community for samples from different earthworm loads in VFs suggest that the bacterial community structure was only affected within the earthworm packing bed when the earthworm load reached a certain level. The present study adds to the current understanding of OM and nutrient degradation processes in VF domestic wastewater treatment.

  6. Diversity in soil bacterial communities structure in four high-altitude vineyards cultivated using different soil management techniques

    NASA Astrophysics Data System (ADS)

    Opsi, Francesca; Landa, Blanca; Zecca, Odoardo; Biddoccu, Marcella; Barmaz, Andrea; Cavallo, Eugenio

    2014-05-01

    Some of the major wine producing countries are located in the Mediterranean regions, where viticulture represents one of the most widespread cultivations with economic and social importance. The area devoted to vineyards can also expand to mountain and steep slope zones, often characterized by small-scale high quality wine production, where viticulture contributes to the sustainable development from the ecological and environmental point of view. Farming practices adopted in sloping vineyards have the purpose to improve the soil physicochemical but also biological properties to avoid the degradation of the soil characteristics and resulting problems such as soil erosion and organic matter losses. A preliminary study was conducted during 2013 in four commercial vineyards located in Aosta Valley (north-western Italy), within a small area located in the adjacent municipalities of Chambave and Saint-Denis in order to minimize soil variability. Two sites have been identified on the lower (about 600 m asl) and higher (about 750 m asl) zone of the slope, each of which consist of two vineyards managed since at least ten years with different soil management techniques: grass cover and chemical weed control. The four experimental soils had a sandy loam texture with abundant skeleton, and were characterized by a slightly alkaline reaction. The organic matter content was greater in the lower zone (2.4%) than in the upper (1.5%), without specific differences between treatments. The low values of the C:N ratio reported (on average 6.2) reveal the increased organic matter mineralization; furthermore the CEC values were rather low, typical of loose soils. Soil microbiota are critical for the maintenance of soil health and quality, playing an important role in agricultural soil ecosystems. A 16S rDNA pyrosequencing approach was used for investigating differences, abundance and diversity in bacterial community structure of the four studied vineyards. Data from pyrosequencing

  7. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches.

    PubMed

    Wemheuer, Bernd; Güllert, Simon; Billerbeck, Sara; Giebel, Helge-Ansgar; Voget, Sonja; Simon, Meinhard; Daniel, Rolf

    2014-02-01

    Despite their importance for ecosystem functioning, little is known about the composition of active marine bacterioplankton communities. Hence, this study was focused on assessing the diversity of these communities in the southern North Sea and examining the impact of a phytoplankton spring bloom on the ambient bacterioplankton community. Community composition in and outside the bloom was assessed in 14 samples by pyrosequencing-based analysis of 16S rRNA gene amplicons generated from environmental RNA. The data set comprised of 211 769 16S rRNA gene sequences. Proteobacteria were the predominant phylogenetic group with Alphaproteobacteria and Gammaproteobacteria as the most abundant classes. Actinobacteria and Bacteroidetes were identified in minor abundances. Active bacterial communities were dominated by few lineages such as the Roseobacter RCA cluster and the SAR92 clade. Community structures of three selected samples were also assessed by direct sequencing of cDNA generated from rRNA-depleted environmental RNA. Generated data sets comprised of 988 202 sequences. Taxonomic assignment of the reads confirmed the predominance of Proteobacteria. The examined phytoplankton spring bloom affected the bacterioplankton community structures significantly. Bacterial richness was reduced in the bloom area, and the abundance of certain bacterial groups was affected by bloom presence. The SAR92 clade and the Roseobacter RCA cluster were significantly more abundant and active in the bloom. Functions affected by the bloom include photosynthesis, protein metabolism, and DNA metabolism.

  8. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities.

    PubMed

    Okie, Jordan G; Van Horn, David J; Storch, David; Barrett, John E; Gooseff, Michael N; Kopsova, Lenka; Takacs-Vesbach, Cristina D

    2015-06-22

    The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.

  9. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities

    PubMed Central

    Okie, Jordan G.; Van Horn, David J.; Storch, David; Barrett, John E.; Gooseff, Michael N.; Kopsova, Lenka; Takacs-Vesbach, Cristina D.

    2015-01-01

    The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms. PMID:26019154

  10. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    PubMed Central

    Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J.

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  11. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    PubMed

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB.

  12. Diversity and Temporal Dynamics of the Epiphytic Bacterial Communities Associated with the Canopy-Forming Seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin

    PubMed Central

    Mancuso, Francesco P.; D'Hondt, Sofie; Willems, Anne; Airoldi, Laura; De Clerck, Olivier

    2016-01-01

    Canopy-forming seaweed species of the genus Cystoseira form diverse and productive habitats along temperate rocky coasts of the Mediterranean Sea. Despite numerous studies on the rich macrofauna and flora associated with Cystoseira spp., there is little knowledge about the epiphytic bacteria. We analyzed bacterial populations associated with canopies of Cystoseira compressa, over an annual vegetative cycle (May-October), and their relationships with the bacterial populations in the surrounding seawater, at intertidal rocky shores in Vasto (Chieti—Italy). The bacterial diversity was assessed using Illumina Miseq sequences of V1-V3 hypervariable regions of 16S rRNA gene. C. compressa bacterial community was dominated by sequences of Proteobacteria and Bacteroidetes, Verrucomicrobia, Actinobacteria, and Cyanobacteria especially of the Rhodobacteriaceae, Flavobacteriaceae, Sapropiraceae, Verrucomicrobiaceae, and Phyllobacteriaceae families. Seawater libraries were also dominated by Proteobacteria and Bacteroidetes sequences, especially of the Candidatus Pelagibacter (SAR11) and Rhodobacteriaceae families, but were shown to be clearly distinct from C. compressa libraries with only few species in common between the two habitats. We observed a clear successional pattern in the epiphytic bacteria of C. compressa over time. These variations were characterized by gradual addition of OTUs (Verrucomicrobia, Actinobacteria and SR1) to the community over a growing season, indicative of a temporal gradient, rather than a radical reorganization of the bacterial community. Moreover, we also found an increase in abundance over time of Rhodobacteraceae, comprising six potential pathogenic genera, Ruegeria, Nautella, Aquimarina, Loktanella, Saprospira, and Phaeobacter which seemed to be associated to aged thalli of C. compressa. These bacteria could have the potential to affect the health and ecology of the algae, suggesting the hypothesis of a possible, but still unexplored, role

  13. Diversity and Temporal Dynamics of the Epiphytic Bacterial Communities Associated with the Canopy-Forming Seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin.

    PubMed

    Mancuso, Francesco P; D'Hondt, Sofie; Willems, Anne; Airoldi, Laura; De Clerck, Olivier

    2016-01-01

    Canopy-forming seaweed species of the genus Cystoseira form diverse and productive habitats along temperate rocky coasts of the Mediterranean Sea. Despite numerous studies on the rich macrofauna and flora associated with Cystoseira spp., there is little knowledge about the epiphytic bacteria. We analyzed bacterial populations associated with canopies of Cystoseira compressa, over an annual vegetative cycle (May-October), and their relationships with the bacterial populations in the surrounding seawater, at intertidal rocky shores in Vasto (Chieti-Italy). The bacterial diversity was assessed using Illumina Miseq sequences of V1-V3 hypervariable regions of 16S rRNA gene. C. compressa bacterial community was dominated by sequences of Proteobacteria and Bacteroidetes, Verrucomicrobia, Actinobacteria, and Cyanobacteria especially of the Rhodobacteriaceae, Flavobacteriaceae, Sapropiraceae, Verrucomicrobiaceae, and Phyllobacteriaceae families. Seawater libraries were also dominated by Proteobacteria and Bacteroidetes sequences, especially of the Candidatus Pelagibacter (SAR11) and Rhodobacteriaceae families, but were shown to be clearly distinct from C. compressa libraries with only few species in common between the two habitats. We observed a clear successional pattern in the epiphytic bacteria of C. compressa over time. These variations were characterized by gradual addition of OTUs (Verrucomicrobia, Actinobacteria and SR1) to the community over a growing season, indicative of a temporal gradient, rather than a radical reorganization of the bacterial community. Moreover, we also found an increase in abundance over time of Rhodobacteraceae, comprising six potential pathogenic genera, Ruegeria, Nautella, Aquimarina, Loktanella, Saprospira, and Phaeobacter which seemed to be associated to aged thalli of C. compressa. These bacteria could have the potential to affect the health and ecology of the algae, suggesting the hypothesis of a possible, but still unexplored, role of

  14. Abundance and diversity of sedimentary bacterial communities in a coastal productive setting in the Western Irish Sea

    NASA Astrophysics Data System (ADS)

    O'Reilly, S. S.; Pentlavalli, P.; Flanagan, P. V.; Allen, C. C. R.; Monteys, X.; Szpak, M. T.; Murphy, B. T.; Jordan, S. F.; Kelleher, B. P.

    2016-02-01

    The bacterial community composition and biomass abundance from a depositional mud belt in the western Irish Sea and regional sands were investigated by phospholipid ester-linked fatty acid profiling, denaturing gradient gel electrophoresis and barcoded pyrosequencing of 16S rRNA genes. The study area varied by water depth (12-111 m), organic carbon content (0.09-1.57% TOC), grain size, hydrographic regime (well-mixed vs. stratified), and water column phytodetrital input (represented by algal polyunsaturated PLFA). The relative abundance of bacterial-derived PLFA (sum of methyl-branched, cyclopropyl and odd-carbon number PLFA) was positively correlated with fine-grained sediment, and was highest in the depositional mud belt. A strong association between bacterial biomass and eukaryote primary production was suggested based on observed positive correlations with total nitrogen and algal polyunsaturated fatty acids. In addition, 16S rRNA genes affiliated to the classes Clostridia and Flavobacteria represented a major proportion of total 16S rRNA gene sequences. This suggests that benthic bacterial communities are also important degraders of phytodetrital organic matter and closely coupled to water column productivity in the western Irish Sea.

  15. Archaeal and bacterial communities of Xestospongia testudinaria and sediment differ in diversity, composition and predicted function in an Indonesian coral reef environment

    NASA Astrophysics Data System (ADS)

    Polónia, Ana Rita Moura; Cleary, Daniel Francis Richard; Freitas, Rossana; Gomes, Newton Carlos Marcial; de Voogd, Nicole Joy

    2017-01-01

    Little is known about the microbial diversity, composition and predicted functional similarities and dissimilarities between prokaryotic kingdoms and among coral reef biotopes located in close spatial proximity to one other. In this study, we compared communities of Archaea and Bacteria in two distinct biotopes, namely, the sponge Xestospongia testudinaria and sediment of the Berau reef system, Indonesia. Using a 16S rRNA gene barcoded pyrosequencing approach and a recently developed predictive metagenomic approach (PICRUSt), we tested to what extent sediment and X. testudinaria host compositionally and functionally distinct communities of Archaea and Bacteria. Although Crenarchaeota (Archaea) and Proteobacteria (Bacteria) were the dominant phyla in the microbial communities of both sediment and sponge, there were significant differences in composition between them. Biotope proved to be the main identifiable factor affecting composition. In line with the compositional differences between sediment and sponge prokaryote communities, there were also differences in predicted functions. The archaeal and bacterial communities of sediment were enriched for functions associated with the Metabolism and Environmental Information Processing categories; those of X. testudinaria were enriched for functions associated with the Genetic Information Processing category. The significant levels of concordance between archaeal and bacterial communities and the similar enrichment of these communities in the same functional categories suggests a certain degree of functional redundancy between Archaea and Bacteria in the studied biotopes, which for the sponge may result in an increased resilience to environmental perturbations.

  16. Cultivable bacterial diversity from the human colon.

    PubMed

    Duncan, S H; Louis, P; Flint, H J

    2007-04-01

    Knowledge of the composition of the colonic microbiota is important for our understanding of how the balance of these microbes is influenced by diet and the environment, and which bacterial groups are important in maintaining gut health or promoting disease. Molecular methodologies have advanced our understanding of the composition and diversity of the colonic microbiota. Importantly, however, it is the continued isolation of bacterial representatives of key groups that offers the best opportunity to conduct detailed metabolic and functional studies. This also permits bacterial genome sequencing which will accelerate the linkage to functionality. Obtaining new human colonic bacterial isolates can be challenging, because most of these are strict anaerobes and many have rather exact nutritional and physical requirements. Despite this many new species are being isolated and described that occupy distinct niches in the colonic microbial community. This review focuses on these under-studied yet important gut anaerobes.

  17. Structural Diversity of Bacterial Communities Associated with Bloom-Forming Freshwater Cyanobacteria Differs According to the Cyanobacterial Genus

    PubMed Central

    Louati, Imen; Pascault, Noémie; Debroas, Didier; Bernard, Cécile; Humbert, Jean-François; Leloup, Julie

    2015-01-01

    The factors and processes driving cyanobacterial blooms in eutrophic freshwater ecosystems have been extensively studied in the past decade. A growing number of these studies concern the direct or indirect interactions between cyanobacteria and heterotrophic bacteria. The presence of bacteria that are directly attached or immediately adjacent to cyanobacterial cells suggests that intense nutrient exchanges occur between these microorganisms. In order to determine if there is a specific association between cyanobacteria and bacteria, we compared the bacterial community composition during two cyanobacteria blooms of Anabaena (filamentous and N2-fixing) and Microcystis (colonial and non-N2 fixing) that occurred successively within the same lake. Using high-throughput sequencing, we revealed a clear distinction between associated and free-living communities and between cyanobacterial genera. The interactions between cyanobacteria and bacteria appeared to be based on dissolved organic matter degradation and on N recycling, both for N2-fixing and non N2-fixing cyanobacteria. Thus, the genus and potentially the species of cyanobacteria and its metabolic capacities appeared to select for the bacterial community in the phycosphere. PMID:26579722

  18. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale.

    PubMed

    Van Horn, David J; Van Horn, M Lee; Barrett, John E; Gooseff, Michael N; Altrichter, Adam E; Geyer, Kevin M; Zeglin, Lydia H; Takacs-Vesbach, Cristina D

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when

  19. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

    PubMed Central

    Van Horn, David J.; Van Horn, M. Lee; Barrett, John E.; Gooseff, Michael N.; Altrichter, Adam E.; Geyer, Kevin M.; Zeglin, Lydia H.; Takacs-Vesbach, Cristina D.

