Higher-order modes in the APS storage ring waveguides
Brauer, S.O.; Kustom, R.L.
1993-07-01
Twelve higher-order modes (HOMs) in the single-cell accelerating cavities for the Advanced Photon Source (APS) storage ring were calculated to have complex impedances that will cause coupled-bunched instabilities near or below the 300mA positron current which is the design goal. Some of these modes couple, through the coupling loop, from the storage ring cavity into the waveguide. This study investigates the transmission of these modes from the cavity into the waveguide. The standing wave ratio (VSWR) of a WR2300 hybrid waveguide component has been measured at each HOM frequency, and its effect on the transmitted modes in the waveguide is studied.
A proposed ringing analysis model for higher order tether response
Natvig, B.J.
1994-12-31
The problem of high-frequency transient responses of Tension Leg Platforms, TLPs, under certain severe sea situations has been known for some time. Until recently, it was not known that this type of loading and response mechanism could produce tether loads of critical importance to the structural integrity of such structures. Presently, there is considerable ongoing discussion as to what causes tether ringing. NPD (1992) assembled a document where the views of the Norwegian Shelf operators and one Norwegian engineering company were summarized. At present there seems to be consensus that ringing, at least to a large extent, is caused by nonlinearities in the free surface variable wetting region of the TLP. Ringing is not predicted by linearized frequency domain analysis methods. There are a number of variable wetting contributions. Some of these are fairly obvious while others are less straight forward. A number of the contributions, of purely theoretical or engineering nature, identified to date are discussed in this paper. Based on this an intuitive method for ringing analysis is presented.
Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
Fu, Yuan Hsing; Zhang, Jing Bo; Yu, Ye Feng; Luk'yanchuk, Boris
2012-06-26
In this article, we investigate higher order (quadrupolar, octupolar, hexadecapolar, and triakontadipolar) Fano resonances generated in disk ring (DR) silver plasmonic nanostructures. We find that the higher order Fano resonances are generated when the size of the disk is reduced and falls into a certain range. With dual-disk ring (DDR) nanostructures, a rich set of tunable Fano line shapes is provided. More specifically, we report our observations on the optical behavior of the DDRs including asymmetric cases either in two disks with different sizes or their asymmetric locations inside the ring. In the case of symmetric dual-disk ring (SDDR) nanostructures, we demonstrate that the quadrupolar and the hexadecapolar Fano resonances are suppressed, which can reduce the cross-talk in spectroscopic measurements, while the octupolar and the triakontadipolar Fano resonances are enhanced. The potential of using the studied plasmonic nanostructures as biochemical sensors is evaluated with the figure of merit (FOM) and the contrast ratio (CR). The values of the FOM and the CR achieved using the triakontadipolar Fano resonance in the SDDR are 17 and 57%, respectively. These results indicate that the SDDRs could be developed into a high-performance biochemical sensor in the visible wavelength range.
Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly
Lyon, Andrew S.; Morin, Geneviève; Moritz, Michelle; Yabut, King Clyde B.; Vojnar, Tamira; Zelter, Alex; Muller, Eric; Davis, Trisha N.; Agard, David A.
2016-01-01
The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1-MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast, the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body. Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC. PMID:27226487
Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.
2015-05-15
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.
Damping higher order modes in the PEP-II B-Factory storage ring collider
NASA Astrophysics Data System (ADS)
Weathersby, Stephen
2007-05-01
The PEP-II B-Factory storage ring collider at SLAC provides crucial experimental evidence for the physics of CP violation. To investigate rare B-meson decays requires high luminosity which comes mainly from increasing bunch currents and reducing bunch sizes. Electromagnetic effects of intense bunch fields in the form of wake fields couple into accelerator components, inducing Joule heating at levels detrimental to vacuum chamber components. Additionally, wake fields contribute to beam instability, decreasing luminosity. These effects are limiting B-factory performance. Computer simulations and experimental evidence indicate that beam collimators produce wake fields in the form of dipole and quadrupole waveguide modes which can propagate tens of meters from their source before depositing energy at remote locations. Simulations confirm that coupling through narrow slots into bellows cavities occurs for beam pipe modes. Two proposals are set forth to mitigate wake field effects. The first proposal is to reduce the quality factor of resonant structures with a water cooled dielectric lossy material. Electromagnetic energy coupling into resonant structures can be isolated and safely dissipated. Prototype devices have been built and have been shown to reduce resistive heating in large pumping chambers coupled to the beam chamber. Designs and simulations which incorporate such techiques into bellows devices are presented. The second proposal incorporates novel devices introduced in the accelerator vacuum chamber which selectively traps dipole and quadrupole propagating wake fields before they can couple into sensitive beam line components without introducing impedance to the beam. Scattering parameter analysis is used to tailor device response to specific modes. Dangerous modes are extracted from the beam chamber, trapped and dissipated in a water cooled lossy material. Modes which represent an impedance to the beam are not affected. After design optimization, production
Heidrich, Jennifer; Wulf, Verena; Hennig, Raoul; Saur, Michael; Markl, Jürgen; Sönnichsen, Carsten; Schneider, Dirk
2016-07-15
The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inner core region of the lipid bilayer. Furthermore, by using gold nanorods covered with phosphatidylglycerol layers and single particle spectroscopy, we show that not only IM30 rings but also lower oligomeric IM30 structures interact with membranes, although with higher affinity. Thus, ring formation is not crucial for, and even counteracts, membrane interaction of IM30.
NASA Astrophysics Data System (ADS)
Fujioka, J.; Espinosa, A.
2015-11-01
In this article, we show that if the nonlinear Schrödinger (NLS) equation is generalized by simultaneously taking into account higher-order dispersion, a quintic nonlinearity, and self-steepening terms, the resulting equation is interesting as it has exact soliton solutions which may be (depending on the values of the coefficients) stable or unstable, standard or "embedded," fixed or "moving" (i.e., solitons which advance along the retarded-time axis). We investigate the stability of these solitons by means of a modified version of the Vakhitov-Kolokolov criterion, and numerical tests are carried out to corroborate that these solitons respond differently to perturbations. It is shown that this generalized NLS equation can be derived from a Lagrangian density which contains an auxiliary variable, and Noether's theorem is then used to show that the invariance of the action integral under infinitesimal gauge transformations generates a whole family of conserved quantities. Finally, we study if this equation has the Painlevé property.
Fujioka, J; Espinosa, A
2015-11-01
In this article, we show that if the nonlinear Schrödinger (NLS) equation is generalized by simultaneously taking into account higher-order dispersion, a quintic nonlinearity, and self-steepening terms, the resulting equation is interesting as it has exact soliton solutions which may be (depending on the values of the coefficients) stable or unstable, standard or "embedded," fixed or "moving" (i.e., solitons which advance along the retarded-time axis). We investigate the stability of these solitons by means of a modified version of the Vakhitov-Kolokolov criterion, and numerical tests are carried out to corroborate that these solitons respond differently to perturbations. It is shown that this generalized NLS equation can be derived from a Lagrangian density which contains an auxiliary variable, and Noether's theorem is then used to show that the invariance of the action integral under infinitesimal gauge transformations generates a whole family of conserved quantities. Finally, we study if this equation has the Painlevé property.
Patel, Dinshaw J.; Phan, Anh Tuân; Kuryavyi, Vitaly
2007-01-01
Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G–G–G–G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K+ solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5′-untranslated regions (5′-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand–G-quadruplex complexes. PMID:17913750
Complex higher order derivative theories
Margalli, Carlos A.; Vergara, J. David
2012-08-24
In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.
Higher-order uncertainty relations
NASA Astrophysics Data System (ADS)
Wünsche, A.
2006-07-01
Using the non-negativity of Gram determinants of arbitrary order, we derive higher-order uncertainty relations for the symmetric uncertainty matrices of corresponding order n?>?2 to n Hermitean operators (n?=?2 is the usual case). The special cases of third-order and fourth-order uncertainty relations are considered in detail. The obtained third-order uncertainty relations are applied to the Lie groups SU(1,1) with three Hermitean basis operators (K1,K2,K0) and SU(2) with three Hermitean basis operators (J1,J2,J3) where, in particular, the group-coherent states of Perelomov type and of Barut Girardello type for SU(1,1) and the spin or atomic coherent states for SU(2) are investigated. The uncertainty relations for the determinant of the third-order uncertainty matrix are satisfied with the equality sign for coherent states and this determinant becomes vanishing for the Perelomov type of coherent states for SU(1,1) and SU(2). As an example of the application of fourth-order uncertainty relations, we consider the canonical operators (Q1,P1,Q2,P2) of two boson modes and the corresponding uncertainty matrix formed by the operators of the corresponding mean deviations, taking into account the correlations between the two modes. In two mathematical appendices, we prove the non-negativity of the determinant of correlation matrices of arbitrary order and clarify the principal structure of higher-order uncertainty relations.
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
Higher order multipole magnet tolerances
Chao, A.W.; Lee, M.J.; Morton, P.M.
1988-01-01
Due to field impurities in the magnets in a storage ring or circular accelerator the values of the betatron frequencies for a given particle in a beam are dependent upon the energy and betatron amplitude of the particle as well as the values of the energy dispersion and betatron functions at the magnets. A method has been developed for finding the values of the betatron frequencies for any particle with given field impurities. This method has been used to study the quality of several preliminary designs of some of the quadrupole magnets in PEP by comparing the variations of the betatron frequencies over the maximum expected range of values of the particle energy and betatron amplitude. The expressions for the values of betatron frequencies as functions of the various beam and machine parameters are derived. Some of the results for the evaluation of two types of the PEP magnets are also presented. A discussion of these results is given as well. 3 refs., 5 figs., 2 tabs.
Higher-Order Superposition for Dependent Types,
2007-11-02
Proofs for Higher-Order Rewrite Systems, J. Heering, K. Meinke , B. Moller, T. Nipkow ed., Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in...Heering, K. Meinke , B. Moller, T. Nipkow ed., Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in Comp. Sci., Vol 816, Springer Verlag, 1994, pp. 305-325
Higher order organization of human placental aromatase.
Ghosh, Debashis; Jiang, Wenhua; Lo, Jessica; Egbuta, Chinaza
2011-07-01
Aromatase (CYP19A1) is an integral membrane enzyme that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens. All human estrogens are synthesized from their androgenic precursors by this unique cytochrome P450. The crystal structure of active aromatase purified from human placenta has recently been determined in complex with its natural substrate androstenedione in the high-spin ferric state of heme. Hydrogen bond forming interactions and tight packing hydrophobic side chains closely complement puckering of the steroid backbone, thereby providing the molecular basis for the androgenic specificity of aromatase. In the crystal, aromatase molecules are linked by a head-to-tail intermolecular interaction via a surface loop between helix D and helix E of one aromatase molecule that penetrates the heme-proximal cavity of the neighboring, crystallographically related molecule, thus forming in tandem a polymeric aromatase chain. This intermolecular interaction is similar to the aromatase-cytochrome P450 reductase coupling and is driven by electrostatics between the negative potential surface of the D-E loop region and the positively charged heme-proximal cavity. This loop-to-proximal site link in aromatase is rather unique--there are only a few of examples of somewhat similar intermolecular interactions in the entire P450 structure database. Furthermore, the amino acids involved in the intermolecular contact appear to be specific for aromatase. Higher order organization of aromatase monomers may have implications in lipid integration and catalysis.
Higher order mechanics on graded bundles
NASA Astrophysics Data System (ADS)
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
2015-05-01
In this paper we develop a geometric approach to higher order mechanics on graded bundles in both, the Lagrangian and Hamiltonian formalism, via the recently discovered weighted algebroids. We present the corresponding Tulczyjew triple for this higher order situation and derive in this framework the phase equations from an arbitrary (also singular) Lagrangian or Hamiltonian, as well as the Euler-Lagrange equations. As important examples, we geometrically derive the classical higher order Euler-Lagrange equations and analogous reduced equations for invariant higher order Lagrangians on Lie groupoids.
Higher-order organization of complex networks
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Networks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks—at the level of small network subgraphs—remains largely unknown. Here, we develop a generalized framework for clustering networks on the basis of higher-order connectivity patterns. This framework provides mathematical guarantees on the optimality of obtained clusters and scales to networks with billions of edges. The framework reveals higher-order organization in a number of networks, including information propagation units in neuronal networks and hub structure in transportation networks. Results show that networks exhibit rich higher-order organizational structures that are exposed by clustering based on higher-order connectivity patterns. PMID:27387949
Resonant radiation from oscillating higher order solitons
Driben, R.; Yulin, A. V.; Efimov, A.
2015-07-15
We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. The shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. Research showed that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.
Higher-order awareness, misrepresentation and function
Rosenthal, David
2012-01-01
Conscious mental states are states we are in some way aware of. I compare higher-order theories of consciousness, which explain consciousness by appeal to such higher-order awareness (HOA), and first-order theories, which do not, and I argue that higher-order theories have substantial explanatory advantages. The higher-order nature of our awareness of our conscious states suggests an analogy with the metacognition that figures in the regulation of psychological processes and behaviour. I argue that, although both consciousness and metacognition involve higher-order psychological states, they have little more in common. One thing they do share is the possibility of misrepresentation; just as metacognitive processing can misrepresent one's cognitive states and abilities, so the HOA in virtue of which one's mental states are conscious can, and sometimes does, misdescribe those states. A striking difference between the two, however, has to do with utility for psychological processing. Metacognition has considerable benefit for psychological processing; in contrast, it is unlikely that there is much, if any, utility to mental states' being conscious over and above the utility those states have when they are not conscious. PMID:22492758
Higher-order force gradient symplectic algorithms
NASA Astrophysics Data System (ADS)
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Higher Order Thinking in the Dance Studio
ERIC Educational Resources Information Center
Moffett, Ann-Thomas
2012-01-01
The author identifies higher order thinking as an essential component of dance training for students of all ages and abilities. Weaving together insights from interviews with experts in the field of dance education with practical pedagogical applications within an Improvisation and Composition class for talented and gifted youth, this article…
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships.
Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Human motion perception: Higher-order organization
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Proffitt, Dennis R.
1990-01-01
An overview is given of higher-order motion perception and organization. It is argued that motion is sufficient to fully specify a number of environmental properties, including: depth order, three-dimensional form, object displacement, and dynamics. A grammar of motion perception is proposed; applications of this work for display design are discussed.
Assessing Higher Order Thinking in Mathematics.
ERIC Educational Resources Information Center
Kulm, Gerald, Ed.
This book explores current theory, research, practice, and policy in the assessment of higher order thinking in mathematics, focusing on the elementary and secondary grades. Current knowledge and research on mathematics learning and testing is synthesized. Examples of innovative test items for classroom use and state assessment programs are…
Performance assessment of higher order thinking.
Griffin, Patrick
2014-01-01
This article describes a study investigating the effect of intervention on student problem solving and higher order competency development using a series of complex numeracy performance tasks (Airasian and Russell, 2008). The tasks were sequenced to promote and monitor student development towards hypothetico-deductive reasoning. Using Rasch partial credit analysis (Wright and Masters, 1982) to calibrate the tasks and analysis of residual gain scores to examine the effect of class and school membership, the study illustrates how directed intervention can improve students' higher order competency skills. This paper demonstrates how the segmentation defined by Wright and Masters can offer a basis for interpreting the construct underlying a test and how segment definitions can deliver targeted interventions. Implications for teacher intervention and teaching mentor schemes are considered. The article also discusses multilevel regression models that differentiate class and school effects, and describes a process for generating, testing and using value added models.
Systems with Higher-order Modulation
NASA Astrophysics Data System (ADS)
Achiam, Yaakov; Kaplan, Arkady; Seimetz, Matthias
The chapter covers concepts, systems aspects, and key components for higher-order modulation. The introductory section presents relevant variants of higher-order modulation formats and includes coherent detection and coherent optical orthogonal frequency-division multiplexing as well. The next section is devoted to system configurations with particular emphasis on transmitter structures and receiver concepts, whereas the subsequent chapter focuses on key components. Included are LiNbO3-based quadrature modulators, integrated coherent receivers, in particular 90° hybrids, ranging from new concepts to proven implementations. A treatment of integrated balanced four-branch receivers ranges from theoretical analysis to the presentation of commercially available devices. The chapter concludes with a discussion of system trends and expected future developments.
Random interactions in higher order neural networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre; Venkatesh, Santosh S.
1993-01-01
Recurrent networks of polynomial threshold elements with random symmetric interactions are studied. Precise asymptotic estimates are derived for the expected number of fixed points as a function of the margin of stability. In particular, it is shown that there is a critical range of margins of stability (depending on the degree of polynomial interaction) such that the expected number of fixed points with margins below the critical range grows exponentially with the number of nodes in the network, while the expected number of fixed points with margins above the critical range decreases exponentially with the number of nodes in the network. The random energy model is also briefly examined and links with higher order neural networks and higher order spin glass models made explicit.
Higher-Order Mentalising and Executive Functioning
2015-01-01
Higher-order mentalising is the ability to represent the beliefs and desires of other people at multiple, iterated levels – a capacity that sets humans apart from other species. However, there has not yet been a systematic attempt to determine what cognitive processes underlie this ability. Here we present three correlational studies assessing the extent to which performance on higher-order mentalising tasks relates to emotion recognition, self-reported empathy and self-inhibition. In Study 1a and 1b, examining emotion recognition and empathy, a relationship was identified between individual differences in the ability to mentalise and an emotion recognition task (the Reading the Mind in the Eyes task), but no correlation was found with the Empathy Quotient, a self-report scale of empathy. Study 2 investigated whether a relationship exists between individual mentalising abilities and four different forms of self-inhibition: motor inhibition, executive inhibition, automatic imitation and temporal discounting. Results demonstrate that only temporal discounting performance relates to mentalising ability; suggesting that cognitive skills relevant to representation of the minds of others’ are not influenced by the ability to perform more basic inhibition. Higher-order mentalising appears to rely on the cognitive architecture that serves both low-level social cognition (emotion recognition), and complex forms of inhibition. PMID:26543298
Higher-Order Mentalising and Executive Functioning.
2015-11-01
Higher-order mentalising is the ability to represent the beliefs and desires of other people at multiple, iterated levels - a capacity that sets humans apart from other species. However, there has not yet been a systematic attempt to determine what cognitive processes underlie this ability. Here we present three correlational studies assessing the extent to which performance on higher-order mentalising tasks relates to emotion recognition, self-reported empathy and self-inhibition. In Study 1a and 1b, examining emotion recognition and empathy, a relationship was identified between individual differences in the ability to mentalise and an emotion recognition task (the Reading the Mind in the Eyes task), but no correlation was found with the Empathy Quotient, a self-report scale of empathy. Study 2 investigated whether a relationship exists between individual mentalising abilities and four different forms of self-inhibition: motor inhibition, executive inhibition, automatic imitation and temporal discounting. Results demonstrate that only temporal discounting performance relates to mentalising ability; suggesting that cognitive skills relevant to representation of the minds of others' are not influenced by the ability to perform more basic inhibition. Higher-order mentalising appears to rely on the cognitive architecture that serves both low-level social cognition (emotion recognition), and complex forms of inhibition.
Sclerotic Rings in Mosasaurs (Squamata: Mosasauridae): Structures and Taxonomic Diversity
Yamashita, Momo; Konishi, Takuya; Sato, Tamaki
2015-01-01
Mosasaurs (Squamata: Mosasauridae) were a highly diverse, globally distributed group of aquatic lizards in the Late Cretaceous (98–66 million years ago) that exhibited a high degree of adaptation to life in water. To date, despite their rich fossil record, the anatomy of complete mosasaur sclerotic rings, embedded in the sclera of the eyeball, has not been thoroughly investigated. We here describe and compare sclerotic rings of four mosasaur genera, Tylosaurus, Platecarpus, Clidastes, and Mosasaurus, for the first time. Two specimens of Tylosaurus and Platecarpus share an exact scleral ossicle arrangement, excepting the missing portion in the specimen of Platecarpus. Furthermore, the exact arrangement and the total count of 14 ossicles per ring are shared between Tylosaurus and numerous living terrestrial lizard taxa, pertaining to both Iguania and Scleroglossa. In contrast, two species of Mosasaurus share the identical count of 12 ossicles and the arrangement with each other, while no living lizard taxa share exactly the same arrangement. Such a mosaic distribution of these traits both among squamates globally and among obligatorily aquatic mosasaurs specifically suggests that neither the ossicle count nor their arrangement played major roles in the aquatic adaptation in mosasaur eyes. All the mosasaur sclerotic rings examined consistently exhibit aperture eccentricity and the scleral ossicles with gently convex outer side. Hitherto unknown to any squamate taxa, one specimen of Platecarpus unexpectedly shows a raised, concentric band of roughened surface on the inner surface of the sclerotic ring. It is possible that one or both of these latter features may have related to adaptation towards aquatic vision in mosasaurs, but further quantitative study of extant reptilian clades containing both terrestrial and aquatic taxa is critical and necessary in order to understand possible adaptive significances of such osteological features. PMID:25692667
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Higher order modes in photonic crystal slabs.
Gansch, Roman; Kalchmair, Stefan; Detz, Hermann; Andrews, Aaron M; Klang, Pavel; Schrenk, Werner; Strasser, Gottfried
2011-08-15
We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs.
Higher Order Equations and Constituent Fields
NASA Astrophysics Data System (ADS)
Barci, D. G.; Bollini, C. G.; Oxman, L. E.; Rocca, M.
We consider a simple wave equation of fourth degree in the D'Alembertian operator. It contains the main ingredients of a general Lorentz-invariant higher order equation, namely, a normal bradyonic sector, a tachyonic state and a pair of complex conjugate modes. The propagators are respectively the Feynman causal function and three Wheeler-Green functions (half-advanced and half-retarded). The latter are Lorentz-invariant and consistent with the elimination of tachyons and complex modes from free asymptotic states. We also verify the absence of absorptive parts from convolutions involving Wheeler propagators.
A higher order theory of laminated composite cylindrical shells
NASA Technical Reports Server (NTRS)
Krishna Murthy, A. V.; Reddy, T. S. R.
1986-01-01
A new higher order theory has been proposed for the analysis of composite cylindrical shells. The formulation allows for arbitrary variation of inplane displacements. Governing equations are presented in the form of a hierarchy of sets of partial differential equations. Each set describes the shell behavior to a certain degree of approximation. The natural frequencies of simply-supported isotropic and laminated shells and stresses in a ring loaded composite shell have been determined to various orders of approximation and compared with three dimensional solutions. These numerical studies indicate the improvements achievable in estimating the natural frequencies and the interlaminar shear stresses in laminated composite cylinders.
Theorem Proving In Higher Order Logics
NASA Technical Reports Server (NTRS)
Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene
2002-01-01
The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.
Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents.
Rieffel, James; Chitgupi, Upendra; Lovell, Jonathan F
2015-09-16
Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through the analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and, in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, the higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, recent progress in higher-order multimodal imaging agents is reviewed, spanning a range of material and structural classes, and demonstrating utility in three (or more) imaging modalities.
Higher order correlations of IRAS galaxies
NASA Technical Reports Server (NTRS)
Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander
1992-01-01
The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.
Higher order structure of aquaporin-4.
Nicchia, G P; Rossi, A; Mola, M G; Pisani, F; Stigliano, C; Basco, D; Mastrototaro, M; Svelto, M; Frigeri, A
2010-07-28
Unlike other mammalian AQPs, multiple tetramers of AQP4 associate in the plasma membrane to form peculiar structures called Orthogonal Arrays of Particles (OAPs), that are observable by freeze-fracture electron microscopy (FFEM). However, FFEM cannot give information about the composition of OAPs of different sizes, and due to its technical complexity is not easily applicable as a routine technique. Recently, we employed the 2D gel electrophoresis BN-SDS/PAGE that for the first time enabled the biochemical isolation of AQP4-OAPs from several tissues. We found that AQP4 protein is present in several higher-order complexes (membrane pools of supra-structures) which contain different ratios of M1/M23 isoforms corresponding to AQP4-OAPs of different size. In this paper, we illustrate in detail the potentiality of 2D BN/SDS-PAGE for analyzing AQP4 supra-structures, their relationship with the dystrophin glycoprotein complex and other membrane proteins, and their role as a specific target of Neuromyelitis Optica autoantibodies.
Representing higher-order dependencies in networks
Xu, Jian; Wickramarathne, Thanuka L.; Chawla, Nitesh V.
2016-01-01
To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently accurate representation of the underlying data. However, when representing sequential data from complex systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network representations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This assumption holds that, when movements are simulated on the network, the next movement depends only on the current node, discounting the fact that the movement may depend on several previous steps. However, we show that data derived from many complex systems can show up to fifth-order dependencies. In these cases, the oversimplifying assumption of the first-order network representation can lead to inaccurate network analysis results. To address this problem, we propose the higher-order network (HON) representation that can discover and embed variable orders of dependencies in a network representation. Through a comprehensive empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy, scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we demonstrate that, by using it as input, HON yields more accurate results without any modification to these tasks. PMID:27386539
Aspects of general higher-order gravities
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Min, Vincent S.; Visser, Manus R.
2017-02-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P. Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify L (Riemann ) theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f (Lovelock ) invariants, plus the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized Newton potential and the post-Newtonian parameter γ for general L (Riemann ) gravities in arbitrary dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study the emission and propagation of gravitational radiation from sources for these theories in four dimensions, providing a generalized formula for the power emitted. Finally, we review Wald's formalism for general L (Riemann ) theories and construct new explicit expressions for the relevant quantities involved. Many examples illustrate our calculations.
Higher-order phase shift reconstruction approach
Cong Wenxiang; Wang Ge
2010-10-15
Purpose: Biological soft tissues encountered in clinical and preclinical imaging mainly consists of atoms of light elements with low atomic numbers and their elemental composition is nearly uniform with little density variation. Hence, x-ray attenuation contrast is relatively poor and cannot achieve satisfactory sensitivity and specificity. In contrast, x-ray phase-contrast provides a new mechanism for soft tissue imaging. The x-ray phase shift of soft tissues is about a thousand times greater than the x-ray absorption over the diagnostic x-ray energy range, yielding a higher signal-to-noise ratio than the attenuation contrast counterpart. Thus, phase-contrast imaging is a promising technique to reveal detailed structural variation in soft tissues, offering a high contrast resolution between healthy and malignant tissues. Here the authors develop a novel phase retrieval method to reconstruct the phase image on the object plane from the intensity measurements. The reconstructed phase image is a projection of the phase shift induced by an object and serves as input to reconstruct the 3D refractive index distribution inside the object using a tomographic reconstruction algorithm. Such x-ray refractive index images can reveal structural features in soft tissues, with excellent resolution differentiating healthy and malignant tissues. Methods: A novel phase retrieval approach is proposed to reconstruct an x-ray phase image of an object based on the paraxial Fresnel-Kirchhoff diffraction theory. A primary advantage of the authors' approach is higher-order accuracy over that with the conventional linear approximation models, relaxing the current restriction of slow phase variation. The nonlinear terms in the autocorrelation equation of the Fresnel diffraction pattern are eliminated using intensity images measured at different distances in the Fresnel diffraction region, simplifying the phase reconstruction to a linear inverse problem. Numerical experiments are performed
Static axisymmetric rings in general relativity: How diverse they are
NASA Astrophysics Data System (ADS)
Semerák, O.
2016-11-01
Three static and axially symmetric (Weyl-type) ring singularities—the Majumdar-Papapetrou-type (extremally charged) ring, the Bach-Weyl ring, and the Appell ring—are studied in general relativity in order to show how remarkably the geometries in their vicinity differ from each other. This is demonstrated on basic measures of the rings and on invariant characteristics given by the metric and by its first and second derivatives (lapse, gravitational acceleration, and curvature), and also on geodesic motion. The results are also compared against the Kerr space-time which possesses a ring singularity too. The Kerr solution is only stationary, not static, but in spite of the consequent complication by dragging, its ring appears to be simpler than the static rings. We show that this mainly applies to the Bach-Weyl ring, although this straightforward counterpart of the Newtonian homogeneous circular ring is by default being taken as the simplest ring solution, and although the other two static ring sources may seem more "artificial." The weird, directional deformation around the Bach-Weyl ring probably indicates that a more adequate coordinate representation and interpretation of this source should exist.
Nanoparticles in Higher-Order Multimodal Imaging
NASA Astrophysics Data System (ADS)
Rieffel, James Ki
Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.
Gerard, Baudouin; Dandapani, Sivaraman; Duvall, Jeremy R.; Fitzgerald, Mark E.; Kesavan, Sarathy; Lee, Maurice D.; Lowe, Jason T.; Marié, Jean-Charles; Pandya, Bhaumik A.; Suh, Byung-Chul; O’Shea, Morgan Welzel; Dombrowski, Michael; Hamann, Diane; Lemercier, Berenice; Murillo, Tiffanie; Akella, Lakshmi B.; Foley, Michael A.; Marcaurelle, Lisa A.
2013-01-01
A diversity-oriented synthesis (DOS) strategy was developed for the synthesis of stereochemically diverse fused-ring systems containing a pyran moiety. Each scaffold contains an amine and methyl ester for future diversification via amine capping and amide coupling. Scaffold diversity was evaluated in comparison to previously prepared scaffolds via a shape-based principal moments of inertia (PMI) analysis. PMID:23692141
Conceptualizing and Assessing Higher-Order Thinking in Reading
ERIC Educational Resources Information Center
Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun
2015-01-01
Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…
Skinner-Rusk unified formalism for higher-order systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
NASA Astrophysics Data System (ADS)
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-09-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
Promoting Higher Order Thinking Skills Using Inquiry-Based Learning
ERIC Educational Resources Information Center
Madhuri, G. V.; Kantamreddi, V. S. S. N; Prakash Goteti, L. N. S.
2012-01-01
Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in…
Higher-order Dirac solitons in binary waveguide arrays
Tran, Truong X.; Duong, Dũng C.
2015-10-15
We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases.
Higher-order mode photonic crystal based nanofluidic sensor
NASA Astrophysics Data System (ADS)
Peng, Wang; Chen, Youping; Ai, Wu
2017-01-01
A higher-order photonic crystal (PC) based nanofluidic sensor, which worked at 532 nm, was designed and demonstrated. A systematical and detailed method for sculpturing a PC sensor for a given peak wavelength value (PWV) and specified materials was illuminated. It was the first time that the higher order mode was used to design PC based nanofluidic sensor, and the refractive index (RI) sensitivity of this sensor had been verified with FDTD simulation software from Lumerical. The enhanced electrical field of higher order mode structure was mostly confined in the channel area, where the enhance field is wholly interacting with the analytes in the channels. The comparison of RI sensitivity between fundamental mode and higher order mode shows the RI variation of higher order mode is 124.5 nm/RIU which is much larger than the fundamental mode. The proposed PC based nanofluidic structure pioneering a novel style for future optofluidic design.