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when

  20. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan.

    PubMed

    Wang, Li; Cheung, Man Kit; Liu, Rulong; Wong, Chong Kim; Kwan, Hoi Shan; Hwang, Jiang-Shiou

    2017-04-01

    Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.

  1. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    PubMed Central

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  2. Composition and Diversity Analysis of the Gut Bacterial Community of the Oriental Armyworm, Mythimna separata, Determined by Culture-Independent and Culture-Dependent Techniques

    PubMed Central

    He, Cai; Nan, Xiaoning; Zhang, Zhengqing; Li, Menglou

    2013-01-01

    The intestinal bacteria community structure and diversity of the Oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae), was studied by analysis of a 16S rDNA clone library, denaturing gradient gel electrophoresis,and culture-dependent techniques. The 16S rDNA clone library revealed a bacterial community diversity comprising Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes and Proteobacteria, among which Escherichia coli (Migula) (Enterobacteriales: Enterobacteriaceae) was the dominant bacteria. The intestinal bacteria isolated by PCR-denaturing gradient gel electrophoresis were classified to Firmicutes, Proteobacteria, and Gracilicutes, and E. coli was again the dominant bacteria. The culture-dependent technique showed that the intestinal bacteria belonged to Firmicutes and Actinobacteria, and Staphylococcus was the dominant bacteria. The intestinal bacteria of M. separata were widely distributed among the groups Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes, Proteobacteria, and Gracilicutes. 16S rDNA clone library, denaturing gradient gel electrophoresis, and culture-dependent techniques should be integrated to obtain precise results in terms of the microbial community and its diversity. PMID:24773514

  3. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing.

    PubMed

    Hong, Youwei; Liao, Dan; Hu, Anyi; Wang, Han; Chen, Jinsheng; Khan, Sardar; Su, Jianqiang; Li, Hu

    2015-10-01

    Root-associated microbial communities are very important for biogeochemical cycles in wetland ecosystems and help to elaborate the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alterniflora has widely invaded Kandelia obovata-dominated habitats, offering an opportunity to study the influence of root-associated bacteria. The community structures of endophytic and rhizosphere bacteria associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of β-diversity showed that all samples could be significantly clustered into 3 major groups, according to the bacteria communities of origin. Four phyla, namely Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were enriched in the rhizoplane of both salt marsh plants, while they shared higher abundances of Cyanobacteria and Proteobacteria among endophytic bacteria. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. One of the interesting findings was that endophytes were more sensitive in response to plant invasion than were rhizosphere bacteria. With linear discriminate analysis, we found some predominant rhizoplane and endophytic bacteria, including Methylococcales, Pseudoalteromonadacea, Clostridium, Vibrio, and Desulfovibrio, which have the potential to affect the carbon, nitrogen, and sulfur cycles. Thus, the results provide clues to the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions.

  4. Bacterial Communities: Interactions to Scale

    PubMed Central

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  5. Bacterial Community Profiling of H2/CO2 or Formate-Utilizing Acetogens Enriched from Diverse Ecosystems

    NASA Astrophysics Data System (ADS)

    Han, R.; Zhang, L.; Fu, B.; Liu, H.

    2014-12-01

    Synthetic gases are usually generated from either cellulosic agricultural waste combustion or industrial release and could be subsequently transformed into acetate, ethanol, and/or butyrate by homoacetogenic bacteria, which commonly possess reductive acetyl-CoA synthesis pathway. Homoacetogen-based syngas fermentation technology provides an alternative solution to link greenhouse gas emission control and cellulosic solid waste treatment with biofuels production. The objective of our current project is to hunt for homoacetogens with capabilities of highly efficiently converting syngases to chemical solvents. In this study, we evaluated homoacetogens population dynamics during enrichments and pinpointed dominant homoacetogens representing diverse ecosystems enriched by different substrates. We enriched homoacetogens from four different samples including waste activate sludge, freshwater sediment, anaerobic methanogenic sludge, and cow manure using H2/CO2 (4:1) or formate as substrate for homoacetogen enrichment. Along with the formyltetrahydrofolate synthetase (FTHFS) gene (fhs gene)-specific real time qPCR assay and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis, 16S rRNA based 454 high-throughput pyrosequencing was applied to reveal the population dynamic and community structure during enrichment from different origins. Enrichment of homoacetogenic populations coincided with accumulations of short chain fatty acids such as acetate and butyrate. 454 high-throughput pyrosequencing revealed Firmicutes and Spirochaetes populations became dominant while the overall microbial diversity decreased after enrichment. The most abundant sequences among the four origins belonged to the following phyla: Firmicutes, Spirochaetes, Proteobacteria, and Bacteroidetes, accounting for 62.1%-99.1% of the total reads. The major putative homoacetogenic species enriched on H2/CO2 or formate belonged to Clostridium spp., Acetobacterium spp., Acetoanaerobium spp

  6. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Ki, Jang-Seu; Qian, Pei-Yuan

    2008-02-01

    Bacteria, as the most abundant sediment organism, play a major role in the fate of pollutants. Therefore, many pollutant-related bacteria have been studied in harbor sediments, yet the entire bacterial profiles have not been reported. The bacterial diversity and community structures from sediments in Victoria Harbor (Hong Kong), including two polluted (VH and VHW) and two adjacent (open oceanic, TLC; estuary discharge affected, PC) sites, were characterized by analyses of four 16S rDNA clone libraries. Upon comparisons of RFLP patterns from 254 clones in the libraries, 178 unique phylotypes were retrieved. LIBSHUFF and Rarefaction analyses indicated that the sediment bacterial communities at the four sites showed high 16S rDNA richness and were significantly different from each other. Phylogenetic analysis of full-length 16S rDNA revealed 19 bacterial phyla in Victoria Harbor sediments. γ- and δ-proteobacteria, holophaga/acidobacteria, and planctomycetales were recorded in all the libraries. In addition, γ- and δ-proteobacteria were dominant at all sites (33.33-11.67%). Besides these two phyla, ɛ-proteobacteria, firmicutes, aminobacterium, holophaga/acidobacteria and bacteroidetes were judged to be major components of a given library since they constituted 10% or more of the total OTUs of the given library. The cyanobacteria, verrucomicrobia, β-proteobacteria, aminobacterium, chlorofiexi, and candidate division OP1, OP8 were detected in minor proportions in various libraries. A portion of the clones were only distantly related to sequences in the GenBank, suggesting bacteria in Victoria Harbor sediments were unique and diversified.

  7. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida.

    PubMed

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-06-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled - the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program.

  8. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  9. Different Flour Microbial Communities Drive to Sourdoughs Characterized by Diverse Bacterial Strains and Free Amino Acid Profiles

    PubMed Central

    Celano, Giuseppe; De Angelis, Maria; Minervini, Fabio; Gobbetti, Marco

    2016-01-01

    This work aimed to investigate whether different microbial assemblies in flour may influence the microbiological and biochemical characteristics of traditional sourdough. To reach this purpose, members of lactic acid bacteria, enterobacteria, and yeasts were isolated from durum wheat flour. Secondly, the isolated microorganisms (Pediococcus pentosaceus, Saccharomyces cerevisiae, Pantoea agglomerans, and Escherichia hermannii) were inoculated in doughs prepared with irradiated flour (gamma rays at 10 kGy), so that eight different microbial assemblies were obtained. Two non-inoculated controls were prepared, one of which (C-IF) using irradiated flour and the other (C) using non-irradiated flour. As shown by plate counts, irradiation of flour caused total inactivation of yeasts and a decrease of all the other microbial populations. However, acidification occurred also in the dough C-IF, due to metabolic activity of P. pentosaceus that had survived irradiation. After six fermentations, P. pentosaceus was the dominant lactic acid bacterium species in all the sourdoughs produced with irradiated flour (IF). Yet, IF-based sourdoughs broadly differed from each other in terms of strains of P. pentosaceus, probably due to the different microorganisms initially inoculated. Quantitative and qualitative differences of free amino acids concentration were found among the sourdoughs, possibly because of different microbial communities. In addition, as shown by culture-independent analysis (16S metagenetics), irradiation of flour lowered and modified microbial diversity of sourdough ecosystem. PMID:27877165

  10. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome

    PubMed Central

    Thompson, Amanda L.; Monteagudo-Mera, Andrea; Cadenas, Maria B.; Lampl, Michelle L.; Azcarate-Peril, M. A.

    2015-01-01

    The development of the infant intestinal microbiome in response to dietary and other exposures may shape long-term metabolic and immune function. We examined differences in the community structure and function of the intestinal microbiome between four feeding groups, exclusively breastfed infants before introduction of solid foods (EBF), non-exclusively breastfed infants before introduction of solid foods (non-EBF), EBF infants after introduction of solid foods (EBF+S), and non-EBF infants after introduction of solid foods (non-EBF+S), and tested whether out-of-home daycare attendance was associated with differences in relative abundance of gut bacteria. Bacterial 16S rRNA amplicon sequencing was performed on 49 stool samples collected longitudinally from a cohort of 9 infants (5 male, 4 female). PICRUSt metabolic inference analysis was used to identify metabolic impacts of feeding practices on the infant gut microbiome. Sequencing data identified significant differences across groups defined by feeding and daycare attendance. Non-EBF and daycare-attending infants had higher diversity and species richness than EBF and non-daycare attending infants. The gut microbiome of EBF infants showed increased proportions of Bifidobacterium and lower abundance of Bacteroidetes and Clostridiales than non-EBF infants. PICRUSt analysis indicated that introduction of solid foods had a marginal impact on the microbiome of EBF infants (24 enzymes overrepresented in EBF+S infants). In contrast, over 200 bacterial gene categories were overrepresented in non-EBF+S compared to non-EBF infants including several bacterial methyl-accepting chemotaxis proteins (MCP) involved in signal transduction. The identified differences between EBF and non-EBF infants suggest that breast milk may provide the gut microbiome with a greater plasticity (despite having a lower phylogenetic diversity) that eases the transition into solid foods. PMID:25705611

  11. Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    PubMed Central

    Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex

  12. Changes in dissolved organic matter composition and metabolic diversity of bacterial community during the degradation of organic matter in swine effluent.

    PubMed

    Li, Lei; Liu, Ming; Li, Yanli; Ma, Xiaoyan; Tang, Xiaoxue; Li, Zhongpei

    2016-07-01

    In this study, an incubation experiment was conducted with effluent collected from the concentrated swine-feeding operations (CSFOs) located in Yujiang County of Jiangxi Province, China. The purpose of this study was to elucidate the relationships between the composition of dissolved organic matter (DOM) and the community-level physiological profiles (CLPPs) of microorganisms in swine effluent. For all samples examined, the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were decreased by an average of 58.2 ± 30.4 and 49.2 ± 38.7 %, whereas total dissolved phosphorus (TDP) exhibited an average final accumulation of 141.5 ± 43.0 %. In the original samples, ammonium nitrogen accounted for 88.9 ± 4.9 % of the TDN, which was reduced to a final average of 83.9 ± 9.6 %. Two protein-like (tyrosine and tryptophan) and two humic-like (fulvic acids and humic acids) components were identified using a three-dimensional excitation-emission matrix. With the increase in incubation time, the relative concentrations of two protein-like components in effluent were reduced by an average of 83.2 ± 24.7 %. BIOLOG(™) ECO plates were used to determine the metabolic fingerprint of the bacterial community, and a shift in the utilization patterns of substrates was observed over the study period. Additionally, the Shannon-Wiener index of CLPP was ultimately reduced by an average of 43.5 ± 8.5 %, corresponding to the metabolic diversity of the bacterial community. The redundancy analysis identified significant relationships between environmental parameters and the CLPP of microorganisms. To a certain degree, the DOM compositions were linked with the substrate utilization patterns of the bacterial community during the degradation of organic matter in swine effluent.

  13. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  14. Forensic identification using skin bacterial communities.

    PubMed

    Fierer, Noah; Lauber, Christian L; Zhou, Nick; McDonald, Daniel; Costello, Elizabeth K; Knight, Rob

    2010-04-06

    Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic identification, matching the bacteria on the object to the skin-associated bacteria of the individual who touched the object. Here we describe a series of studies de-monstrating the validity of this approach. We show that skin-associated bacteria can be readily recovered from surfaces (including single computer keys and computer mice) and that the structure of these communities can be used to differentiate objects handled by different individuals, even if those objects have been left untouched for up to 2 weeks at room temperature. Furthermore, we demonstrate that we can use a high-throughput pyrosequencing-based ap-proach to quantitatively compare the bacterial communities on objects and skin to match the object to the individual with a high degree of certainty. Although additional work is needed to further establish the utility of this approach, this series of studies introduces a forensics approach that could eventually be used to independently evaluate results obtained using more traditional forensic practices.

  15. Drivers of bacterial β-diversity depend on spatial scale

    PubMed Central

    Martiny, Jennifer B. H.; Eisen, Jonathan A.; Penn, Kevin; Allison, Steven D.; Horner-Devine, M. Claire

    2011-01-01

    The factors driving β-diversity (variation in community composition) yield insights into the maintenance of biodiversity on the planet. Here we tested whether the mechanisms that underlie bacterial β-diversity vary over centimeters to continental spatial scales by comparing the composition of ammonia-oxidizing bacteria communities in salt marsh sediments. As observed in studies of macroorganisms, the drivers of salt marsh bacterial β-diversity depend on spatial scale. In contrast to macroorganism studies, however, we found no evidence of evolutionary diversification of ammonia-oxidizing bacteria taxa at the continental scale, despite an overall relationship between geographic distance and community similarity. Our data are consistent with the idea that dispersal limitation at local scales can contribute to β-diversity, even though the 16S rRNA genes of the relatively common taxa are globally distributed. These results highlight the importance of considering multiple spatial scales for understanding microbial biogeography. PMID:21518859

  16. Promiscuity in Mice is Associated with Increased Vaginal Bacterial Diversity

    PubMed Central

    MacManes, Matthew D.