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Zhong-Liang; Wang, Fu-Li; Guo, Zhen; Cheng, Yong-Feng; Wang, Na; Dong, Xiao-Wu; Fang, Chao; Liu, Jingjiang; Hou, Chunhui; Tan, Bin; Liu, Xin-Yuan
2016-12-01
Medium-sized and medium-bridged rings are attractive structural motifs in natural products and therapeutic agents. Due to the unfavourable entropic and/or enthalpic factors with these ring systems, their efficient construction remains a formidable challenge. To address this problem, we herein disclose a radical-based approach for diversity-oriented synthesis of various benzannulated carbon- and heteroatom-containing 8-11(14)-membered ketone libraries. This strategy involves 1,4- or 1,5-aryl migration triggered by radical azidation, trifluoromethylation, phosphonylation, sulfonylation, or perfluoroalkylation of unactivated alkenes followed by intramolecular ring expansion. Demonstration of this method as a highly flexible tool for the construction of 37 synthetically challenging medium-sized and macrocyclic ring scaffolds including bridged rings with diverse functionalities and skeletons is highlighted. Some of these products showed potent inhibitory activity against the cancer cell or derivative of human embryonic kidney line in preliminary biological studies. The mechanism of this novel strategy is investigated by control experiments and DFT calculations.
Li, Lei; Li, Zhong-Liang; Wang, Fu-Li; Guo, Zhen; Cheng, Yong-Feng; Wang, Na; Dong, Xiao-Wu; Fang, Chao; Liu, Jingjiang; Hou, Chunhui; Tan, Bin; Liu, Xin-Yuan
2016-01-01
Medium-sized and medium-bridged rings are attractive structural motifs in natural products and therapeutic agents. Due to the unfavourable entropic and/or enthalpic factors with these ring systems, their efficient construction remains a formidable challenge. To address this problem, we herein disclose a radical-based approach for diversity-oriented synthesis of various benzannulated carbon- and heteroatom-containing 8–11(14)-membered ketone libraries. This strategy involves 1,4- or 1,5-aryl migration triggered by radical azidation, trifluoromethylation, phosphonylation, sulfonylation, or perfluoroalkylation of unactivated alkenes followed by intramolecular ring expansion. Demonstration of this method as a highly flexible tool for the construction of 37 synthetically challenging medium-sized and macrocyclic ring scaffolds including bridged rings with diverse functionalities and skeletons is highlighted. Some of these products showed potent inhibitory activity against the cancer cell or derivative of human embryonic kidney line in preliminary biological studies. The mechanism of this novel strategy is investigated by control experiments and DFT calculations. PMID:28004746
Symplectic structures related with higher order variational problems
NASA Astrophysics Data System (ADS)
Kijowski, Jerzy; Moreno, Giovanni
2015-06-01
In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.
Higher-order intersections in low-dimensional topology
Conant, Jim; Schneiderman, Rob; Teichner, Peter
2011-01-01
We show how to measure the failure of the Whitney move in dimension 4 by constructing higher-order intersection invariants of Whitney towers built from iterated Whitney disks on immersed surfaces in 4-manifolds. For Whitney towers on immersed disks in the 4-ball, we identify some of these new invariants with previously known link invariants such as Milnor, Sato–Levine, and Arf invariants. We also define higher-order Sato–Levine and Arf invariants and show that these invariants detect the obstructions to framing a twisted Whitney tower. Together with Milnor invariants, these higher-order invariants are shown to classify the existence of (twisted) Whitney towers of increasing order in the 4-ball. A conjecture regarding the nontriviality of the higher-order Arf invariants is formulated, and related implications for filtrations of string links and 3-dimensional homology cylinders are described. PMID:21518909
Unambiguous formalism for higher order Lagrangian field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris
2009-11-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails
NASA Astrophysics Data System (ADS)
Kawai, Reiichiro
2016-10-01
We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
The Lagrangian-Hamiltonian formalism for higher order field theories
NASA Astrophysics Data System (ADS)
Vitagliano, Luca
2010-06-01
We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.
Li, Xing; Yeung, Darwin F; Fiegen, Ann M; Sodroski, Joseph
2011-08-12
Many tripartite motif (TRIM) proteins self-associate, forming dimers and higher order complexes. For example, dimers of TRIM5α, a host factor that restricts retrovirus infection, assemble into higher order arrays on the surface of the viral capsid, resulting in an increase in avidity. Here we show that the higher order association of different TRIM proteins exhibits a wide range of efficiencies. Homologous association (self-association) was more efficient than the heterologous association of different TRIM proteins, indicating that specificity determinants of higher order self-association exist. To investigate the structural determinants of higher order self-association, we studied TRIM mutants and chimeras. These studies revealed the following: 1) the RING domain contributes to the efficiency of higher order self-association, which enhances the binding of TRIM5α to the human immunodeficiency virus (HIV-1) capsid; 2) the RING and B-box 2 domains work together as a homologous unit to promote higher order association of dimers; 3) dimerization is probably required for efficient higher order self-association; 4) the Linker 2 region contributes to higher order self-association, independently of effects of Linker 2 changes on TRIM dimerization; and 5) for efficiently self-associating TRIM proteins, the B30.2(SPRY) domain is not required for higher order self-association. These results support a model in which both ends of the core TRIM dimer (RING-B-box 2 at one end and Linker 2 at the other) contribute to the formation of higher order arrays.
Extraction and absorption of higher order modes in room temperature accelerators
Rimmer, R.A.
1993-02-01
This paper describes methods for extracting and absorbing unwanted higher-order modes (HOMs) from normal-conducting accelerator structures. An introduction to the problems caused by HOMs is followed by a brief history of the development of techniques to suppress them, and some examples taken from existing and planned accelerators. These include damped radio frequency (RF) cavities for storage rings such as the proposed PEP-II B factory and accelerating structures for future linear collider projects.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
Dynamics and control of higher-order nonholonomic systems
NASA Astrophysics Data System (ADS)
Rubio Hervas, Jaime
A theoretical framework is established for the control of higher-order nonholonomic systems, defined as systems that satisfy higher-order nonintegrable constraints. A model for such systems is developed in terms of differential-algebraic equations defined on a higher-order tangent bundle. A number of control-theoretic properties such as nonintegrability, controllability, and stabilizability are presented. Higher-order nonholonomic systems are shown to be strongly accessible and, under certain conditions, small time locally controllable at any equilibrium. There are important examples of higher-order nonholonomic systems that are asymptotically stabilizable via smooth feedback, including space vehicles with multiple slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open liquid containers, as well as an interesting class of systems that do not admit asymptotically stabilizing continuous static or dynamic state feedback. Specific assumptions are introduced to define this class, which includes important examples of robotic systems. A discontinuous nonlinear feedback control algorithm is developed to steer any initial state to the equilibrium at the origin. The applicability of the theoretical development is illustrated through two examples: control of a planar PPR robot manipulator subject to a jerk constraint and control of a point mass moving on a constant torsion curve in a three dimensional space.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Modeling Higher-Order Correlations within Cortical Microcolumns
Köster, Urs; Sohl-Dickstein, Jascha; Gray, Charles M.; Olshausen, Bruno A.
2014-01-01
We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of 20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to 45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which case the higher order models continued to perform best. These results demonstrate the importance of higher-order interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation and evaluation. PMID:24991969
Modeling higher-order correlations within cortical microcolumns.
Köster, Urs; Sohl-Dickstein, Jascha; Gray, Charles M; Olshausen, Bruno A
2014-07-01
We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of 20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to 45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which case the higher order models continued to perform best. These results demonstrate the importance of higher-order interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation and evaluation.
Higher-order discrete variational problems with constraints
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín de Diego, David; Zuccalli, Marcela
2013-09-01
An interesting family of geometric integrators for Lagrangian systems can be defined using discretizations of the Hamilton's principle of critical action. This family of geometric integrators is called variational integrators. In this paper, we derive new variational integrators for higher-order Lagrangian mechanical system subjected to higher-order constraints. From the discretization of the variational principles, we show that our methods are automatically symplectic and, in consequence, with a very good energy behavior. Additionally, the symmetries of the discrete Lagrangian imply that momentum is conserved by the integrator. Moreover, we extend our construction to variational integrators where the Lagrangian is explicitly time-dependent. Finally, some motivating applications of higher-order problems are considered; in particular, optimal control problems for explicitly time-dependent underactuated systems and an interpolation problem on Riemannian manifolds.
Higher order annular Gaussian laser beam propagation in free space
NASA Astrophysics Data System (ADS)
Eyyuboglu, Halil T.; Yenice, Yusuf E.; Baykal, Yahya K.
2006-03-01
Propagation of higher order annular Gaussian (HOAG) laser beams in free space is examined. HOAG beams are defined as the difference of two Hermite-Gaussian (HG) beams; thus, they can be produced by subtracting a smaller beam from a larger beam, that are cocentered and both possess HG mode field distributions. Such beams can be considered as a generalization of the well-known annular Gaussian beams. We formulate the source and receiver plane characteristics and kurtosis parameter of HOAG beams propagating in free space and evaluate them numerically. In comparison to HG beams, HOAG beams have a broader beam size with outer lobes of kidney shape. The amount of received power within the same receiver aperture size, that is, power in bucket, is generally lower for higher order beams. The convergence of the kurtosis parameter to an asymptotic value for higher order beams takes much longer propagation distances compared to zero-order beams.
Higher Order Lagrange Finite Elements In M3D
J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau
2004-12-17
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.
Higher-order theories from the minimal length
NASA Astrophysics Data System (ADS)
Dias, M.; Hoff da Silva, J. M.; Scatena, E.
2016-06-01
We show that the introduction of a minimal length in the context of noncommutative space-time gives rise (after some considerations) to higher-order theories. We then explicitly demonstrate how these higher-derivative theories appear as a generalization of the standard electromagnetism and general relativity by applying a consistent procedure that modifies the original Maxwell and Einstein-Hilbert actions. In order to set a bound on the minimal length, we compare the deviations from the inverse-square law with the potentials obtained in the higher-order theories and discuss the validity of the results. The introduction of a quantum bound for the minimal length parameter β in the higher-order QED allows us to lower the actual limits on the parameters of higher-derivative gravity by almost half of their order of magnitude.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves.
Detection of small target using recursive higher order statistics
NASA Astrophysics Data System (ADS)
Hou, Wang; Sun, Hongyuan; Lei, Zhihui
2014-02-01
In this paper, a recursive higher order statistics algorithm is proposed for small target detection in temporal domain. Firstly, the background of image sequence is normalized. Then, the higher order statistics are recursively solved in image sequence to obtain the feature image. Finally, the feature image is segmented with threshold to detect the small target. To validate the algorithm proposed in this paper, five simulated and one semi-simulation image sequences are created. The ROC curves are employed for evaluation of experimental results. Experiment results show that our method is very effective for small target detection.
Vakonomic Constraints in Higher-Order Classical Field Theory
NASA Astrophysics Data System (ADS)
Campos, Cédric M.
2010-07-01
We propose a differential-geometric setting for the dynamics of a higher-order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both, the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher-order jet bundle and the canonical multisymplectic form on its affine dual. The result is that we obtain a unique and global intrinsic description of the dynamics. The case of vakonomic constraints is also studied within this formalism.
Higher-Order Airy Scaling in Deformed Dyck Paths
NASA Astrophysics Data System (ADS)
Haug, Nils; Olde Daalhuis, Adri; Prellberg, Thomas
2017-03-01
We introduce a deformed version of Dyck paths (DDP), where additional to the steps allowed for Dyck paths, `jumps' orthogonal to the preferred direction of the path are permitted. We consider the generating function of DDP, weighted with respect to their half-length, area and number of jumps. This represents the first example of an exactly solvable two-dimensional lattice vesicle model showing a higher-order multicritical point. Applying the generalized method of steepest descents, we see that the associated two-variable scaling function is given by the logarithmic derivative of a generalized (higher-order) Airy integral.
Higher-order figure discrimination in fly and human vision.
Aptekar, Jacob W; Frye, Mark A
2013-08-19
Visually-guided animals rely on their ability to stabilize the panorama and simultaneously track salient objects, or figures, that are distinct from the background in order to avoid predators, pursue food resources and mates, and navigate spatially. Visual figures are distinguished by luminance signals that produce coherent motion cues as well as more enigmatic 'higher-order' statistical features. Figure discrimination is thus a complex form of motion vision requiring specialized neural processing. In this minireview, we will highlight recent advances in understanding the perceptual, behavioral, and neurophysiological basis of higher-order figure detection in flies, much of which is grounded in the historical perspective and mechanistic underpinnings of human psychophysics.
Higher-Order Item Response Models for Hierarchical Latent Traits
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming
2013-01-01
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Higher order microfibre modes for dielectric particle trapping and propulsion.
Maimaiti, Aili; Truong, Viet Giang; Sergides, Marios; Gusachenko, Ivan; Nic Chormaic, Síle
2015-03-13
Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks.
Higher Order Language Competence and Adolescent Mental Health
ERIC Educational Resources Information Center
Cohen, Nancy J.; Farnia, Fataneh; Im-Bolter, Nancie
2013-01-01
Background: Clinic and community-based epidemiological studies have shown an association between child psychopathology and language impairment. The demands on language for social and academic adjustment shift dramatically during adolescence and the ability to understand the nonliteral meaning in language represented by higher order language…
Improving Reading Comprehension through Higher-Order Thinking Skills
ERIC Educational Resources Information Center
McKown, Brigitte A.; Barnett, Cynthia L.
2007-01-01
This action research project report documents the action research project that was conducted to improve reading comprehension with second grade and third grade students. The teacher researchers intended to improve reading comprehension by using higher-order thinking skills such as predicting, making connections, visualizing, inferring,…
Multimedia: A Gateway to Higher-Order Thinking Skills.
ERIC Educational Resources Information Center
Fontana, Lynn A.; And Others
In June 1990, the research group at George Mason University (Virginia) Center for Interactive Educational Technology began designing a multimedia prototype to foster higher-order thinking skills in social studies. As an initial step, the Civil War Interactive Project using the Ken Burns documentary, "The Civil War," was used in a design…
Higher-Order Latent Trait Models for Cognitive Diagnosis
ERIC Educational Resources Information Center
de la Torre, Jimmy; Douglas, Jeffrey A.
2004-01-01
Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative…
Constrained variational calculus for higher order classical field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David
2010-11-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Higher-order structure of rRNA
NASA Technical Reports Server (NTRS)
Gutell, R. R.; Woese, C. R.
1986-01-01
A comparative search for phylogenetically covarying basepair replacements within potential helices has been the only reliable method to determine the correct secondary structure of the 3 rRNAs, 5S, 16S, and 23S. The analysis of 16S from a wide phylogenetic spectrum, that includes various branches of the eubacteria, archaebacteria, eucaryotes, in addition to the mitochondria and chloroplast, is beginning to reveal the constraints on the secondary structures of these rRNAs. Based on the success of this analysis, and the assumption that higher order structure will also be phylogenetically conserved, a comparative search was initiated for positions that show co-variation not involved in secondary structure helices. From a list of potential higher order interactions within 16S rRNA, two higher-order interactions are presented. The first of these interactions involves positions 570 and 866. Based on the extent of phylogenetic covariation between these positions while maintaining Watson-Crick pairing, this higher-order interaction is considered proven. The other interaction involves a minimum of six positions between the 1400 and 1500 regions of the 16S rRNA. Although these patterns of covariation are not as striking as the 570/866 interaction, the fact that they all exist in an anti-parallel fashion and that experimental methods previously implicated these two regions of the molecule in tRNA function suggests that these interactions be given serious consideration.
Computer-Mediated Assessment of Higher-Order Thinking Development
ERIC Educational Resources Information Center
Tilchin, Oleg; Raiyn, Jamal
2015-01-01
Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…
Building Higher-Order Markov Chain Models with EXCEL
ERIC Educational Resources Information Center
Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.
2004-01-01
Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…
Using Higher Order Computer Tasks with Disadvantaged Students.
ERIC Educational Resources Information Center
Anderson, Neil
A pilot program initially designed for a 12-year-old girl with mild to moderate intellectual disabilities in higher order computer tasks was developed for a larger group of students with similar disabilities enrolled in fifth and sixth grades (ages 9-12) at three different schools. An examination of the original pilot study was undertaken to…
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
A Model for the National Assessment of Higher Order Thinking.
ERIC Educational Resources Information Center
Paul, Richard; Nosich, Gerald M.
This document provides a model for the national assessment of higher order thinking and consists of a preface and four main sections. The preface discusses the problem of lower order learning, summarizes the state of research into critical thinking and instructional reform, and explains the structure of the paper. Section 1 of the paper describes…
Developing Higher-Order Thinking Skills through WebQuests
ERIC Educational Resources Information Center
Polly, Drew; Ausband, Leigh
2009-01-01
In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…
Higher order microfibre modes for dielectric particle trapping and propulsion
Maimaiti, Aili; Truong, Viet Giang; Sergides, Marios; Gusachenko, Ivan; Nic Chormaic, Síle
2015-01-01
Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks. PMID:25766925
Stable static structures in models with higher-order derivatives
Bazeia, D.; Lobão, A.S.; Menezes, R.
2015-09-15
We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.
Toddlers infer higher-order relational principles in causal learning.
Walker, Caren M; Gopnik, Alison
2014-01-01
Children make inductive inferences about the causal properties of individual objects from a very young age. When can they infer higher-order relational properties? In three experiments, we examined 18- to 30-month-olds' relational inferences in a causal task. Results suggest that at this age, children are able to infer a higher-order relational causal principle from just a few observations and use this inference to guide their own subsequent actions and bring about a novel causal outcome. Moreover, the children passed a revised version of the relational match-to-sample task that has proven very difficult for nonhuman primates. The findings are considered in light of their implications for understanding the nature of relational and causal reasoning, and their evolutionary origins.
Promoting higher order thinking skills using inquiry-based learning
NASA Astrophysics Data System (ADS)
Madhuri, G. V.; S. S. N Kantamreddi, V.; Goteti, L. N. S. Prakash
2012-05-01
Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in chemistry. Laboratory exercises are designed based on Bloom's taxonomy and a just-in-time facilitation approach is used. A pre-laboratory discussion outlining the theory of the experiment and its relevance is carried out to enable the students to analyse real-life problems. The performance of the students is assessed based on their ability to perform the experiment, design new experiments and correlate practical utility of the course module with real life. The novelty of the present approach lies in the fact that the learning outcomes of the existing experiments are achieved through establishing a relationship with real-world problems.
A higher-order-statistics-based approach to face detection
NASA Astrophysics Data System (ADS)
Li, Chunming; Li, Yushan; Wu, Ruihong; Li, Qiuming; Zhuang, Qingde; Zhang, Zhan
2005-02-01
A face detection method based on higher order statistics is proposed in this paper. Firstly, the object model and noise model are established to extract moving object from the background according to the fact that higher order statistics is nonsense to Gaussian noise. Secondly, the improved Sobel operator is used to extract the edge image of moving object. And a projection function is used to detect the face in the edge image. Lastly, PCA(Principle Component Analysis) method is used to do face recognition. The performance of the system is evaluated on the real video sequences. It is shown that the proposed method is simple and robust to the detection of human faces in the video sequences.
Higher order interactions in magneto-inductive waveguides
NASA Astrophysics Data System (ADS)
Syms, R. R. A.; Sydoruk, O.; Shamonina, E.; Solymar, L.
2007-03-01
The properties of periodic chains of magnetically coupled L-C resonators supporting magneto-inductive (MI) waves are examined in the case when non-nearest neighbour interactions are significant. The variation of the coupling coefficient with separation is measured using resonant elements based on printed circuit board inductors and surface mount capacitors, and used to predict the S-parameters and dispersion characteristics of magnetoinductive waveguides. Good agreement with experimental measurements is obtained when higher order interactions are included. The significance of non-nearest neighbour interactions in more general MI wave devices is then highlighted in an example problem involving reflection from a waveguide discontinuity, and the influence of higher order evanescent waves is discussed.
Higher order matrix differential equations with singular coefficient matrices
Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.
2015-03-10
In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.
Higher order relativistic galaxy number counts: dominating terms
NASA Astrophysics Data System (ADS)
TrØst Nielsen, Jeppe; Durrer, Ruth
2017-03-01
We review the number counts to second order concentrating on the terms which dominate on sub horizon scales. We re-derive the result for these terms and compare it with the different versions found in the literature. We generalize our derivation to higher order terms, especially the third order number counts which are needed to compute the 1-loop contribution to the power spectrum.
Higher Order Mode Coupler Heating in Continuous Wave Operation
NASA Astrophysics Data System (ADS)
Solyak, N.; Awida, M.; Hocker, A.; Khabibobulline, T.; Lunin, A.
Electromagnetic heating due to higher order modes (HOM) propagation is particularly a concern for continuous wave (CW) particle accelerator machines. Power on the order of several watts could flow out of the cavity's HOM ports in CW operations. The upgrade of the Linac Coherent Light Source (LCLS-II) at SLAC requires a major modification of the design of the higher order mode (HOM) antenna and feed through of the conventional ILC elliptical 9-cell cavity in order to utilize it for LCLS-II. The HOM antenna is required to bear higher RF losses, while relatively maintaining the coupling level of the higher order modes. In this paper, we present a detailed analysis of the heating expected in the HOM coupler with a thorough thermal quench study in comparison with the conventional ILC design. We discuss also how the heat will be removed from the cavity through RF cables with specially designed cooling straps. Finally, we report on the latest experimental results of cavity testing in vertical and horizontal cryostats.
Lipkin method of particle-number restoration to higher orders
NASA Astrophysics Data System (ADS)
Wang, X. B.; Dobaczewski, J.; Kortelainen, M.; Yu, L. F.; Stoitsov, M. V.
2014-07-01
Background: On the mean-field level, pairing correlations are incorporated through the Bogoliubov-Valatin transformation, whereby the particle degrees of freedom are replaced by quasiparticles. This approach leads to a spontaneous breaking of the particle-number symmetry and mixing of states with different particle numbers. In order to restore the particle number, various methods have been employed, which are based on projection approaches before or after variation. Approximate variation-after-projection (VAP) schemes, utilizing the Lipkin method, have mostly been used within the Lipkin-Nogami prescription. Purpose: Without employing the Lipkin-Nogami prescription, and using, instead, states rotated in the gauge space, we derive the Lipkin method of particle-number restoration up to sixth order and we test the convergence and accuracy of the obtained expansion. Methods: We perform self-consistent calculations using the higher-order Lipkin method to restore the particle-number symmetry in the framework of superfluid nuclear energy-density functional theory. We also apply the Lipkin method to a schematic exactly solvable two-level pairing model. Results: Calculations performed in open-shell tin and lead isotopes show that the Lipkin method converges at fourth order and satisfactorily reproduces the VAP ground-state energies and energy kernels. Near closed shells, the higher-order Lipkin method cannot be applied because of a nonanalytic kink in the ground-state energies as a function of the particle number. Conclusions: In open-shell nuclei, the higher-order Lipkin method provides a good approximation to the exact VAP energies. The method is computationally inexpensive, making it particularly suitable, for example, for future optimizations of the nuclear energy density functionals and simultaneous restoration of different symmetries.
An improved higher order panel method for linearized supersonic flow
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.
1978-01-01
An improved higher order panel method for linearized supersonic flow is described. Each panel, defined by four points on the surface, is divided into eight subpanels in such a way that all subpanel and panel edges are contiguous. By prescribing a quadratic distribution of the doublet on each subpanel, the doublet strength is made strictly continuous on the paneled surface. A linear source distribution is also used. Numerical results are smoother and in better agreement with experiment than the previous method with less strict continuity. A brief discussion of superinclined panels used to eliminate interior interference in nacelles is included.
Prominent Higher-Order Contributions to Electronic Recombination
Beilmann, C.; Mokler, P. H.; Bernitt, S.; Keitel, C. H.; Ullrich, J.; Lopez-Urrutia, J. R. Crespo; Harman, Z.
2011-09-30
Intershell higher-order (HO) electronic recombination is reported for highly charged Ar, Fe, and Kr ions, where simultaneous excitation of one K-shell electron and one or two additional L-shell electrons occurs upon resonant capture of a free electron. For the mid-Z region, HO resonance strengths grow unexpectedly strong with decreasing atomic number Z ({proportional_to}Z{sup -4}), such that, for Ar ions the 2nd-order overwhelms the 1st-order resonant recombination considerably. The experimental findings are confirmed by multiconfiguration Dirac-Fock calculations including hitherto neglected excitation pathways.
A new theorem on higher order derivatives of Lyapunov functions.
Meigoli, Vahid; Nikravesh, Seyyed Kamaleddin Yadavar
2009-04-01
The Lyapunov stability analysis method for nonlinear dynamic systems requires a non positive first derivative of the Lyapunov functions along the system's trajectories. In this paper, a new method is developed to relax this requirement. A new sufficient condition is developed for the stability analysis of nonlinear systems, introducing some inequalities for higher order derivatives of the Lyapunov function. The differential inequalities can be considered as a new controllable canonical form linear time invariant system with negative inputs. The stability analysis of a given nonlinear system is then reduced to check if the characteristic equation for the new linear time invariant system is Hurwitz. Some examples are presented to establish the approach.
Determination of higher order accelerations by a functional method
NASA Astrophysics Data System (ADS)
Tudosie, C.
A functional method is developed for the simultaneous determination of all the linear accelerations which exist in the differential equation of a material system dynamics. The method introduces variable angular accelerations of different orders, called direct connection functions, which allow the passing from a linear acceleration of a certain order to that of a higher order. Feedback functions are also introduced which allow the passing from a linear acceleration of a certain order to that of lower orders. This method is applicable to accelerations which occur when passenger trains move rapidly around a curve and at the vertical vibrations of trucks and tractors.
Higher-order polarization singularitites in tailored vector beams
NASA Astrophysics Data System (ADS)
Otte, E.; Alpmann, C.; Denz, C.
2016-07-01
Higher-order polarization singularities embedded in tailored vector beams are introduced and experimentally realized. As holographic modulation allows to define order and location of any vectorial singularity, the surrounding vector field can be dynamically shaped. We demonstrate light fields associated with flowers or spider webs due to regular and even irregular patterns of the orientation of polarization ellipses. Beyond that, not yet investigated hybrid structures are introduced that allow generating networks of flowers and webs in very close vicinity. Our results pave the way to applications of singular optics in spatially extended, optimized optical tweezing and high-resolution imaging.
Higher order software - A methodology for defining software
NASA Technical Reports Server (NTRS)
Hamilton, M.; Zeldin, S.
1976-01-01
Higher order software (HOS) is concerned only with computable functions and relationships. The HOS methodology can be used for the definition of software for multiprogrammed, multiprocessor, or multicomputer systems. A description of HOS methodology is presented, giving attention to questions of formulation, interface correctness, specification language principles, and HOS analyzers. Aspects of system design are considered, and details of software management are discussed. Attention is given to modularity as defined by HOS, frozen module management, the assembly control supervisor, and aspects of reliability and efficiency.
Programming real-time executives in higher order language
NASA Technical Reports Server (NTRS)
Foudriat, E. C.
1982-01-01
Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.
Higher-order-mode fiber optimized for energetic soliton propagation.
Pedersen, Martin E V; Cheng, Ji; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-08-15
We describe the design optimization of a higher-order-mode (HOM) fiber for energetic soliton propagation at wavelengths below 1300 nm. A new HOM fiber is fabricated according to our design criteria. The HOM fiber is pumped at 1045 nm by an energetic femtosecond fiber laser. The soliton self-frequency shift process shifts the center wavelength of the soliton to 1085 nm. The soliton has a temporal duration of 216 fs and a pulse energy of 6.3 nJ. The demonstrated pulse energy is approximately six times higher than the previous record in a solid core fiber at wavelengths below 1300 nm.
Higher Order Mode Properties of Superconducting Two-Spoke Cavities
Hopper, C. S.; Delayen, J. R.; Olave, R. G.
2011-07-01
Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.
Extension of MINOTAUR to higher-order spatial functions
Pevey, R.E.
1999-09-01
MINOTAUR, a generalized multidimensional geometry discrete ordinates kernel that can be used to calculate the particle flow through a complicated geometrical arrangement of materials, has been extended to use higher-order within-node spatial flux expansions. MINOTAUR is an improved version of the CENTAUR code, which was developed at the Savannah River Site by DeHart, Pevey, and Parish for flat intranode flux distributions. CENTAUR was later extended to linear spatial flux shapes by Grove and Pevey. Both of these codes were limited to two-dimensional generalized geometries, for which the regions are bounded by arbitrarily oriented line segments.
Higher-order dynamical effects in Coulomb dissociation
Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.
1995-08-01
Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.
Sandia Higher Order Elements (SHOE) v 0.5 alpha
2013-09-24
SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.
Learning in higher order Boltzmann machines using linear response.
Leisink, M A; Kappen, H J
2000-04-01
We introduce an efficient method for learning and inference in higher order Boltzmann machines. The method is based on mean field theory with the linear response correction. We compute the correlations using the exact and the approximated method for a fully connected third order network of ten neurons. In addition, we compare the results of the exact and approximate learning algorithm. Finally we use the presented method to solve the shifter problem. We conclude that the linear response approximation gives good results as long as the couplings are not too large.
NASA Astrophysics Data System (ADS)
Kozawa, Yuichi; Hibi, Terumasa; Sato, Aya; Horanai, Hibiki; Kurihara, Makoto; Hashimoto, Nobuyuki; Yokoyama, Hiroyuki; Nemoto, Tomomi; Sato, Shunichi
2011-08-01
We demonstrate that the lateral resolution of confocal laser scanning microscopy is dramatically improved by a higher-order radially polarized (HRP) beam with six concentric rings. This beam was generated simply by inserting liquid crystal devices in front of an objective lens. An HRP beam visualized aggregated 0.17 μm beads individually and is also applicable to biological imaging. This method can extend the capability of conventional laser scanning microscopes without modification of the system, with the exception of the addition of the liquid crystal devices in the optical path.
Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes
Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.
2010-06-01
Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.
New, higher-order, elasticity-based micromechanics model
Williams, T. O.