    2011-01-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures—as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used 2 sympatric species of Peromyscus rodents—P. californicus and P. maniculatus that differ with regard to numbers of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity. PMID:21964973

  17. Promiscuity in mice is associated with increased vaginal bacterial diversity

    NASA Astrophysics Data System (ADS)

    Macmanes, Matthew David

    2011-11-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents— Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.

  18. Interactive Effects of Viral and Bacterial Production on Marine Bacterial Diversity

    PubMed Central

    Motegi, Chiaki; Nagata, Toshi; Miki, Takeshi; Weinbauer, Markus G.; Legendre, Louis; Rassoulzadegan, Fereidoun

    2013-01-01

    A general model of species diversity predicts that the latter is maximized when productivity and disturbance are balanced. Based on this model, we hypothesized that the response of bacterial diversity to the ratio of viral to bacterial production (VP/BP) would be dome-shaped. In order to test this hypothesis, we obtained data on changes in bacterial communities (determined by terminal restriction fragment length polymorphism of 16S rRNA gene) along a wide VP/BP gradient (more than two orders of magnitude), using seawater incubations from NW Mediterranean surface waters, i.e., control and treatments with additions of phosphate, viruses, or both. In December, one dominant Operational Taxonomic Unit accounted for the major fraction of total amplified DNA in the phosphate addition treatment (75±20%, ± S.D.), but its contribution was low in the phosphate and virus addition treatment (23±19%), indicating that viruses prevented the prevalence of taxa that were competitively superior in phosphate-replete conditions. In contrast, in February, the single taxon predominance in the community was held in the phosphate addition treatment even with addition of viruses. We observed statistically robust dome-shaped response patterns of bacterial diversity to VP/BP, with significantly high bacterial diversity at intermediate VP/BP. This was consistent with our model-based hypothesis, indicating that bacterial production and viral-induced mortality interactively affect bacterial diversity in seawater. PMID:24244268

  19. Pyrosequencing analysis of bacterial diversity in dental unit waterlines.

    PubMed

    Costa, Damien; Mercier, Anne; Gravouil, Kevin; Lesobre, Jérôme; Delafont, Vincent; Bousseau, Anne; Verdon, Julien; Imbert, Christine

    2015-09-15

    Some infections cases due to exposure to output water from dental unit waterlines (DUWL) have been reported in the literature. However, this type of healthcare-associated risk has remained unclear and up until now the overall bacterial composition of DUWL has been poorly documented. In this study, 454 high-throughput pyrosequencing was used to investigate the bacterial community in seven dental offices (N = 7) and to identify potential bacterial pathogenic sequences. Dental unit waters (DUW) were collected from the tap water supplying units (Incoming Water; IW) to the output exposure point of the turbine handpiece (Output water; OW) following a stagnation period (OWS), and immediately after the last patient of the sampling day (OWA). A high bacterial diversity was revealed in DUW with 394 operational taxonomic units detected at the genus level. In addition to the inter-unit variability observed, results showed increased total bacterial cell concentration and shifts in bacterial community composition and abundance at the genus level, mainly within the Gamma- and Alpha-Proteobacteria class, as water circulated in the dental unit (DU). Results showed that 96.7%, 96.8% and 97.4% of the total sequences from IW, OWS and OWA respectively were common to the 3 defined water groups, thereby highlighting a common core microbiome. Results also suggested that stagnation and DU maintenance practices were critical to composition of the bacterial community. The presence of potentially pathogenic genera was detected, including Pseudomonas and Legionella spp. Emerging and opportunistic pathogenic genera such as Mycobacterium, Propionibacterium and Stenotrophomonas were likewise recovered in DUW. For the first time, an exhaustive evaluation of the bacterial communities present in DUW was performed taking into account the circulation of water within the DU. This study highlights an ignored diversity of the DUWL bacterial community. Our findings also contribute to a better

  20. High genetic diversity and variability of bacterial communities associated with the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda)

    NASA Astrophysics Data System (ADS)

    Mengoni, A.; Focardi, A.; Bacci, G.; Ugolini, A.

    2013-10-01

    The microbiome present in individuals of Talitrus saltator belonging to seven populations distributed along the Tuscan coast (Italy) was assessed by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of amplified 16S rRNA genes. Talitrus saltator is one of the key species of the damp band of European sandy beaches and despite of the large interest on animal-associated bacteria, only a few and preliminary data were present. Results showed a high diversity of the microbiome, composed mainly by members of Alphaproteobacteria, Gammaproteobacteria, Bacillales and Clostridiales classes. The microbiome fingerprints were highly variable among individuals, even from the same populations, the inter-individual differences accounting for 88.7% of total fingerprint variance. However, statistically significant population-specific microbiome signatures were detected, and accounted for the remaining 11.3% of total fingerprint variance. These population-specific differences were mainly attributed to sequences from members of known host-associated bacteria such as Gammaproteobacteria and Betaproteobacteria, Cytophagia and Spirochaetia. This study showed the high complexity of the microbiome associated with an amphipod species and on the inter-individual microbiome variation with potential importance for understanding amphipod trophic and ecologic processes.

  1. Fermented liquid feed enhances bacterial diversity in piglet intestine.

    PubMed

    Tajima, Kiyoshi; Ohmori, Hideyuki; Aminov, Rustam I; Kobashi, Yuri; Kawashima, Tomoyuki

    2010-02-01

    Because of limitations imposed on the antibiotic use in animal industry, there is a need for alternatives to maintain the efficiency of production. One of them may be the use of fermented liquid feed (FLF) but how it affects gut ecology is poorly understood. We investigated the effect of three diets, standard dry feed (control), dry feed supplemented with antibiotics, and fermented liquid feed (FLF, fermented with Lactobacillus plantarum), on gut bacterial diversity in piglets. The structure of the ileal and caecal communities was estimated by sequencing the SSU rRNA gene libraries. Antibiotic-supplemented feed slightly increased bacterial diversity in the ileum but reduced it in the caecum while in FLF-fed animals bacterial diversity was elevated. The majority of bacterial sequences in the ileum of all three groups belonged to lactobacilli (92-98%). In the caecum the lactobacilli were still dominant in control and antibiotic-fed animals (59% and 64% of total bacterial sequences, respectively) but in FLF-fed animals they fell to 31% with the concomitant increase in the Firmicutes diversity represented by the Dorea, Coprococcus, Roseburia and Faecalibacterium genera. Thus FLF affects the gut ecology in a different way than antibiotics and contributes to the enhanced bacterial diversity in the gastrointestinal tract.

  2. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  3. Recently Deglaciated High-Altitude Soils of the Himalaya: Diverse Environments, Heterogenous Bacterial Communities and Long-Range Dust Inputs from the Upper Troposphere

    PubMed Central

    Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.

    2013-01-01

    Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and

  4. Do diet and taxonomy influence insect gut bacterial communities?

    PubMed

    Colman, D R; Toolson, E C; Takacs-Vesbach, C D

    2012-10-01

    Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host-microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose-derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations.

  5. Comprehensive Meta-analysis of Ontology Annotated 16S rRNA Profiles Identifies Beta Diversity Clusters of Environmental Bacterial Communities

    PubMed Central

    Henschel, Andreas; Anwar, Muhammad Zohaib; Manohar, Vimitha

    2015-01-01

    Comprehensive mapping of environmental microbiomes in terms of their compositional features remains a great challenge in understanding the microbial biosphere of the Earth. It bears promise to identify the driving forces behind the observed community patterns and whether community assembly happens deterministically. Advances in Next Generation Sequencing allow large community profiling studies, exceeding sequencing data output of conventional methods in scale by orders of magnitude. However, appropriate collection systems are still in a nascent state. We here present a database of 20,427 diverse environmental 16S rRNA profiles from 2,426 independent studies, which forms the foundation of our meta-analysis. We conducted a sample size adaptive all-against-all beta diversity comparison while also respecting phylogenetic relationships of Operational Taxonomic Units(OTUs). After conventional hierarchical clustering we systematically test for enrichment of Environmental Ontology terms and their abstractions in all possible clusters. This post-hoc algorithm provides a novel formalism that quantifies to what extend compositional and semantic similarity of microbial community samples coincide. We automatically visualize significantly enriched subclusters on a comprehensive dendrogram of microbial communities. As a result we obtain the hitherto most differentiated and comprehensive view on global patterns of microbial community diversity. We observe strong clusterability of microbial communities in ecosystems such as human/mammal-associated, geothermal, fresh water, plant-associated, soils and rhizosphere microbiomes, whereas hypersaline and anthropogenic samples are less homogeneous. Moreover, saline samples appear less cohesive in terms of compositional properties than previously reported. PMID:26458130

  6. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis

  7. Fecal bacterial diversity in a wild gorilla.

    PubMed

    Frey, Julie C; Rothman, Jessica M; Pell, Alice N; Nizeyi, John Bosco; Cranfield, Michael R; Angert, Esther R

    2006-05-01

    We describe the bacterial diversity in fecal samples of a wild gorilla by use of a 16S rRNA gene clone library and terminal-restriction fragment length polymorphism (T-RFLP). Clones were classified as Firmicutes, Verrucomicrobia, Actinobacteria, Lentisphaerae, Bacteroidetes, Spirochetes, and Planctomycetes. Our data suggest that fecal populations did not change temporally, as determined by T-RFLP.

  8. Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality.

    PubMed

    Roger, Fabian; Bertilsson, Stefan; Langenheder, Silke; Osman, Omneya Ahmed; Gamfeldt, Lars

    2016-10-01

    Bacteria are essential for many ecosystem services but our understanding of factors controlling their functioning is incomplete. While biodiversity has been identified as an important driver of ecosystem processes in macrobiotic communities, we know much less about bacterial communities. Due to the high diversity of bacterial communities, high functional redundancy is commonly proposed as explanation for a lack of clear effects of diversity. The generality of this claim has, however, been questioned. We present the results of an outdoor dilution-to-extinction experiment with four lake bacterial communities. The consequences of changes in bacterial diversity in terms of effective number of species, phylogenetic diversity, and functional diversity were studied for (1) bacterial abundance, (2) temporal stability of abundance, (3) nitrogen concentration, and (4) multifunctionality. We observed a richness gradient ranging from 15 to 280 operational taxonomic units (OTUs). Individual relationships between diversity and functioning ranged from negative to positive depending on lake, diversity dimension, and aspect of functioning. Only between phylogenetic diversity and abundance did we find a statistically consistent positive relationship across lakes. A literature review of 24 peer-reviewed studies that used dilution-to-extinction to manipulate bacterial diversity corroborated our findings: about 25% found positive relationships. Combined, these results suggest that bacteria-driven community functioning is relatively resistant to reductions in diversity.

  9. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities.

    PubMed

    Shulse, Christine N; Maillot, Brianne; Smith, Craig R; Church, Matthew J

    2017-04-01

    Concentrated seabed deposits of polymetallic nodules, which are rich in economically valuable metals (e.g., copper, nickel, cobalt, manganese), occur over vast areas of the abyssal Pacific Ocean floor. Little is currently known about the diversity of microorganisms inhabiting abyssal habitats. In this study, sediment, nodule, and water column samples were collected from the Clarion-Clipperton Zone of the Eastern North Pacific. The diversities of prokaryote and microeukaryote communities associated with these habitats were examined. Microbial community composition and diversity varied with habitat type, water column depth, and sediment horizon. Thaumarchaeota were relatively enriched in the sediments and nodules compared to the water column, whereas Gammaproteobacteria were the most abundant sequences associated with nodules. Among the Eukaryota, rRNA genes belonging to the Cryptomonadales were relatively most abundant among organisms associated with nodules, whereas rRNA gene sequences deriving from members of the Alveolata were relatively enriched in sediments and the water column. Nine operational taxonomic unit (OTU)s were identified that occur in all nodules in this dataset, as well as all nodules found in a study 3000-9000 km from our site. Microbial communities in the sediments had the highest diversity, followed by nodules, and then by the water column with <1/3 the number of OTUs as in the sediments.

  10. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil.

    PubMed

    Sipilä, Timo P; Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola; Haahtela, Kielo; Yrjälä, Kim

    2008-09-01

    Genes encoding key enzymes of catabolic pathways can be targeted by DNA fingerprinting to explore genetic degradation potential in pristine and polluted soils. We performed a greenhouse microcosm experiment to elucidate structural and functional bacterial diversity in polyaromatic hydrocarbon (PAH)-polluted soil and to test the suitability of birch (Betula pendula) for remediation. Degradation of PAHs was analysed by high-performance liquid chromatography, DNA isolated from soil amplified and fingerprinted by restriction fragment length polymorphism (RFLP) and terminal restriction fragment length polymorphism (T-RFLP). Bacterial 16S rRNA T-RFLP fingerprinting revealed a high structural bacterial diversity in soil where PAH amendment altered the general community structure as well as the rhizosphere community. Birch augmented extradiol dioxygenase diversity in rhizosphere showing a rhizosphere effect, and further pyrene was more efficiently degraded in planted pots. Degraders of aromatic compounds upon PAH amendment were shown by the changed extradiol ring-cleavage community structure in soil. The RFLP analysis grouped extradiol dioxygenase marker genes into 17 distinct operational taxonomic units displaying novel phylogenetic clusters of ring-cleavage dioxygenases representing putative catabolic pathways, and the peptide sequences contained conserved amino-acid signatures of extradiol dioxygenases. A branch of major environmental TS cluster was identified as being related to Parvibaculum lavantivorans ring-cleavage dioxygenase. The described structural and functional diversity demonstrated a complex interplay of bacteria in PAH pollution. The findings improve our understanding of rhizoremediation and unveil the extent of uncharacterized enzymes and may benefit bioremediation research by facilitating the development of molecular tools to detect and monitor populations involved in degradative processes.

  11. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands.