2003-01-01
The formulation for a new homogenization theory is presented. The theory utilizes a higher-order, elasticity-based cell analysis of a periodic array of unit cells. The unit cell is discretized into subregions or subcells. The displacement field within each subcell is approximated by an (truncated) eigenfunction function expansion of up to fifth order. The governing equations are developed by satisfying the pointwise governing equations of geometrically linear continuum mechanics exactly up through the given order of the subcell displacement fields. The specified governing equations are valid for any type of constitutive model used to describe the behavior of the material in a subcell. The fifth order theory is subsequently reduced to a third order theory. The appropriate reduction of the fifth and third order theories to the first order theory (which corresponds to a variant of the original method of cells (MOC) (Aboudi, 1991) theory) is outlined. The 3D ECM theory correctly reduces to the 2D ECM theory microstructures and the exact 1D theory for bilaminated structures. Comparison of the predicted bulk and local responses with published results indicates that the theory accurately predicts both types of responses. Furthermore, it is shown that the higher order fields introduced coupling effects between the local fields that can result in substantial changes in the predicted bulk inelastic response of a composite.
Higher-order ionosphere modeling for CODE's next reprocessing activities
NASA Astrophysics Data System (ADS)
Lutz, S.; Schaer, S.; Meindl, M.; Dach, R.; Steigenberger, P.
2009-12-01
CODE (the Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Phsyikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the International GNSS Service (IGS) and participates in the first IGS reprocessing campaign, a full reanalysis of GPS data collected since 1994. For a future reanalyis of the IGS data it is planned to consider not only first-order but also higher-order ionosphere terms in the space geodetic observations. There are several works (e.g. Fritsche et al. 2005), which showed a significant and systematic influence of these effects on the analysis results. The development version of the Bernese Software used at CODE is expanded by the ability to assign additional (scaling) parameters to each considered higher-order ionosphere term. By this, each correction term can be switched on and off on normal-equation level and, moreover, the significance of each correction term may be verified on observation level for different ionosphere conditions.
Orchestration of Molecular Information through Higher Order Chemical Recognition
NASA Astrophysics Data System (ADS)
Frezza, Brian M.
Broadly defined, higher order chemical recognition is the process whereby discrete chemical building blocks capable of specifically binding to cognate moieties are covalently linked into oligomeric chains. These chains, or sequences, are then able to recognize and bind to their cognate sequences with a high degree of cooperativity. Principally speaking, DNA and RNA are the most readily obtained examples of this chemical phenomenon, and function via Watson-Crick cognate pairing: guanine pairs with cytosine and adenine with thymine (DNA) or uracil (RNA), in an anti-parallel manner. While the theoretical principles, techniques, and equations derived herein apply generally to any higher-order chemical recognition system, in practice we utilize DNA oligomers as a model-building material to experimentally investigate and validate our hypotheses. Historically, general purpose information processing has been a task limited to semiconductor electronics. Molecular computing on the other hand has been limited to ad hoc approaches designed to solve highly specific and unique computation problems, often involving components or techniques that cannot be applied generally in a manner suitable for precise and predictable engineering. Herein, we provide a fundamental framework for harnessing high-order recognition in a modular and programmable fashion to synthesize molecular information process networks of arbitrary construction and complexity. This document provides a solid foundation for routinely embedding computational capability into chemical and biological systems where semiconductor electronics are unsuitable for practical application.
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
Nyman, Tommi; Valtonen, Mia; Aspi, Jouni; Ruokonen, Minna; Kunnasranta, Mervi; Palo, Jukka U
2014-09-01
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea 'mainland' and two the 'aquatic islands' composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.
Nyman, Tommi; Valtonen, Mia; Aspi, Jouni; Ruokonen, Minna; Kunnasranta, Mervi; Palo, Jukka U
2014-01-01
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea. PMID:25535558
Higher-Order Interference in Extensions of Quantum Theory
NASA Astrophysics Data System (ADS)
Lee, Ciarán M.; Selby, John H.
2016-10-01
Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum computational speed-ups and provides a striking example of a quantum phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a variant of the standard two slit experiment, in which there are three, rather than two, slits. The interference pattern in this set-up can be written in terms of the two and one slit patterns obtained by blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern cannot be written as a sum of the one slit patterns. This was first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories that do exhibit higher-order interference suffer from pathological—or at least undesirable—features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory—analogous to the emergence of classical physics from quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to all orders. This feature of Życzkowski's theory is argued not to be a genuine phenomenon, but to
Visualizing Higher Order Finite Elements: FY05 Yearly Report.
Thompson, David; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elementsinto regions appropriate for isosurfacing and proves the conditions under which thealgorithm will terminate. Finite elements are used to create piecewise polynomialapproximants to the solution of partial differential equations for which no analyticalsolution exists. These polynomials represent fields such as pressure, stress, and mo-mentim. In the past, these polynomials have been linear in each parametric coordinate.Each polynomial coefficient must be uniquely determined by a simulation, and thesecoefficients are called degrees of freedom. When there are not enough degrees of free-dom, simulations will typically fail to produce a valid approximation to the solution.Recent work has shown that increasing the number of degrees of freedom by increas-ing the order of the polynomial approximation (instead of increasing the number offinite elements, each of which has its own set of coefficients) can allow some typesof simulations to produce a valid approximation with many fewer degrees of freedomthan increasing the number of finite elements alone. However, once the simulation hasdetermined the values of all the coefficients in a higher-order approximant, tools donot exist for visual inspection of the solution.This report focuses on a technique for the visual inspection of higher-order finiteelement simulation results based on decomposing each finite element into simplicialregions where existing visualization algorithms such as isosurfacing will work. Therequirements of the isosurfacing algorithm are enumerated and related to the placeswhere the partial derivatives of the polynomial become zero. The original isosurfacingalgorithm is then applied to each of these regions in turn.3 AcknowledgementThe authors would like to thank David Day and Louis Romero for their insight into poly-nomial system solvers and the LDRD Senior Council for the opportunity to pursue thisresearch. The authors were
Higher-Order Interference in Extensions of Quantum Theory
NASA Astrophysics Data System (ADS)
Lee, Ciarán M.; Selby, John H.
2017-01-01
Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum computational speed-ups and provides a striking example of a quantum phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a variant of the standard two slit experiment, in which there are three, rather than two, slits. The interference pattern in this set-up can be written in terms of the two and one slit patterns obtained by blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern cannot be written as a sum of the one slit patterns. This was first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories that do exhibit higher-order interference suffer from pathological—or at least undesirable—features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory—analogous to the emergence of classical physics from quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to all orders. This feature of Życzkowski's theory is argued not to be a genuine phenomenon, but to
Dependable software through higher-order strategic programming.
Winter, Victor Lono; Fraij, Fares; Roach, Steve
2004-03-01
Program transformation is a restricted form of software construction that can be amenable to formal verification. When successful, the nature of the evidence provided by such a verification is considered strong and can constitute a major component of an argument that a high-consequence or safety-critical system meets its dependability requirements. This article explores the application of novel higher-order strategic programming techniques to the development of a portion of a class loader for a restricted implementation of the Java Virtual Machine (JVM). The implementation is called the SSP and is intended for use in high-consequence safety-critical embedded systems. Verification of the strategic program using ACL2 is also discussed.
Dynamic facilitation picture of a higher-order glass singularity.
Sellitto, Mauro; De Martino, Daniele; Caccioli, Fabio; Arenzon, Jeferson J
2010-12-31
We show that facilitated spin mixtures with a tunable facilitation reproduce, on a Bethe lattice, the simplest higher-order singularity scenario predicted by the mode-coupling theory (MCT) of liquid-glass transition. Depending on the facilitation strength, they yield either a discontinuous glass transition or a continuous one, with no underlying thermodynamic singularity. Similar results are obtained for facilitated spin models on a diluted Bethe lattice. The mechanism of dynamical arrest in these systems can be interpreted in terms of bootstrap and standard percolation and corresponds to a crossover from a compact to a fractal structure of the incipient spanning cluster of frozen spins. Theoretical and numerical simulation results are fully consistent with MCT predictions.
A higher-order theory of emotional consciousness
LeDoux, Joseph E.; Brown, Richard
2017-01-01
Emotional states of consciousness, or what are typically called emotional feelings, are traditionally viewed as being innately programmed in subcortical areas of the brain, and are often treated as different from cognitive states of consciousness, such as those related to the perception of external stimuli. We argue that conscious experiences, regardless of their content, arise from one system in the brain. In this view, what differs in emotional and nonemotional states are the kinds of inputs that are processed by a general cortical network of cognition, a network essential for conscious experiences. Although subcortical circuits are not directly responsible for conscious feelings, they provide nonconscious inputs that coalesce with other kinds of neural signals in the cognitive assembly of conscious emotional experiences. In building the case for this proposal, we defend a modified version of what is known as the higher-order theory of consciousness. PMID:28202735
Revealing Higher Order Protein Structure Using Mass Spectrometry
NASA Astrophysics Data System (ADS)
Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi
2016-06-01
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.
Higher order parabolic approximations of the reduced wave equation
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.
1986-01-01
Asymptotic solutions of order k to the nth are developed for the reduced wave equation. Here k is a dimensionless wave number and n is the arbitrary order of the approximation. These approximations are an extension of geometric acoustics theory, and provide corrections to that theory in the form of multiplicative functions which satisfy parabolic partial differential equations. These corrections account for the diffraction effects caused by variation of the field normal to the ray path and the interaction of these transverse variations with the variation of the field along the ray. The theory is applied to the example of radiation from a piston, and it is demonstrated that the higher order approximations are more accurate for decreasing values of k.
A higher-order Robert-Asselin type time filter
NASA Astrophysics Data System (ADS)
Li, Yong; Trenchea, Catalin
2014-02-01
The Robert-Asselin (RA) time filter combined with leapfrog scheme is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog method, but it also weakly dampens the physical mode and degrades the numerical accuracy. The Robert-Asselin-Williams (RAW) time filter is a modification of the RA filter that reduces the undesired numerical damping of RA filter and increases the accuracy. We propose a higher-order Robert-Asselin (hoRA) type time filter which effectively suppresses the computational modes and achieves third-order accuracy with the same storage requirement as RAW filter. Like RA and RAW filters, the hoRA filter is non-intrusive, and so it would be easily implementable. The leapfrog scheme with hoRA filter is almost as accurate, stable and efficient as the intrusive third-order Adams-Bashforth (AB3) method.
Neutron scattering studies on chromatin higher-order structure
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.
1994-12-31
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.
Efficient multiple time-stepping algorithms of higher order
NASA Astrophysics Data System (ADS)
Demirel, Abdullah; Niegemann, Jens; Busch, Kurt; Hochbruck, Marlis
2015-03-01
Multiple time-stepping (MTS) algorithms allow to efficiently integrate large systems of ordinary differential equations, where a few stiff terms restrict the timestep of an otherwise non-stiff system. In this work, we discuss a flexible class of MTS techniques, based on multistep methods. Our approach contains several popular methods as special cases and it allows for the easy construction of novel and efficient higher-order MTS schemes. In addition, we demonstrate how to adapt the stability contour of the non-stiff time-integration to the physical system at hand. This allows significantly larger timesteps when compared to previously known multistep MTS approaches. As an example, we derive novel predictor-corrector (PCMTS) schemes specifically optimized for the time-integration of damped wave equations on locally refined meshes. In a set of numerical experiments, we demonstrate the performance of our scheme on discontinuous Galerkin time-domain (DGTD) simulations of Maxwell's equations.
Higher order spin effects in inspiralling compact objects binaries
NASA Astrophysics Data System (ADS)
Marsat, Sylvain
2015-04-01
We present recent progress on higher order spin effects in the post-Newtonian dynamics of compact objects binaries. We present first an extension of a Lagrangian formalism for point particle with spins, where finite size effects are represented by an additional multipolar structure. When applied to the case of a spin-induced octupole, the formalism allows for the computation of the cubic-in-spin effects that enter at the order 3.5PN. We also report on results obtained for quadratic-in-spin effects at the next-to-leading order 3PN. In both cases, we recover existing results for the dynamics, and derive for the first time the gravitational wave energy flux and orbital phasing. These results will be useful for the data analysis of the upcoming generation of advanced detectors of gravitational waves. NASA Grant 11-ATP-046.
A higher-order-mode erbium-doped-fiber amplifier.
Nicholson, J W; Fini, J M; DeSantolo, A M; Monberg, E; DiMarcello, F; Fleming, J; Headley, C; DiGiovanni, D J; Ghalmi, S; Ramachandran, S
2010-08-16
We demonstrate the first erbium-doped fiber amplifier operating in a single, large-mode area, higher-order mode. A high-power, fundamental-mode, Raman fiber laser operating at 1480 nm was used as a pump source. Using a UV-written, long-period grating, both pump and 1564 nm signal were converted to the LP(0,10) mode, which had an effective area of 2700 microm(2) at 1550 nm. A maximum output power of 5.8 W at 1564 nm with more than 20 dB of gain in a 2.68 m long amplifier was obtained. The mode profile was undistorted at the highest output power.
Higher Order Intentionality Tasks Are Cognitively More Demanding.
Lewis, Penelope A; Birch, Amy; Hall, Alexander; Dunbar, R I M
2017-03-13
A central assumption that underpins much of the discussion of the role played by social cognition in brain evolution is that social cognition is unusually cognitively demanding. This assumption has never been tested. Here, we use a task in which participants read stories and then answered questions about the stories in a behavioural experiment (39 participants) and an fMRI experiment (17 participants) to show that mentalising requires more time for responses than factual memory of a matched complexity and also that higher orders of mentalising is disproportionately more demanding and requires the recruitment of more neurons in brain regions known to be associated with theory of mind, including insula, posterior STS, temporal pole, and cerebellum. These results have significant implications both for models of brain function and for models of brain evolution.
RNA Seeds Higher Order Assembly of FUS Protein
Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.
2014-01-01
SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778
A higher-order theory of emotional consciousness.
LeDoux, Joseph E; Brown, Richard
2017-03-07
Emotional states of consciousness, or what are typically called emotional feelings, are traditionally viewed as being innately programmed in subcortical areas of the brain, and are often treated as different from cognitive states of consciousness, such as those related to the perception of external stimuli. We argue that conscious experiences, regardless of their content, arise from one system in the brain. In this view, what differs in emotional and nonemotional states are the kinds of inputs that are processed by a general cortical network of cognition, a network essential for conscious experiences. Although subcortical circuits are not directly responsible for conscious feelings, they provide nonconscious inputs that coalesce with other kinds of neural signals in the cognitive assembly of conscious emotional experiences. In building the case for this proposal, we defend a modified version of what is known as the higher-order theory of consciousness.
Higher order statistical moment application for solar PV potential analysis
NASA Astrophysics Data System (ADS)
Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan
2016-10-01
Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.
Intermediary LEO propagation including higher order zonal harmonics
NASA Astrophysics Data System (ADS)
Hautesserres, Denis; Lara, Martin
2017-04-01
Two new intermediary orbits of the artificial satellite problem are proposed. The analytical solutions include higher order effects of the geopotential, and are obtained by means of a torsion transformation applied to the quasi-Keplerian system resulting after the elimination of the parallax simplification, for the first intermediary, and after the elimination of the parallax and perigee simplifications, for the second one. The new intermediaries perform notably well for low Earth orbits propagation, are free from special functions, and result advantageous, both in accuracy and efficiency, when compared to the standard Cowell integration of the J_2 problem, thus providing appealing alternatives for onboard, short-term, orbit propagation under limited computational resources.
Higher order mode propagation in nonuniform circular ducts
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1980-01-01
Higher order mode propagation in a nonuniform circular duct without mean flow was investigated. An approximate wave equation is derived on the assumptions that the duct cross section varies slowly and that mode conversion is negligible. Exact closed form solutions are obtained for a particular class of converging-diverging circular duct which referred to as 'circular cosh duct.' Numerical results are presented in terms of the transmission loss for the various duct shapes and frequencies. The results are applicable to multimodal propagation, single mode propagation, and sound radiation from certain types of contoured inlet ducts, or of sound propagation in a converging-diverging duct of somewhat different shape from a cosh duct.
Higher order mode propagation in nonuniform circular ducts
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1980-01-01
This paper presents an analytical investigation of higher order mode propagation in a nonuniform circular duct without mean flow. An approximate wave equation is derived on the assumptions that the duct cross section varies slowly and that mode conversion is negligible. Exact closed form solutions are obtained for a particular class of converging-diverging circular duct which is here referred to as 'circular cosh duct'. Numerical results are presentd in terms of the transmission loss for the various duct shapes and frequencies. The results are applicable to studies of multimodal propagation as well as single mode propagation. The results are also applicable to studies of sound radiation from certain types of contoured inlet ducts, or of sound propagation in a converging-diverging duct of somewhat different shape from a cosh duct.
Higher-order resonances in a Stark decelerator
Meerakker, Sebastiaan Y.T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard
2005-05-15
The motion of polar molecules can be controlled by time-varying inhomogeneous electric fields. In a Stark decelerator, this is exploited to select a fraction of a molecular beam that is accelerated, transported, or decelerated. Phase stability ensures that the selected bunch of molecules is kept together throughout the deceleration process. In this paper an extended description of phase stability in a Stark decelerator is given, including higher-order effects. This analysis predicts a wide variety of resonances that originate from the spatial and temporal periodicity of the electric fields. These resonances are experimentally observed using a beam of OH ({sup 2}{pi}{sub 3/2},v=0,J=3/2) radicals passing through a Stark decelerator.
Higher-order harmonics in bleached silver halide holograms
NASA Astrophysics Data System (ADS)
Bányász, I.
2006-09-01
A large number of plane wave holograms were recorded in Agfa-Gevaert 8E75HD holographic plates, at a wide range of bias exposures and fringe visibilities. The plates were processed by various combinations of developers (AAC, Pyrogallol and Catechol) and bleaching agents (R-9 and EDTA). The phase gratings were studied by phase-contrast microscopy, using a high-power immersion (100×) objective. The phase-contrast photomicrographs were Fourier analysed. Thus, first-, second-, and third-order modulations of the refractive index as a function of bias exposure and visibility of the recording interference pattern could be determined. The ratio of the amplitudes of higher-order modulations to that of the first-order can serve as a measure of the nonlinearity of the holographic recording.
Chemical probes for higher-order structure in RNA.
Peattie, D A; Gilbert, W
1980-01-01
Three chemical reactions can probe the secondary and tertiary interactions of RNA molecules in solution. Dimethyl sulfate monitors the N-7 of guanosines and senses tertiary interactions there, diethyl pyrocarbonate detects stacking of adenosines, and an alternate dimethyl sulfate reaction examines the N-3 of cytidines and thus probes base pairing. The reactions work between 0 degrees C and 90 degrees C and at pH 4.5--8.5 in a variety of buffers. As an example we follow the progressive denaturation of yeast tRNAPhe terminally labeled with 32P as the tertiary and secondary structures sequentially melt out. A single autoradiograph of a terminally labeled molecule locates regions of higher-order structure and identifies the bases involved. Images PMID:6159633
Higher Order Mode Damping Simulation and Multipacting Analysis
NASA Astrophysics Data System (ADS)
Xiao, Liling
2015-10-01
When the beam is passing through an accelerator, it will generate higher order modes (HOM), which will affect to the beam quality especially in high energy accelerators such as International Linear accelerator Collider (ILC). In order to preserve the beam quality, HOM couplers are required to be installed to extract HOM power. Most of HOM couplers are 3D complex structures including small features. In addition, many physics process are involved in HOM coupler design such as RF heating and multipacting. Numerical modeling and simulation are essential for HOM coupler design and optimization for successful operation of high energy accelerators. SLAC developed 3D finite element parallel electromagnetics code suite ACE3P can be used to accelerator modeling with higher accuracy in fast turnaround time. In this paper, ACE3P application for HOM damping simulation and multipating analysis is presented for ILC 3.9 GHz crab cavity.
Higher order time integration methods for two-phase flow
NASA Astrophysics Data System (ADS)
Kees, Christopher E.; Miller, Cass T.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.
Higher order mode damping in an ALS test cavity
Jacob, A.F.; Lamberston, G.R. ); Barry, W. )
1990-06-01
The higher order mode attenuation scheme proposed for the Advanced Light Source accelerating cavities consists of two broad-band dampers placed 90{degrees} apart on the outer edge. In order to assess the damping efficiency a test assembly was built. The HOM damping was obtained by comparing the peak values of the transmission through the cavity for both the damped and the undamped case. Because of the high number of modes and frequency shifts due to the damping gear, the damping was assessed statistically, by averaging over several modes. In the frequency range from 1.5 to 5.5 GHz, average damping greater than 100 was obtained. 1 ref., 6 figs.
Inflationary scenarios in Starobinsky model with higher order corrections
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek
2015-06-17
We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} ,λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.
Pulse transmission transmitter including a higher order time derivate filter
Dress, Jr., William B.; Smith, Stephen F.
2003-09-23
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Higher-order automatic differentiation of mathematical functions
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Polymer quantization, stability and higher-order time derivative terms
NASA Astrophysics Data System (ADS)
Cumsille, Patricio; Reyes, Carlos M.; Ossandon, Sebastian; Reyes, Camilo
2016-03-01
The possibility that fundamental discreteness implicit in a quantum gravity theory may act as a natural regulator for ultraviolet singularities arising in quantum field theory has been intensively studied. Here, along the same expectations, we investigate whether a nonstandard representation called polymer representation can smooth away the large amount of negative energy that afflicts the Hamiltonians of higher-order time derivative theories, rendering the theory unstable when interactions come into play. We focus on the fourth-order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic oscillators one producing positive energy and the other negative energy. As expected, the Schrödinger quantization of such model leads to the stability problem or to negative norm states called ghosts. Within the framework of polymer quantization we show the existence of new regions where the Hamiltonian can be defined well bounded from below.
Vehicle track segmentation using higher order random fields
Quach, Tu -Thach
2017-01-09
Here, we present an approach to segment vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times. The approach uses multiscale higher order random field models to capture track statistics, such as curvatures and their parallel nature, that are not currently utilized in existing methods. These statistics are encoded as 3-by-3 patterns at different scales. The model can complete disconnected tracks often caused by sensor noise and various environmental effects. Coupling the model with a simple classifier, our approach is effective at segmenting salient tracks. We improve the F-measure onmore » a standard vehicle track data set to 0.963, up from 0.897 obtained by the current state-of-the-art method.« less
Inflationary scenarios in Starobinsky model with higher order corrections
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek E-mail: Zygmunt.Lalak@fuw.edu.pl
2015-06-01
We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} , λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.
Higher-order phase transitions on financial markets
NASA Astrophysics Data System (ADS)
Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.
2010-08-01
Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched
Genetic Diversity of the Ring-Tailed Lemur (Lemur catta) in South-Central Madagascar.
Clarke, Tara A; Gray, Olivia; Gould, Lisa; Burrell, Andrew S
2015-01-01
Madagascar's lemurs, now deemed the most endangered group of mammals, represent the highest primate conservation priority in the world. Due to anthropogenic disturbances, an estimated 10% of Malagasy forest cover remains. The endangered Lemur catta is endemic to the southern regions of Madagascar and now occupies primarily fragmented forest habitats. We examined the influence of habitat fragmentation and isolation on the genetic diversity of L. catta across 3 different forest fragments in south-central Madagascar. Our analysis revealed moderate levels of genetic diversity. Genetic differentiation among the sites ranged from 0.05 to 0.11. These data suggest that the L. catta populations within south-central Madagascar have not yet lost significant genetic variation. However, due to ongoing anthropogenic threats faced by ring-tailed lemurs, continued conservation and research initiatives are imperative for long-term viability of the species.
An initial framework for the language of higher-order thinking mathematics practices
NASA Astrophysics Data System (ADS)
Staples, Megan E.; Truxaw, Mary P.
2012-09-01
This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.
A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios
NASA Astrophysics Data System (ADS)
Yue, Wei; Wang, Yuping
2017-01-01
Due to the important effect of the higher order moments to portfolio returns, the aim of this paper is to make use of the third and fourth moments for fuzzy multi-objective portfolio selection model. Firstly, in order to overcome the low diversity of the obtained solution set and lead to corner solutions for the conventional higher moment portfolio selection models, a new entropy function based on Minkowski measure is proposed as a new objective function and a novel fuzzy multi-objective weighted possibilistic higher order moment portfolio model is presented. Secondly, to solve the proposed model efficiently, a new multi-objective evolutionary algorithm is designed. Thirdly, several portfolio performance evaluation techniques are used to evaluate the performance of the portfolio models. Finally, some experiments are conducted by using the data of Shanghai Stock Exchange and the results indicate the efficiency and effectiveness of the proposed model and algorithm.
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
Non-rigid registration using higher-order mutual information
NASA Astrophysics Data System (ADS)
Rueckert, D.; Clarkson, M. J.; Hill, D. L. G.; Hawkes, D. J.
2000-03-01
Non-rigid registration of multi-modality images is an important tool for assessing temporal and structural changesbetween images. For rigid registration, voxel similarity measures like mutual information have been shown to alignimages from different modalities accurately and robustly. For non-rigid registration, mutual information can besensitive to local variations of intensity which in MR images may be caused by RF inhomogeneity. The reasonfor the sensitivity of mutual information towards intensity variations stems from the fact that mutual informationignores any spatial information. In this paper we propose an extension of the mutual information framework whichincorporates spatial information about higher-order image structure into the registration process and has the potentialto improve the accuracy and robustness of non-rigid registration in the presence of intensity variations. We haveapplied the non-rigid registration algorithm to a number of simulated MR brain images of a digital phantom whichhave been degraded by a simulated intensity shading and a known deformation. In addition, we have applied thealgorithm for the non-rigid registration of eight pre- and post-operative brain MR images which were acquired withan interventional MR scanner and therefore have substantial intensity shading due to RF field inhomogeneities. Inall cases the second-order estimate of mutual information leads to robust and accurate registration.
Image denoising using the higher order singular value decomposition.
Rajwade, Ajit; Rangarajan, Anand; Banerjee, Arunava
2013-04-01
In this paper, we propose a very simple and elegant patch-based, machine learning technique for image denoising using the higher order singular value decomposition (HOSVD). The technique simply groups together similar patches from a noisy image (with similarity defined by a statistically motivated criterion) into a 3D stack, computes the HOSVD coefficients of this stack, manipulates these coefficients by hard thresholding, and inverts the HOSVD transform to produce the final filtered image. Our technique chooses all required parameters in a principled way, relating them to the noise model. We also discuss our motivation for adopting the HOSVD as an appropriate transform for image denoising. We experimentally demonstrate the excellent performance of the technique on grayscale as well as color images. On color images, our method produces state-of-the-art results, outperforming other color image denoising algorithms at moderately high noise levels. A criterion for optimal patch-size selection and noise variance estimation from the residual images (after denoising) is also presented.
A general higher-order remap algorithm for ALE calculations
Chiravalle, Vincent P
2011-01-05
A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.
Pressure and higher-order spectra for homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Pullin, D. I.; Rogallo, R. S.
1994-01-01
The spectra of the pressure, and other higher-order quantities including the dissipation, the enstrophy, and the square of the longitudinal velocity derivative are computed using data obtained from direct numerical simulation of homogeneous isotropic turbulence at Taylor-Reynolds numbers R(sub lambda) in the range 38 - 170. For the pressure spectra we find reasonable collapse in the dissipation range (of the velocity spectrum) when scaled in Kolmogorov variables and some evidence, which is not conclusive, for the existence of a k(exp -7/3) inertial range where k = absolute value of K, is the modulus of the wavenumber. The power spectra of the dissipation, the enstrophy, and the square of the longitudinal velocity derivative separate in the dissipation range, but appear to converge together in the short inertial range of the simulations. A least-squares curve-fit in the dissipation range for one value of R(sub lambda) = 96 gives a form for the spectrum of the dissipation as k(exp 0)exp(-Ck eta), for k(eta) greater than 0.2, where eta is the Kolmogorov length and C is approximately equal to 2.5.
Higher-order graph wavelets and sparsity on circulant graphs
NASA Astrophysics Data System (ADS)
Kotzagiannidis, Madeleine S.; Dragotti, Pier Luigi
2015-08-01
The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work, we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications including image processing and social network theory, whereby clusters can be modelled as circulant graphs, respectively. We present a set of novel graph wavelet filter-bank constructions, which annihilate higher-order polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness and vanishing moments, which further improve performance compared to traditional methods.
Higher-order nonclassical effects in fluctuating-loss channels
NASA Astrophysics Data System (ADS)
Bohmann, M.; Sperling, J.; Semenov, A. A.; Vogel, W.
2017-01-01
We study the evolution of higher-order nonclassicality and entanglement criteria in atmospheric fluctuating-loss channels. By formulating input-output relations for the matrix of moments, we investigate the influence of such channels on the corresponding quantumness criteria. This generalization of our previous work on Gaussian entanglement [M. Bohmann et al., Phys. Rev. A 94, 010302(R) (2016), 10.1103/PhysRevA.94.010302] not only exploits second-order-based scenarios, but it also provides a detailed investigation of nonclassicality and entanglement in non-Gaussian and multimode radiation fields undergoing a fluctuating attenuation. That is, various examples of criteria and states are studied in detail, unexpected effects, e.g., the dependency of the squeezing transfer on the coherent displacement, are discovered, and it is demonstrated that non-Gaussian entanglement can be more robust against atmospheric losses than Gaussian one. Additionally, we propose a detection scheme for measuring the considered moments after propagation through the atmosphere. Therefore, our results may help to develop, improve, and optimize non-Gaussian sources of quantum light for applications in free-space quantum communication.
Higher order SVD analysis for dynamic texture synthesis.
Costantini, Roberto; Sbaiz, Luciano; Süsstrunk, Sabine
2008-01-01
Videos representing flames, water, smoke, etc., are often defined as dynamic textures: "textures" because they are characterized by the redundant repetition of a pattern and "dynamic" because this repetition is also in time and not only in space. Dynamic textures have been modeled as linear dynamic systems by unfolding the video frames into column vectors and describing their trajectory as time evolves. After the projection of the vectors onto a lower dimensional space by a singular value decomposition (SVD), the trajectory is modeled using system identification techniques. Synthesis is obtained by driving the system with random noise. In this paper, we show that the standard SVD can be replaced by a higher order SVD (HOSVD), originally known as Tucker decomposition. HOSVD decomposes the dynamic texture as a multidimensional signal (tensor) without unfolding the video frames on column vectors. This is a more natural and flexible decomposition, since it permits us to perform dimension reduction in the spatial, temporal, and chromatic domain, while standard SVD allows for temporal reduction only. We show that for a comparable synthesis quality, the HOSVD approach requires, on average, five times less parameters than the standard SVD approach. The analysis part is more expensive, but the synthesis has the same cost as existing algorithms. Our technique is, thus, well suited to dynamic texture synthesis on devices limited by memory and computational power, such as PDAs or mobile phones.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
Higher-order web link analysis using multilinear algebra.
Kenny, Joseph P.; Bader, Brett William; Kolda, Tamara Gibson
2005-07-01
Linear algebra is a powerful and proven tool in web search. Techniques, such as the PageRank algorithm of Brin and Page and the HITS algorithm of Kleinberg, score web pages based on the principal eigenvector (or singular vector) of a particular non-negative matrix that captures the hyperlink structure of the web graph. We propose and test a new methodology that uses multilinear algebra to elicit more information from a higher-order representation of the hyperlink graph. We start by labeling the edges in our graph with the anchor text of the hyperlinks so that the associated linear algebra representation is a sparse, three-way tensor. The first two dimensions of the tensor represent the web pages while the third dimension adds the anchor text. We then use the rank-1 factors of a multilinear PARAFAC tensor decomposition, which are akin to singular vectors of the SVD, to automatically identify topics in the collection along with the associated authoritative web pages.
Higher Order Mode Heating Analysis for the ILC Superconducting Linacs
Bane, K.L.F.; Nantista, C.; Adolphsen, C.; /SLAC
2010-10-27
The superconducting cavities and interconnects in the 11 km long linacs of the International Linear Collider (ILC) are designed to operate at 2K, where cooling costs are very expensive. It is thus important to minimize cryogenic heat loads. In addition to an unavoidable static load and the dynamic load of the fundamental 1.3 GHz accelerating rf, a further heat source is presented by the higher order mode (HOM) power deposited by the beam. Such modes will be damped by specially designed HOM couplers attached to the cavities (for trapped modes), and by ceramic dampers at 70K that are located between the eight or nine cavity cryomodules (for propagating modes). Brute force calculation of the higher frequency modes excited in a string of cryomodules is limited by computing capacity (see, e.g. [1]). M. Liepe has calculated {approx} 400 longitudinal TM modes in 3 superconducting cavities plus absorbers, up to 8 GHz [2]. Joestingmeier, et al., have used a ray tracing calculation to find the effect at higher frequencies, specifically in the range of tens of GHz and above [3]. In this report we present a scattering matrix approach, which we apply to an rf unit comprising 26 cavities and 3 absorbers. We perform calculations at sample frequencies (up to 20 GHz) to predict the effectiveness of the ceramic dampers in limiting HOM heat deposition at 2K.
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks
Chambers, Brendan; MacLean, Jason N.
2016-01-01
Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex. PMID:27542093
Higher order statistical frequency domain decomposition for operational modal analysis
NASA Astrophysics Data System (ADS)
Nita, G. M.; Mahgoub, M. A.; Sharyatpanahi, S. G.; Cretu, N. C.; El-Fouly, T. M.
2017-02-01
Experimental methods based on modal analysis under ambient vibrational excitation are often employed to detect structural damages of mechanical systems. Many of such frequency domain methods, such as Basic Frequency Domain (BFD), Frequency Domain Decomposition (FFD), or Enhanced Frequency Domain Decomposition (EFFD), use as first step a Fast Fourier Transform (FFT) estimate of the power spectral density (PSD) associated with the response of the system. In this study it is shown that higher order statistical estimators such as Spectral Kurtosis (SK) and Sample to Model Ratio (SMR) may be successfully employed not only to more reliably discriminate the response of the system against the ambient noise fluctuations, but also to better identify and separate contributions from closely spaced individual modes. It is shown that a SMR-based Maximum Likelihood curve fitting algorithm may improve the accuracy of the spectral shape and location of the individual modes and, when combined with the SK analysis, it provides efficient means to categorize such individual spectral components according to their temporal dynamics as coherent or incoherent system responses to unknown ambient excitations.
Generation of Higher Order Modes in a Rectangular Duct
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Cabell, Randolph H.; Brown, Donald E.
2004-01-01
Advanced noise control methodologies to reduce sound emission from aircraft engines take advantage of the modal structure of the noise in the duct. This noise is caused by the interaction of rotor wakes with downstream obstructions such as exit guide vanes. Mode synthesis has been accomplished in circular ducts and current active noise control work has made use of this capability to cancel fan noise. The goal of the current effort is to examine the fundamental process of higher order mode propagation through an acoustically treated, curved duct. The duct cross-section is rectangular to permit greater flexibility in representation of a range of duct curvatures. The work presented is the development of a feedforward control system to generate a user-specified modal pattern in the duct. The multiple-error, filtered-x LMS algorithm is used to determine the magnitude and phase of signal input to the loudspeakers to produce a desired modal pattern at a set of error microphones. Implementation issues, including loudspeaker placement and error microphone placement, are discussed. Preliminary results from a 9-3/8 inch by 21 inch duct, using 12 loudspeakers and 24 microphones, are presented. These results demonstrate the ability of the control system to generate a user-specified mode while suppressing undesired modes.
Predicting perceptual learning from higher-order cortical processing.
Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan
2016-01-01
Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making.
Fostering Higher Order Critical Thinking in 21st Century Teachers
ERIC Educational Resources Information Center
Taft, Mary Miller
2012-01-01
Teachers working with increasingly diverse student populations are expected, for the first time in American history, to bring all students to high levels of proficiency. American graduates must compete with graduates from other nations, given the realities of the 21st century global economy. American teachers must possess 21st century skills in…
Emotion recognition from EEG using higher order crossings.
Petrantonakis, Panagiotis C; Hadjileontiadis, Leontios J
2010-03-01
Electroencephalogram (EEG)-based emotion recognition is a relatively new field in the affective computing area with challenging issues regarding the induction of the emotional states and the extraction of the features in order to achieve optimum classification performance. In this paper, a novel emotion evocation and EEG-based feature extraction technique is presented. In particular, the mirror neuron system concept was adapted to efficiently foster emotion induction by the process of imitation. In addition, higher order crossings (HOC) analysis was employed for the feature extraction scheme and a robust classification method, namely HOC-emotion classifier (HOC-EC), was implemented testing four different classifiers [quadratic discriminant analysis (QDA), k-nearest neighbor, Mahalanobis distance, and support vector machines (SVMs)], in order to accomplish efficient emotion recognition. Through a series of facial expression image projection, EEG data have been collected by 16 healthy subjects using only 3 EEG channels, namely Fp1, Fp2, and a bipolar channel of F3 and F4 positions according to 10-20 system. Two scenarios were examined using EEG data from a single-channel and from combined-channels, respectively. Compared with other feature extraction methods, HOC-EC appears to outperform them, achieving a 62.3% (using QDA) and 83.33% (using SVM) classification accuracy for the single-channel and combined-channel cases, respectively, differentiating among the six basic emotions, i.e., happiness, surprise, anger, fear, disgust, and sadness. As the emotion class-set reduces its dimension, the HOC-EC converges toward maximum classification rate (100% for five or less emotions), justifying the efficiency of the proposed approach. This could facilitate the integration of HOC-EC in human machine interfaces, such as pervasive healthcare systems, enhancing their affective character and providing information about the user's emotional status (e.g., identifying user's emotion
Separating higher-order nonlinearities in transient absorption microscopy
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Anderson, Miguel; Park, Jong Kang; Fischer, Martin C.; Warren, Warren S.
2015-08-01
The transient absorption response of melanin is a promising optically-accessible biomarker for distinguishing malignant melanoma from benign pigmented lesions, as demonstrated by earlier experiments on thin sections from biopsied tissue. The technique has also been demonstrated in vivo, but the higher optical intensity required for detecting these signals from backscattered light introduces higher-order nonlinearities in the transient response of melanin. These components that are higher than linear with respect to the pump or the probe introduce intensity-dependent changes to the overall response that complicate data analysis. However, our data also suggest these nonlinearities might be advantageous to in vivo imaging, in that different types of melanins have different nonlinear responses. Therefore, methods to separate linear from nonlinear components in transient absorption measurements might provide additional information to aid in the diagnosis of melanoma. We will discuss numerical methods for analyzing the various nonlinear contributions to pump-probe signals, with the ultimate objective of real time analysis using digital signal processing techniques. To that end, we have replaced the lock-in amplifier in our pump-probe microscope with a high-speed data acquisition board, and reprogrammed the coprocessor field-programmable gate array (FPGA) to perform lock-in detection. The FPGA lock-in offers better performance than the commercial instrument, in terms of both signal to noise ratio and speed. In addition, the flexibility of the digital signal processing approach enables demodulation of more complicated waveforms, such as spread-spectrum sequences, which has the potential to accelerate microscopy methods that rely on slow relaxation phenomena, such as photo-thermal and phosphorescence lifetime imaging.
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
Cycles in finite samples and cumulative processes of higher orders
NASA Astrophysics Data System (ADS)
Klemeš, VíT.; Klemeš, Ivo
1988-01-01
The process formed by a sequence of cumulative departures from the mean or from some other constant (residual mass curve, cusum chart) is a popular tool for the representation and analysis of time series in many sciences, for example, in hydrology, climatology, economics, game theory. In these and other natural and social sciences, similar cumulative processes also often arise naturally; examples include fluctuations of storage in a dam with a constant release rate, lake levels, volume of glaciers, biomass, inventories, and bank accounts. Moreover, many natural economic and other phenomena may represent, or contain, components of cumulative processes of higher orders, i.e., cumulative processes of cumulative processes. In this paper we show that for a sample {yt(0)}≡{xt} of any finite size N, the pure cumulative process of nth order, yt(n)≡∑i=1t(yi(n-1) - μ(n-1)), where μ(n-1) is the sample mean of {yt(n-1)} and t=1, 2, …, N, converges for n→∞ to a sine wave with a period equal to an integral fraction of the sample size N. This happens for any initial sample {yt(0)} and the convergence is of an exponential order. For samples from most stochastic as well as deterministic processes, the period of the limiting sine wave is equal to the sample size N. This behavior is demonstrated by examples involving samples from various processes ranging from pure random series to various deterministic series and including time series of some natural processes such as streamflow, lake levels, and glacier volumes. The paper includes a demonstration of effects of noise superimposed on, and of error in the value of, sample mean on the rate of convergence, and a discussion of some practical implications of the phenomenon described; it brings together some aspects of the work of Slutzky (1937), Hurst (1951), and Yule (1926).
Methods and framework for visualizing higher-order finite elements.
Schroeder, William J; Bertel, François; Malaterre, Mathieu; Thompson, David; Pébay, Philippe P; O'Bara, Robert; Tendulkar, Saurabh
2006-01-01
The finite element method is an important, widely used numerical technique for solving partial differential equations. This technique utilizes basis functions for approximating the geometry and the variation of the solution field over finite regions, or elements, of the domain. These basis functions are generally formed by combinations of polynomials. In the past, the polynomial order of the basis has been low-typically of linear and quadratic order. However, in recent years so-called p and hp methods have been developed, which may elevate the order of the basis to arbitrary levels with the aim of accelerating the convergence of the numerical solution. The increasing complexity of numerical basis functions poses a significant challenge to visualization systems. In the past, such systems have been loosely coupled to simulation packages, exchanging data via file transfer, and internally reimplementing the basis functions in order to perform interpolation and implement visualization algorithms. However, as the basis functions become more complex and, in some cases, proprietary in nature, it becomes increasingly difficult if not impossible to reimplement them within the visualization system. Further, most visualization systems typically process linear primitives, in part to take advantage of graphics hardware and, in part, due to the inherent simplicity of the resulting algorithms. Thus, visualization of higher-order finite elements requires tessellating the basis to produce data compatible with existing visualization systems. In this paper, we describe adaptive methods that automatically tessellate complex finite element basis functions using a flexible and extensible software framework. These methods employ a recursive, edge-based subdivision algorithm driven by a set of error metrics including geometric error, solution error, and error in image space. Further, we describe advanced pretessellation techniques that guarantees capture of the critical points of the
Analysis of wheezes using wavelet higher order spectral features.
Taplidou, Styliani A; Hadjileontiadis, Leontios J
2010-07-01
. This paves the way for the use of the wavelet higher order spectral features as an input vector to an efficient classifier. Apparently, this would integrate the intrinsic characteristics of wheezes within computerized diagnostic tools toward their more efficient evaluation.
Higher-order spectra for identification of nonlinear modal coupling
NASA Astrophysics Data System (ADS)
Hickey, Daryl; Worden, Keith; Platten, Michael F.; Wright, Jan R.; Cooper, Jonathan E.
2009-05-01
Over the past four decades considerable work has been done in the area of power spectrum estimation. The information contained within the power spectrum relates to a signal's autocorrelation or 'second-order statistics'. The power spectrum provides a complete statistical description of a Gaussian process; however, a problem with this information is that it is phase blind. This problem is addressed if one turns to a system's frequency response function (FRF). The FRF graphs the magnitude and phase of the frequency response of a system; in order to do this it requires information regarding the frequency content of the input and output signals. Situations arise in science and engineering whereby signal analysts are required to look beyond second-order statistics and analyse a signal's higher-order statistics (HOS). HOS or spectra give information on a signal's deviation from Gaussianity and consequently are a good indicator function for the presence of nonlinearity within a system. One of the main problems in nonlinear system identification is that of high modal density. Many modelling schemes involve making some expansion of the nonlinear restoring force in terms of polynomial or other basis terms. If more than one degree-of-freedom is involved this becomes a multivariate problem and the number of candidate terms in the expansion grows explosively with the order of nonlinearity and the number of degrees-of-freedom. This paper attempts to use HOS to detect and qualify nonlinear behaviour for a number of symmetrical and asymmetrical systems over a range of degrees-of-freedom. In doing so the paper also attempts to show that HOS are a more sensitive tool than the FRF in detecting nonlinearity. Furthermore, the object of this paper is to try and identify which modes couple in a nonlinear manner in order to reduce the number of candidate coupling terms, for a model, as much as possible. The bispectrum method has previously been applied to simple low-DOF systems with high
Arthrobacter aurescens TC1 Metabolizes Diverse s-Triazine Ring Compounds
Strong, Lisa C.; Rosendahl, Charlotte; Johnson, Gilbert; Sadowsky, Michael J.; Wackett, Lawrence P.
2002-01-01
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP. PMID:12450818
A Higher Order Analysis of the Factor Structure of the Myers-Briggs Type Indicator.
ERIC Educational Resources Information Center
Johnson, William L.; Mauzey, Edward; Johnson, Annabel M.; Murphy, Stanley D.; Zimmerman, Kurt J.
2001-01-01
Examines the higher order structure of Form G of the Myers Briggs Type Indicator. A third order component analysis of a sample (N=926) found two higher order components. This higher order analysis contributes to the research literature pertaining to the generalized structure of the personality measure. (Contains 44 references and 1 table.) (GCP)
The Meaning of Higher-Order Factors in Reflective-Measurement Models
ERIC Educational Resources Information Center
Eid, Michael; Koch, Tobias
2014-01-01
Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…
Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning
2016-10-01
An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.
A higher-order asymptotic formula for velocity of a viscous vortex pair
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide; Habibah, Ummu
2015-11-01
We establish a general formula for the traveling speed of a counter-rotating vortex pair, being valid for thick cores, moving in an incompressible fluid with and without viscosity. Two-dimensional motion of vortices with finite cores, interacting with each other, has been extensively studied both analytically and numerically. Mathematical methods and numerical schemes have been highly developed for dealing particularly with vortices of uniform vorticity, called vortex patches. In contrast, this is not the case with vortices with distributed vorticity. We extend, to a higher order, the method of matched asymptotic expansions developed by Ting and Tung (1965 Phys. Fluids Vol. 8 pp. 1039-1051). The solution of the Navier-Stokes equations is constructed in the form of a power series in a small parameter, the ratio of the core radius to the distance between the core centers. A correction due to the effect of finite thickness of the vortices to the traveling speed makes its appearance at the 5th order. We manipulate a tidy formula of this correction term for a general vorticity distribution at the leading order. An alternative route to reach the same formula is also sought. We devise a two-dimensional counterpart of Helmholtz-Lamb's formula which is applicable to vortex rings.
Inference of higher-order relationships in the cycads from a large chloroplast data set.
Rai, Hardeep S; O'Brien, Heath E; Reeves, Patrick A; Olmstead, Richard G; Graham, Sean W
2003-11-01
We investigated higher-order relationships in the cycads, an ancient group of seed-bearing plants, by examining a large portion of the chloroplast genome from seven species chosen to exemplify our current understanding of taxonomic diversity in the order. The regions considered span approximately 13.5 kb of unaligned data per taxon, and comprise a diverse range of coding sequences, introns and intergenic spacers dispersed throughout the plastid genome. Our results provide substantial support for most of the inferred backbone of cycad phylogeny, and weak evidence that the sister-group of the cycads among living seed plants is Ginkgo biloba. Cycas (representing Cycadaceae) is the sister-group of the remaining cycads; Dioon is part of the next most basal split. Two of the three commonly recognized families of cycads (Zamiaceae and Stangeriaceae) are not monophyletic; Stangeria is embedded within Zamiaceae, close to Zamia and Ceratozamia, and not closely allied to the other genus of Stangeriaceae, Bowenia. In contrast to the other seed plants, cycad chloroplast genomes share two features with Ginkgo: a reduced rate of evolution and an elevated transition:transversion ratio. We demonstrate that the latter aspect of their molecular evolution is unlikely to have affected inference of cycad relationships in the context of seed-plant wide analyses.
Optimization of Higher Order Mode Dampers in the 56MHz SRF Cavity for RHIC
Wu, Q.; Ben-Zvi, I.
2010-05-23
A 56 MHz superconducting RF cavity was designed for a luminosity upgrade of the Relativistic Heavy Ion Collider (RHIC), including requirements for Higher Order Mode (HOM) damping. In this paper, we describe our optimization of the damper's performance, and modifications made to its original design. We also show the effects of the damper geometry on the cavity's HOM impedance. To reduce the likelihood of magnetic breakdown, we lowered the magnetic field enhancement at the ports to a value less than the highest field in the cavity. We simulated all monopole and dipole HOMs up to 1GHz with their frequencies, mode configurations, R/Qs, and shunt impedances, verifying that all modes are well-damped with the optimized design and configuration. The 56 MHz superconducting RF cavity is a quarterwave resonator designed to have a gap voltage of 2.5 MV. Our plans are to place this beam-driven resonator at a common section of RHIC to provide a storage RF potential for both rings. The large bucket of the cavity will reduce spill due to Intra-Beam Scattering (IBS), and thus increase the luminosity for the detectors. It is very important to damp all the cavity's Higher Order Modes (HOMs) to avoid beam instabilities. The design chosen for the HOM damper is a magnetically coupled loop located at the rear end of the cavity. The loop and its port geometry must be optimized to assure sufficient damping, avoid a large enhancement of the local magnetic field. A high-pass filter is included in the circuit to reduce the power extraction from the fundamental mode. The number of HOM dampers used and their configuration also are important factors for the damping and cooling system. A small loop area will couple out less power from the cavity's fundamental mode, thus reducing the voltage and power dissipation in the damper's filter circuit; however, it might not be sufficient for HOM damping. This problem is resolved by increasing the number of the HOM dampers and carefully choosing their
Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes.
Uebel, Patrick; Günendi, Mehmet C; Frosz, Michael H; Ahmed, Goran; Edavalath, Nitin N; Ménard, Jean-Michel; Russell, Philip St J
2016-05-01
We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP_{01} single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Λ parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some ∼100 higher than for the LP_{01} mode, with LP_{01} losses <0.2 dB/m in the near-infrared and a spectral flatness ∼1 dB over a >110 THz bandwidth.
Questions for Assessing Higher-Order Cognitive Skills: It's Not Just Bloom's
ERIC Educational Resources Information Center
Lemons, Paula P.; Lemons, J. Derrick
2013-01-01
We present an exploratory study of biologists' ideas about higher-order cognition questions. We documented the conversations of biologists who were writing and reviewing a set of higher-order cognition questions. Using a qualitative approach, we identified the themes of these conversations. Biologists in our study used Bloom's Taxonomy to…
Family Consumer Sciences Teachers' Use of Technology to Teach Higher Order Thinking Skills
ERIC Educational Resources Information Center
Hirose, Beth Erica
2009-01-01
Family and consumer sciences (FACS) high school teachers were surveyed on their use of technology to teach higher order thinking skills (HOTS). This study determined if teachers had enough support and training to use technology. Lesson plans were accumulated that required both technology and higher order thinking skills. These lessons were then…
Improving Computer-Assisted Instruction in Teaching Higher-Order Skills
ERIC Educational Resources Information Center
Sinclair, Kelsey J.; Renshaw, Carl E.; Taylor, Holly A.
2004-01-01
Computer-assisted instruction (CAI) has been shown to enhance rote memory skills and improve higher order critical thinking skills. The challenge now is to identify what aspects of CAI improve which specific higher-order skills. This study focuses on the effectiveness of using CAI to teach logarithmic graphing and dimensional analysis. Two groups…
Ability, Breadth, and Parsimony in Computational Models of Higher-Order Cognition
ERIC Educational Resources Information Center
Cassimatis, Nicholas L.; Bello, Paul; Langley, Pat
2008-01-01
Computational models will play an important role in our understanding of human higher-order cognition. How can a model's contribution to this goal be evaluated? This article argues that three important aspects of a model of higher-order cognition to evaluate are (a) its ability to reason, solve problems, converse, and learn as well as people do;…
Assessing School Work Culture: A Higher-Order Analysis and Strategy.
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.; Zimmerman, Kurt J.
This paper reviews a work culture productivity model and reports the development of a work culture instrument based on the culture productivity model. Higher order principal components analysis was used to assess work culture, and a third-order factor analysis shows how the first-order factors group into higher-order factors. The school work…
Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach
ERIC Educational Resources Information Center
Wang, Shouhong; Wang, Hai
2011-01-01
One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…
From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats
ERIC Educational Resources Information Center
Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle
2013-01-01
This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…
On the Higher Power Sums of Reciprocal Higher-Order Sequences
Zhang, Jin
2014-01-01
Let {un} be a higher-order linear recursive sequence. In this paper, we use the properties of error estimation and the analytic method to study the reciprocal sums of higher power of higher-order sequences. Then we establish several new and interesting identities relating to the infinite and finite sums. PMID:24741351
Assessing Higher-Order Cognitive Constructs by Using an Information-Processing Framework
ERIC Educational Resources Information Center
Dickison, Philip; Luo, Xiao; Kim, Doyoung; Woo, Ada; Muntean, William; Bergstrom, Betty
2016-01-01
Designing a theory-based assessment with sound psychometric qualities to measure a higher-order cognitive construct is a highly desired yet challenging task for many practitioners. This paper proposes a framework for designing a theory-based assessment to measure a higher-order cognitive construct. This framework results in a modularized yet…
Authentic Instruction for 21st Century Learning: Higher Order Thinking in an Inclusive School
ERIC Educational Resources Information Center
Preus, Betty
2012-01-01
The author studied a public junior high school identified as successfully implementing authentic instruction. Such instruction emphasizes higher order thinking, deep knowledge, substantive conversation, and value beyond school. To determine in what ways higher order thinking was fostered both for students with and without disabilities, the author…
An Analysis of Higher-Order Thinking on Algebra I End-of-Course Tests
ERIC Educational Resources Information Center
Thompson, Tony
2011-01-01
This research provides insight into one US state's effort to incorporate higher-order thinking on its Algebra I End-of-Course tests. To facilitate the inclusion of higher-order thinking, the state used "Dimensions of Thinking" (Marzano et al., 1988) and "Bloom's Taxonomy" (Bloom et al., 1956). An analysis of Algebra I test…
ERIC Educational Resources Information Center
Schraw, Gregory, Ed.; Robinson, Daniel H., Ed.
2011-01-01
This volume examines the assessment of higher order thinking skills from the perspectives of applied cognitive psychology and measurement theory. The volume considers a variety of higher order thinking skills, including problem solving, critical thinking, argumentation, decision making, creativity, metacognition, and self-regulation. Fourteen…
ERIC Educational Resources Information Center
Fischer, Christopher; Bol, Linda; Pribesh, Shana
2011-01-01
This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…
Calculation of Moment Matrix Elements for Bilinear Quadrilaterals and Higher-Order Basis Functions
2016-01-06
B. M. Kolundzija and A. R. Djordjević, Electromagnetic Modeling of Composite Metallic and Dielectric Structures . Boston: Artech House, 2002...REPORT REPORT NO: NAWCADPAX/TR-2015/241 CALCULATION OF MOMENT MATRIX ELEMENTS FOR BILINEAR QUADRILATERALS AND HIGHER-ORDER BASIS...CALCULATION OF MOMENT MATRIX ELEMENTS FOR BILINEAR QUADRILATERALS AND HIGHER-ORDER BASIS FUNCTIONS by John S. Asvestas
Higher Order Thinking Skills among Secondary School Students in Science Learning
ERIC Educational Resources Information Center
Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah
2015-01-01
A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…
Higher order multi-dimensional extensions of Cesàro theorem
NASA Astrophysics Data System (ADS)
Accardi, Luigi; Ji, Un Cig; Saitô, Kimiaki
2015-12-01
The Cesàro theorem is extended to the cases: (1) higher order Cesàro mean for sequence (discrete case); and (2) higher order, multi-dimensional and continuous Cesàro mean for functions. Also, we study the Cesàro theorem for the case of positive-order.
Assessing Teachers' Beliefs Regarding Issues Pertaining to Instruction of Higher Order Thinking.
ERIC Educational Resources Information Center
Shwartzer, Noa; Zohar, Anat
The purposes of this study are to describe the development and validation of a research instrument for assessing teachers' beliefs regarding issues pertaining to the instruction of higher order thinking, and to explore the beliefs of Israeli science teachers regarding issues pertaining to instruction of higher order thinking. This paper describes…
Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang
2014-01-01
An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.
Jisming-See, Shi-Wei; Sing, Kong-Wah; Wilson, John-James
2016-10-01
The "rings" belonging to the genus Ypthima are amongst the most common butterflies in Peninsular Malaysia. However, the species can be difficult to tell apart, with keys relying on minor and often non-discrete ring characters found on the hindwing. Seven species have been reported from Peninsular Malaysia, but this is thought to be an underestimate of diversity. DNA barcodes of 165 individuals, and wing and genital morphology, were examined to reappraise species diversity of this genus in Peninsular Malaysia. DNA barcodes collected during citizen science projects-School Butterfly Project and Peninsular Malaysia Butterfly Count-recently conducted in Peninsular Malaysia were included. The new DNA barcodes formed six groups with different Barcode Index Numbers (BINs) representing four species reported in Peninsular Malaysia. When combined with public DNA barcodes from the Barcode Of Life Datasystems, several taxonomic issues arose. We consider the taxon Y. newboldi, formerly treated as a subspecies of Y. baldus, as a distinct species. DNA barcodes also supported an earlier suggestion that Y. nebulosa is a synonym under Y. horsfieldii humei. Two BINs of the genus Ypthima comprising DNA barcodes collected during citizen science projects did not correspond to any species previously reported in Peninsular Malaysia.
The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell
Means, Robert E.
2014-01-01
Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied. PMID:27419207
Accommodation with higher-order monochromatic aberrations corrected with adaptive optics
NASA Astrophysics Data System (ADS)
Chen, Li; Kruger, Philip B.; Hofer, Heidi; Singer, Ben; Williams, David R.
2006-01-01
Higher-order monochromatic aberrations in the human eye cause a difference in the appearance of stimuli at distances nearer and farther from best focus that could serve as a signed error signal for accommodation. We explored whether higher-order monochromatic aberrations affect the accommodative response to 0.5 D step changes in vergence in experiments in which these aberrations were either present as they normally are or removed with adaptive optics. Of six subjects, one could not accommodate at all for steps in either condition. One subject clearly required higher-order aberrations to accommodate at all. The remaining four subjects could accommodate in the correct direction even when higher-order aberrations were removed. No subjects improved their accommodation when higher-order aberrations were corrected, indicating that the corresponding decrease in the depth of field of the eye did not improve the accommodative response. These results are consistent with previous findings of large individual differences in the ability to accommodate in impoverished conditions. These results suggest that at least some subjects can use monochromatic higher-order aberrations to guide accommodation. They also show that some subjects can accommodate correctly when higher-order monochromatic aberrations as well as established cues to accommodation are greatly reduced.
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Ferraro, Sebastián; Martín de Diego, David
2016-12-01
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L:T^{(k)}Q→ R with k≥ 1, the resulting discrete equations define a generally implicit numerical integrator algorithm on T^{(k-1)}Q× T^{(k-1)}Q that approximates the flow of the higher-order Euler-Lagrange equations for L. The algorithm equations are called higher-order discrete Euler-Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton's principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether's theorem, the momentum map. We construct an exact discrete Lagrangian L_d^e using the locally unique solution of the higher-order Euler-Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of L_d^e, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.
Pulse transmission receiver with higher-order time derivative pulse correlator
Dress, Jr., William B.; Smith, Stephen F.
2003-09-16
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2011-09-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.
Zembrzycki, Andreas; Stocker, Adam M; Leingärtner, Axel; Sahara, Setsuko; Chou, Shen-Ju; Kalatsky, Valery; May, Scott R; Stryker, Michael P; O'Leary, Dennis DM
2015-01-01
In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion. DOI: http://dx.doi.org/10.7554/eLife.11416.001 PMID:26705332
Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma
Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.
2010-10-15
Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.
Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere.
Zhou, Guoquan
2011-02-28
The propagation of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity, the effective beam size, and the kurtosis parameter of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a higher-order cosh-Gaussian in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere are also examined in detail.
Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration.
Schimpf, Damian N; Schulte, Jan; Putnam, William P; Kärtner, Franz X
2012-11-19
We report on a novel class of higher-order Bessel-Gauss beams in which the well-known Bessel-Gauss beam is the fundamental mode and the azimuthally symmetric Laguerre-Gaussian beams are special cases. We find these higher-order Bessel-Gauss beams by superimposing decentered Hermite-Gaussian beams. We show analytically and experimentally that these higher-order Bessel-Gauss beams resemble higher-order eigenmodes of optical resonators consisting of aspheric mirrors. This work is relevant for the many applications of Bessel-Gauss beams in particular the more recently proposed high-intensity Bessel-Gauss enhancement cavities for strong-field physics applications.
NASA Astrophysics Data System (ADS)
Domin, Daniel S.
1999-01-01
The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.
Multiple sextupole system for the correction of third and higher order aberration
Crewe, Albert V.
1983-01-01
A means is provided for compensating for third and higher order aberration in charged particle beam devices. The means includes two sextupoles with an intermediate focusing lens, all positioned between two focusing lenses.