    PubMed

    Deng, Huanhuan; Ge, Liyun; Xu, Tan; Zhang, Minghua; Wang, Xuedong; Zhang, Yalei; Peng, Hong

    2011-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands. To improve the performance of constructed wetlands, it is very important to know the metabolic properties and functional diversity of the microbial communities. The purpose of this study is to analyze the metabolic properties and functional diversity of the microbial community in a horizontal subsurface-flow constructed wetland (CW) in a laboratory study through the sole-carbon-source utilization profiles using Biolog-ECO microplates. The technique has advantages over traditional cell culture techniques, such as molecular-level techniques-RNA amplification, which are time-consuming, expensive, and only applicable to the small number of species that may be cultured. This CW was designed to treat rural eutrophic water in China, using the plant L. This study showed that the metabolic activities of upper front substrate microorganisms (UF) were greater than those of the lower back substrate microorganisms (LB) in the CW. Integrated areas under average well color development (AWCD) curves of substrate microorganisms in the UF were 131.9, 4.8, and 99.3% higher than in the lower front part (LF), the upper back part (UB), and the LB part of the CW, respectively. Principal components analysis showed significant differences in both community structure and metabolic utilization of carbon sources between substrate microorganisms from different sampling sites. Carbon source utilization of polymers, carbohydrates, carboxylic acids, and amino acids was higher in UF than in LF, but that of amines and phenolic compounds was very similar in UF and LF. The richness, evenness, and diversity of upper substrate microbial communities were significantly higher than those of lower substrate. The LF substrate microbial communities had lower evenness than the other sampling plots, and the lowest richness of substrate microbial community was found in the LB part of the CW.

  12. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  13. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  14. Diversity of bacterial community and detection of nirS- and nirK-encoding denitrifying bacteria in sandy intertidal sediments along Laizhou Bay of Bohai Sea, China.

    PubMed

    Wang, Liping; Zheng, Binghui; Nan, Bingxu; Hu, Peilong

    2014-11-15

    The microbial community and the nirS- and nirK-encoding denitrifiers in the intertidal sediments along Laizhou Bay in China were studied using pyrosequencing and real-time quantitative PCR (qPCR), respectively. There were three primary intertidal zones: Laizhou (La), Weifang Harbor (We), and Dongying (Do). Significant differences in composition and abundances at the different taxonomic levels were observed among the three bacterial communities. The qPCR results indicated that the nirS gene abundance varied from 8.67 × 10(5) to 5.68 × 10(6)copies/gwet weight (ww), whereas the nirK gene abundance varied from 1.26 × 10(5) to 1.89 × 10(6)copies/gww. The canonical correlation analysis (CCA) indicated that the sand percentage was the most important factor in shaping the bacterial community followed by silt percentage, NO2(-), TOC, DO, pH, and clay percentage, whereas the clay percentage, pH, NO3(-), DO, NO2(-), TOC, silt percentage, and sand percentage were the most important factors associated with regulating the abundance of nirS- and nirK-encoding denitrifiers.

  15. Bacterial diversity along a 2600 km river continuum.

    PubMed

    Savio, Domenico; Sinclair, Lucas; Ijaz, Umer Z; Parajka, Juraj; Reischer, Georg H; Stadler, Philipp; Blaschke, Alfred P; Blöschl, Günter; Mach, Robert L; Kirschner, Alexander K T; Farnleitner, Andreas H; Eiler, Alexander

    2015-12-01

    The bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the meta-community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.

  16. Bacterial diversity along a 2600 km river continuum

    PubMed Central

    Savio, Domenico; Sinclair, Lucas; Ijaz, Umer Z.; Parajka, Juraj; Reischer, Georg H.; Stadler, Philipp; Blaschke, Alfred P.; Blöschl, Günter; Mach, Robert L.; Kirschner, Alexander K. T.; Farnleitner, Andreas H.

    2015-01-01

    Summary The bacterioplankton diversity in large rivers has thus far been under‐sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA‐gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the P olynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater‐affiliated bacteria. Based on views of the meta‐community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity. PMID:25922985

  17. Composition of epiphytic bacterial communities differs on petals and leaves.

    PubMed

    Junker, R R; Loewel, C; Gross, R; Dötterl, S; Keller, A; Blüthgen, N

    2011-11-01

    The epiphytic bacterial communities colonising roots and leaves have been described for many plant species. In contrast, microbiologists have rarely considered flowers of naturally growing plants. We identified bacteria isolated from the surface of petals and leaves of two plant species, Saponaria officinalis (Caryophyllaceae) and Lotus corniculatus (Fabaceae). The bacterial diversity was much lower on petals than on leaves of the same plants. Moreover, the bacterial communities differed strongly in composition: while Pseudomonadaceae and Microbacteriaceae were the most abundant families on leaves, Enterobacteriaceae dominated the floral communities. We hypothesise that antibacterial floral volatiles trigger the low diversity on petals, which is supported by agar diffusion assays using substances emitted by flowers and leaves of S. officinalis. These results suggest that bacteria should be included in the interpretation of floral traits, and possible effects of bacteria on pollination are proposed and discussed.

  18. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments.

    PubMed

    Barbato, Marta; Mapelli, Francesca; Magagnini, Mirko; Chouaia, Bessem; Armeni, Monica; Marasco, Ramona; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2016-03-15

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  19. Bacterial communities established in bauxite residues with different restoration histories.

    PubMed

    Schmalenberger, Achim; O'Sullivan, Orla; Gahan, Jacinta; Cotter, Paul D; Courtney, Ronan

    2013-07-02

    Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene fragments revealed a significant separation of the untreated site and the amended sites in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed significantly lower alpha diversities in the unamended in comparison to the amended sites and hierarchical clustering separated the unamended site from the amended sites. The taxonomic analysis revealed that the restoration resulted in the accumulation of bacterial populations typical for soils including Acidobacteriaceae, Nitrosomonadaceae, and Caulobacteraceae. In contrast, the unamended site was dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadaceae, Acetobacteraceae, and Chitinophagaceae, repeatedly associated with alkaline salt lakes and sediments. While bacterial communities developed in the initially sterile bauxite residue, only the restoration treatments created diverse soil-like bacterial communities alongside diverse vegetation on the surface.

  20. Mucosa-Associated Bacterial Diversity in Necrotizing Enterocolitis

    PubMed Central

    Brower-Sinning, Rachel; Zhong, Diana; Good, Misty; Firek, Brian; Baker, Robyn; Sodhi, Chhinder P.; Hackam, David J.; Morowitz, Michael J.

    2014-01-01

    Background Previous studies of infant fecal samples have failed to clarify the role of gut bacteria in the pathogenesis of NEC. We sought to characterize bacterial communities within intestinal tissue resected from infants with and without NEC. Methods 26 intestinal samples were resected from 19 infants, including 16 NEC samples and 10 non-NEC samples. Bacterial 16S rRNA gene sequences were amplified and sequenced. Analysis allowed for taxonomic identification, and quantitative PCR was used to quantify the bacterial load within samples. Results NEC samples generally contained an increased total burden of bacteria. NEC and non-NEC sample sets were both marked by high inter-individual variability and an abundance of opportunistic pathogens. There was no statistically significant distinction between the composition of NEC and non-NEC microbial communities. K-means clustering enabled us to identify several stable clusters, including clusters of NEC and midgut volvulus samples enriched with Clostridium and Bacteroides. Another cluster containing both NEC and non-NEC samples was marked by an abundance of Enterobacteriaceae and decreased diversity among NEC samples. Conclusions The results indicate that NEC is a disease without a uniform pattern of microbial colonization, but that NEC is associated with an abundance of strict anaerobes and a decrease in community diversity. PMID:25203729

  1. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.

    PubMed

    Chae, Kyu-Jung; Choi, Mi-Jin; Lee, Jin-Wook; Kim, Kyoung-Yeol; Kim, In S

    2009-07-01

    Four microbial fuel cells (MFCs) were inoculated with anaerobic sludge and fed four different substrates for over one year. The Coulombic efficiency (CE) and power output varied with different substrates, while the bacterial viability was similar. Acetate fed-MFC showed the highest CE (72.3%), followed by butyrate (43.0%), propionate (36.0%) and glucose (15.0%). Glucose resulted in the lowest CE because of its fermentable nature implying its consumption by diverse non-electricity-generating bacteria. 16S rDNA sequencing results indicated phylogenetic diversity in the communities of all anode biofilms, and there was no single dominant bacterial species. A relative abundance of beta-Proteobacteria but an absence of gamma-Proteobacteria was observed in all MFCs except for propionate-fed system in which Firmicutes dominating. The glucose-fed-MFC showed the widest community diversity, resulting in the rapid generation of current without lag time when different substrates were suddenly fed. Geobacter-like species with the most representative Geobactersulfurreducens PCA(T) were integral members of the bacterial community in all MFCs except for the propionate-fed system.

  2. Highly Variable Bacterial Communities Associated with the Octocoral Antillogorgia elisabethae

    PubMed Central

    Robertson, Veronica; Haltli, Brad; McCauley, Erin P.; Overy, David P.; Kerr, Russell G.

    2016-01-01

    Antillogorgia elisabethae (synonymous with Pseudopterogorgia elisabethae) is a common branching octocoral in Caribbean reef ecosystems. A. elisabethae is a rich source of anti-inflammatory diterpenes, thus this octocoral has been the subject of numerous natural product investigations, yet relatively little is known regarding the composition, diversity and the geographic and temporal stability of its microbiome. To characterize the composition, diversity and stability of bacterial communities of Bahamian A. elisabethae populations, 17 A. elisabethae samples originating from five sites within The Bahamas were characterized by 16S rDNA pyrosequencing. A. elisabethae bacterial communities were less diverse and distinct from those of surrounding seawater samples. Analyses of α- and β-diversity revealed that A. elisabethae bacterial communities were highly variable between A. elisabethae samples from The Bahamas. This contrasts results obtained from a previous study of three specimens collected from Providencia Island, Colombia, which found A. elisabethae bacterial communities to be highly structured. Taxa belonging to the Rhodobacteriales, Rhizobiales, Flavobacteriales and Oceanospiralles were identified as potential members of the A. elisabethae core microbiome. PMID:27681917

  3. Diversity and function of bacterial microbiota in the mosquito holobiont

    PubMed Central

    2013-01-01

    Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted. PMID:23688194

  4. A monotonically declining elevational pattern of bacterial diversity in freshwater lake sediments.

    PubMed

    Zeng, Jin; Zhao, Dayong; Li, Huabing; Huang, Rui; Wang, Jianjun; Wu, Qinglong L

    2016-12-01

    The distribution patterns of bacterial communities along elevational gradients remain unexplored in aquatic ecosystems. This study investigated the diversity and community composition of bacteria in the sediments of lakes along a mountainside elevational gradient from 525 to 4 490 m in western China. The bacterial alpha diversity (taxonomic richness and phylogenetic diversity) at different sediment depths decreased monotonically with the increasing elevation, and the beta diversity (dissimilarity between lakes) increased significantly with the increasing elevation distance. Both elevation and chemical variables including pH and carbon/nitrogen ratio were identified as major factors affecting the bacterial diversity. Especially, bacterial alpha/beta diversity was significantly related to both chemical and elevational gradients in the surface sediments, whereas elevation overwhelmed chemical factors in influencing the bacterial alpha/beta diversity in the subsurface sediments. Phylogenetic structure analysis demonstrated that environmental filtering was the most important process affecting the bacterial community assembly along the elevational gradient, and the strength of environmental filtering increased towards high elevations. In summary, we observed for the first time a monotonically decreasing elevational pattern in bacterial diversity of freshwater lake sediments, which is mainly driven by elevation associated environmental factors.

  5. Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology

    PubMed Central

    2016-01-01

    The modern age of metagenomics has delivered unprecedented volumes of data describing the genetic and metabolic diversity of bacterial communities, but it has failed to provide information about coincident cellular morphologies. Much like metabolic and biosynthetic capabilities, morphology comprises a critical component of bacterial fitness, molded by natural selection into the many elaborate shapes observed across the bacterial domain. In this essay, we discuss the diversity of bacterial morphology and its implications for understanding both the mechanistic and the adaptive basis of morphogenesis. We consider how best to leverage genomic data and recent experimental developments in order to advance our understanding of bacterial shape and its functional importance. PMID:27695035

  6. Microbial diversity in polluted harbor sediments II: Sulfate-reducing bacterial community assessment using terminal restriction fragment length polymorphism and clone library of dsrAB gene

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Song, Lin-sheng; Ki, Jang-Seu; Lau, Chun-Kwan; Li, Xiang-Dong; Qian, Pei-Yuan

    2008-02-01

    Sulfate-reducing bacteria (SRB) are important regulators of a variety of processes in coastal marine sediments regarding organic matter turnover, biodegradation of pollutants, and sulfur and carbon cycles. Yet their community compositions have not been investigated in polluted harbor sediments. This study described the diversity and spatial variation of SRB communities in surface sediments in Victoria Harbor, Hong Kong. The spatial variation of SRB communities was described by terminal restriction fragment length polymorphism (T-RFLP). The results showed that the most diversified terminal restriction fragments were found at polluted sites. In addition, cluster analysis indicated that although the SRB communities were different at the two polluted sites, they were still more similar to each other than to the two more distant reference sites. Based on a dsrAB clone library constructed at a polluted site, diversified SRB were found, represented by 30 Operational Taxonomic Units (OTUs). Upon comparisons among the SRB sequences detected from this study and those in the GenBank, five clades of SRB were found. Three clades belonged to the known families Desulfobacteraceae, Desulfobulbaceae, and Syntrophobacteriaceae. The majority of sequenced clones, which distantly related to sequences in the GenBank, constituted the remaining two unclassified groups, suggesting unique SRB members related to the polluted harbor environment. Statistical analyses indicated that estimated SRB richness correlated with environment factors such as sulfur content, acid volatile sulfate, and redox potential.

  7. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  8. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  9. Bacterial diversity in the oral cavity of 10 healthy individuals.

    PubMed

    Bik, Elisabeth M; Long, Clara Davis; Armitage, Gary C; Loomer, Peter; Emerson, Joanne; Mongodin, Emmanuel F; Nelson, Karen E; Gill, Steven R; Fraser-Liggett, Claire M; Relman, David A

    2010-08-01

    The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An 11th pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S ribosomal RNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11,368 high-quality, nonchimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacterial phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences with near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis showed significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health.

  10. Bacterial community development in experimental gingivitis.

    PubMed

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  11. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

    PubMed Central

    Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

    2008-01-01

    The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

  12. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  13. Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea.