Sunderhaus, James D.; Dockendorff, Chris; Martin, Stephen F.
2009-01-01
A novel strategy has been developed for the efficient syntheses of diverse arrays of heterocyclic compounds. The key elements of the approach comprise a Mannich-type, multicomponent coupling reaction in which functionalized amines, aromatic aldehydes, acylating agents, and π- and organometallic nucleophiles are combined to generate intermediates that are then further transformed into diverse heterocyclic scaffolds via a variety of cyclization manifolds. Significantly, many of these scaffolds bear functionality that may be exploited by further manipulation to create diverse collections of compounds having substructures found in biologically active natural products and clinically useful drugs. The practical utility of this strategy was exemplified by its application to the first, and extraordinarily concise synthesis of the isopavine alkaloid roelactamine. PMID:20625454
Higher-order terms in sensitivity analysis through a differential approach
Dubi, A.; Dudziak, D.J.
1981-06-01
A differential approach to sensitivity analysis has been developed that eliminates some difficulties existing in previous work. The new development leads to simple explicit expressions for the first-order perturbation as well as any higher-order terms. The higher-order terms are dependent only on differentials of the transport operator, the unperturbed flux, the adjoint flux, and the unperturbed Green's function of the system.
Higher Order Convergence Rates in Theory of Homogenization: Equations of Non-divergence Form
NASA Astrophysics Data System (ADS)
Kim, Sunghan; Lee, Ki-Ahm
2016-03-01
We establish higher order convergence rates in the theory of periodic homogenization of both linear and fully nonlinear uniformly elliptic equations of non-divergence form. The rates are achieved by involving higher order correctors which fix the errors occurring both in the interior and on the boundary layer of our physical domain. The proof is based on a viscosity method and a new regularity theory which captures the stability of the correctors with respect to the shape of our limit profile.
a Higher Order Theory for STATIC-DYNAMIC Analysis of Laminated Plates Using a Warping Model
NASA Astrophysics Data System (ADS)
HASSIS, H.
2000-08-01
A higher order theory is developed to model the behaviour of laminated plates. This theory is based on a warping theory of plate deformation developed by Hassis [1]. Through comparison with elasticity solutions obtained with classical models [2-6] and the higher order theory of Lo et al.[7, 8], it is shown that the present theory correctly models effects not attainable by the low order theories.
Development of higher-order modal methods for transient thermal and structural analysis
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Haftka, Raphael T.
1989-01-01
A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.
Higher-order Schrödinger and Hartree–Fock equations
Carles, Rémi; Lucha, Wolfgang; Moulay, Emmanuel
2015-12-15
The domain of validity of the higher-order Schrödinger equations is analyzed for harmonic-oscillator and Coulomb potentials as typical examples. Then, the Cauchy theory for higher-order Hartree–Fock equations with bounded and Coulomb potentials is developed. Finally, the existence of associated ground states for the odd-order equations is proved. This renders these quantum equations relevant for physics.
Higher order mode of a microstripline fed cylindrical dielectric resonator antenna
NASA Astrophysics Data System (ADS)
Kumar, A. V. Praveen
2016-03-01
A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.
Workshop on Higher-Order Spectral Analysis Held at Vail, Colorado on 28- 30 June 1989
1989-11-28
PROJECT REPORT Workshop on Higher-Order Spectral Analysis Jerry M. Mendel University of Southern California Dept. of Elec. Engineering-:ystems Los...material contained herein. I-o WORKSHOP ON HIGHER-ORDER SPECTRAL ANALYSIS June 28-30, 1989 Vail, Colorado SUMMARY by C. L. Nikias and J. M. Mendel A\\bout...ordering with cortical EEGs laboratory we reported in using bispectral recorded during sLow wave sleep having analysis of the hippocampal EEG during REM
Study of higher order non-classical properties of squeezed Kerr state
NASA Astrophysics Data System (ADS)
Mishra, Devendra Kumar
2010-09-01
Recently, Prakash and Mishra [J. Phys. B: at. Mol. Opt. Phys., 39, 2291(2006); 40, 2531(2007)] have studied higher order sub-Poissonian photon statistic conditions for non-classicality in the form of general inequalities for expectation values of products of arbitrary powers of photon number and of photon-number fluctuation. It is, therefore, vital to study the generation of these higher order sub-Poissonian photon statistics (phase-insensitive behavior) in a physically realizable medium and their relations to higher order squeezing (phase-sensitive behavior). In the present paper, we study higher order non-classical properties, such as Hong and Mandel squeezing, amplitude-squared squeezing and higher order sub-Poissonian photon statistics, of squeezed Kerr state which is generated by squeezing the output of a Kerr medium whose input is coherent light. Such states can be realized if laser light is sent through an optical fiber and then into a degenerate parametric amplifier. It is established that the squeezed Kerr state can exhibit higher order non-classical properties.
Fast algorithm for scaling analysis with higher-order detrending moving average method
NASA Astrophysics Data System (ADS)
Tsujimoto, Yutaka; Miki, Yuki; Shimatani, Satoshi; Kiyono, Ken
2016-05-01
Among scaling analysis methods based on the root-mean-square deviation from the estimated trend, it has been demonstrated that centered detrending moving average (DMA) analysis with a simple moving average has good performance when characterizing long-range correlation or fractal scaling behavior. Furthermore, higher-order DMA has also been proposed; it is shown to have better detrending capabilities, removing higher-order polynomial trends than original DMA. However, a straightforward implementation of higher-order DMA requires a very high computational cost, which would prevent practical use of this method. To solve this issue, in this study, we introduce a fast algorithm for higher-order DMA, which consists of two techniques: (1) parallel translation of moving averaging windows by a fixed interval; (2) recurrence formulas for the calculation of summations. Our algorithm can significantly reduce computational cost. Monte Carlo experiments show that the computational time of our algorithm is approximately proportional to the data length, although that of the conventional algorithm is proportional to the square of the data length. The efficiency of our algorithm is also shown by a systematic study of the performance of higher-order DMA, such as the range of detectable scaling exponents and detrending capability for removing polynomial trends. In addition, through the analysis of heart-rate variability time series, we discuss possible applications of higher-order DMA.
SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.
Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu
2015-03-01
To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development.
Questions for assessing higher-order cognitive skills: it's not just Bloom's.
Lemons, Paula P; Lemons, J Derrick
2013-01-01
We present an exploratory study of biologists' ideas about higher-order cognition questions. We documented the conversations of biologists who were writing and reviewing a set of higher-order cognition questions. Using a qualitative approach, we identified the themes of these conversations. Biologists in our study used Bloom's Taxonomy to logically analyze questions. However, biologists were also concerned with question difficulty, the length of time required for students to address questions, and students' experience with questions. Finally, some biologists demonstrated an assumption that questions should have one correct answer, not multiple reasonable solutions; this assumption undermined their comfort with some higher-order cognition questions. We generated a framework for further research that provides an interpretation of participants' ideas about higher-order questions and a model of the relationships among these ideas. Two hypotheses emerge from this framework. First, we propose that biologists look for ways to measure difficulty when writing higher-order questions. Second, we propose that biologists' assumptions about the role of questions in student learning strongly influence the types of higher-order questions they write.
NASA Astrophysics Data System (ADS)
Huigens, Robert W., III; Morrison, Karen C.; Hicklin, Robert W.; Flood, Timothy A., Jr.; Richter, Michelle F.; Hergenrother, Paul J.
2013-03-01
High-throughput screening is the dominant method used to identify lead compounds in drug discovery. As such, the makeup of screening libraries largely dictates the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound-screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for the modulation of many drug targets. Here we describe a novel, general and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show through the evaluation of chemical properties (which include fraction of sp3 carbons, ClogP and the number of stereogenic centres) that these compounds are significantly more complex and diverse than those in standard screening collections, and we give guidelines for the application of this strategy to any suitable natural product.
CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains
Rotter, Stefan; Grün, Sonja
2009-01-01
Recent developments in electrophysiological and optical recording techniques enable the simultaneous observation of large numbers of neurons. A meaningful interpretation of the resulting multivariate data, however, presents a serious challenge. In particular, the estimation of higher-order correlations that characterize the cooperative dynamics of groups of neurons is impeded by the combinatorial explosion of the parameter space. The resulting requirements with respect to sample size and recording time has rendered the detection of coordinated neuronal groups exceedingly difficult. Here we describe a novel approach to infer higher-order correlations in massively parallel spike trains that is less susceptible to these problems. Based on the superimposed activity of all recorded neurons, the cumulant-based inference of higher-order correlations (CuBIC) presented here exploits the fact that the absence of higher-order correlations imposes also strong constraints on correlations of lower order. Thus, estimates of only few lower-order cumulants suffice to infer higher-order correlations in the population. As a consequence, CuBIC is much better compatible with the constraints of in vivo recordings than previous approaches, which is shown by a systematic analysis of its parameter dependence. PMID:19862611
Performance of Higher Order Campbell methods, Part II: calibration and experimental application
NASA Astrophysics Data System (ADS)
Elter, Zs.; de Izarra, G.; Filliatre, P.; Jammes, C.; Pázsit, I.
2016-11-01
Applying Higher Order Campbelling methods in neutron flux monitoring with fission chambers is advantageous due to their capabilities to suppress the impact of unwanted noises and signal contributions (such as gamma radiation). This work aims to verify through experimental results that the basic assumptions behind the Higher Order Campelling methods are valid in critical reactors. The experiments, reported in this work, were performed at the MINERVE reactor in Cadarache. It is shown that the calibration of a fission chamber and the associated electronic system is possible in higher order mode. With the use of unbiased cumulant estimators and with digital processing, it is shown that over a wide count rate range, accurate count rate estimation can be achieved based on signal samples of a few ms, which is a significant progress compared to similar experimental results in the literature. The difference between the count rate estimated by pulse counting and by the Higher Order Campelling is less than 4%. The work also investigates the possibility of monitoring transient events. For this purpose, a control rod drop event was followed in Higher Order Campbelling mode.
A reduced-rank approach for implementing higher-order Volterra filters
NASA Astrophysics Data System (ADS)
O. Batista, Eduardo L.; Seara, Rui
2016-12-01
The use of Volterra filters in practical applications is often limited by their high computational burden. To cope with this problem, many strategies for implementing Volterra filters with reduced complexity have been proposed in the open literature. Some of these strategies are based on reduced-rank approaches obtained by defining a matrix of filter coefficients and applying the singular value decomposition to such a matrix. Then, discarding the smaller singular values, effective reduced-complexity Volterra implementations can be obtained. The application of this type of approach to higher-order Volterra filters (considering orders greater than 2) is however not straightforward, which is especially due to some difficulties encountered in the definition of higher-order coefficient matrices. In this context, the present paper is devoted to the development of a novel reduced-rank approach for implementing higher-order Volterra filters. Such an approach is based on a new form of Volterra kernel implementation that allows decomposing higher-order kernels into structures composed only of second-order kernels. Then, applying the singular value decomposition to the coefficient matrices of these second-order kernels, effective implementations for higher-order Volterra filters can be obtained. Simulation results are presented aiming to assess the effectiveness of the proposed approach.
An efficient higher-order PML in WLP-FDTD method for time reversed wave simulation
NASA Astrophysics Data System (ADS)
Wei, Xiao-Kun; Shao, Wei; Ou, Haiyan; Wang, Bing-Zhong
2016-09-01
Derived from a stretched coordinate formulation, a higher-order complex frequency shifted (CFS) perfectly matched layer (PML) is proposed for the unconditionally stable finite-difference time-domain (FDTD) method based on weighted Laguerre polynomials (WLPs). The higher-order PML is implemented with an auxiliary differential equation (ADE) approach. In order to further improve absorbing performance, the parameter values of stretching functions in the higher-order PML are optimized by the multi-objective genetic algorithm (MOGA). The optimal solutions can be chosen from the Pareto front for trading-off between two independent objectives. It is shown in a numerical test that the higher-order PML is efficient in terms of attenuating propagating waves and reducing late time reflections. Moreover, the higher-order PML can be placed very close to the wall when analyzing the channel characteristics of time reversal (TR) waves in a multipath indoor environment. Numerical examples of TR wave propagation demonstrate the availability of the proposed method.
Design and Application of Strategies/Tactics in Higher Order Logics
NASA Technical Reports Server (NTRS)
Archer, Myla (Editor); diVito, Ben (Editor); Munoz, Cesar (Editor)
2003-01-01
This Proceedings includes both a paper from the implementors of PVS providing guidance for PVS strategy writers and a tutorial on PVS strategy writing distilled from the experience of three PVS users who have written extensive sets of PVS user strategies. Following these are three full papers from the higher-order logic theorem proving community that discuss PVS strategies to enhance arithmetic and other interactive reasoning in PVS; implementing first-order tactics in higher-order provers; and a proposed technique for specifying small step semantics that can be used in multiple higher order logic theorem provers, with illustrations from both Coq and PVS. The Proceedings concludes with three position papers for a panel session that discuss three settings in which development of PVS strategies is worth while.
Investigating higher order modes effects on thermionic RF gun transverse emittance
NASA Astrophysics Data System (ADS)
Rajabi, A.; Shokri, B.; Feghhi, S. A. H.
2017-02-01
As the excitation of higher order modes in high gradient accelerating cavities of the RF gun negatively influences electron beam quality, in the present work a theory is obtained based on generalizing Panofsky-Wenzel theorem to study the effect of transverse magnetic modes on transverse emittance growth of the RF gun. Based on this theory, the impact of higher order modes on transverse momentum is investigated. Based on analysis and simulation results, it is shown that different RF modes result in divergence or convergence effects on beam transverse dynamics. The presence of dipole and quadrupole modes can enhance the transverse emittance by 320 % and 450 % , respectively. The compound effect of the presence of two higher order modes results in 470 % transverse emittance growth.
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
NASA Astrophysics Data System (ADS)
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
Higher-order factors of the Big Five in a multi-informant sample.
DeYoung, Colin G
2006-12-01
In a large community sample (N=490), the Big Five were not orthogonal when modeled as latent variables representing the shared variance of reports from 4 different informants. Additionally, the standard higher-order factor structure was present in latent space: Neuroticism (reversed), Agreeableness, and Conscientiousness formed one factor, labeled Stability, and Extraversion and Openness/Intellect formed a second factor, labeled Plasticity. Comparison of two instruments, the Big Five Inventory and the Mini-Markers, supported the hypotheses that single-adjective rating instruments are likely to yield lower interrater agreement than phrase rating instruments and that lower interrater agreement is associated with weaker correlations among the Big Five and a less coherent higher-order factor structure. In conclusion, an interpretation of the higher-order factors is discussed, including possible neurobiological substrates.
Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Seeley, Charles E.
1996-01-01
A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.
Higher-order cumulants and spectral kurtosis for early detection of subterranean termites
NASA Astrophysics Data System (ADS)
de la Rosa, Juan José González; Moreno Muñoz, Antonio
2008-02-01
This paper deals with termite detection in non-favorable SNR scenarios via signal processing using higher-order statistics. The results could be extrapolated to all impulse-like insect emissions; the situation involves non-destructive termite detection. Fourth-order cumulants in time and frequency domains enhance the detection and complete the characterization of termite emissions, non-Gaussian in essence. Sliding higher-order cumulants offer distinctive time instances, as a complement to the sliding variance, which only reveal power excesses in the signal; even for low-amplitude impulses. The spectral kurtosis reveals non-Gaussian characteristics (the peakedness of the probability density function) associated to these non-stationary measurements, specially in the near ultrasound frequency band. Contrasted estimators have been used to compute the higher-order statistics. The inedited findings are shown via graphical examples.
Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings
NASA Astrophysics Data System (ADS)
Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng
2015-11-01
Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications.
A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes
Dyakova, Olga; Lee, Yu-Jen; Longden, Kit D.; Kiselev, Valerij G.; Nordström, Karin
2015-01-01
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons with limited bandwidth to encode challengingly large input ranges. Natural scenes are not random, and peripheral visual systems in vertebrates and insects have evolved to respond efficiently to their typical spatial statistics. The mammalian visual cortex is also tuned to natural spatial statistics, but less is known about coding in higher order neurons in insects. To redress this we here record intracellularly from a higher order visual neuron in the hoverfly. We show that the cSIFE neuron, which is inhibited by stationary images, is maximally inhibited when the slope constant of the amplitude spectrum is close to the mean in natural scenes. The behavioural optomotor response is also strongest to images with naturalistic image statistics. Our results thus reveal a close coupling between the inherent statistics of natural scenes and higher order visual processing in insects. PMID:26439748
Obtaining tight bounds on higher-order interferences with a 5-path interferometer
NASA Astrophysics Data System (ADS)
Kauten, Thomas; Keil, Robert; Kaufmann, Thomas; Pressl, Benedikt; Brukner, Časlav; Weihs, Gregor
2017-03-01
Within the established theoretical framework of quantum mechanics, interference always occurs between pairs of paths through an interferometer. Higher order interferences with multiple constituents are excluded by Born’s rule and can only exist in generalized probabilistic theories. Thus, high-precision experiments searching for such higher order interferences are a powerful method to distinguish between quantum mechanics and more general theories. Here, we perform such a test in an optical multi-path interferometer, which avoids crucial systematic errors, has access to the entire phase space and is more stable than previous experiments. Our results are in accordance with quantum mechanics and rule out the existence of higher order interference terms in optical interferometry to an extent that is more than four orders of magnitude smaller than the expected pairwise interference, refining previous bounds by two orders of magnitude.
Regularity properties of fiber derivatives associated with higher-order mechanical systems
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Prieto-Martínez, Pedro Daniel
2016-08-01
The aim of this work is to study fiber derivatives associated to Lagrangian and Hamiltonian functions describing the dynamics of a higher-order autonomous dynamical system. More precisely, given a function in T∗T(k-1)Q, we find necessary and sufficient conditions for such a function to describe the dynamics of a kth-order autonomous dynamical system, thus being a kth-order Hamiltonian function. Then, we give a suitable definition of (hyper)regularity for these higher-order Hamiltonian functions in terms of their fiber derivative. In addition, we also study an alternative characterization of the dynamics in Lagrangian submanifolds in terms of the solutions of the higher-order Euler-Lagrange equations.
A Higher-Order Boundary Treatment for Cartesian-Grid Methods
NASA Astrophysics Data System (ADS)
Forrer, Hans; Jeltsch, Rolf
1998-03-01
The Euler equations describe the flow phenomena of compressible inviscid gas dynamics. We simulate such flows using a higher-order Cartesian-grid method, together with a special treatment for the cells cut by the boundary of an object. A new method for the treatment of the boundary is described where these cut boundary cells are maintained as whole cells rather than as cut cells, thus avoiding stability problems. The method is second-order accurate in one dimension and higher-order accurate in two dimensions but not strictly conservative; however, we show that this error in the conservation does not lead to spurious phenomena on some representative test calculations. The advantages of the new boundary treatment are that it is higher-order accurate, that it is independent of the applied method, and that it is simple.
The Analysis of Thin Wires Using Higher-Order Elements and Basis Functions
Champagne, N J; Wilton, D R; Rockway, J W
2006-01-23
Thin wire analysis was applied to curved wire segments in [1], but a special procedure was needed to evaluate the self and near-self terms. The procedure involved associating the singular behavior with a straight segment tangent to the curved source segment, permitting use of algorithms for straight wires. Recently, a procedure that avoids the singularity extraction for straight wires was presented in [2-4]. In this paper, the approach in [4] is applied to curved (or higher-order) wires using a procedure similar to that used in [1] for singularity extraction. Here, the straight tangent segment is used to determine the quadrature rules to be used on the curved segment. The result is a formulation that allows for a general mixture of higher-order basis functions [5] and higher-order wire segments.
Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings
Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng
2015-01-01
Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications. PMID:26563588
Das, Saptarshi; Saha, Suman; Das, Shantanu; Gupta, Amitava
2011-07-01
In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modelling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.
Analytical investigation of higher-order plasmonic modes on a metal-dielectric interface
NASA Astrophysics Data System (ADS)
Kordi, Mahdi; Armin, Fahimeh; Malekfar, Mohammad R.; Mirsalehi, Mir Mojtaba; Shokooh-Saremi, Mehrdad
2017-03-01
Based on the plane-wave expansion method, we have analytically obtained a set of higher-order transverse magnetic (TM) modes that can exist on a metal-dielectric interface. Any linear combination of these modes can be supported on the interface. Our analysis is based on the assumption of nonuniformity of the electromagnetic fields in all directions. We have also shown that no higher-order transverse electric (TE) mode can propagate on the interface. Furthermore, the orientation of Poynting vector and energy flow of the TM modes are described. Our results show that the Poynting vector of a higher-order TM mode always makes an angle with the interface, which means TM modes are not pure surface waves.
Beeby, Morgan; Ribardo, Deborah A; Brennan, Caitlin A; Ruby, Edward G; Jensen, Grant J; Hendrixson, David R
2016-03-29
Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.
Nonlinear Dynamic Stability of the Viscoelastic Plate Considering Higher Order Modes
NASA Astrophysics Data System (ADS)
Sun, Yuanxiang; Wang, Cheng
2016-11-01
-The dynamic stability of viscoelastic plates is investigated in this paper by using chaotic and fractal theory. The nonlinear integro-differential dynamic equation is changed into an autonomic 4-dimensional dynamical system. The numerical time integrations of equations are obtained by using the fourth order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of viscoelastic parameter on dynamic buckling of viscoelastic plates is discussed. The effect of higher order modes on dynamic stability of viscoelastic plate is obtained, the necessity of considering higher order modes is discussed.
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Allison, S. G.; Salama, K.
1985-01-01
The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.
NASA Astrophysics Data System (ADS)
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational
Lax Pairs and Integrability Conditions of Higher-Order Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Asad-uz-zaman, M.; Chachou Samet, H.; Khawaja, U. Al
2016-08-01
We derive the Lax pairs and integrability conditions of the nonlinear Schrödinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with derivative terms are considered. The Lax pairs and integrability conditions for some of the well-known nonlinear Schrödinger equations, including a new equation which was not considered previously in the literature, are then derived as special cases. We show most clearly with a similarity transformation that the higher-order terms restrict the integrability to linear potential in contrast with quadratic potential for the standard nonlinear Schrödinger equation.
Marquette, Ian
2010-07-15
We construct integrals of motion for multidimensional classical systems from ladder operators of one-dimensional systems. This method can be used to obtain new systems with higher order integrals. We show how these integrals generate a polynomial Poisson algebra. We consider a one-dimensional system with third order ladder operators and found a family of superintegrable systems with higher order integrals of motion. We obtain also the polynomial algebra generated by these integrals. We calculate numerically the trajectories and show that all bounded trajectories are closed.
Huang, Richard Y-C; Chen, Guodong
2014-10-01
Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein-protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics.
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
Lin, Ying-Tsong; Duda, Timothy F
2012-08-01
A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Zhang, Qizhi; Sobel, Eric; Jiang, Huabei
2009-09-01
In this study, a simplified spherical harmonics approximated higher order diffusion model is employed for 3-D diffuse optical tomography of osteoarthritis in the finger joints. We find that the use of a higher-order diffusion model in a stand-alone framework provides significant improvement in reconstruction accuracy over the diffusion approximation model. However, we also find that this is not the case in the image-guided setting when spatial prior knowledge from x-rays is incorporated. The results show that the reconstruction error between these two models is about 15 and 4%, respectively, for stand-alone and image-guided frameworks.
Higher Order Modeling in Hybrid Approaches to the Computation of Electromagnetic Fields
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Fink, Patrick W.; Graglia, Roberto D.
2000-01-01
Higher order geometry representations and interpolatory basis functions for computational electromagnetics are reviewed. Two types of vector-valued basis functions are described: curl-conforming bases, used primarily in finite element solutions, and divergence-conforming bases used primarily in integral equation formulations. Both sets satisfy Nedelec constraints, which optimally reduce the number of degrees of freedom required for a given order. Results are presented illustrating the improved accuracy and convergence properties of higher order representations for hybrid integral equation and finite element methods.
Tullius, Ryan; Karimullah, Affar S; Rodier, Marion; Fitzpatrick, Brian; Gadegaard, Nikolaj; Barron, Laurence D; Rotello, Vincent M; Cooke, Graeme; Lapthorn, Adrian; Kadodwala, Malcolm
2015-07-08
Optical spectroscopic methods do not routinely provide information on higher order hierarchical structure (tertiary/quaternary) of biological macromolecules and assemblies. This necessitates the use of time-consuming and material intensive techniques, such as protein crystallography, NMR, and electron microscopy. Here we demonstrate a spectroscopic phenomenon, superchiral polarimetry, which can rapidly characterize ligand-induced changes in protein higher order (tertiary/quaternary) structure at the picogram level, which is undetectable using conventional CD spectroscopy. This is achieved by utilizing the enhanced sensitivity of superchiral evanescent fields to mesoscale chiral structure.
Mixed Electromagnetic and Circuit Simulations using Higher-Order Elements and Bases
Champagne, N J; Rockway, J D; Jandhyala, V
2003-06-18
In this paper, an approach to couple higher-order electromagnetic surface integral equations to circuit simulations is presented. Terminals are defined that connect circuit elements to contacts modeled on the distributed electromagnetic domain. A modified charge-current continuity equation is proposed for a generalized KCL connection at the contacts. The distributive electromagnetic integral equations are developed using higher-order bases and elements that allow both better convergence and accuracy for modeling. The resulting scheme enables simultaneous solution of electromagnetic integral equations for arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits design iterations and visualization of the interaction between the two domains.
Hubbs-Tait, Laura; Page, Melanie C.; Huey, Erron L.; Starost, Huei-Juang; Culp, Anne McDonald; Culp, Rex E.; Harper, M. Elizabeth
2009-01-01
We proposed a higher order latent construct of parenting young children, parenting quality. This higher-order latent construct comprises five component constructs: demographic protection, psychological distress, psychosocial maturity, moral and cognitive reflectivity, and parenting attitudes and beliefs. We evaluated this model with data provided by 199 mothers of 4-year-old children enrolled in Head Start. The model was confirmed with only one adjustment suggested by modification indices. Final RMSEA was .05, CFI .96, and NNFI .94, indicating good model fit. Results were interpreted as emphasizing the interdependence of psychological and environmental demands on parenting. Implications of the model for teachers, early interventionists, and public policy are discussed. PMID:19629192
Multiple higher-order stop gaps in infrared polymer photonic crystals.
Straub, M; Ventura, M; Gu, M
2003-07-25
Engineering of stop gaps between higher photonic bands provides an alternative to miniaturization of photonic crystals. Femtosecond laser microfabrication of highly correlated void channel polymer microstructures results in photonic crystals with large stop gaps and a multitude of higher-order gaps in the mid- and near-infrared spectral regions. The gap wavelengths obey Bragg's law. Consistent with theory, varying the woodpile structure unit cell allows for tuning the number of higher-order gaps, and transitions from mere resonant Bragg scattering to stop band total reflection are observed.
Jeter, Sonja N; McDermott, Colleen M; Bower, Patricia A; Kinzelman, Julie L; Bootsma, Melinda J; Goetz, Giles W; McLellan, Sandra L
2009-03-01
This study investigated the occurrence and diversity of Bacteroidales fecal bacteria in gulls residing in the Great Lakes region. Members of this bacterial order have been widely employed as human and bovine host-specific markers of fecal pollution; however, few studies have focused on gulls, which can be a major source of fecal indicator bacteria and pathogens at beaches. We found a low but consistent occurrence of Bacteroidales in gulls at five beaches in three different counties spanning the Wisconsin shoreline of Lake Michigan. The percentages of gulls positive for Bacteroidales were 4 to 8% at beaches in the southern part of the state and 8 to 50% at beaches in the north. Sequencing of 931 clones from seven gull Bacteroidales 16S rRNA gene libraries revealed a large amount of diversity in both individual and pooled gull fecal samples. Two libraries constructed from pooled gull fecal samples (n = 5 and n = 6) did not have a greater richness of sequences than individual samples, suggesting that even within a single gull diversity is high and an extensive sequencing effort is needed to characterize the populations. Estimates of the numbers of operational taxonomic units (OTUs) for the libraries obtained using different similarity levels revealed a large amount of microdiveristy with a limited number of OTUs at the 95% similarity level. Gull sequences were clustered by the beach from which they were collected, suggesting that there were geographic effects on the distribution of Bacteriodales. More than 53% of the 16S rRNA gene sequences from gulls at the southern beaches were associated with the family Porphyromonadaceae, primarily the genus Parabacteroides, whereas sequences from gulls at the northern beaches were comprised of Bacteroidaceae and Prevotellaceae sequences. Comparison of gull sequences with sequences from goose, canine, raccoon, and sewage sources revealed distinct clusters of closely related gull sequences; however, these sequences were widely
Higher Order Testlet Response Models for Hierarchical Latent Traits and Testlet-Based Items
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2013-01-01
Both testlet design and hierarchical latent traits are fairly common in educational and psychological measurements. This study aimed to develop a new class of higher order testlet response models that consider both local item dependence within testlets and a hierarchy of latent traits. Due to high dimensionality, the authors adopted the Bayesian…
Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases
ERIC Educational Resources Information Center
Parkinson, William A.
2009-01-01
Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…
Using Higher Order Thinking Questions to Foster Critical Thinking: A Classroom Study
ERIC Educational Resources Information Center
Barnett, Jerrold E.; Francis, Alisha L.
2012-01-01
To determine if quizzes containing higher order thinking questions are related to critical thinking and test performance when utilised in conjunction with an immersion approach to instruction and effort-based grading, sections of an "Educational Psychology" course were assigned to one of three quizzing conditions. Quizzes contained…
Dichotomous Identification Keys: A Ladder to Higher Order Knowledge about the Human Body
ERIC Educational Resources Information Center
Sorgo, Andrej
2006-01-01
We tried to enrich teaching human anatomy in high school biology lessons. Students construct dichotomous identification keys to the cells, tissues, organs, or body parts. By doing this, students have achieved higher-order cognitive levels of knowledge because construction of such keys is based on analysis, synthesis, and evaluation. Students found…
Nonstandard and Higher-Order Finite-Difference Methods for Electromagnetics
2009-10-26
NONSTANDARD AND HIGHER-ORDER FINITE-DIFFERENCE METHODS FOR ELECTROMAGNETICS by Constantine A. Balanis Bo Yang Craig R. Birtcher Department of Electrical ...116 3.55. Geometry of the simulated free-space region. . . . . . . . . . . . . . . . . . 121 3.56. Normalized electric charge densities using... electric charge densities using the nonstandard differentiation of (3.78) and (3.87
Application of higher order statistics/spectra in biomedical signals--a review.