    PubMed

    Bengtsson, Mia M; Sjøtun, Kjersti; Lanzén, Anders; Ovreås, Lise

    2012-12-01

    Kelp forests worldwide are known as hotspots for macroscopic biodiversity and primary production, yet very little is known about the biodiversity and roles of microorganisms in these ecosystems. Secondary production by heterotrophic bacteria associated to kelp is important in the food web as a link between kelp primary production and kelp forest consumers. The aim of this study was to investigate the relationship between bacterial diversity and two important processes in this ecosystem; bacterial secondary production and primary succession on kelp surfaces. To address this, kelp, Laminaria hyperborea, from southwestern Norway was sampled at different geographical locations and during an annual cycle. Pyrosequencing (454-sequencing) of amplicons of the 16S rRNA gene of bacteria was used to study bacterial diversity. Incorporation of tritiated thymidine was used as a measure of bacterial production. Our data show that bacterial diversity (richness and evenness) increases with the age of the kelp surface, which corresponds to the primary succession of its bacterial communities. Higher evenness of bacterial operational taxonomical units (OTUs) is linked to higher bacterial production. Owing to the dominance of a few abundant OTUs, kelp surface biofilm communities may be characterized as low-diversity habitats. This is the first detailed study of kelp-associated bacterial communities using high-throughput sequencing and it extends current knowledge on microbial community assembly and dynamics on living surfaces.

  14. Metamorphosis of a butterfly-associated bacterial community.

    PubMed

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  15. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  16. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  17. Home Life: Factors Structuring the Bacterial Diversity Found within and between Homes

    PubMed Central

    2013-01-01

    Most of our time is spent indoors where we are exposed to a wide array of different microorganisms living on surfaces and in the air of our homes. Despite their ubiquity and abundance, we have a limited understanding of the microbial diversity found within homes and how the composition and diversity of microbial communities change across different locations within the home. Here we examined the diversity of bacterial communities found in nine distinct locations within each of forty homes in the Raleigh-Durham area of North Carolina, USA, using high-throughput sequencing of the bacterial 16S rRNA gene. We found that each of the sampled locations harbored bacterial communities that were distinct from one another with surfaces that are regularly cleaned typically harboring lower levels of diversity than surfaces that are cleaned infrequently. These location-specific differences in bacterial communities could be directly related to usage patterns and differences in the likely sources of bacteria dispersed onto these locations. Finally, we examined whether the variability across homes in bacterial diversity could be attributed to outdoor environmental factors, indoor habitat structure, or the occupants of the home. We found that the presence of dogs had a significant effect on bacterial community composition in multiple locations within homes as the homes occupied by dogs harbored more diverse communities and higher relative abundances of dog-associated bacterial taxa. Furthermore, we found a significant correlation between the types of bacteria deposited on surfaces outside the home and those found inside the home, highlighting that microbes from outside the home can have a direct effect on the microbial communities living on surfaces within our homes. Together this work provides the first comprehensive analysis of the microbial communities found in the home and the factors that shape the structure of these communities both within and between homes. PMID:23717552

  18. Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland.

    PubMed

    Kelly, Laura C; Cockell, Charles S; Herrera-Belaroussi, Aude; Piceno, Yvette; Andersen, Gary; DeSantis, Todd; Brodie, Eoin; Thorsteinsson, Thorsteinn; Marteinsson, Viggó; Poly, Franck; LeRoux, Xavier

    2011-07-01

    Bacteria inhabiting crystalline rocks from two terrestrial Icelandic volcanic lava flows of similar age and from the same geographical region, but differing in porosity and mineralogy, were characterised. Microarray (PhyloChip) and clone library analysis of 16S rRNA genes revealed the presence of a diverse assemblage of bacteria in each lava flow. Both methods suggested a more diverse community at the Dómadalshraun site (rhyolitic/andesitic lava flow) than that present at the Hnausahraun site (basaltic lava flow). Proteobacteria dominated the clone library at the Dómadalshraun site, while Acidobacteria was the most abundant phylum in the Hnausahraun site. Although analysis of similarities of denaturing gradient gel electrophoresis profiles suggested a strong correlation of community structure with mineralogy, rock porosity may also play an important role in shaping the bacterial community in crystalline volcanic rocks. Clone sequences were most similar to uncultured microorganisms, mainly from soil environments. Of these, Antarctic soils and temperate rhizosphere soils were prominent, as were clones retrieved from Hawaiian and Andean volcanic soils. The novel diversity of these Icelandic microbial communities was supported by the finding that up to 46% of clones displayed <85% sequence identities to sequences currently deposited in the RDP database.

  19. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  20. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  1. Bacterial Diversity Patterns Differ in Soils Developing in Sub-tropical and Cool-Temperate Ecosystems.

    PubMed

    Shanmugam, Shankar G; Magbanua, Zenaida V; Williams, Mark A; Jangid, Kamlesh; Whitman, William B; Peterson, Daniel G; Kingery, William L

    2017-04-01

    Microbial diversity patterns have been surveyed in many different soils and ecosystems, but we are unaware of studies comparing similar soils developing from similar parent materials in contrasting climates. In 2008, developmental chronosequences with ages ranging from 105 to 500,000 years across Georgia (GA) and Michigan (MI) were studied to investigate how bacterial community composition and diversity change as a result of local environmental gradients that develop during pedogenesis. Geographic factors were studied between and within locations spanning two scales: (1) regionally between 0.1 and 50 and (2) ∼1700 km apart. The diversity was surveyed using high-throughput pyrosequencing, and variance partitioning was used to describe the effects of spatial, environmental, and spatio-environmental factors on bacterial community composition. At the local scale, variation in bacterial communities was most closely related to environmental factors (rM = 0.59, p = 0.0001). There were differences in bacterial communities between the two locations, indicating spatial biogeography. Estimates of bacterial diversity were much greater in MI (numbers of OTU, ACE, and Chao1) and remained 2-3× greater in MI than GA after removing the effect of soil properties. The large differences in diversity between geographically separated bacterial communities in different climates need further investigation. It is not known if the rare members of the community, which contributed to greater bacterial diversity in GA relative to MI, play an important role in ecosystem function but has been hypothesized to play a role in ecosystem resiliency, resistance, and stability. Further research on the link between bacterial diversity and spatial variability related to climate needs further investigation.

  2. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  3. Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons

    PubMed Central

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong

    2015-01-01

    ABSTRACT It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. PMID:26242625

  4. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves.

    PubMed

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation.

  5. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    PubMed Central

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  6. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  7. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture.

    PubMed

    Mohamed, Naglaa M; Enticknap, Julie J; Lohr, Jayme E; McIntosh, Scott M; Hill, Russell T

    2008-02-01

    The changes in bacterial communities associated with the marine sponge Mycale laxissima on transfer to aquaculture were studied using culture-based and molecular techniques. M. laxissima was maintained alive in flowthrough and closed recirculating aquaculture systems for 2 years and 1 year, respectively. The bacterial communities associated with wild and aquacultured sponges, as well as the surrounding water, were assessed using 16S rRNA gene clone library analysis and denaturing gradient gel electrophoresis (DGGE). Bacterial richness and diversity were measured using DOTUR computer software, and clone libraries were compared using S-LIBSHUFF. DGGE analysis revealed that the diversity of the bacterial community of M. laxissima increased when sponges were maintained in aquaculture and that bacterial communities associated with wild and aquacultured M. laxissima were markedly different than those of the corresponding surrounding water. Clone libraries of bacterial 16S rRNA from sponges confirmed that the bacterial communities changed during aquaculture. These communities were significantly different than those of seawater and aquarium water. The diversity of bacterial communities associated with M. laxissima increased significantly in aquaculture. Our work shows that it is important to monitor changes in bacterial communities when examining the feasibility of growing sponges in aquaculture systems because these communities may change. This could have implications for the health of sponges or for the production of bioactive compounds by sponges in cases where these compounds are produced by symbiotic bacteria rather than by the sponges themselves.

  8. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGES

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; ...

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  9. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    SciTech Connect

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong; Firestone, Mary

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal

  10. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  11. Bacterial communities associated with the lichen symbiosis.

    PubMed

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.

  12. A cross-taxon analysis of insect-associated bacterial diversity.

    PubMed

    Jones, Ryan Thomas; Sanchez, Leticia Gonzales; Fierer, Noah

    2013-01-01

    Although it is well known that plants and animals harbor microbial symbionts that can influence host traits, the factors regulating the structure of these microbial communities often remain largely undetermined. This is particularly true for insect-associated microbial communities, as few cross-taxon comparisons have been conducted to date. To address this knowledge gap and determine how host phylogeny and ecology affect insect-associated microbial communities, we collected 137 insect specimens representing 39 species, 28 families, and 8 orders, and characterized the bacterial communities associated with each specimen via 16S rRNA gene sequencing. Bacterial taxa within the phylum Proteobacteria were dominant in nearly all insects sampled. On average, the insect-associated bacterial communities were not very diverse, with individuals typically harboring fewer than 8 bacterial phylotypes. Bacterial communities also tended to be dominated by a single phylotype; on average, the most abundant phylotype represented 54.7% of community membership. Bacterial communities were significantly more similar among closely related insects than among less-related insects, a pattern driven by within-species community similarity but detected at every level of insect taxonomy tested. Diet was a poor predictor of bacterial community composition. Individual insect species harbored remarkably unique communities: the distribution of 69.0% of bacterial phylotypes was limited to unique insect species, whereas only 5.7% of phylotypes were detected in more than five insect species. Together these results suggest that host characteristics strongly regulate the colonization and assembly of bacterial communities across insect lineages, patterns that are driven either by co-evolution between insects and their symbionts or by closely related insects sharing conserved traits that directly select for similar bacterial communities.

  13. Bacterial community analysis of drinking water biofilms in southern Sweden.

    PubMed

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.

  14. Defining the functional traits that drive bacterial decomposer community productivity.

    PubMed

    Evans, Rachael; Alessi, Anna M; Bird, Susannah; McQueen-Mason, Simon J; Bruce, Neil C; Brockhurst, Michael A

    2017-03-21

    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity-ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade β-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates.The ISME Journal advance online publication, 21 March 2017; doi:10.1038/ismej.2017.22.

  15. Pyrosequencing analysis of the bacterial community in drinking water wells.

    PubMed

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  16. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.

    PubMed

    Cho, Kelly; Zholi, Alma; Frabutt, Dylan; Flood, Matthew; Floyd, Dalton; Tiquia, Sonia M

    2012-01-01

    To understand the link between bacterial diversity and geochemistry in uranium-contaminated groundwater, microbial communities were assessed based on clone libraries of 16S rDNA genes from the USDOE Oak Ridge Field Research Centre (FRC) site. Four groundwater wells (GW835, GW836, FW113-47 and FW215-49) with a wide range of pH (3 to 7), nitrate (44 to 23,400 mg L(-1)), uranium (0.73 to 60.36 mg L(-1)) and other metal contamination, were investigated. Results indicated that bacterial diversity correlated with the geochemistry of the groundwater. Microbial diversity decreased in relation to the contamination levels of the wells. The highly contaminated well (FW113-47) had lower gene diversity than less contaminated wells (FW215-49, GW835 and GW836). The high concentrations of contaminants present in well FW113-47 stimulated the growth of organisms capable of reducing uranium (Shewanella and Pseudomonas), nitrate (Pseudomonas, Rhodanobacter and Xanthomonas) and iron (Stenotrophomonas), and which were unique to this well. The clone libraries consisted primarily of sequences closely related to the phylum Proteobacteria, with FW-113-47 almost exclusively containing this phylum. Metal-reducing bacteria were present in all four wells, which may suggest that there is potential for successful bioremediation of the groundwater at the Oak Ridge FRC. The microbial community information gained from this study and previous studies at the site can be used to develop predictive multivariate and geographical information system (GIS) based models for microbial populations at the Oak Ridge FRC. This will allow for a better understanding of what organisms are likely to occur where and when, based on geochemistry, and how these organisms relate to bioremediation processes at the site.

  17. The diversity of coral associated bacteria and the environmental factors affect their community variation.

    PubMed

    Zhang, Yan-Ying; Ling, Juan; Yang, Qing-Song; Wang, You-Shao; Sun, Cui-Ci; Sun, Hong-Yan; Feng, Jing-Bin; Jiang, Yu-Feng; Zhang, Yuan-Zhou; Wu, Mei-Lin; Dong, Jun-De

    2015-10-01

    Coral associated bacterial community potentially has functions relating to coral health, nutrition and disease. Culture-free, 16S rRNA based techniques were used to compare the bacterial community of coral tissue, mucus and seawater around coral, and to investigate the relationship between the coral-associated bacterial communities and environmental variables. The diversity of coral associated bacterial communities was very high, and their composition different from seawater. Coral tissue and mucus had a coral associated bacterial community with higher abundances of Gammaproteobacteria. However, bacterial community in seawater had a higher abundance of Cyanobacteria. Different populations were also found in mucus and tissue from the same coral fragment, and the abundant bacterial species associated with coral tissue was very different from those found in coral mucus. The microbial diversity and OTUs of coral tissue were much higher than those of coral mucus. Bacterial communities of corals from more human activities site have higher diversity and evenness; and the structure of bacterial communities were significantly different from the corals collected from other sites. The composition of bacterial communities associated with same coral species varied with season's changes, geographic differences, and coastal pollution. Unique bacterial groups found in the coral samples from more human activities location were significant positively correlated to chemical oxygen demand. These coral specific bacteria lead to coral disease or adjust to form new function structure for the adaption of different surrounding needs further research.

  18. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants.

  19. Distinct bacterial communities dominate tropical and temperate zone leaf litter.

    PubMed

    Kim, Mincheol; Kim, Woo-Sung; Tripathi, Binu M; Adams, Jonathan

    2014-05-01

    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial

  20. Mechanisms Controlling the Plant Diversity Effect on Soil Microbial Community Composition and Soil Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Mellado Vázquez, P. G.; Lange, M.; Griffiths, R.; Malik, A.; Ravenek, J.; Strecker, T.; Eisenhauer, N.; Gleixner, G.

    2015-12-01

    Soil microorganisms are the main drivers of soil organic matter cycling. Organic matter input by living plants is the major energy and matter source for soil microorganisms, higher organic matter inputs are found in highly diverse plant communities. It is therefore relevant to understand how plant diversity alters the soil microbial community and soil organic matter. In a general sense, microbial biomass and microbial diversity increase with increasing plant diversity, however the mechanisms driving these interactions are not fully explored. Working with soils from a long-term biodiversity experiment (The Jena Experiment), we investigated how changes in the soil microbial dynamics related to plant diversity were explained by biotic and abiotic factors. Microbial biomass quantification and differentiation of bacterial and fungal groups was done by phospholipid fatty acid (PLFA) analysis; terminal-restriction fragment length polymorphism was used to determine the bacterial diversity. Gram negative (G-) bacteria predominated in high plant diversity; Gram positive (G+) bacteria were more abundant in low plant diversity and saprotrophic fungi were independent from plant diversity. The separation between G- and G+ bacteria in relation to plant diversity was governed by a difference in carbon-input related factors (e.g. root biomass and soil moisture) between plant diversity levels. Moreover, the bacterial diversity increased with plant diversity and the evenness of the PLFA markers decreased. Our results showed that higher plant diversity favors carbon-input related factors and this in turn favors the development of microbial communities specialized in utilizing new carbon inputs (i.e. G- bacteria), which are contributing to the export of new C from plants to soils.

  1. Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity.

    PubMed

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A; Kerr, Russell G

    2014-02-13

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H' = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation.

  2. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    PubMed Central

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A.; Kerr, Russell G.

    2014-01-01

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation. PMID:24531187

  3. Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions.

    PubMed

    Gonzalez-Martinez, Alejandro; Osorio, Francisco; Morillo, Jose A; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Abbas, Ben A; van Loosdrecht, Mark C M

    2015-01-01

    Bacterial community structure of full-scale anammox bioreactor is still mainly unknown. It has never been analyzed whether different anammox bioreactor configurations might result in the development of different bacterial community structures among these systems. In this work, the bacterial community structure of six full-scale autotrophic nitrogen removal bioreactors located in The Netherlands and China operating under three different technologies and with different influent wastewater characteristics was studied by the means of pyrotag sequencing evaluation of the bacterial assemblage yielded a great diversity in all systems. The most represented phyla were the Bacteroidetes and the Proteobacteria, followed by the Planctomycetes. 14 OTUs were shared by all bioreactors, but none of them belonged to the Brocadiales order. Statistical analysis at OTU level showed that differences in the microbial communities were high, and that the main driver of the bacterial assemblage composition was different for the distinct phyla identified in the six bioreactors, depending on bioreactor technology or influent wastewater characteristics.

  4. Bacterial Diversity and Composition in Oylat Cave (Turkey) with Combined Sanger/Pyrosequencing Approach.

    PubMed

    Gulecal-Pektas, Yasemin

    2016-01-01

    The microbiology of caves is an important topic for better understanding subsurface biosphere diversity. The diversity and taxonomic composition of bacterial communities associated with cave walls of the Oylat Cave was studied first time by molecular cloning based on Sanger/pyrosequencing approach. Results showed an average of 1,822 operational taxonomic units per sample. Clones analyzed from Oylat Cave were found to belong to 10 common phyla within the domain Bacteria. Proteobacteria dominated the phyla, followed by Actinobacteria, Acidobacteria and Nitrospirae. Shannon diversity index was between to 3.76 and 5.35. The robust analysis conducted for this study demonstrated high bacterial diversity on cave rock wall surfaces.

  5. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  6. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    PubMed Central

    Reisberg, Eva E.; Hildebrandt, Ulrich; Riederer, Markus; Hentschel, Ute

    2013-01-01

    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria. PMID:24223831

  7. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  8. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2016-12-08

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  9. Unravelling the bacterial diversity in the atmosphere.

    PubMed

    Gandolfi, Isabella; Bertolini, Valentina; Ambrosini, Roberto; Bestetti, Giuseppina; Franzetti, Andrea

    2013-06-01

    The study of airborne biological particles ('bioaerosols') has gained interest in recent years, due to an increasing amount of evidence suggesting that this fraction of airborne particulate matter may play a critical role in the negative effects of aerosols on biological systems. Pioneer investigations demonstrated that bacteria do exist in the atmosphere and can be metabolically active, although studies have not proved whether they actually form ecological communities or are merely assemblages of organisms passively transported from different sources. For a long time, cultivation-based methods have been the gold standard to describe and quantify airborne microorganisms. However, the use of culture-independent techniques and, more recently, of the next-generation sequencing-based methods, has improved the ability of the scientific community to investigate bioaerosols in detail and to address further research questions, such as the temporal and spatial variability of airborne bacterial assemblages, the environmental factors affecting this variability and the potential sources of atmospheric bacteria. This paper provides a systematic review of the state-of-the-art methodologies used in the study of airborne bacteria to achieve each of the aforementioned research objectives, as well as the main results obtained so far. Critical evaluations of the current state of the knowledge and suggestions for further researches are provided.

  10. Bacterial and archaeal communities in bleached mottles of tropical podzols.

    PubMed

    Silva, K J; Vidal-Torrado, P; Lambais, M R

    2015-02-01

    Podzols frequently show bleached mottles depleted in organic matter, most readily visible in the Bh horizons. Even though the process of bleached mottles development is not understood, it has been suggested that the selective degradation of organic matter by soil microorganisms has a major contribution. In this study, we examined the bacterial and archaeal communities along three Brazilian coastal podzol profiles, as well as in bleached mottles and their immediate vicinity, using 16S rRNA gene profiling. Our results showed that the bacterial and archaeal community structures in the studied podzols varied with depth and that the bacterial communities in the bleached mottles were significantly different from that in their immediate vicinity. In contrast, the archaeal communities in bleached mottles were significantly different from their vicinity only in the Bertioga (BT) profile, based on sequencing of amplicons of the 16S rRNA gene. Redundancy analyses showed that the bacterial community structures in the bleached mottles of BT were negatively associated mostly with the levels of organic carbon, exchangeable-aluminum (Al), exchangeable potassium, and Al-saturation, whereas in the surrounding soil, the opposite was observed. In the Ilha Comprida (IC) profiles, no such relationships were observed, suggesting distinct drivers of the bacterial community structures in bleached mottles of different podzols. In the bleached mottles of the BT profile, operational taxonomic units (OTUs) phylogenetically related to Pseudomonas were the most abundant Bacteria, whereas in the IC profiles, OTUs related to Acidobacteria were predominant. Thermoprotei (Crenarchaeota) were the most abundant Archaea in the bleached mottles and in their immediate vicinity. Based on the diverse metabolic capabilities of Pseudomonas and Acidobacteria, our data suggest that these groups of bacteria may be involved in the development of bleached mottles in the podzols studied and that the selection of

  11. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-09-24

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities.

  12. Leadership, Diversity and the Campus Community.

    ERIC Educational Resources Information Center

    Chahin, Jaime

    To develop and implement diversity initiatives in the university community requires the effective implementation of initiatives in many areas. Diversity leaders should be cognizant of institutional values and attitudes and the vision espoused by the university's president. The diversity leader should inform the university community about…

  13. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial diversity of agricultural soils is well documented, but information on leafy green producing soils is limited. Our goal was to assess bacterial composition and diversity in leafy green producing soils using pyrosequencing, and to identify factors affecting bacterial community structures. C...

  14. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  15. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  16. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  17. Bacterial community associated with Pfiesteria-like dinoflagellate cultures.

    PubMed

    Alavi, M; Miller, T; Erlandson, K; Schneider, R; Belas, R

    2001-06-01

    Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four 'Pfiesteria-like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the alpha-3 or SAR83 cluster.

  18. Soil bacterial communities associated with natural and commercial Cyclopia spp.

    PubMed

    Postma, Anneke; Slabbert, Etienne; Postma, Ferdinand; Jacobs, Karin

    2016-03-01

    The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome.

  19. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  20. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest

    PubMed Central

    Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan

    2014-01-01

    Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061

  1. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee.

    PubMed

    McFrederick, Quinn S; Rehan, Sandra M

    2016-05-01

    Many insects obtain gut microbes from their diet, but how a mother's foraging patterns influence the microbes found in her offspring's food remains an open question. To address this gap, we studied a bee that forages for pollen from multiple species of plants and may therefore acquire diverse bacteria from different plants. We tested the hypothesis that pollen diversity correlates with bacterial diversity by simultaneously characterizing these two communities in bee brood provisions for the first time. We used deep sequencing of the plant RBCL gene and the bacterial 16S rRNA gene to characterize pollen and bacterial diversity. We then tested for associations between pollen and bacterial species richness and community composition, as well as co-occurrence of specific bacteria and pollen types. We found that both pollen and bacterial communities were extremely diverse, indicating that mother bees visit a wide variety of flowers for pollen and nectar and subsequently bring a diversity of microbes back into their nests. Pollen and bacterial species richness and community composition, however, were not correlated. Certain pollen types significantly co-occurred with the most proportionally abundant bacteria, indicating that the plants these pollen types came from may serve as reservoirs for these bacteria. Even so, the overall diversity of these communities appears to mask these associations at a broader scale. Further study of these pollen and bacteria associations will be important for understanding the complicated relationship between bacteria and wild bees.

  2. ANALYSIS OF BACTERIAL COMMUNITIES IN SEAGRASS BED SEDIMENTS BY DOUBLE-GRADIENT DENATURING GRADIENT GEL ELECTROPHORESIS OF PCR-AMPLIFIED 16SRRNA GENES

    EPA Science Inventory

    Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...

  3. Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere.

    PubMed

    Chauhan, Puneet Singh; Chaudhry, Vasvi; Mishra, Sandhya; Nautiyal, Chandra Shekhar

    2011-02-01

    Structure of maize (Zea mays L.) rhizosphere bacteria was evaluated to explore the feasibility of identifying novel rhizosphere bacteria using culture-independent method based on direct amplification and analysis of 16S rRNA gene (rRNA) sequences and especially to obtain a better understanding of bacterial community structure and diversity from maize. A total of 274 sequences were analyzed and assigned 48.00% Proteobacteria, 10.30% Actinobacteria, 9.90% Bacteroidetes, 6.60% Verrucomicrobia, 4.80% Acidobacteria, 1.80% Firmicutes, 1.50% Chloroflexi, 1.50% TM7, 1.10% Deinococcus-Thermus, 0.70% Planctomycetes, 0.70% Gemmatimonadetes and 0.40% Cyanobacteria. Economically important phyla Actinobacteria was second most dominant group after Proteobacteria, in our clone library. It would be interesting to hypothesize that root exudates from maize rhizosphere favors growth of Actinobacteria like microbes to eliminate pathogenic bacteria and decompose plant matter, for enhanced plant and soil health. An additional 12.8% of clone library (35 operational taxonomical units (OTUs) from 43 clones) with less than 94% similarity to any GenBank sequence could not be assigned to any known phylum and may represent unidentified bacterial lineages and suggests that a large amount of the rhizobacterial diversity remains to be characterized by culturing.

  4. Hill number as a bacterial diversity measure framework with high-throughput sequence data

    PubMed Central

    Kang, Sanghoon; Rodrigues, Jorge L. M.; Ng, Justin P.; Gentry, Terry J.

    2016-01-01

    Bacterial diversity is an important parameter for measuring bacterial contributions to the global ecosystem. However, even the task of describing bacterial diversity is challenging due to biological and technological difficulties. One of the challenges in bacterial diversity estimation is the appropriate measure of rare taxa, but the uncertainty of the size of rare biosphere is yet to be experimentally determined. One approach is using the generalized diversity, Hill number (Na), to control the variability associated with rare taxa by differentially weighing them. Here, we investigated Hill number as a framework for microbial diversity measure using a taxa-accmulation curve (TAC) with soil bacterial community data from two distinct studies by 454 pyrosequencing. The reliable biodiversity estimation was obtained when an increase in Hill number arose as the coverage became stable in TACs for a ≥ 1. In silico analysis also indicated that a certain level of sampling depth was desirable for reliable biodiversity estimation. Thus, in order to attain bacterial diversity from second generation sequencing, Hill number can be a good diversity framework with given sequencing depth, that is, until technology is further advanced and able to overcome the under- and random-sampling issues of the current sequencing approaches. PMID:27901123

  5. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  6. Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China

    PubMed Central

    Wang, Xiaohui; Hu, Man; Xia, Yu; Ding, Kun

    2012-01-01

    To determine if there is a core microbial community in the microbial populations of different wastewater treatment plants (WWTPs) and to investigate the effects of wastewater characteristics, operational parameters, and geographic locations on microbial communities, activated sludge samples were collected from 14 wastewater treatment systems located in 4 cities in China. High-throughput pyrosequencing was used to examine the 16S rRNA genes of bacteria in the wastewater treatment systems. Our results showed that there were 60 genera of bacterial populations commonly shared by all 14 samples, including Ferruginibacter, Prosthecobacter, Zoogloea, Subdivision 3 genera incertae sedis, Gp4, Gp6, etc., indicating that there is a core microbial community in the microbial populations of WWTPs at different geographic locations. The canonical correspondence analysis (CCA) results showed that the bacterial community variance correlated most strongly with water temperature, conductivity, pH, and dissolved oxygen (DO) content. Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 25.7% of the variance of bacterial communities independently, followed by operational parameters (23.9%) and geographic location (14.7%). Results of this study provided insights into the bacterial community structure and diversity in geographically distributed WWTPs and discerned the relationships between bacterial community and environmental variables in WWTPs. PMID:22843531

  7. Ecological succession of bacterial communities during conventionalization of germ-free mice.

    PubMed

    Gillilland, Merritt G; Erb-Downward, John R; Bassis, Christine M; Shen, Michael C; Toews, Galen B; Young, Vincent B; Huffnagle, Gary B

    2012-04-01

    Little is known about the dynamics of early ecological succession during experimental conventionalization of the gastrointestinal (GI) tract; thus, we measured changes in bacterial communities over time, at two different mucosal sites (cecum and jejunum), with germfree C57BL/6 mice as the recipients of cecal contents (input community) from a C57BL/6 donor mouse. Bacterial communities were monitored using pyrosequencing of 16S rRNA gene amplicon libraries from the cecum and jejunum and analyzed by a variety of ecological metrics. Bacterial communities, at day 1 postconventionalization, in the cecum and jejunum had lower diversity and were distinct from the input community (dominated by either Escherichia or Bacteroides). However, by days 7 and 21, the recipient communities had become significantly diverse and the cecal communities resembled those of the donor and donor littermates, confirming that transfer of cecal contents results in reassembly of the community in the cecum 7 to 21 days later. However, bacterial communities in the recipient jejunum displayed significant structural heterogeneity compared to each other or the donor inoculum or the donor littermates, suggesting that the bacterial community of the jejunum is more dynamic during the first 21 days of conventionalization. This report demonstrates that (i) mature input communities do not simply reassemble at mucosal sites during conventionalization (they first transform into a "pioneering" community and over time take on the appearance, in membership and structure, of the original input community) and (ii) the specific mucosal environment plays a role in shaping the community.