Chua, Kuang Chua; Chandran, Vinod; Acharya, U Rajendra; Lim, Choo Min
2010-09-01
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second-order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Effect of Jigsaw II on Literal and Higher Order EFL Reading Comprehension
ERIC Educational Resources Information Center
Ghaith, Ghazi; El-Malak, Mirna Abd
2004-01-01
The present study examines the effect of the cooperative Jigsaw II method on improving literal and higher order reading comprehension in English as a foreign language (EFL). Forty-eight ( n = 48) students of EFL participated in the study and a pretest-posttest control group experimental design was employed. The results indicated no statistically…
The Higher Order Factor Structure and Gender Invariance of the Pathological Narcissism Inventory
ERIC Educational Resources Information Center
Wright, Aidan G. C.; Lukowitsky, Mark R.; Pincus, Aaron L.; Conroy, David E.
2010-01-01
The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a…
The grounding of higher order concepts in action and language: a cognitive robotics model.
Stramandinoli, Francesca; Marocco, Davide; Cangelosi, Angelo
2012-08-01
In this paper we present a neuro-robotic model that uses artificial neural networks for investigating the relations between the development of symbol manipulation capabilities and of sensorimotor knowledge in the humanoid robot iCub. We describe a cognitive robotics model in which the linguistic input provided by the experimenter guides the autonomous organization of the robot's knowledge. In this model, sequences of linguistic inputs lead to the development of higher-order concepts grounded on basic concepts and actions. In particular, we show that higher-order symbolic representations can be indirectly grounded in action primitives directly grounded in sensorimotor experiences. The use of recurrent neural network also permits the learning of higher-order concepts based on temporal sequences of action primitives. Hence, the meaning of a higher-order concept is obtained through the combination of basic sensorimotor knowledge. We argue that such a hierarchical organization of concepts can be a possible account for the acquisition of abstract words in cognitive robots.
ERIC Educational Resources Information Center
Kidwai, Khusro; Munyofu, Mine; Swain, William J; Ausman, Bradley D.; Lin, Huifen; Dwyer, Francis
2001-01-01
Animation is being used extensively for instructional purposes; however, it has not been found to be effective on measures of higher order learning (concepts, rules, procedures) within the knowledge acquisition and knowledge integration domains. The purpose of this study was to examine the instructional effectiveness of two visual scaffolding…
A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.
Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn
2015-11-01
Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia.
Oscillation of certain higher-order neutral partial functional differential equations.
Li, Wei Nian; Sheng, Weihong
2016-01-01
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
Performance-Based Task Assessment of Higher-Order Proficiencies in Redesigned STEM High Schools
ERIC Educational Resources Information Center
Ernst, Jeremy V.; Glennie, Elizabeth; Li, Songze
2017-01-01
This study explored student abilities in applying conceptual knowledge when presented with structured performance tasks. Specifically, the study gauged proficiency in higher-order applications of students enrolled in earth and environmental science or biology. The student sample was drawn from a Redesigned STEM high school model where a tested…
Purposely Teaching for the Promotion of Higher-Order Thinking Skills: A Case of Critical Thinking
ERIC Educational Resources Information Center
Miri, Barak; Ben-Chaim, David; Zoller, Uri
2007-01-01
This longitudinal case-study aimed at examining whether purposely teaching for the promotion of higher order thinking skills enhances students' critical thinking (CT), within the framework of science education. Within a pre-, post-, and post-post experimental design, high school students, were divided into three research groups. The experimental…
Higher Order Cumulant Studies of Ocean Surface Random Fields from Satellite Altimeter Data
NASA Technical Reports Server (NTRS)
Cheng, B.
1996-01-01
Higher order statistics, especially 2nd order statistics, have been used to study ocean processes for many years in the past, and occupy an appreciable part of the research literature on physical oceanography. They in turn form part of a much larger field of study in statistical fluid mechanics.
Media Literacy, Popular Culture, and the Transfer of Higher Order Thinking Abilities.
ERIC Educational Resources Information Center
Mraz, Maryann; Heron, Alison H.; Wood, Karen
2003-01-01
Contends that by acknowledging the influence of media literacy on adolescents' lives outside the classroom, teachers have a potential source for motivating student interest and eliciting their higher order thinking abilities within the classroom. Specifically addresses merging popular culture with classroom culture and provides a paradigm for…
Generalized Flows for Optimal Inference in Higher Order MRF-MAP.
Arora, Chetan; Banerjee, Subhashis; Kalra, Prem Kumar; Maheshwari, S N
2015-07-01
Use of higher order clique potentials in MRF-MAP problems has been limited primarily because of the inefficiencies of the existing algorithmic schemes. We propose a new combinatorial algorithm for computing optimal solutions to 2 label MRF-MAP problems with higher order clique potentials. The algorithm runs in time O(2(k)n(3)) in the worst case (k is size of clique and n is the number of pixels). A special gadget is introduced to model flows in a higher order clique and a technique for building a flow graph is specified. Based on the primal dual structure of the optimization problem, the notions of the capacity of an edge and a cut are generalized to define a flow problem. We show that in this flow graph, when the clique potentials are submodular, the max flow is equal to the min cut, which also is the optimal solution to the problem. We show experimentally that our algorithm provides significantly better solutions in practice and is hundreds of times faster than solution schemes like Dual Decomposition [1], TRWS [2] and Reduction [3], [4], [5]. The framework represents a significant advance in handling higher order problems making optimal inference practical for medium sized cliques.
ERIC Educational Resources Information Center
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Radiation characteristics and generation of higher-order modes of circular microstrip antennas
NASA Astrophysics Data System (ADS)
Kumar, G.; Shafai, L.
1984-08-01
The characteristics of higher-order modes of circular microstrip antennas, such as radiation pattern, directivity, bandwidth, efficiency, and location of the feedpoint to match a 50 ohm line, are studied, and the effects of varying the substrate parameters are investigated. A multifeed technique to generate any particular mode is also presented.
Conception of Teaching Higher Order Thinking: Perspectives of Chinese Teachers in Hong Kong
ERIC Educational Resources Information Center
Yeung, Sze-yin Shirley
2015-01-01
Enhancing the higher order thinking (HOT) ability of students is a worldwide educational goal. This has also become a significant objective in the curriculum reforms in Hong Kong, which aims at better preparation of students to meet the challenges of the new era. Cultural aspects are often regarded as salient in determining approaches to teaching.…
Higher-Order Thinking Development through Adaptive Problem-Based Learning
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2015-01-01
In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…
ERIC Educational Resources Information Center
Tanujaya, Benidiktus
2016-01-01
The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…
Improving Higher Order Thinking Skills among Freshmen by Teaching Science through Inquiry
ERIC Educational Resources Information Center
Hugerat, Muhamad; Kortam, Naji
2014-01-01
Twenty-eight freshmen majoring in biology and/or chemistry in an Arab college in Israel, were given a pre-test and a post-test in which they had to identify the control group and design a controlled experiment. During the course an intervention was used. Science was taught by inquiry while using strategies that promote higher-order thinking skills…
ERIC Educational Resources Information Center
Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya
2015-01-01
The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…
ESL Students' Perceptions of the Use of Higher Order Thinking Skills in English Language Writing
ERIC Educational Resources Information Center
Ganapathy, Malini; Kaur, Sarjit
2014-01-01
The transformation of the education curriculum in the Malaysia Education Development Plan (PPPM) 2013-2025 focuses on the Higher Order Thinking (HOT) concept which aims to produce knowledgeable students who are critical and creative in their thinking and can compete at the international level. HOT skills encourage students to apply, analyse,…
Addition of higher order plate and shell elements into NASTRAN computer program
NASA Technical Reports Server (NTRS)
Narayanaswami, R.; Goglia, G. L.
1976-01-01
Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.
ERIC Educational Resources Information Center
Toledo, Santiago; Dubas, Justin M.
2016-01-01
An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…
Excitation of higher order modes in optical fibers with parabolic index profile.
Chen, C L
1988-06-01
A large number of modes can be supported by multimode fibers. There are applications where higher order modes are preferred. Microbend intensity sensors are good examples. The sensitivity of these sensors is greatly increased if higher order modes are excited. In this work, a simple method to excite higher order modes preferentially is suggested. It consists of thin-film gratings deposited directly onto the fiber end. By controlling the film thickness or transparency of the grating structure, a desired transmission coefficient T(r,Phi) is synthesized. The desired mode can be excited preferentially by incident Gaussian beams without the aid of additional optical components. Binary intensity and binary phase gratings have been studied. Numerical investigation reveals that the phase gratings are more effective for the preferential excitation of higher order modes than the intensity gratings. In fact, by using binary phase gratings and in optimal excitation conditions as much as 81.1, 76.9, 74.6, 73.3, and 72.3% of the power in the incoming, linearly polarized, fundamental Gaussian beam can be converted to LP(02), LP(03), LP(04), LP(05), and LP(06) modes, respectively, excluding Fresnel loss.
ERIC Educational Resources Information Center
Solomon, Sheila
This practicum study evaluated a non-basal, multidisciplinary, multisensory approach to teaching higher order reading comprehension skills to eight fifth-grade learning-disabled students from low socioeconomic minority group backgrounds. The four comprehension skills were: (1) identifying the main idea; (2) determining cause and effect; (3) making…
Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions
Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.
2016-01-01
Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686
How to Assess Higher-Order Thinking Skills in Your Classroom
ERIC Educational Resources Information Center
Brookhart, Susan M.
2010-01-01
Don't settle for assessing recall and comprehension only when you can use this guide to create assessments for higher-order thinking skills. Assessment expert Susan M. Brookhart brings you up to speed on how to develop and use test questions and other assessments that reveal how well your students can analyze, reason, solve problems, and think…
Higher-Order Fertility among Urban Fathers: An Overlooked Issue for a Neglected Population
ERIC Educational Resources Information Center
Bronte-Tinkew, Jacinta; Ryan, Suzanne; Franzetta, Kerry; Manlove, Jennifer; Lilja, Emily
2009-01-01
The study includes a longitudinal sample of 1,989 fathers from the Fragile Families and Child Wellbeing study and examines factors associated with fathering a higher-order birth (three or more children) and compares these factors to those predicting any subsequent birth. Also, the article examines differences by marital status. Logistic regression…
ERIC Educational Resources Information Center
Shen, Yan; Hannafin, Michael
2013-01-01
This study is part of an ongoing design research to scaffold preservice teachers' higher-order reasoning while solving technology integration problems. Informed by previous iterations, we designed and examined progressively increasing scaffolds that integrated multiple scaffolding functions to facilitate three technology-based lesson design…
Developing Higher-Order Thinking Skills through the Use of Technology.
ERIC Educational Resources Information Center
Coleman, Connie; King, Jeff; Ruth, Mary Helen; Stary, Erin
This report describes a program, utilizing both critical and creative thinking skills, to enhance the educational process through the use of technology. The targeted population consisted of fourth grade students in a growing middle class community located in northern Illinois. The lack of higher-order thinking skills was documented through…
ERIC Educational Resources Information Center
Dori, Yehudit J.; Tal, Revital T.; Tsaushu, Masha
2003-01-01
Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our "Biotechnology, Environment, and Related Issues" module, developed within the "Science for All" framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking…
NASA Astrophysics Data System (ADS)
Geng, Weihua
2013-05-01
In this paper, we present a parallel higher-order boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangles with the assistance of normal information at vertices. To maintain the desired accuracy, four-point Gauss-Radau quadratures are used on regular triangles and sixteen-point Gauss-Legendre quadratures together with regularization transformations are applied on singular triangles. To speed up our method, we take advantage of the embarrassingly parallel feature of boundary integral formulation, and parallelize the schemes with the message passing interface (MPI) implementation. Numerical tests show significantly improved accuracy and convergence of the proposed higher-order boundary integral Poisson-Boltzmann (HOBI-PB) solver compared with boundary integral PB solver using often-seen centroid collocation on flat triangles. The higher-order accuracy results achieved by present method are important to sensitive solvation analysis of biomolecules, particularly when accurate electrostatic surface potentials are critical in the molecular simulation. In addition, the higher-order boundary integral schemes presented here and their associated parallelization potentially can be applied to solving boundary integral equations in a general sense.
Integrability Test and Travelling-Wave Solutions of Higher-Order Shallow- Water Type Equations
NASA Astrophysics Data System (ADS)
Maldonado, Mercedes; Molinero, María Celeste; Pickering, Andrew; Prada, Julia
2010-04-01
We apply the Weiss-Tabor-Carnevale (WTC) Painlevé test to members of a sequence of higher-order shallow-water type equations. We obtain the result that the equations considered are non-integrable, although compatibility conditions at real resonances are satisfied. We also construct travelling-wave solutions for these and related equations.
ERIC Educational Resources Information Center
McGill, Ryan J.; Canivez, Gary L.
2016-01-01
As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…
ERIC Educational Resources Information Center
Scandura, Joseph M.; And Others
The research reported in this paper was designed to analyze the incidence of use of higher-order rules by students solving geometric construction problems. A carefully selected set of construction problems was subjected to rigorous a priori analysis by mathematics educators to determine what basic and second-order rules might be used by able high…
Higher Order, Critical Thinking Skills in National Police Academy Course Development
ERIC Educational Resources Information Center
Barker, Beth A.
2011-01-01
Law enforcement requires the officer to invoke reason and critical thinking skills in order to solve intricate problems in real time, on the job. This study examined the course development of a large national organization (State Police Academies) to ascertain what strategies are being used in their courses to promote training for higher order,…
Geometric Hamilton-Jacobi theory for higher-order autonomous systems
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2014-06-01
The geometric framework for the Hamilton-Jacobi theory is used to study this theory in the background of higher-order mechanical systems, in both the Lagrangian and Hamiltonian formalisms. Thus, we state the corresponding Hamilton-Jacobi equations in these formalisms and apply our results to analyze some particular physical examples.
ERIC Educational Resources Information Center
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
An Evaluation of the Higher Order Thinking Skills Program with Fourth and Fifth Grade Students.
ERIC Educational Resources Information Center
Eisenman, J. Gordon, Jr.
The Higher Order Thinking Skills Program (HOTS) is a computer-based program for teaching thinking skills developed by Stanley Pogrow at the University of Arizona. It is now used in over 800 U.S. schools. This study investigated the effects of the HOTS program versus the traditional Chapter 1 program on fourth and fifth grade students'…
Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model
ERIC Educational Resources Information Center
Hsu, Chia-Ling; Wang, Wen-Chung
2015-01-01
Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…
The Relationship Between Higher Order Need Strength and Sensitivity to Environmental Variations.
ERIC Educational Resources Information Center
Beehr, Terry A.; And Others
Higher order need strength (HONS) has been shown to moderate the relationship between work role characteristics and some traditional dependent variables in organizations. It was hypothesized that employees with strong HONS might be more sensitive to variability in their work environments than people with weaker HONS. This would happen because…
An Initial Framework for the Language of Higher-Order Thinking Mathematics Practices
ERIC Educational Resources Information Center
Staples, Megan E.; Truxaw, Mary P.
2012-01-01
This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: "language of generalisation," "language of comparison," "language of proportional reasoning," and…
ERIC Educational Resources Information Center
Lim, Cher Ping; Tay, Lee Yong
2003-01-01
Based on a case study of an elementary school in Singapore, this article describes and analyzes how different types of ICT tools (informative, situating, constructive, and communicative tools) are used to engage students in higher-order thinking. The discussion emphasizes that the objective of the lesson and the orienting activities, rather than…
Assessment Choices to Target Higher Order Learning Outcomes: The Power of Academic Empowerment
ERIC Educational Resources Information Center
McNeill, Margot; Gosper, Maree; Xu, Jing
2012-01-01
Assessment of higher order learning outcomes such as critical thinking, problem solving and creativity has remained a challenge for universities. While newer technologies such as social networking tools have the potential to support these intended outcomes, academics' assessment practice is slow to change. University mission statements and unit…
Improving Higher Order Thinking of Middle School Geography Students By Teaching Skills Directly.
ERIC Educational Resources Information Center
Freseman, Richard D.
This document reports on a practicum experience on the improvement of thinking skills of middle school students. There has been much discussion in educational circles that mastery of higher- order thinking skills should be given greater attention in the public schools. A program of teaching thinking skills directly to grade seven geography classes…
Using Tests To Evaluate the Impact of Curricular Reform on Higher Order Thinking.
ERIC Educational Resources Information Center
Davis, Alan
The dominant issues in considering the use of tests developed outside the classroom to measure the impact of curriculum reform on higher order thinking are reviewed by a panel interviewed for this discussion. Panel members are: (1) Stuart Kahl, (2) Robert Linn, (3) Senta A. Raizen, (4) Lauren Resnick, and (5) Thomas A. Romberg. It is conceded…
Assessing Teachers' Pedagogical Knowledge in the Context of Teaching Higher-Order Thinking
ERIC Educational Resources Information Center
Zohar, Anat; Schwartzer, Noa
2005-01-01
This article reports the development and application of two instruments for assessing science teachers' pedagogical knowledge in the context of teaching higher-order thinking: a Likert-type research instrument, and an instrument that analyzes classroom observations. The rationale for developing these instruments and their main categories is…
ERIC Educational Resources Information Center
Scandura, Joseph M.; And Others
A quasi-systematic strategy of devising rule sets for problem solving is applied to ruler and compass geometrical constructions. "Lower order" rules consisting of basic skills and "higher order" rules which govern the selection and combination of lower order rules are identified by an analysis of problem types; three types of…
Yang, Rui; Kerschner, Jenny L.; Gosalia, Nehal; Neems, Daniel; Gorsic, Lidija K.; Safi, Alexias; Crawford, Gregory E.; Kosak, Steven T.; Leir, Shih-Hsing; Harris, Ann
2016-01-01
Higher order chromatin structure establishes domains that organize the genome and coordinate gene expression. However, the molecular mechanisms controlling transcription of individual loci within a topological domain (TAD) are not fully understood. The cystic fibrosis transmembrane conductance regulator (CFTR) gene provides a paradigm for investigating these mechanisms. CFTR occupies a TAD bordered by CTCF/cohesin binding sites within which are cell-type-selective cis-regulatory elements for the locus. We showed previously that intronic and extragenic enhancers, when occupied by specific transcription factors, are recruited to the CFTR promoter by a looping mechanism to drive gene expression. Here we use a combination of CRISPR/Cas9 editing of cis-regulatory elements and siRNA-mediated depletion of architectural proteins to determine the relative contribution of structural elements and enhancers to the higher order structure and expression of the CFTR locus. We found the boundaries of the CFTR TAD are conserved among diverse cell types and are dependent on CTCF and cohesin complex. Removal of an upstream CTCF-binding insulator alters the interaction profile, but has little effect on CFTR expression. Within the TAD, intronic enhancers recruit cell-type selective transcription factors and deletion of a pivotal enhancer element dramatically decreases CFTR expression, but has minor effect on its 3D structure. PMID:26673704
Analysis of warping deformation modes using higher order ANCF beam element
NASA Astrophysics Data System (ADS)
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Scott, Kristin M; Barbarin, Oscar A; Brown, Jeffrey M
2013-01-01
This study examines the relations of higher order (i.e., abstract) thinking (HOT) skills to specific domains of social competence in Black boys (n = 108) attending publicly sponsored prekindergarten (pre-K) programs. Data for the study were collected as part of the National Center for Early Development and Learning (NCEDL) Multi-State Study, a national, longitudinal study examining the quality and outcomes in a representative sample of publicly sponsored pre-K programs in six states (N = 240). Pre-K and kindergarten teachers rated randomly selected children on measures of abstract thinking, self-regulation, and social functioning at the beginning and end of each school year. Applying structural equation modeling, compared with earlier time points, HOT measured in the fall of kindergarten significantly predicted each of the domains of social competence in the spring of kindergarten, with the exception of peer social skills, while controlling for general cognitive ability. Results suggest that early intervention to improve HOT may be an effective and more focused approach to address concerns about Black boys' early social competencies in specific domains and potentially reduce the risk of later social difficulties.
3D Higher Order Modeling in the BEM/FEM Hybrid Formulation
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.
2000-01-01
Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution.
Vasudevan, R K; Okatan, M Baris; Rajapaksa, I; Kim, Y; Marincel, D; Trolier-McKinstry, S; Jesse, S; Valanoor, N; Kalinin, S V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr(1-x)Ti(x))O₃ (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of n(th) order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials.
Higher-order harmonic transmission-line RF coil design for MR applications.
Zhang, Xiaoliang; Zhu, Xiao-Hong; Chen, Wei
2005-05-01
A novel concept based on the use of higher-order harmonic resonances in a transmission-line resonator is introduced for the design of high-frequency RF coils at high and ultrahigh fields, where conventional RF coil designs present difficulties and limitations. To demonstrate this concept, we successfully designed and fabricated a 400-MHz RF coil for rat imaging using a second-harmonic resonant microstrip transmission line. This coil has a high Q-factor, reduces coil-cable interactions without the use of a matching balun, and has a broad range for tuning the coil's resonant frequency at the loaded condition. This work demonstrates that the use of higher-order harmonics in a transmission-line resonator provides an alternative, efficient approach to the design of large and high-frequency RF coils.
Enhancing Higher Order Thinking Skills Among Inservice Science Teachers Via Embedded Assessment
NASA Astrophysics Data System (ADS)
Barak, Miri; Dori, Yehudit Judy
2009-10-01
Testing students on higher order thinking skills may reinforce these skills among them. To research this assertion, we developed a graduate course for inservice science teachers in a framework of a “Journal Club”—a hybrid course which combines face-to-face classroom discussions with online activities, interrelating teaching, learning, and assessment. The course involves graduate students in critical evaluation of science education articles and cognitive debates, and tests them on these skills. Our study examined the learning processes and outcomes of 51 graduate students, from three consecutive semesters. Findings indicated that the students’ higher order thinking skills were enhanced in terms of their ability to (a) pose complex questions, (b) present solid opinions, (c) introduce consistent arguments, and (d) demonstrate critical thinking.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.
The higher order factor structure and gender invariance of the Pathological Narcissism Inventory.
Wright, Aidan G C; Lukowitsky, Mark R; Pincus, Aaron L; Conroy, David E
2010-12-01
The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a higher order factor structure that conforms to the theoretical structure of pathological narcissism with one factor representing narcissistic grandiosity and the other capturing narcissistic vulnerability. These results uniquely place the PNI as the only measure to broadly assess the two phenotypic themes of pathological narcissism. In the second study, results from tests of measurement invariance indicate that the PNI performs similarly in large samples of men (n = 488) and women (n = 495). These results further establish the psychometric properties of the PNI and suggest that it is well suited for the assessment of pathological narcissism.
Critical study of higher order numerical methods for solving the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1978-01-01
A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.
A critical study of higher-order numerical methods for solving the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1977-01-01
A fourth-order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method is the natural extension of the second-order Keller Box Scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary-layer equations. The efficiency of the present method is compared with other two-point and three-point higher-order methods; namely, the Keller Box Scheme with Richardson extrapolation, the method of deferred corrections, and the three-point spline methods. For equivalent accuracy, numerical results show the present method to be more efficient than the other higher-order methods for both laminar and turbulent flows.
Bearing fault identification by higher order energy operator fusion: A non-resonance based approach
NASA Astrophysics Data System (ADS)
Faghidi, H.; Liang, M.
2016-10-01
We report a non-resonance based approach to bearing fault detection. This is achieved by a higher order energy operator fusion (HOEO_F) method. In this method, multiple higher order energy operators are fused to form a single simple transform to process the bearing signal obscured by noise and vibration interferences. The fusion is guided by entropy minimization. Unlike the popular high frequency resonance technique, this method does not require the information of resonance excited by the bearing fault. The effects of the HOEO_F method on signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) are illustrated in this paper. The performance of the proposed method in handling noise and interferences has been examined using both simulated and experimental data. The results indicate that the HOEO_F method outperforms both the envelope method and the original energy operator method.
Interaction of Higher Order Modes Cluster (HOMC) guided waves with notch-like defects in plates
NASA Astrophysics Data System (ADS)
Sri Harsha Reddy, K.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Hill, Samuel; Dixon, Steve
2017-02-01
Guided ultrasonic waves are widely used for long range inspection. Higher Order Modes Cluster (HOMC), discovered at the author's research group [1-3] consist of multiple higher order guided wave modes that travel together as a single wave-packet and without appreciable dispersion for distances in the range of meters. These waves not only propagate along the length of the structure but also cover the entire thickness, and in view of the higher frequencies, they can offer improved resolution over conventional low-frequency guided waves. This paper studies the sensitivity of axial plate HOMC to notch-like defects, evaluated by calculating wave reflection co-efficient. The studies are carried out using finite element models validated by experiments. Analysis is presented for better understanding of wave-defect interaction. Advantages and limitations for practical realization of the above approach are also discussed.
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory.
Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
ANOVA-HDMR structure of the higher order nodal diffusion solution
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-07-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Application of higher-order numerical methods to the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1978-01-01
A fourth-order method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method is the natural extension of the second-order Keller Box Scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary-layer equations for both attached and separated flows. The efficiency of the present method is compared with other higher-order methods; namely, the Keller Box Scheme with Richardson extrapolation, the method of deferred corrections, the three-point spline methods, and a modified finite-element method. For equivalent accuracy, numerical results show the present method to be more efficient than the other higher-order methods for both laminar and turbulent flows.
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory
Wu, Jianlan Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
The post-mitotic state in neurons correlates with a stable nuclear higher-order structure
Aranda-Anzaldo, Armando
2012-01-01
Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316
NASA Astrophysics Data System (ADS)
Li, Jinsha; Li, Junmin
2016-07-01
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-01-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations. PMID:27086841
Higher-Order Corrections to Earthʼs Ionosphere Shocks
NASA Astrophysics Data System (ADS)
Abdelwahed, H. G.; El-Shewy, E. K.
2017-01-01
Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive (negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging, its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic viscosities coefficient of positive (negative) ions {η }1 and {η }2 on the electrostatic shocks in Earth’s ionosphere are also argued. Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the Research Project No. 2015/01/4787
Response spectrum method for extreme wave loading with higher order components of drag force
NASA Astrophysics Data System (ADS)
Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad
2017-03-01
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
Response spectrum method for extreme wave loading with higher order components of drag force
NASA Astrophysics Data System (ADS)
Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad
2017-01-01
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
Higher-order numerical methods derived from three-point polynomial interpolation
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1976-01-01
Higher-order collocation procedures resulting in tridiagonal matrix systems are derived from polynomial spline interpolation and Hermitian finite-difference discretization. The equations generally apply for both uniform and variable meshes. Hybrid schemes resulting from different polynomial approximations for first and second derivatives lead to the nonuniform mesh extension of the so-called compact or Pade difference techniques. A variety of fourth-order methods are described and this concept is extended to sixth-order. Solutions with these procedures are presented for the similar and non-similar boundary layer equations with and without mass transfer, the Burgers equation, and the incompressible viscous flow in a driven cavity. Finally, the interpolation procedure is used to derive higher-order temporal integration schemes and results are shown for the diffusion equation.
Collapse for the higher-order nonlinear Schrödinger equation
Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; ...
2016-02-01
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less
Collapse for the higher-order nonlinear Schrödinger equation
Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; Horikis, T. P.; Karachalios, N. I.; Kevrekidis, P. G.
2016-02-01
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data, are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.
Regular solutions to higher order curvature Einstein Yang Mills systems in higher dimensions
NASA Astrophysics Data System (ADS)
Breitenlohner, Peter; Maison, Dieter; Tchrakian, D. H.
2005-12-01
We study regular, static, spherically symmetric solutions of Yang Mills theories employing higher order invariants of the field strength coupled to gravity in d dimensions. We consider models with only two such invariants characterized by integers p and q. These models depend on one dimensionless parameter α leading to one-parameter families of regular solutions, obtainable by numerical solution of the corresponding boundary value problem. Much emphasis is put on an analytical understanding of the numerical results.
Higher-order modulation formats for spectral-efficient high-speed metro systems
NASA Astrophysics Data System (ADS)
Freund, R.; Nölle, M.; Seimetz, M.; Hilt, J.; Fischer, J.; Ludwig, R.; Schubert, C.; Bach, H.-G.; Velthaus, K.-O.; Schell, M.
2011-01-01
Worldwide, higher-order modulation formats are intensively investigated to further increase the spectral efficiency for building the next generation of high-speed metro systems. IQ-modulators, coherent receivers and electronic equalizers are hereby discussed as key devices. We report on system design issues as well as on HHI's latest achievements in developing InP based high-speed modulators and coherent receiver frontends.
Bolognini, Gabriele; Bononi, Alberto
2009-04-27
We present a theoretical study of the performance of distributed Raman amplifiers with higher order pumping schemes, focusing in particular on double Rayleigh scattering (DRS) noise. Results show an unexpected significant DRS noise reduction for pumping order higher than third, allowing for an overall performance improvement of carefully designed distributed amplifiers, ensuring a large optical signal-to-noise ratio improvement together with reduced DRS-induced penalties.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
1979-01-01
Expressions are derived for higher-order skewness and excess coefficients using central moments and cumulants up to 8th order. These coefficients are then calculated for three probability distributions: (1) Log-normal, (2) Rice-Nakagami, and (3) Gamma distributions. Curves are given to shown the variation of skewness with excess coefficients for these distributions. These curves are independent of the particular distribution parameters. This method is useful for studying fluctuating phenomena, which obey non-Gaussian statistics.
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
NASA Astrophysics Data System (ADS)
Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using
Blowup results for the KGS system with higher order Yukawa coupling
Shi, Qi-Hong; Li, Wan-Tong; Wang, Shu
2015-10-15
In this paper, we investigate the Klein-Gordon-Schrödinger (KGS) system with higher order Yukawa coupling in spatial dimensions N ≥ 3. We establish a perturbed virial type identity and prove blowup results relied on Lyapunov functionals for KGS system with a negative energy level. Additionally, we give a result with respect to the blowup rate in finite time for the radial solution in 3 spatial dimensions.
Quantum Key Distribution with Higher-Order Alphabets Using Spatially Encoded Qudits
NASA Astrophysics Data System (ADS)
Walborn, S. P.; Lemelle, D. S.; Almeida, M. P.; Ribeiro, P. H. Souto
2006-03-01
We present a proof of principle demonstration of a quantum key distribution scheme in higher-order d-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an average error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.
Higher Order Mode Damper Study of the 56 MHz SRF Cavity
Choi,E.; Hahn, H.