  8. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects.

    PubMed

    Paulino, Gustavo Vasconcelos Bastos; Broetto, Leonardo; Pylro, Victor Satler; Landell, Melissa Fontes

    2017-01-30

    Corals harbor abundant and diverse prokaryotic communities that may be strongly influenced by human activities, which in turn compromise the normal functioning of coral species and predispose them to opportunistic infections. In this study, we investigated the effect of sewage dumping on the bacterial communities associated with the soft coral Palythoa caribaeorum at two sites in the Brazilian coast. We observed a dominance of bacterial species classified as human pathogens at sites exposed to untreated sewage discharge. The microbial diversity of undisturbed sites was more homogeneous and diverse and showed greater abundance. In addition, bacterial communities differed substantially between the exposed and undisturbed areas. The microbial community associated with the samples collected from the exposed sites revealed the anthropogenic effect caused by organic matter from untreated sewage dumping, with an abundance of pathogenic bacterial species.

  9. Diverse Perspectives on Inclusive School Communities

    ERIC Educational Resources Information Center

    Tsokova, Diana; Tarr, Jane

    2012-01-01

    What is an inclusive school community? How do stakeholders perceive their roles and responsibilities towards inclusive school communities? How can school communities become more inclusive through engagement with individual perspectives? "Diverse Perspectives on Inclusive School Communities" captures and presents the voices of a wide…

  10. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities.

  11. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    PubMed

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.

  12. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing.

    PubMed

    Liu, Qing; Zhou, Yu-Guang; Xin, Yu-Hua

    2015-12-01

    The bacterial diversity, community structure and preliminary microbial biogeographic pattern were assessed on glacier surfaces, including three northern glaciers (cold glaciers) and three southern glaciers (temperate glaciers) in China that experienced distinct climatic conditions. Pyrosequencing revealed that bacterial diversities were surprisingly high. With respect to operational taxonomic units (OTUs), Proteobacteria was the most dominant phylum on the glacier surfaces, especially Betaproteobacteria. Significant differences of the bacterial communities were observed between northern and southern glacier surfaces. The rare and abundant populations showed similar clustering patterns to the whole community. The analysis of the culturable bacterial compositions from four glaciers supported this conclusion. Redundancy analysis (RDA) and partial Mantel tests indicated that annual mean temperature, as well as geographical distance, was significantly correlated with the bacterial communities on the glaciers. It was inferred that bacterial communities on northern and southern glacier surfaces experienced different climate, water and nutrient patterns, and consequently evolved different lifestyles.

  13. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats.

    PubMed

    Yergeau, Etienne; Newsham, Kevin K; Pearce, David A; Kowalchuk, George A

    2007-11-01

    Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27 degrees of latitude. Vegetated and fell-field plots were sampled at the Falkland (51 degrees S), South Georgia (54 degrees S), Signy (60 degrees S) and Anchorage Islands (67 degrees S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71 degrees S), Mars Oasis (72 degrees S), Coal Nunatak (72 degrees S) and the Ellsworth Mountains (78 degrees S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity.

  14. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes.

    PubMed

    Takeuchi, Yayoi; Chaffron, Samuel; Salcher, Michaela M; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2015-07-01

    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.

  15. High functional diversity stimulates diversification in experimental microbial communities.

    PubMed

    Jousset, Alexandre; Eisenhauer, Nico; Merker, Monika; Mouquet, Nicolas; Scheu, Stefan

    2016-06-01

    There is a growing awareness that biodiversity not only drives ecosystem services but also affects evolutionary dynamics. However, different theories predict contrasting outcomes on when do evolutionary processes occur within a context of competition. We tested whether functional diversity can explain diversification patterns. We tracked the survival and diversification of a focal bacterial species (Pseudomonas fluorescens) growing in bacterial communities of variable diversity and composition. We found that high functional diversity reduced the fitness of the focal species and, at the same time, fostered its diversification. This pattern was linked to resource competition: High diversity increased competition on a portion of the resources while leaving most underexploited. The evolved phenotypes of the focal species showed a better use of underexploited resources, albeit at a cost of lower overall growth rates. As a result, diversification alleviated the impact of competition on the fitness of the focal species. We conclude that biodiversity can stimulate evolutionary diversification, provided that sufficient alternative niches are available.

  16. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations.

    PubMed

    Halliday, Elizabeth; McLellan, Sandra L; Amaral-Zettler, Linda A; Sogin, Mitchell L; Gast, Rebecca J

    2014-01-01

    Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.

  17. Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations

    PubMed Central

    Halliday, Elizabeth; McLellan, Sandra L.; Amaral-Zettler, Linda A.; Sogin, Mitchell L.; Gast, Rebecca J.

    2014-01-01

    Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality. PMID:24599478

  18. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities

    PubMed Central

    Germerodt, Sebastian; Bohl, Katrin; Pande, Samay; Schröter, Anja; Kaleta, Christoph; Kost, Christian

    2016-01-01

    Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters’ periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations. PMID:27314840

  19. Sediment Enzyme Activities and Microbial Community Diversity in an Oligotrophic Drinking Water Reservoir, Eastern China

    PubMed Central

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265

  20. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata.

    PubMed

    Shore-Maggio, Amanda; Runyon, Christina M; Ushijima, Blake; Aeby, Greta S; Callahan, Sean M

    2015-10-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods.

  1. Novel microarray design strategy to study complex bacterial communities.

    PubMed

    Huyghe, Antoine; Francois, Patrice; Charbonnier, Yvan; Tangomo-Bento, Manuela; Bonetti, Eve-Julie; Paster, Bruce J; Bolivar, Ignacio; Baratti-Mayer, Denise; Pittet, Didier; Schrenzel, Jacques

    2008-03-01

    Assessing bacterial flora composition appears to be of increasing importance to fields as diverse as physiology, development, medicine, epidemiology, the environment, and the food industry. We report here the development and validation of an original microarray strategy that allows analysis of the phylogenic composition of complex bacterial mixtures. The microarray contains approximately 9,500 feature elements targeting 16S rRNA gene-specific regions. Probe design was performed by selecting oligonucleotide sequences specific to each node of the seven levels of the bacterial phylogenetic tree (domain, phylum, class, order, family, genus, and species). This approach, based on sequence information, allows analysis of the bacterial contents of complex bacterial mixtures to detect both known and unknown microorganisms. The presence of unknown organisms can be suspected and mapped on the phylogenetic tree, indicating where to refine analysis. Initial proof-of-concept experiments were performed on oral bacterial communities. Our results show that this hierarchical approach can reveal minor changes (

  2. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.

    PubMed

    Nunan, Naoise; Daniell, Timothy J; Singh, Brajesh K; Papert, Artemis; McNicol, James W; Prosser, James I

    2005-11-01

    Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.

  3. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  4. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  5. Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    PubMed Central

    Schöttner, Sandra; Wild, Christian; Hoffmann, Friederike; Boetius, Antje; Ramette, Alban

    2012-01-01

    Background Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity. Conclusions/Significance This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental

  6. 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas.

    PubMed

    Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali

    2014-03-28

    Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.

  7. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  8. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis.

    PubMed

    Rebollar, Eria A; Hughey, Myra C; Medina, Daniel; Harris, Reid N; Ibáñez, Roberto; Belden, Lisa K

    2016-07-01

    Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites.

  9. Assessment of Bacterial Community Assembly Patterns and Processes in Pig Manure Slurry

    PubMed Central

    Kumari, Priyanka; Choi, Hong L.; Sudiarto, Sartika I. A.

    2015-01-01

    The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria. PMID:26422375

  10. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  11. Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities.

    PubMed

    Berry, Michelle A; Davis, Timothy W; Cory, Rose M; Duhaime, Melissa B; Johengen, Thomas H; Kling, George W; Marino, John A; Den Uyl, Paul A; Gossiaux, Duane; Dick, Gregory J; Denef, Vincent J

    2017-03-01

    Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.

  12. Comparison of Bacterial Diversity in Azorean and Hawai’ian Lava Cave Microbial Mats

    PubMed Central

    MARSHALL HATHAWAY, JENNIFER J.; GARCIA, MATTHEW G.; BALASCH, MONICA MOYA; SPILDE, MICHAEL N.; STONE, FRED D.; DAPKEVICIUS, MARIA DE LURDES N. E.; AMORIM, ISABEL R.; GABRIEL, ROSALINA; BORGES, PAULO A. V.; NORTHUP, DIANA E.

    2015-01-01

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai’i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai’ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai’ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography. PMID:26924866

  13. Comparison of Bacterial Diversity in Azorean and Hawai'ian Lava Cave Microbial Mats.

    PubMed

    Marshall Hathaway, Jennifer J; Garcia, Matthew G; Balasch, Monica Moya; Spilde, Michael N; Stone, Fred D; Dapkevicius, Maria DE Lurdes N E; Amorim, Isabel R; Gabriel, Rosalina; Borges, Paulo A V; Northup, Diana E

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai'i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai'ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai'ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography.

  14. Root exudate diversity regulates soil fungal community composition and diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant diversity is thought to influence diversity of the soil microbial community, though how this occurs is poorly understood. We report that under greenhouse conditions, two model plant species (Arabidopsis thaliana and Medicago truncatula) show an inability to support the native soil fungal comm...

  15. National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics.

    PubMed

    Sirisena, Kosala A; Daughney, Christopher J; Moreau-Fournier, Magali; Ryan, Ken G; Chambers, Geoffrey K

    2013-12-01

    Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource.

  16. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  17. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    PubMed

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

  18. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    NASA Astrophysics Data System (ADS)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  19. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland.

    PubMed

    Cassman, Noriko A; Leite, Marcio F A; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A; Kuramae, Eiko E

    2016-03-29

    Inorganic fertilization and mowing alter soil factors with subsequent effects-direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  20. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    PubMed Central

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions. PMID:27020916

  1. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    PubMed Central

    Edwards, Arwyn; Anesio, Alexandre M; Rassner, Sara M; Sattler, Birgit; Hubbard, Bryn; Perkins, William T; Young, Michael; Griffith, Gareth W

    2011-01-01

    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities. PMID:20664552

  2. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard.

    PubMed

    Edwards, Arwyn; Anesio, Alexandre M; Rassner, Sara M; Sattler, Birgit; Hubbard, Bryn; Perkins, William T; Young, Michael; Griffith, Gareth W

    2011-01-01

    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities.

  3. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ.

    PubMed

    Ortiz, Marianyoly; Neilson, Julia W; Nelson, William M; Legatzki, Antje; Byrne, Andrea; Yu, Yeisoo; Wing, Rod A; Soderlund, Carol A; Pryor, Barry M; Pierson, Leland S; Maier, Raina M

    2013-02-01

    Caves are relatively accessible subterranean habitats ideal for the study of subsurface microbial dynamics and metabolisms under oligotrophic, non-photosynthetic conditions. A 454-pyrotag analysis of the V6 region of the 16S rRNA gene was used to systematically evaluate the bacterial diversity of ten cave surfaces within Kartchner Caverns, a limestone cave. Results showed an average of 1,994 operational taxonomic units (97 % cutoff) per speleothem and a broad taxonomic diversity that included 21 phyla and 12 candidate phyla. Comparative analysis of speleothems within a single room of the cave revealed three distinct bacterial taxonomic profiles dominated by either Actinobacteria, Proteobacteria, or Acidobacteria. A gradient in observed species richness along the sampling transect revealed that the communities with lower diversity corresponded to those dominated by Actinobacteria while the more diverse communities were those dominated by Proteobacteria. A 16S rRNA gene clone library from one of the Actinobacteria-dominated speleothems identified clones with 99 % identity to chemoautotrophs and previously characterized oligotrophs, providing insights into potential energy dynamics supporting these communities. The robust analysis conducted for this study demonstrated a rich bacterial diversity on speleothem surfaces. Further, it was shown that seemingly comparable speleothems supported divergent phylogenetic profiles suggesting that these communities are very sensitive to subtle variations in nutritional inputs and environmental factors typifying speleothem surfaces in Kartchner Caverns.

  4. Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow.

    PubMed

    Li, Yaoming; Lin, Qiaoyan; Wang, Shiping; Li, Xiangzhen; Liu, Wentso; Luo, Caiyun; Zhang, Zhenhua; Zhu, Xiaoxue; Jiang, Lili; Li, Xine

    2016-01-01

    Warming and grazing significantly affect the structure and function of an alpine meadow ecosystem. Yet, the responses of soil microbes to these disturbances are not well understood. Controlled asymmetrical warming (+1.2/1.7°C during daytime/nighttime) with grazing experiments were conducted to study microbial response to warming, grazing and their interactions. Significant interactive effects of warming and grazing were observed on soil bacterial α-diversity and composition. Warming only caused significant increase in bacterial α-diversity under no-grazing conditions. Grazing induced no substantial differences in bacterial α-diversity and composition irrespective of warming. Warming, regardless of grazing, caused a significant increase in soil bacterial community similarity across space, but grazing only induced significant increases under no-warming conditions. The positive effects of warming on bacterial α-diversity and grazing on community similarity were weakened by grazing and warming, respectively. Soil and plant variables explained well the variations in microbial communities, indicating that changes in soil and plant properties may primarily regulate soil microbial responses to warming in this alpine meadow. The results suggest that bacterial communities may become more similar across space in a future, warmed climate and moderate grazing may potentially offset, at least partially, the effects of global warming on the soil microbial diversity.

  5. Patterning Bacterial Communities on Epithelial Cells

    PubMed Central

    Dwidar, Mohammed; Leung, Brendan M.; Yaguchi, Toshiyuki; Takayama, Shuichi; Mitchell, Robert J.

    2013-01-01

    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions. PMID:23785519

  6. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Singh, Dharmesh; Lee-Cruz, Larisa; Lai-Hoe, Ang; Ainuddin, A N; Go, Rusea; Rahim, Raha Abdul; Husni, M H A; Chun, Jongsik; Adams, Jonathan M

    2012-08-01

    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

  7. Bacterial community reconstruction using compressed sensing.

    PubMed

    Amir, Amnon; Zuk, Or

    2011-11-01

    Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples. All supplementary data and the MATLAB code are available at www.broadinstitute.org/?orzuk/publications/BCS/.

  8. Aquatic bacterial diversity: Magnitude, dynamics, and controlling factors.

    PubMed

    Shafi, Sana; Kamili, Azra N; Shah, Manzoor A; Parray, Javid A; Bandh, Suhaib A

    2017-03-01

    The primary aspiration in the microbial observatory is to advance the understanding of freshwater bacterioplankton, whose diversity and population dynamics are currently the least understood off all freshwater planktonic organisms. Through identification and characterization of bacterial populations in a suite of fresh water bodies, we are able to gain significant new insight into the ecological niches of bacteria in diverse freshwater ecosystems. Given the facts that lakes and other inland freshwaters play a more critical role in the global carbon budget and that lakes have been described as early indicators of both regional and global environmental change, the role of microbes in these processes is of renewed interest. In this review, general overview will be given highlighting the characteristic features of bacterial species thriving in different water bodies. In the following sections, different cultural approaches vis a vis the controlling factors of bacterial diversity have been elaborated. In the concluding sections, the prospects of aquatic microbial diversity are well mentioned.

  9. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra.

    PubMed

    Shen, Congcong; Ni, Yingying; Liang, Wenju; Wang, Jianjun; Chu, Haiyan

    2015-01-01

    The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000-2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD) exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon (TC), total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil TC and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  10. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

    PubMed Central

    Headd, Brendan; Engel, Annette S.

    2014-01-01

    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change. PMID

  11. Pyrodiversity begets plant-pollinator community diversity.

    PubMed

    Ponisio, Lauren C; Wilkin, Kate; M'Gonigle, Leithen K; Kulhanek, Kelly; Cook, Lindsay; Thorp, Robbin; Griswold, Terry; Kremen, Claire

    2016-05-01

    Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant-pollinator communities in mixed-conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant-pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β-diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought-induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant-pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may

  12. Diversity, Disunity, and Campus Community.

    ERIC Educational Resources Information Center

    Terrell, Melvin C., Ed.

    This monograph offers a collection of nine papers demonstrating how the student affairs subculture in institutions of higher education can provide academic as well as managerial leadership in promoting cultural diversity and planned change. The papers are as follows: (1) "Achieving Cultural Diversity: Meeting the Challenges" by Barbara…

  13. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Gong, Jun; Zhang, Xiaoli; Yin, Guoyu; You, Li

    2013-07-01

    ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g-1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94-6.61 nmol N g-1 h-1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%-12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

  14. Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces

    PubMed Central

    Frias-Lopez, Jorge; Zerkle, Aubrey L.; Bonheyo, George T.; Fouke, Bruce W.

    2002-01-01

    Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue. PMID:11976091

  15. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass.

    PubMed

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P; Mommer, Liesje

    2017-04-04

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.

  16. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    PubMed Central

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs. PMID:28374800

  17. Phytochemical diversity drives plant–insect community diversity

    PubMed Central

    Richards, Lora A.; Dyer, Lee A.; Forister, Matthew L.; Smilanich, Angela M.; Dodson, Craig D.; Leonard, Michael D.; Jeffrey, Christopher S.

    2015-01-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores. PMID:26283384

  18. Phytochemical diversity drives plant-insect community diversity.

    PubMed

    Richards, Lora A; Dyer, Lee A; Forister, Matthew L; Smilanich, Angela M; Dodson, Craig D; Leonard, Michael D; Jeffrey, Christopher S

    2015-09-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.

  19. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils.

    PubMed

    França, Luís; Sannino, Ciro; Turchetti, Benedetta; Buzzini, Pietro; Margesin, Rosa

    2016-11-01

    The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545-2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.

  20. Effect of copper exposure on bacterial community structure and function in the sediments of Jiaozhou Bay, China.

    PubMed

    Zhao, Yang-Guo; Feng, Gong; Bai, Jie; Chen, Min; Maqbool, Farhana

    2014-07-01

    Microcosms were setup to investigate the possible impact of copper exposure on bacterial community structure and function in sediments of Jiaozhou Bay, China, by culture-independent microbial ecological techniques and community-level physiological profiling. Bacterial 16S rDNA libraries indicated that proportion of the bacteria in phyla Chloroflexi and Acidobacteria decreased, but that of Gammaproteobacteria and Planctomycetes slightly increased in copper-treated sediment. Denaturing gradient gel profiles showed that bacterial communities in control and copper exposed sediments developed into different directions, while the copper exposure did not change the pattern of ammonia oxidizing bacterial community. Microbial community-level physiological profiling revealed an obvious response to copper dosage. The copper pollution caused an acute decrease of carbon utilizing ability as well as bacterial functional diversity; the number of culturable heterotrophic bacteria was reduced by 90%. This study demonstrated that high copper input would obviously reduce culturable bacterial counts and seriously impact bacterial community function in marine sediments.

  1. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria.

  2. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  3. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    PubMed

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  4. Bacterial diversity indicates dietary overlap among bats of different feeding habits.

    PubMed

    Banskar, Sunil; Mourya, Devendra T; Shouche, Yogesh S

    2016-01-01

    Bats are among the most conspicuous mammals with extraordinary adaptations. They play a key role in the ecosystem. Frugivorous bats are important seed dispersing agents that help in maintaining forest tree diversity, while insectivorous bats are natural insect pest control agents. Several previous reports suggest that bats are reservoir of viruses; nonetheless their bacterial counterparts are relatively less explored. The present study describes the microbial diversity associated with the intestine of bats from different regions of India. Our observations stipulate that there is substantial sharing of bacterial communities between the insectivorous and frugivorous bats, which signifies fairly large dietary overlap. We also observed the presence of higher abundance of Mycoplasma in Cynopterus species of bats, indicating possible Mycoplasma infection. Considering the scarcity of literature related to microbial communities of bat intestinal tract, this study can direct future microbial diversity studies in bats with reference to their dietary habits, host-bacteria interaction and zoonosis.

  5. Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil.

    PubMed

    Singh, Brajesh K; Nunan, Naoise; Millard, Peter

    2009-10-01

    In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.

  6. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues.

    PubMed

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E

    2016-09-29

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health.

  7. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    PubMed Central

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  8. Pole-to-pole biogeography of surface and deep marine bacterial communities.

    PubMed

    Ghiglione, Jean-François; Galand, Pierre E; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W; Bakker, Kevin; Bertilson, Stefan; Kirchmanj, David L; Lovejoy, Connie; Yager, Patricia L; Murray, Alison E

    2012-10-23

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.

  9. Bacterial symbionts in insects or the story of communities affecting communities.

    PubMed

    Ferrari, Julia; Vavre, Fabrice

    2011-05-12

    Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.

  10. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  11. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  12. Antarctic ice core samples: culturable bacterial diversity.

    PubMed

    Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R

    2013-01-01

    Culturable bacterial abundance at 11 different depths of a 50.26 m ice core from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the ice core. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition.

  13. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms

    PubMed Central

    Hunting, Ellard R.; Vijver, Martina G.; van der Geest, Harm G.; Mulder, Christian; Kraak, Michiel H. S.; Breure, Anton M.; Admiraal, Wim

    2015-01-01

    Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism. PMID:25759686

  14. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  15. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida.

    PubMed

    Huang, Kui; Li, Fusheng; Wei, Yongfen; Chen, Xuemin; Fu, Xiaoyong

    2013-12-01

    Changes of bacterial and fungal community during vermicomposting of vegetable wastes by hatchling, juvenile and adult Eisenia foetida were investigated through analysis of the extracted bacterial 16S rDNA and fungal 18S rDNA with quantitative polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and sequencing. After 60days of composting, significantly lower values of microbial activity and bacterial and fungal densities were revealed in the products of composting with earthworms than in the control (without earthworms). PCR-DGGE images showed vermicomposting significantly enhanced the diversities of bacterial and fungal communities. However, for their structures, sequencing results revealed that, compared to the control where the bacterial Firmicutes were predominant, in the composts with earthworms, the bacterial Bacteroidetes and Actinomycetes, and the fungal Sordariomycetes were found dominant. In addition, some beneficial species of bacteria and fungi against pathogens were also isolated from the vermicomposting products.

  16. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study

  17. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  18. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    PubMed

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.

  19. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.

  20. Bacterial diversity of symptomatic primary endodontic infection by clonal analysis.

    PubMed

    Nóbrega, Letícia Maria Menezes; Montagner, Francisco; Ribeiro, Adriana Costa; Mayer, Márcia Alves Pinto; Gomes, Brenda Paula Figueiredo de Almeida

    2016-10-10

    The aim of this study was to explore the bacterial diversity of 10 root canals with acute apical abscess using clonal analysis. Samples were collected from 10 patients and submitted to bacterial DNA isolation, 16S rRNA gene amplification, cloning, and sequencing. A bacterial genomic library was constructed and bacterial diversity was estimated. The mean number of taxa per canal was 15, ranging from 11 to 21. A total of 689 clones were analyzed and 76 phylotypes identified, of which 47 (61.84%) were different species and 29 (38.15%) were taxa reported as yet-uncultivable or as yet-uncharacterized species. Prevotella spp., Fusobacterium nucleatum, Filifactor alocis, and Peptostreptococcus stomatis were the most frequently detected species, followed by Dialister invisus, Phocaeicola abscessus, the uncharacterized Lachnospiraceae oral clone, Porphyromonas spp., and Parvimonas micra. Eight phyla were detected and the most frequently identified taxa belonged to the phylum Firmicutes (43.5%), followed by Bacteroidetes (22.5%) and Proteobacteria (13.2%). No species was detected in all studied samples and some species were identified in only one case. It was concluded that acute primary endodontic infection is characterized by wide bacterial diversity and a high intersubject variability was observed. Anaerobic Gram-negative bacteria belonging to the phylum Firmicutes, followed by Bacteroidetes, were the most frequently detected microorganisms.

  1. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest

    PubMed Central

    Shen, Ju-pei; Chen, C. R.; Lewis, Tom

    2016-01-01

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0–10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4+, TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire. PMID:26787458

  2. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest.

    PubMed

    Shen, Ju-pei; Chen, C R; Lewis, Tom

    2016-01-20

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  3. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest

    NASA Astrophysics Data System (ADS)

    Shen, Ju-Pei; Chen, C. R.; Lewis, Tom

    2016-01-01

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0–10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4+, TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  4. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    PubMed

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species.

  5. Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado.

    PubMed

    de Araujo, Ademir Sergio Ferreira; Bezerra, Walderly Melgaço; Dos Santos, Vilma Maria; Rocha, Sandra Mara Barbosa; Carvalho, Nilza da Silva; de Lyra, Maria do Carmo Catanho Pereira; Figueiredo, Marcia do Vale Barreto; de Almeida Lopes, Ângela Celis; Melo, Vania Maria Maciel

    2017-04-01

    The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.

  6. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.

  7. Bacterial Diversity at an Acid Mine Drainage Site in Maine

    NASA Astrophysics Data System (ADS)

    Gaynor, J.; Sawyer, T.; Riley, F. E.; Moulton, K. D.; Rothschild, L. J.; Duboise, S. M.

    2010-04-01

    Bacterial diversity in acidic mine drainage at a historic Maine iron mining site was investigated by isolation of environmental DNA, PCR amplification of the V3 region of the 16S rRNA gene, denaturing gradient gel electrophoresis, and DNA sequencing.

  8. Bacterial diversity and distribution in the holocene sediments of a northern temperate lake.

    PubMed

    Nelson, David M; Ohene-Adjei, Samuel; Hu, Feng Sheng; Cann, Isaac K O; Mackie, Roderick I

    2007-08-01

    Sediments contain an abundance of microorganisms. However, the diversity and distribution of microorganisms associated with sediments are poorly understood, particularly in lacustrine environments. We used banding patterns from denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequences to assess the structure of bacterial communities in the Holocene sediments of a meromictic lake in Minnesota. Cluster analysis of the DGGE banding patterns indicates that the early- and middle-Holocene samples group separately from the late-Holocene samples. About 79% of the recovered bacterial sequences cluster with the alpha-, beta-, delta-, epsilon-, and gamma- Proteobacteriaceae and Firmicutes. The remaining approximately 21% lack cultured representatives. The taxonomic lineages of bacteria differ statistically among the early-, middle-, and late-Holocene samples, although the difference is smallest between early- and middle-Holocene samples. Early- and middle-Holocene samples are dominated by epsilon-Proteobacteriaceae, and late-Holocene samples are dominated by sequences from uncultured subphyla. We only recovered delta-Proteobacteriaceae in late-Holocene sediments and alpha- and gamma- Proteobacteriaceae in late- and middle-Holocene sediments. Diversity estimates derived from early-, middle-, and late-Holocene clone libraries indicate that the youngest (late-Holocene) samples had significantly greater bacterial diversity than the oldest (early-Holocene) samples, and the middle-Holocene samples contained intermediate levels of diversity. The observed patterns of diversity may be caused by increased bacterial niche-partitioning in younger sediments that contain a greater abundance of labile organic matter than older sediments.

  9. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  10. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China

    PubMed Central

    Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui

    2015-01-01

    Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments. PMID:25870592

  11. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.

  12. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.

    PubMed

    Timonen, Sari; Sinkko, Hanna; Sun, Hui; Sietiö, Outi-Maaria; Rinta-Kanto, Johanna M; Kiheri, Heikki; Heinonsalo, Jussi

    2016-12-26

    In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than t