2008-08-01
This report summarizes the study on the higher order mode (HOM) damper for the 56 MHz SRF cavity. The Q factors and frequencies of the HOMs with the HOM damper are measured and compared to the simulation. The high pass filter prototype for rejecting the fundamental mode is designed and tested. The filter measurement is also compared to the simulation. Based on the measurement, a new location of the HOM damper is chosen.
Optimizing of the higher order mode dampers in the 56MHz SRF cavity
Wu, Q.; Ben-Zvi, I.
2010-01-27
Earlier, we reported that a 56 MHz cavity was designed for a luminosity upgrade of the RHIC, and presented the requirements for Higher Order Mode (HOM) damping, the design of the HOM dampers, along with measurements and simulations of the HOM dampers. In this report, we describe our optimization of the dampers performance, and the modifications we made to their original design. We also optimized the number of the HOM dampers, and tested different configurations of locations for them.
Higher-order contributions to transport coefficients in two-temperature hydrogen thermal plasma
Sharma, Rohit; Singh, Gurpreet; Singh, Kuldip
2011-06-15
Within the framework of Chapman-Enskog method, electron transport properties and their higher-order contributions have been studied in temperature range 5000-40 000 K at different pressures for hydrogen thermal plasma in local thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (NLTE) regimes. Two cases of thermal plasma have been considered: (i) Ground state (GS) plasma in which all atomic hydrogen has been assumed to be in ground state and (ii) the excited state (ES) plasma in which hydrogen atoms are distributed in various possible electronically excited states (EES). The plasma composition is calculated by modified Saha equation of van de Sanden et al. The influence of non-equilibrium parameter {theta} (=T{sub e}/T{sub h}) on these properties has been examined in both the cases. It has been observed that both EES and {theta} modify the plasma composition and consequently affect the electron transport properties (viz., electron thermal conductivity, electrical conductivity, thermal diffusion and thermal diffusion ratio). It is shown that non-equilibrium parameter {theta} has meager effect on the higher-order convergence in comparison to EES. The unique behaviour observed for third-order contribution to these transport properties in GS plasma for small values of {theta} could be explained only when EES are taken into account. It is noted that EES show their influence on higher-orders to a considerable extent even when e-H(n) cross-sections are replaced by the ground state ones. Thus electron transport coefficients and their higher-order contributions are affected significantly due to inclusion of EES in LTE and NLTE plasmas.
Higher-order assembly of collagen peptides into nano- and microscale materials.
Przybyla, David E; Chmielewski, Jean
2010-06-01
The triple-helical structure of collagen peptides has recently been harnessed as a subunit in the higher-order assembly of unique biomaterials. Specific assembly signals have been designed within collagen peptides, including hydrophobic groups, electrostatic interactions, and metal-ligand binding, to name a few. In this way, a range of novel assemblies have been obtained, including nano- to microscale fibers, gels, spheres, and meshes, each with the potential for novel biological applications in drug delivery, tissue engineering, and regenerative medicine.
The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry
Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas
2013-01-01
Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813
Conical emission from laser filaments and higher-order Kerr effect in air.
Béjot, P; Kasparian, J
2011-12-15
We numerically investigate the conical emission (CE) from ultrashort laser filaments, both considering and disregarding the higher-order Kerr effect (HOKE). While the consideration of HOKE has almost no influence on the predicted CE from collimated beams, differences arise for tightly focused beams. This difference is attributed to the different relative contributions of the nonlinear focus and of the modulational instability over the whole filament length.
Analysis of Higher Order Modes Damping Techniques in 9 Cell Cavity with Modified Drift Tubes
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Mitrofanov, A. A.; Sobenin, N. P.; Zvyagintsev, V. L.
Electrodynamic characteristics (EDC) of higher order modes (HOM) were calculated for a superconducting 9-cell accelerating cavity of eLinac accelerator with operating frequency of 1300 MHz. Several HOM damping techniques including damping with grooved, fluted and ridged beam pipes were analyzed and compared. The influence of the parameters of the drift tube on the HOM damping and on the parameters of the fundamental wave was analyzed.
Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications
Minion, Michael
2014-04-29
The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.
Transition, coexistence, and interaction of vector localized waves arising from higher-order effects
Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li
2015-11-15
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.
Resonator stability and higher-order modes in free-electron laser oscillators
NASA Astrophysics Data System (ADS)
Pathak, Abhishek; Krishnagopal, Srinivas
2014-08-01
Three-dimensional simulation codes genesis and opc are used to investigate the dependence of the resonator stability of free-electron laser (FEL) oscillators on the stability parameter, laser wavelength, outcoupling hole size and mirror tilt. We find that to have stable lasing over a wide range of wavelengths, the FEL cavity configuration should be carefully chosen. Broadly, the concentric configuration gives near-Gaussian modes and the best performance. At intermediate configurations the dominant mode often switches to a higher-order mode, which kills lasing. For the same reason, the outcoupled power can also be less. We have constructed a simple analytic model to study resonator stability which gives results that are in excellent agreement with the simulations. This suggests that modes in FEL oscillators are determined more by the cavity configuration and radiation propagation than by the details of the FEL interaction. We find (as in experiments at the CLIO FEL) that tilting the mirror can, for some configurations, lead to more outcoupled power than a perfectly aligned mirror because the mode is now a more compact higher-order mode, which may have implications for the mode quality for user experiments. Finally, we show that the higher-order mode obtained is usually a single Gauss-Laguerre mode, and therefore it should be possible to filter out the mode using suitable intracavity elements, leading to better FEL performance.
Statistical modelling of higher-order correlations in pools of neural activity
NASA Astrophysics Data System (ADS)
Montani, Fernando; Phoka, Elena; Portesi, Mariela; Schultz, Simon R.
2013-07-01
Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity.
Impedance Eduction in Ducts with Higher-Order Modes and Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2009-01-01
An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
On the polarization of non-Gaussian optical quantum field: Higher-order optical-polarization
Singh, Ravi S.; Prakash, Hari
2013-06-15
Polarization of light signifies transversal, anisotropic and asymmetrical statistical properties of electromagnetic radiation about the direction of propagation. Traditionally, optical-polarization is characterized by Stokes’ theory susceptible to be insufficient in assessing the polarization structure of optical quantum fields and, also, does not decipher the twin characteristic polarization parameters (‘ratio of real amplitudes and difference in phases’). An alternative way, in the spirit of classical description of optical-polarization, is introduced which can be generalized to deal higher-order polarization of quantum light, particularly, prepared in non-Gaussian Schrodinger Cat or Cat-like states and entangled bi-modal coherent states. On account of pseudo mono-modal or multi-modal nature of such optical quantum field, higher-order polarization is seen to be highly sensitive to the basis of description. -- Highlights: •We have generalized the usual concept of optical-polarization. •A concept of higher-order optical-polarization is introduced. •This concept is applied to compute the polarization-parameters of non-Gaussian Optical field. •To the best of our knowledge, no study is performed which investigates such optical quantum field.
Higher-order interference of low-coherence optical fiber sensors.
Yang, Jun; Yuan, Yonggui; Wu, Bing; Zhou, Ai; Yuan, Libo
2011-09-01
The higher-order interference noise that is caused by multireflection at the fiber sensor's end surface in low-coherence fiber sensor array is proposed. The generation of the higher-order interference noise and its quantity and amplitude are theoretically analyzed. The second-order interference noises are experimentally demonstrated. The results show that the second-order noises arise in any sensor array composed of more than two sensors and the number of the second-order peaks is proportional to the third power of the sensor's number. The ratio of the amplitude of the second-order noise to that of the signal peak is proportional to the reflectivity of the sensor's end surface. In a sensor array, when the reflectivity is more than 10(-5), the amplitude of the second-order noise is higher than other noises and it becomes a main factor that determines the signal-to-noise ratio of the sensor arrays. Therefore, reducing the higher-order interference noise can improve the multiplexing capacity of the sensor array.
Multifunctional diffractive optical elements for the generation of higher order Bessel-like-beams
NASA Astrophysics Data System (ADS)
Vijayakumar, A.; Bhattacharya, Shanti
2015-01-01
Higher Order Bessel Beams (HOBBs) have many useful applications in optical trapping experiments. The generation of HOBBs is achieved by illuminating an axicon by a Laguerre-Gaussian beam generated by a spiral phase plate. It can also be generated by a Holographic Optical Element (HOE) containing the functions of the Spiral Phase Plate (SPP) and an axicon. However the HOBB's large focal depth reduces the intensity at each plane. In this paper, we propose a multifunctional Diffractive Optical Element (DOE) containing the functions of a SPP, axicon and a Fresnel Zone Lens (FZL) to generate higher efficiency higher order Bessel-like-beams with a reduced focal depth. The functions of a SPP and a FZL were combined by shifting the location of zones of FZL in a spiral fashion. The resulting element is combined with an axicon by modulo-2π phase addition technique. The final composite element contains the functions of SPP, FZL and axicon. The elements were designed with different topological charges and fabricated using electron beam direct writing. The elements were tested and the generation of a higher order Bessel-like-beams is confirmed. Besides, the elements also generated high quality donut beams at two planes equidistant from the focal plane of the FZL.
An application of higher order connection to inverse function delayed network
NASA Astrophysics Data System (ADS)
Sota, Takahiro; Hayakawa, Yoshihiro; Sato, Shigeo; Nakajima, Koji
The Inverse function Delayed model (ID model) is a neuron model with negative resistance dynamics. The negative resistance can destabilize local minimum states, which are undesirable network responses. The ID network can remove these states. Actually, we have demonstrated that the ID network can perfectly remove all local minima with N-Queen problems or 4-Color problems, where stationary stable states always give correct answers. However this method cannot apply to Traveling Salesman Problems (TSPs) or Quadratic Assignment Problems (QAPs). Meanwhile, it is proposed that the TSPs are able to be represented in terms of the quartic form energy function. In this representation, the global minimum states that represent correct answers and the local minimum states are separable clearly, thus if it is applied to the ID network, it ensures that only the local minimum states are destabilized by the negative resistance. In this paper, we aim to introduce higher order connections to the ID network to apply the quartic form energy function. We apply the ID network with higher order connections to the TSPs or QAPs, and show that the higher order connection ID network can destabilize only the local minimum states by the negative resistance effect, so that it obtains only correct answers found at stationary stable states. Moreover, we obtain minimum parameter region analytically to destabilize every local minimum state.
The use of higher-order statistics in rapid object categorization in natural scenes.
Banno, Hayaki; Saiki, Jun
2015-02-04
We can rapidly and efficiently recognize many types of objects embedded in complex scenes. What information supports this object recognition is a fundamental question for understanding our visual processing. We investigated the eccentricity-dependent role of shape and statistical information for ultrarapid object categorization, using the higher-order statistics proposed by Portilla and Simoncelli (2000). Synthesized textures computed by their algorithms have the same higher-order statistics as the originals, while the global shapes were destroyed. We used the synthesized textures to manipulate the availability of shape information separately from the statistics. We hypothesized that shape makes a greater contribution to central vision than to peripheral vision and that statistics show the opposite pattern. Results did not show contributions clearly biased by eccentricity. Statistical information demonstrated a robust contribution not only in peripheral but also in central vision. For shape, the results supported the contribution in both central and peripheral vision. Further experiments revealed some interesting properties of the statistics. They are available for a limited time, attributable to the presence or absence of animals without shape, and predict how easily humans detect animals in original images. Our data suggest that when facing the time constraint of categorical processing, higher-order statistics underlie our significant performance for rapid categorization, irrespective of eccentricity.
Some classes of gravitational shock waves from higher order theories of gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2017-02-01
We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.
Generalized higher order two-point moments in turbulent boundary layers.
NASA Astrophysics Data System (ADS)
Yang, Xiang; Marusic, Ivan; Meneveau, Charles
2015-11-01
Generalized higher order two-point moments such as
Observation and Electromechanical Actuation of Higher-Order Buckling Eigenmodes of NEMS
NASA Astrophysics Data System (ADS)
Carr, Stephen; Wybourne, Martin
2003-03-01
We report on observation and capacitive excitation of higher-order buckling eigenmodes of SiO2 nanomechanical beams. The suspended structures, fabricated by e-beam lithography and plasma etching, consist of 500 nm of thermal oxide and a metal overlayer ( ˜ 100 nm) with a range of lengths and widths. In previous work we studied the buckling transition [1], finding the fundamental (n = 1) as the only stable buckling eigenmode. Recently we have observed higher-order (n = 2, 3) buckling eigenmodes which are stable after release from plasma etching. Electromechanical transitions from n = 3 to n = 2 and n = 3 to n = 1 have been induced by applied DC and AC bias through capacitively coupled electrodes. Possible explanations for the observed stability of the higher-order modes, as well as results from current experiments designed to probe the electromechanical resonance spectrum, will be discussed. [1] S.M. Carr and M.N. Wybourne, Applied Physics Letters, in press (2003).
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
NASA Astrophysics Data System (ADS)
Scholtes, Ingo; Wider, Nicolas; Garas, Antonios
2016-03-01
Despite recent advances in the study of temporal networks, the analysis of time-stamped network data is still a fundamental challenge. In particular, recent studies have shown that correlations in the ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based on static, time-aggregated representations of time-stamped data. These findings not only highlight an important dimension of complexity in temporal networks, but also call for new network-analytic methods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge, here we introduce a novel framework for the study of path-based centralities in temporal networks. Studying betweenness, closeness and reach centrality, we first show than an application of these measures to time-aggregated, static representations of temporal networks yields misleading results about the actual importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate networks, a recently proposed generalization of the commonly used static representation of time-stamped data. Using data on six empirical temporal networks, we show that the resulting higher-order measures better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally efficient data mining techniques for time-stamped relational data.
Utilizing higher order surface plasmon modes on wire gratings for metal enhanced fluorescence
NASA Astrophysics Data System (ADS)
Steele, J. M.; Gagnidze, Iuri
2010-08-01
Metal enhanced fluorescence (MEF) has received much attention because of possible biomedical and sensing applications. MEF includes two mechanisms for fluorescence enhancement: (1) the enhanced electromagnetic field associated with surface plasmons increasing the excitation of fluorophores and (2) excited fluorophores radiating via induced surface plasmons. The second mechanism results in enhanced directional emission when fluorophores are located near a metal film or grating. This work focuses on gold wire gratings fabricated on a silica substrate coated with a layer of fluorophores. Previous studies on corrugated film gratings show that coupling to higher order as well as substrate side plasmon modes occurs with lower efficiency. We find for wire gratings, fluorophores couple to higher order plasmon modes on both the active and substrate side of the gold wires with uniform efficiency. We also measure directional enhanced fluorescence on both the active (reflection) and substrate (transmission) side of the gratings. Utilizing higher order modes allows gratings with micron and larger sized features to enhance fluorescence wavelengths in the visible range, greatly loosening fabrication requirements for potential applications. The ability to measure enhanced fluorescence in transmission also makes wire gratings appropriate for applications favoring a linear optical set up.
Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering
Diener, K.-P.O.; Dittmaier, S.; Hollik, W.
2005-11-01
A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.
Ability, breadth, and parsimony in computational models of higher-order cognition.
Cassimatis, Nicholas L; Bello, Paul; Langley, Pat
2008-12-01
Computational models will play an important role in our understanding of human higher-order cognition. How can a model's contribution to this goal be evaluated? This article argues that three important aspects of a model of higher-order cognition to evaluate are (a) its ability to reason, solve problems, converse, and learn as well as people do; (b) the breadth of situations in which it can do so; and (c) the parsimony of the mechanisms it posits. This article argues that fits of models to quantitative experimental data, although valuable for other reasons, do not address these criteria. Further, using analogies with other sciences, the history of cognitive science, and examples from modern-day research programs, this article identifies five activities that have been demonstrated to play an important role in our understanding of human higher-order cognition. These include modeling within a cognitive architecture, conducting artificial intelligence research, measuring and expanding a model's ability, finding mappings between the structure of different domains, and attempting to explain multiple phenomena within a single model.
Assessing Teachers' Pedagogical Knowledge in the Context of Teaching Higher-order Thinking
NASA Astrophysics Data System (ADS)
Zohar, Anat; Schwartzer, Noa
2005-10-01
This article reports the development and application of two instruments for assessing science teachers’ pedagogical knowledge in the context of teaching higher-order thinking: a Likert-type research instrument, and an instrument that analyzes classroom observations. The rationale for developing these instruments and their main categories is described. One hundred and fifty Israeli science teachers replied to the Likert-type questionnaire. Results show that biology teachers gained a significantly higher score than either physics or chemistry teachers, that junior high school teachers scored significantly higher than high school teachers, and that a significant negative correlation was found between final scores and teaching experience. Participants in the classroom observation study were 14 teachers who attended a one-year professional development course for teaching higher-order thinking. The instrument was sensitive in detecting progress in teachers’ pedagogical knowledge in several categories, such as: Frequency of tasks that required higher-order thinking; The variety of thinking strategies that teachers addressed during their lessons; Engagement of students in metacognitive thinking; and Using the “language of thinking” in class. The implications of the findings for research and practice are described.
A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series
NASA Astrophysics Data System (ADS)
Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz
2014-03-01
Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.
Purposely Teaching for the Promotion of Higher-order Thinking Skills: A Case of Critical Thinking
NASA Astrophysics Data System (ADS)
Miri, Barak; David, Ben-Chaim; Uri, Zoller
2007-10-01
This longitudinal case-study aimed at examining whether purposely teaching for the promotion of higher order thinking skills enhances students’ critical thinking (CT), within the framework of science education. Within a pre-, post-, and post-post experimental design, high school students, were divided into three research groups. The experimental group ( n = 57) consisted of science students who were exposed to teaching strategies designed for enhancing higher order thinking skills. Two other groups: science ( n = 41) and non-science majors ( n = 79), were taught traditionally, and acted as control. By using critical thinking assessment instruments, we have found that the experimental group showed a statistically significant improvement on critical thinking skills components and disposition towards critical thinking subscales, such as truth-seeking, open-mindedness, self-confidence, and maturity, compared with the control groups. Our findings suggest that if teachers purposely and persistently practice higher order thinking strategies for example, dealing in class with real-world problems, encouraging open-ended class discussions, and fostering inquiry-oriented experiments, there is a good chance for a consequent development of critical thinking capabilities.
Higher-order correlations in common input shapes the output spiking activity of a neural population
NASA Astrophysics Data System (ADS)
Montangie, Lisandro; Montani, Fernando
2017-04-01
Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter q. We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.
Time-Domain Analysis of Higher Order Mode Properties in an Open Cavity Retaining Axial Symmetry
NASA Astrophysics Data System (ADS)
Lin, S. Y.; Lin, M. C.
2016-10-01
Theoretical and computational research to accurately and efficiently determine higher order mode properties of an axially symmetrical open cavity has been pursued. Open cavities have been widely employed in gyrotrons for the generation of high-power millimeter, submillimeter, and THz waves. A standing wave forms in the main body of the cavity, and the open end allows the extraction of power generated by the electron beam wave interaction. On the other hand, microresonators, such as microspheres that have small effective volume of their whispering gallery modes (WGMs), high quality factors, and quasi insensitivity to conducting material boundaries can also be considered as open cavities since the WGMs are natural electromagnetic eigenmodes that are activated by external coherent signals. For these cavities, axial symmetry is usually retained. The CAVITY program developed by Professor K. R. Chu using Fortran allows the users to accurately and efficiently determine the resonant frequency, the quality factor, and the field profile for the TE modes of an open cavity. In this work, an extension of the CAVITY program using Mathematica, CAVITY-M, to perform time-domain analysis of higher order modes in open cavities retaining axial symmetry for wider applications such as those mentioned above has been carried out. The new CAVITY-M program developed using Mathematica is able to effectively analyze the higher order mode characteristics of a general open cavity with an axial symmetry, in addition to the traditional modes in a gyrotron cavity.
Barutcu, A. Rasim; Lajoie, Bryan R.; Fritz, Andrew J.; McCord, Rachel P.; Nickerson, Jeffrey A.; van Wijnen, Andre J.; Lian, Jane B.; Stein, Janet L.; Dekker, Job; Stein, Gary S.; Imbalzano, Anthony N.
2016-01-01
The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Higher-order interference and single-system postulates characterizing quantum theory
NASA Astrophysics Data System (ADS)
Barnum, Howard; Müller, Markus P.; Ududec, Cozmin
2014-12-01
We present a new characterization of quantum theory in terms of simple physical principles that is different from previous ones in two important respects: first, it only refers to properties of single systems without any assumptions on the composition of many systems; and second, it is closer to experiment by having absence of higher-order interference as a postulate, which is currently the subject of experimental investigation. We give three postulates—no higher-order interference, classical decomposability of states, and strong symmetry—and prove that the only non-classical operational probabilistic theories satisfying them are real, complex, and quaternionic quantum theory, together with three-level octonionic quantum theory and ball state spaces of arbitrary dimension. Then we show that adding observability of energy as a fourth postulate yields complex quantum theory as the unique solution, relating the emergence of the complex numbers to the possibility of Hamiltonian dynamics. We also show that there may be interesting non-quantum theories satisfying only the first two of our postulates, which would allow for higher-order interference in experiments while still respecting the contextuality analogue of the local orthogonality principle.
ERIC Educational Resources Information Center
Shukla, Divya; Dungsungnoen, Aj Pattaradanai
2016-01-01
Higher order thinking skills (HOTS) has portrayed immense industry demand and the major goal of educational institution in imparting education is to inculcate higher order thinking skills. This compiles and mandate the institutions and instructor to develop the higher order thinking skills among students in order to prepare them for effective…
ERIC Educational Resources Information Center
Kelly, Catherine A.
1999-01-01
Investigated boys' and girls' perceptions of mathematical and scientific higher-order thinking, ways to identify higher order thinking's occurrence, and inquiry methods for developing it in elementary students and preservice teachers. Results indicated that both genders had similar perceptions about inquiry and approaches to higher-order thinking.…
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.; Dobbins, J. A.
2002-01-01
In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required
QCD factorization for hadronic B decays: Proofs and higher-order corrections
NASA Astrophysics Data System (ADS)
Pecjak, Benjamin Dale
Several issues related to the QCD factorization approach to exclusive hadronic B decays are discussed. This includes a proof of factorization in B → K*gamma using the soft-collinear effective theory, and an examination of higher-order corrections to QCD factorization for two-body decays into heavy-light states, such as B → Dpi, and light-light final states, such as B → Kpi,pipi. The proof of factorization in B → K*gamma is arguably the most complicated QCD factorization formula proven so far. It is shown that reparameterization invariance in the intermediate effective theory restricts the appearance of transverse momentum components and 3-particle Fock states to operators that can be absorbed into the QCD from factor. This proof also includes an extension of SCET to deal with two collinear directions. The examination of higher-order corrections to QCD factorization has implications for using this technique to extract CP violating weal; phases from data taken at the B factories. The renormalon calculus is used to calculate the b0a2s contributions to the hard scattering kernels, and also to analyze the strength of power corrections due to soft gluon exchange. It is shown that while power corrections are generally small, the higher-order perturbative contributions to the hard scattering kernels have much larger imaginary parts than those at next-to-leading order (NLO). This significantly enhances some CP asymmetries compared to the NLO results, which is an effect that would survive a two-loop calculation unless there were large multi-loop corrections not related to the b0a2s terms of the perturbative expansion.
Two Generalized Higher Order Theories in Free Vibration Studies of Multilayered Plates
NASA Astrophysics Data System (ADS)
MESSINA, A.
2001-04-01
This paper presents an extension of two-dimensional models for the analysis of freely vibrating laminated plates. The extension concerns the enlargement of higher order theories, recently introduced by different authors in several forms, to encompass higher order terms over the cubic one usually taken into consideration. Higher order effects such as rotatory inertia and transverse shear stress are naturally included without any shear correction factors. Namely, two different models are introduced by expanding, on different functional bases, displacements (D2D) and transverse shear stresses in conjunction with displacements (M2D). The expansion is considered to be consistent with the traction-type boundary condition on the external surfaces of the plate. The governing equations and associated boundary conditions are consistently obtained by the classical Hamilton's variational principle and Reissner's mixed variational theorem. Both models are equivalent single layer type and, therefore, differ according to the layer-wise descriptions, preserve the independence of the number of unknown variables on the number of layers. However, this feature is presented together with intrinsic physical violations for both models. Model D2D violates the interlaminar stress continuity requirement and model M2D violates in a weaker from the same requirement (derivatives are not piecewise continuous), besides neglecting the transverse normal stress. The importance of completely fulfilling the mentioned continuity is then discussed once the relevant governing equations are tailored for the cylindrical bending condition. The effectiveness of the models is indicated by making numerical comparisons with the exact three-dimensional theory of the elasticity for several lamination schemes, angle/cross-ply lay-ups, and characteristic geometric ratios for low and higher frequencies.
Effect of higher-order multipole moments on the Stark line shape
NASA Astrophysics Data System (ADS)
Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.
2016-08-01
Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.
Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms
NASA Technical Reports Server (NTRS)
Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its
How does participation in inquiry-based activities influence gifted students' higher order thinking?
NASA Astrophysics Data System (ADS)
Reger, Barbara H.
Inquiry-based learning is considered a useful technique to strengthen the critical thinking skills of students. The National Science Standards emphasize its use and the complexities and challenge it provides are well suited for meeting the needs of the gifted. While many studies have documented the effectiveness of this type of instruction, there is a lack of research on growth in higher-order thinking through participation in science inquiry. This study investigated such growth among a small group of gifted fifth-grade students. In this study a group of fifth-grade gifted science students completed a series of three forensics inquiry lessons, and documented questions, ideas and reflections as they constructed evidence to solve a crime. From this class of students, one small group was purposely selected to serve as the focus of the study. Using qualitative techniques, the questions and statements students made as they interacted in the activity were analyzed. Videotaped comments and student logs were coded for emerging patterns and also examined for evidence of increased levels of higher-order thinking based on a rubric that was designed using the six levels of Bloom's Taxonomy. Evidence from this study showed marked increase in and deeper levels of higher-order thinking for two of the students. The other boy and girl showed progress using the inquiry activities, but it was not as evident. The social dynamics of the group seemed to hinder one girl's participation during some of the activities. The social interactions played a role in strengthening the exchange of ideas and thinking skills for the others. The teacher had a tremendous influence over the production of higher-level statements by modeling that level of thinking as she questioned the students. Through her practice of answering a question with a question, she gradually solicited more analytical thinking from her students.
Strategy-effects in prefrontal cortex during learning of higher-order S-R rules.
Wolfensteller, Uta; von Cramon, D Yves
2011-07-15
All of us regularly face situations that require the integration of the available information at hand with the established rules that guide behavior in order to generate the most appropriate action. But where individuals differ from one another is most certainly in terms of the different strategies that are adopted during this process. A previous study revealed differential brain activation patterns for the implementation of well established higher-order stimulus-response (S-R) rules depending on inter-individual strategy differences (Wolfensteller and von Cramon, 2010). This raises the question of how these strategies evolve or which neurocognitive mechanisms underlie these inter-individual strategy differences. Using functional magnetic resonance imaging (fMRI), the present study revealed striking strategy-effects across regions of the lateral prefrontal cortex during the implementation of higher-order S-R rules at an early stage of learning. The left rostrolateral prefrontal cortex displayed a quantitative strategy-effect, such that activation during rule integration based on a mismatch was related to the degree to which participants continued to rely on rule integration. A quantitative strategy ceiling effect was observed for the left inferior frontal junction area. Conversely, the right inferior frontal gyrus displayed a qualitative strategy-effect such that participants who at a later point relied on an item-based strategy showed stronger activations in this region compared to those who continued with the rule integration strategy. Together, the present findings suggest that a certain amount of rule integration is mandatory when participants start to learn higher-order rules. The more efficient item-based strategy that evolves later appears to initially require the recruitment of additional cognitive resources in order to shield the currently relevant S-R association from interfering information.
NASA Astrophysics Data System (ADS)
Simon, Nicole A.
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.
NASA Astrophysics Data System (ADS)
Özen, Kemal
2016-12-01
One of the little-known techniques for ordinary integro-differential equations in literature is Green's functional method, the origin of which dates back to Azerbaijani scientist Seyidali S. Akhiev. According to this method, Green's functional concepts for some simple forms of such equations have been introduced in the several studies. In this study, we extend Green's functional concept to a higher order ordinary integro-differential equation involving generally nonlocal conditions. A novel kind of adjoint problem and Green's functional are constructed for completely nonhomogeneous problem. By means of the obtained Green's functional, the solution to the problem is identified.
Higher order factor structure of the WISC-IV in a clinical neuropsychological sample.
Bodin, Doug; Pardini, Dustin A; Burns, Thomas G; Stevens, Abigail B
2009-09-01
A confirmatory factor analysis was conducted examining the higher order factor structure of the WISC-IV scores for 344 children who participated in neuropsychological evaluations at a large children's hospital. The WISC-IV factor structure mirrored that of the standardization sample. The second order general intelligence factor (g) accounted for the largest proportion of variance in the first-order latent factors and in the individual subtests, especially for the working memory index. The first-order processing speed factor exhibited the most unique variance beyond the influence of g. The results suggest that clinicians should not ignore the contribution of g when interpreting the first-order factors.
Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.
Kong, Fanmin; Li, Kang; Liu, Xin
2006-11-27
A higher-order finite-difference time-domain (HO-FDTD) numerical method is proposed for the time-domain analysis of planar optical waveguide devices. The anisotropic perfectly matched layer (APML) absorbing boundary condition for the HO-FDTD scheme is implemented and the numerical dispersion of this scheme is studied. The numerical simulations for the parallel-slab directional coupler are presented and the computing results using this scheme are in highly accordance with analytical solutions. Compared with conventional FDTD method, this scheme can save considerable computational resource without sacrificing solution accuracy and especially could be applied in the accurate analysis of optical devices.
Davidson, Judy E
2009-03-01
The purpose of this article is to provide examples of learning activities to be used as formative (interim) evaluation of an in-hospital orientation or cross-training program. Examples are provided in the form of vignettes that have been derived from strategies described in the literature as classroom assessment techniques. Although these classroom assessment techniques were originally designed for classroom experiences, they are proposed as methods for preceptors to stimulate the development of higher-order thinking such as synthesizing information, solving problems, and learning how to learn.
Distortion Measurement of Multi-Finger Transistor Using Split Higher-Order Laue Zone Lines Analysis
NASA Astrophysics Data System (ADS)
Uesugi, Fumihiko; Yamazaki, Takashi; Kuramochi, Koji; Hashimoto, Iwao; Kojima, Kenji; Takeno, Shiro
2008-05-01
A distortion measurement in a region close to the interface between different materials in LSI is performed using a convergent beam electron diffraction (CBED) pattern. Split higher-order Laue zone (HOLZ) lines emerge in the CBED pattern so that a stressing region is observed close to the interface. The calculation method of the split HOLZ lines based on kinematical approximation with the sample's deformation model well reflects the experimental results. As a result of split HOLZ line analysis using the present method, it is found that there is distortion depending on the external form of a multi-finger transistor.
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim; Jhangeer, Adil
Conservation laws of various systems have been studied for decades due to their unparalleled importance in unraveling systems’ intricacies without having to go into microscopic details of the physical process involved. Their association with symmetries has not only had a stupendous impact in the formulation of the fundamental laws of physics, but also open doors to further explorations and unifications of others. In this study, we present the Lie symmetries and nonlinearly self-adjoint classifications of the wave equation on Bianchi I spacetime. For different forms of the metric potentials, generalized higher order non-trivial conserved vectors are constructed. Some exact invariant solutions are also exhibited.
Higher-order factors of the big five model of personality: a reanalysis of Digman (1997).
Mutch, Christopher
2005-02-01
Based on the results from factor analyses conducted on 14 different data sets, Digman proposed a model of two higher-order factors, or metatraits, that subsumed the Big Five personality traits. In the current article, problems in Digman's analyses were explicated, and more appropriate analyses were then conducted using the same 14 correlation matrices from Digman's study. The resultant two-factor model produced improper solutions, poor model fit indices, or both, in almost all of the 14 data sets and thus raised serious doubts about the veracity of Digman's proposed model.
Quantum Enhancement of Higher-Order Phononlike Excitations of a Bose-Einstein Condensate
Rowen, E. E.; Bar-Gill, N.; Davidson, N.
2008-07-04
In a Bose-Einstein condensate, the excitation of a Bogoliubov phonon with low momentum (e.g., by a two-photon Bragg process) is strongly suppressed due to destructive interference between two indistinguishable excitation pathways. Here we show that scattering of this sound excitation into a double-momentum mode is strongly enhanced due to constructive interference. This enhancement yields an inherent amplification of second-order sound excitations of the condensate, as we confirm experimentally. We further show that due to parity considerations, this effect is extended to higher-order excitations.
NASA Technical Reports Server (NTRS)
Kim, Heung Soo; Zhu, Linfa; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A procedure has been developed to investigate the nonlinear response of composite plates under large strain and high strain rate loading. A recently developed strain dependent micromechanics model is extended to account for the shear effects during impact. Four different assumptions of shear deformation effects are investigated to improve the development strain rate dependent micromechanics model. A method to determine through the thickness strain and transverse Poisson's ratio is developed. The revised micromechanics model is implemented into higher order laminate theory. Parametric studies are conducted to investigate transverse shear effects during impact.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Librescu, Liviu; Cederbaum, Gabriel
1990-01-01
Higher order shear deformation theory is utilized to study he weakly stationary and nonstationary random vibrations of cross-ply laminated plates. Normal mode method, in conjunction with the biorthogonality condition, for the nonsymmetric differential equations is applied. Detailed derivation is given for the governing equations, biorthogonality condition, the generalized mass and the generalized forces. Results are listed for a plate which is simply supported at all the edges, and subjected to a point load which is either timewise stationary or nonstationary random process.
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
A unique solvable higher order BEM for wave diffraction and radiation
Teng, B.; Li, Y.C.
1995-12-31
For the discretization of higher order elements, the paper presents a modifying integral domain method to remove the irregular frequencies inherited in the integral equation of wave diffraction and radiation from a surface-piercing body. The set of over-determined linear equations obtained from the method is modified into a normal set of linear equations by superposing a set of linear equations with zero solutions. Numerical experiments have also been carried out to find the optimum choice of the size of the auxiliary domain and the discretization on it.
Higher-order Mode Calculations, predictions and Overview of Damping Schemes for ERLs
Robert Rimmer
2005-03-19
This paper gives a brief review of computational methods for calculating higher-order mode (HOM) impedances for RF structures, the cases for which they are appropriate and some comparisons with measurements. An overview of damping schemes suitable for moderate to high current energy recovered linacs (ERL's), is presented, with a discussion of the pro's and con's of each. The influence of number of cells per cavity, cell shape and cell-to-cell coupling are described. The Jefferson Lab Ampere-class cryomodule concept is presented as an example and the issue of HOM power is highlighted.
Cavity-enhanced ultrafast two-dimensional spectroscopy using higher order modes
NASA Astrophysics Data System (ADS)
Allison, Thomas K.
2017-02-01
We describe methods using frequency combs and optical resonators for recording two-dimensional (2D) ultrafast spectroscopy signals with high sensitivity. By coupling multiple frequency combs to higher-order modes of one or more optical cavities, background-free, cavity-enhanced 2D spectroscopy signals are naturally generated via phase cycling. As in cavity-enhanced ultrafast transient absorption spectroscopy, the signal to noise is enhanced by a factor proportional to the cavity finesse squared, so even using cavities of modest finesse, a very high sensitivity is expected, enabling ultrafast 2D spectroscopy experiments in dilute molecular beams.
Nonparaxial scalar Airy light-sheets and their higher-order spatial derivatives
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-02-01
Based on the angular spectrum decomposition method in plane waves, a generalized nonparaxial analytical solution for the electric field of a transverse electric Airy light-sheet including its spatial derivatives is formulated and presented. The beam-shape coefficients are expressed by an improper integral, which includes the generation of evanescent waves. The radiated component of the field is computed, and the cross-sectional plots display unique features of the nonparaxial Airy light-sheet and its higher-order derivatives. The results find important applications in predicting/computing the optical scattering, radiation force, and torque on an object using the multipole expansion method in cylindrical coordinates and particle dynamics.
Effect of impedance and higher order chromaticity on the measurement of linear chromaticity
Ranjbar, V.H.; Tan, C.Y.; /Fermilab
2011-08-01
The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the 'on momentum' particle ({Delta}p/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of {Delta}p/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory.
Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Coleman, Gary N.; Rumsey, Christopher L.
2014-01-01
A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement.
Periodic Folded Wave Patterns for (2+1)-Dimensional Higher-Order Broer Kaup Equation
NASA Astrophysics Data System (ADS)
Huang, Wen-Hua
2008-10-01
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-order Broer Kaup equation by means of WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are found to be completely elastic.
Intermodal Čerenkov radiation in a higher-order-mode fiber.
Cheng, Ji; Pedersen, Martin E V; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-11-01
We demonstrate an intermodal Čerenkov radiation effect in a higher-order-mode (HOM) fiber with a mode crossing (i.e., two guided modes having the same propagation constant at the same wavelength). A frequency-shifted soliton in the vicinity of the mode-crossing wavelength emits a phase-matched dispersive wave in a different propagation mode. We develop a theoretical explanation for this nonlinear optical effect and demonstrate that the mode crossing in HOM fibers can be utilized to achieve simultaneous wavelength and mode conversion; the strength of this intermodal nonlinear interaction can be tuned by controlled fiber bending.
Time-domain multimode dispersion measurement in a higher-order-mode fiber.
Cheng, Ji; Pedersen, Martin E V; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-02-01
We present a new multimode dispersion measurement technique based on the time-of-flight method. The modal delay and group velocity dispersion of all excited modes in a few-mode fiber can be measured simultaneously by a tunable pulsed laser and a high speed sampling oscilloscope. A newly designed higher-order-mode fiber with large anomalous dispersion in the LP(02) mode has been characterized using this method, and experimental results are in good agreement with the designed dispersion values. The demonstrated technique is significantly simpler to implement than the existing frequency-domain or interferometry-based methods.
Higher-order genetic interactions and their contribution to complex traits
Taylor, Matthew B.; Ehrenreich, Ian M.
2014-01-01
The contribution of genetic interactions involving three or more loci to complex traits is poorly understood. Because these higher-order genetic interactions (HGIs) are difficult to detect in genetic mapping studies, very few examples of them have been described. However, the lack of data on HGIs should not be misconstrued as proof that this class of genetic effect is unimportant. To the contrary, evidence from model organisms suggests that HGIs frequently influence genetic studies and contribute to many complex traits. Here, we review the growing literature on HGIs and discuss the future of research on this topic. PMID:25284288
Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order
NASA Astrophysics Data System (ADS)
Achour, J. Ben; Crisostomi, M.; Koyama, K.; Langlois, D.; Noui, K.; Tasinato, G.
2016-12-01
We present all scalar-tensor Lagrangians that are cubic in second derivatives of a scalar field, and that are degenerate, hence avoiding Ostrogradsky instabilities. Thanks to the existence of constraints, they propagate no more than three degrees of freedom, despite having higher order equations of motion. We also determine the viable combinations of previously identified quadratic degenerate Lagrangians and the newly established cubic ones. Finally, we study whether the new theories are connected to known scalar-tensor theories such as Horndeski and beyond Horndeski, through conformal or disformal transformations.
Signal analysis applications of nonlinear dynamics and higher-order statistics
NASA Astrophysics Data System (ADS)
Solinsky, James C.; Feeney, John J.
1994-03-01
The use of higher-order statistics (HOS) in acoustic, and financial signal analysis applications is outlined in theory and followed with specific data examples. HOS analysis is used to identify data regions of interest, and nonlinear dynamics (ND) analysis is used in a 4D embedded space to show structural density changes resulting from the HOS regions. A second-order statistical comparison is made with the same data processed to have random Fourier phase, since the HOS information is contained in this nonrandom phase. These empirical results indicate that HOS data regions are structural distortions to a second-order planar disk in the 4D ND analysis space.
Inflation from superstring and M-theory compactification with higher order corrections
Maeda, Kei-ichi; Ohta, Nobuyoshi
2005-03-15
We study time-dependent solutions in M and superstring theories with higher-order corrections. We first present general field equations for theories of Lovelock type with stringy corrections in arbitrary dimensions. We then exhaust all exact and asymptotic solutions of exponential and power-law expansions in the theory with Gauss-Bonnet terms relevant to heterotic strings and in the theories with quartic corrections corresponding to the M theory and type II superstrings. We discuss interesting inflationary solutions that can generate enough e foldings in the early universe.
Constraints on tree-level higher order gravitational couplings in superstring theory.
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope α' are analyzed through the order α'(8) showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R(5) terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order α'(8) like the absence of ζ(2)ζ(3)R(6) terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
NASA Technical Reports Server (NTRS)
Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.
1989-01-01
This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
Traveling wave solution of higher-order traffic flow model with discontinuous fundamental diagram
NASA Astrophysics Data System (ADS)
Wu, Chun-Xiu
2015-07-01
The traveling wave solution of a unified higher-order traffic flow model is investigated with a discontinuous fundamental diagram under the Lagrange coordinate. The equilibrium velocity is a piecewise function which consists of two concave functions. The weak solution theory is applied to study the traveling wave solution of the model, in which a set of equations about the characteristic parameters are obtained. Through numerical simulation, the moving cluster solutions of the anisotropic and isotropic traffic flow models are reproduced, respectively. The numerical results agree with the analytical ones.
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-04-01
The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.
Soliton solutions of the KdV equation with higher-order corrections
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2010-10-01
In this work, the Korteweg-de Vries (KdV) equation with higher-order corrections is examined. We studied the KdV equation with first-order correction and that with second-order correction that include the terms of the fifth-order Lax, Sawada-Kotera and Caudrey-Dodd-Gibbon equations. The simplified form of the bilinear method was used to show the integrability of the first-order models and therefore to obtain multiple soliton solutions for each one. The obstacles to integrability of some of the models with second-order corrections are examined as well.
Higher order finite-time consensus protocol for heterogeneous multi-agent systems
NASA Astrophysics Data System (ADS)
Zhou, Yingjiang; Yu, Xinghuo; Sun, Changyin; Yu, Wenwu
2015-02-01
This paper studies the higher order finite-time consensus protocol for heterogeneous multi-agent systems (HMASs). By adding a power integrator method and using heterogeneous domination method, two kinds of consensus protocols are proposed with state feedback and output feedback, respectively. First, for the leaderless and leader-follower HMASs, the continuous finite-time consensus protocols are proposed. Then, by designing a finite-time observer, the output-feedback finite-time consensus protocol is developed. Finally, simulations are performed to illustrate the effectiveness of the theoretical results.
Analytical on-shell calculation of low energy higher order scattering
NASA Astrophysics Data System (ADS)
Holstein, Barry R.
2017-01-01
We demonstrate that the use of analytical on-shell methods involving calculation of the discontinuity across the t-channel cut associated with the exchange of a pair of massless particles (photons or gravitons) can be used to evaluate one-loop contributions to electromagnetic and gravitational scattering, with and without polarizability, reproducing via simple algebraic manipulations, results obtained previously, generally using Feynman diagram techniques. In the gravitational case the use of factorization permits a straightforward and algebraic calculation of higher order scattering without consideration of ghost contributions or of triple-graviton couplings, which made previous evaluations considerably more arduous.
Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
A simple technique was developed to account for the higher order mode coupling between adjacent coupling slots in the feed waveguide of a planar slot array. The method uses an equation relating the slot impedance to the slot voltage and a reaction integral involving the equivalent magnetic current of the slot aperture and the magnetic field coupled from an adjacent slot. In the proposed method, one uses the Elliott s design technique to determine tilt angles and lengths of the coupling slots. The radiating slots are modeled as shunt admittances, and the coupling slots are modeled as series impedances.
Tuning PID controllers for higher-order oscillatory systems with improved performance.
Malwatkar, G M; Sonawane, S H; Waghmare, L M
2009-07-01
In this paper, model based design of PID controllers is proposed for higher-order oscillatory systems. The proposed method has no limitations regarding systems order, time delays and oscillatory behavior. The reduced model is achieved based on third-order modeling and selection of coefficients through the use of frequency responses. The tuning of the PID parameters are obtained from a reduced third-order model; the procedure seems to be simple and effective, and improved performance of the overall system can be achieved. Three simulation examples and one real-time experiment are included to demonstrate the effectiveness and applicability of the proposed method to systems with oscillatory behavior.
Nonlinear optics in the LP(02) higher-order mode of a fiber.
Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A
2013-07-29
The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.
Diagnosis of broken-bars fault in induction machines using higher order spectral analysis.
Saidi, L; Fnaiech, F; Henao, H; Capolino, G-A; Cirrincione, G
2013-01-01
Detection and identification of induction machine faults through the stator current signal using higher order spectra analysis is presented. This technique is known as motor current signature analysis (MCSA). This paper proposes two higher order spectra techniques, namely the power spectrum and the slices of bi-spectrum used for the analysis of induction machine stator current leading to the detection of electrical failures within the rotor cage. The method has been tested by using both healthy and broken rotor bars cases for an 18.5 kW-220 V/380 V-50 Hz-2 pair of poles induction motor under different load conditions. Experimental signals have been analyzed highlighting that bi-spectrum results show their superiority in the accurate detection of rotor broken bars. Even when the induction machine is rotating at a low level of shaft load (no-load condition), the rotor fault detection is efficient. We will also demonstrate through the analysis and experimental verification, that our proposed proposed-method has better detection performance in terms of receiver operation characteristics (ROC) curves and precision-recall graph.
Higher-order exchange interactions leading to metamagnetism in FeRh
NASA Astrophysics Data System (ADS)
Barker, Joseph; Chantrell, Roy W.
2015-09-01
The origin of the metamagnetic antiferromagnetic-ferromagnetic phase transition of FeRh is a subject of debate. Competing explanations invoke magnetovolume effects or a purely thermodynamic transition within the spin system. It is experimentally difficult to observe the changes in the magnetic system and the lattice simultaneously, leading to conflicting evidence over which mechanism causes the phase transition. A noncollinear electronic structure study by Mryasov [Phase Transitions 78, 197 (2005), 10.1080/01411590412331316591] showed that nonlinear behavior of the Rh moment leads to higher-order exchange terms in FeRh. Using atomistic spin dynamics, we show that the phase transition can occur due to the competition between bilinear and the higher-order four spin exchange terms in an effective spin Hamiltonian. The phase transition we see is of first order and shows thermal hysteresis in agreement with experimental observations. Simulating subpicosecond laser heating, we show an agreement with pump-probe experiments with a ferromagnetic response on a picosecond time scale.
The role of the nucleosome acidic patch in modulating higher order chromatin structure.
Kalashnikova, Anna A; Porter-Goff, Mary E; Muthurajan, Uma M; Luger, Karolin; Hansen, Jeffrey C
2013-05-06
Higher order folding of chromatin fibre is mediated by interactions of the histone H4 N-terminal tail domains with neighbouring nucleosomes. Mechanistically, the H4 tails of one nucleosome bind to the acidic patch region on the surface of adjacent nucleosomes, causing fibre compaction. The functionality of the chromatin fibre can be modified by proteins that interact with the nucleosome. The co-structures of five different proteins with the nucleosome (LANA, IL-33, RCC1, Sir3 and HMGN2) recently have been examined by experimental and computational studies. Interestingly, each of these proteins displays steric, ionic and hydrogen bond complementarity with the acidic patch, and therefore will compete with each other for binding to the nucleosome. We first review the molecular details of each interface, focusing on the key non-covalent interactions that stabilize the protein-acidic patch interactions. We then propose a model in which binding of proteins to the nucleosome disrupts interaction of the H4 tail domains with the acidic patch, preventing the intrinsic chromatin folding pathway and leading to assembly of alternative higher order chromatin structures with unique biological functions.
Decker, Scott L; Englund, Julia A; Roberts, Alycia M
2014-01-01
Factor-analytic studies support a hierarchical four-factor model for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) with a prominent general, third-order factor. However, there is substantial disagreement on which type of higher-order model best fits the data and how different models should guide test interpretation in clinical practice, with many studies concluding interpretation should primarily be focused on general indicators of intelligence. We performed a series of confirmatory factor analyses with the WISC-IV standardization sample (N = 2,200, ages 6-16 years) to examine model fit and reexamined models used to support test interpretation at the general level. Consistent with previous research, bifactor models were difficult to identify; however, compared with bifactor and hierarchical models, the correlated factors model with no general higher-order factor provided the best fit to the data. Results from this study support the basic four-factor model specified in the WISC-IV technical manual, with test interpretation primarily focused at the factor level, rather than the general level suggested in previous studies.
Higher-order mesoscopic fluctuations in quantum wires: Conductance and current cumulants
NASA Astrophysics Data System (ADS)
Stenberg, Markku P. V.; Särkkä, Jani
2006-07-01
We study conductance cumulants ⟪gn⟫ and current cumulants Cj related to heat and electrical transport in coherent mesoscopic quantum wires near the diffusive regime. We consider the asymptotic behavior in the limit where the number of channels and the length of the wire in the units of the mean free path are large but the bare conductance is fixed. A recursion equation unifying the descriptions of the standard and Bogoliubov-de Gennes (BdG) symmetry classes is presented. We give values and come up with a novel scaling form for the higher-order conductance cumulants. In the BdG wires, in the presence of time-reversal symmetry, for the cumulants higher than the second it is found that there may be only contributions which depend nonanalytically on the wire length. This indicates that diagrammatic or semiclassical pictures do not adequately describe higher-order spectral correlations. Moreover, we obtain the weak-localization corrections to Cj with j⩽10 .
The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides.
Engelen, R J P; Sugimoto, Y; Watanabe, Y; Korterik, J P; Ikeda, N; van Hulst, N F; Asakawa, K; Kuipers, L
2006-02-20
We have studied the dispersion of ultrafast pulses in a photonic crystal waveguide as a function of optical frequency, in both experiment and theory. With phase-sensitive and time-resolved near-field microscopy, the light was probed inside the waveguide in a non-invasive manner. The effect of dispersion on the shape of the pulses was determined. As the optical frequency decreased, the group velocity decreased. Simultaneously, the measured pulses were broadened during propagation, due to an increase in group velocity dispersion. On top of that, the pulses exhibited a strong asymmetric distortion as the propagation distance increased. The asymmetry increased as the group velocity decreased. The asymmetry of the pulses is caused by a strong increase of higher order dispersion. As the group velocity was reduced to 0.116(9) .c, we found group velocity dispersion of -1.1(3) .10(6) ps(2)/km and third order dispersion of up to 1.1(4) .10(5) ps(3)/km. We have modelled our interferometric measurements and included the full dispersion of the photonic crystal waveguide. Our mathematical model and the experimental findings showed a good correspondence. Our findings show that if the most commonly used slow light regime in photonic crystals is to be exploited, great care has to be taken about higher-order dispersion.
Evidence of Higher-Order Solar Periodicities in China Temperature Record
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rajesh, R.; Padmavathi, B.
2016-07-01
We examine here a 2000-year-long record of surface air temperature from China using powerful spectral and statistical analysis techniques to assess the trend and harmonics, if any. Our analyses reveal statistically significant periodicities of order ~900 ± 50, ~480 ± 20, 340 ± 10, ~190 ± 10 and ~130 ± 5 years, which closely match with the known higher-order solar cycles. These periodicities are also similar to quasi-periodicities reported in the climate records of sedimentary cores of subarctic and subpolar regions of North America and North Pacific, thus attesting to the global signature of solar signals in temperature variability. A visual comparison of the temperature series shows that the nodes and antinodes of the underlying temperature variation also match with sunspot variations. We also compare the China temperature (CT) with temperature of northern and southern hemispheres of the past 1000 years. The study reveals strong correlation between the southern hemispheric temperatures and CT during the past 1000 years. However, the northern hemisphere temperature shows strong correlation with CT only during the past century. Interestingly, the variations in the correlation coefficient also have shown periodicities that are nearly identical to the periods observed from CT and higher-order solar cycles. We suggest that the solar irradiance induces global periodic oscillations in temperature records by transporting heat and thermal energy, possibly through the coupling of ocean-atmospheric processes and thereby reinforcing the Sun-ocean-climate link.
Blind motion image deblurring using nonconvex higher-order total variation model
NASA Astrophysics Data System (ADS)
Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo
2016-09-01
We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.
Adaptation to changes in higher-order stimulus statistics in the salamander retina.
Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen
2014-01-01
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.
Ferguson, Jake M; Ponciano, José M
2015-03-03
Environmental stochasticity is an important concept in population dynamics, providing a quantitative model of the extrinsic fluctuations driving population abundances. It is typically formulated as a stochastic perturbation to the maximum reproductive rate, leading to a population variance that scales quadratically with abundance. However, environmental fluctuations may also drive changes in the strength of density dependence. Very few studies have examined the consequences of this alternative model formulation while even fewer have tested which model better describes fluctuations in animal populations. Here we use data from the Global Population Dynamics Database to determine the statistical support for this alternative environmental variance model in 165 animal populations and test whether these models can capture known population-environment interactions in two well-studied ungulates. Our results suggest that variation in the density dependence is common and leads to a higher-order scaling of the population variance. This scaling will often stabilize populations although dynamics may also be destabilized under certain conditions. We conclude that higher-order environmental variation is a potentially ubiquitous and consequential property of animal populations. Our results suggest that extinction risk estimates may often be overestimated when not properly taking into account how environmental fluctuations affect population parameters.
NASA Astrophysics Data System (ADS)
Shishkin, G. I.; Shishkina, L. P.
2015-03-01
An initial-boundary value problem is considered for a singularly perturbed parabolic reaction-diffusion equation. For this problem, a technique is developed for constructing higher order accurate difference schemes that converge ɛ-uniformly in the maximum norm (where ɛ is the perturbation parameter multiplying the highest order derivative, ɛ ∈ (0, 1]). A solution decomposition scheme is described in which the grid subproblems for the regular and singular solution components are considered on uniform meshes. The Richardson technique is used to construct a higher order accurate solution decomposition scheme whose solution converges ɛ-uniformly in the maximum norm at a rate of [InlineMediaObject not available: see fulltext.], where N + 1 and N 0 + 1 are the numbers of nodes in uniform meshes in x and t, respectively. Also, a new numerical-analytical Richardson scheme for the solution decomposition method is developed. Relying on the approach proposed, improved difference schemes can be constructed by applying the solution decomposition method and the Richardson extrapolation method when the number of embedded grids is more than two. These schemes converge ɛ-uniformly with an order close to the sixth in x and equal to the third in t.
NASA Astrophysics Data System (ADS)
Mishra, Jitendra K.; Priye, Vishnu; Rahman, B. M. A.
2016-07-01
A triangular profile multicore fiber (MCF) optical interconnect (OI) is investigated to augment performance that typically degrades at high data rates for higher order modulation in a short reach transmission system. Firstly, probability density functions (PDFs) variation with inter-core crosstalk is calculated for 8-core MCF OI with different index profile in the core and it was observed that the triangular profile MCF OI is the most crosstalk tolerant. Next, symbol error probability (SEP) for higher order quadrature phase shift keying (QPSK) modulated signal due to inter-core crosstalk is analytically obtained and their dependence on typical characteristic parameters are examined. Further, numerical simulations are carried out to compare the error performance of QPSK for step index and triangular index MCF OI by generating eye diagram at 40 Gbps per channel. Finally, it is shown that MCF OI with triangular index profile supporting QPSK has double spectral efficiency with tolerable trade off in SEP as compared with those of binary phase shift keying (BPSK) at high data rates which is scalable up to 5 Tbps.
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
NASA Astrophysics Data System (ADS)
Shahraeeni, E.; Firoozabadi, A.
2012-12-01
We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.
Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory
Ghosh, Swarnava; Suryanarayana, Phanish
2016-02-15
We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization. We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.
A fully coupled model for actuation of higher order modes of Lamb waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Lissenden, Cliff J.
2017-02-01
Lamb waves have proven to be a valuable tool for structural health monitoring (SHM) of plate-like structures susceptible to degradation and failure. It is well-known that their multi-modal propagation characteristic could be both a challenge and an opportunity. Piezoelectric transducers are widely used in SHM applications because of their low cost, small profile and high electromechanical coupling. Properly designing a piezoelectric transducer to excite a particular mode is of great importance to successful SHM practice. Mode tuning capability of piezoelectric transducers has been studied both theoretically and experimentally in the literature for exciting A0 and S0 modes. However, the higher order Lamb waves are not fully studied for their tuning capability. Also, the transducer is usually modeled separately from the waveguide and their coupling is through the in-plane surface traction. This assumption may induce inaccuracy if the dynamics of the actuator are not negligible. Additionally, the driving circuit is not usually included in the current actuator-waveguide models such that the power of excited wave could not be evaluated. In this work, a fully coupled finite element model created for general Lamb wave excitation using piezoelectric transducers is developed. The model comprises three components, electrical driving circuit, piezoelectric element and linear elastic waveguide. The preferential excitation of higher order Lamb wave modes using a single piezoelectric element has been studied and demonstrated experimentally on aluminum plates.
Higher-order interaction between molluscs and sheep affecting seedling numbers in grassland
NASA Astrophysics Data System (ADS)
Clear Hill, B. H.; Silvertown, J.
Vertebrate and invertebrate herbivores are both important in mesotrophic grasslands and these two different classes of herbivore potentially interact in their effect upon plant populations. We used two field experiments to test for higher order interactions (HOIs) among sheep, slugs and seedlings, using the mechanistic definition that an HOI occurs when the presence of one species modifies the interaction between two others. In each experiment slug addition and slug-removal treatments were nested inside treatments that altered sheep grazing intensity and timing, and the emergence, of seedlings from experimentally sown seeds was monitored. In Experiment 1, seedling numbers of Cerastium fontanum were increased by intense summer grazing by sheep in both slug-addition and slugremoval treatment, but winter grazing by sheep only increased seedling emergence if slugs were removed. In Experiment 2, winter grazing by sheep significantly reduced total seedling emergence of four species sown ( Lotus corniculatus, Plantago lanceolata, Leucanthemum vulgare, Achillea millefolium), but the effect was only seen where slugs were removed. Though the experimental system is a relatively simple one with only four components (sheep, slugs, seedlings and the matrix vegetation), higher order interactions, a combination of direct and indirect effects and possible switching behaviour by slugs are all suggested by our results.
How couples cope with the death of a twin or higher order multiple.
Swanson, Patricia B; Kane, Robert T; Pearsall-Jones, Jillian G; Swanson, Carl F; Croft, Maxine L
2009-08-01
Fifty-two Australian couples who had experienced the death of at least one member of a multiple birth (twin or higher order), with at least one survivor of that birth, were interviewed about their experiences at the time of the death, and since. This study compared parents' coping after the twins' deaths using the Beck Depression Inventory II, Perinatal Grief Scale, and unstructured interviews with some structured queries. Parents provided information on the influence of family, community and medical staff. According to retrospective reports, mothers experienced significantly more depression and grief than fathers at the time of loss. Both parents found the death of their twins grievous, but fathers, unlike mothers, were not encouraged to express their emotions. Although parents generally agreed about what helped them cope, fathers believed that they should be able to cope regardless of their grief. The strength of parents' spiritual beliefs had increased significantly since their loss, and there was some evidence that depressed and grieving mothers turned to spiritual support. Parents whose children died earlier reported levels of depression similar to those reported by parents whose children died later. To date, this is the largest study of grief in couples who have experienced the death of a twin and who have a surviving twin or higher order multiple.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States.
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-21
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects' affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain's motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Molecular Behavior of DNA Origami in Higher-Order Self-Assembly
Li, Zhe; Liu, Minghui; Wang, Lei; Nangreave, Jeanette; Yan, Hao; Liu, Yan
2011-01-01
DNA-based self-assembly is a unique method for achieving higher-order molecular architectures made possible by the fact that DNA is a programmable information-coding polymer. In the past decade, two main types of DNA nanostructures have been developed: branch-shaped DNA tiles with small dimensions (commonly up to ~20 nm) and DNA origami tiles with larger dimensions (up to ~100 nm). Here we aimed to determine the important factors involved in the assembly of DNA origami superstructures. We constructed a new series of rectangular-shaped DNA origami tiles in which parallel DNA helices are arranged in a zigzag pattern when viewed along the DNA helical axis, a design conceived in order to relax an intrinsic global twist found in the original planar, rectangular origami tiles. Self-associating zigzag tiles were found to form linear arrays in both diagonal directions, while planar tiles showed significant growth in only one direction. Although the series of zigzag tiles were designed to promote two-dimensional array formation, one-dimensional linear arrays and tubular structures were observed instead. We discovered that the dimensional aspect ratio of the origami unit tiles and intertile connection design play important roles in determining the final products, as revealed by atomic force microscopy imaging. This study provides insight into the formation of higher-order structures from self-assembling DNA origami tiles, revealing their unique behavior in comparison with conventional DNA tiles having smaller dimensions. PMID:20825190
NASA Astrophysics Data System (ADS)
Ma, Zhipeng; Park, Seongsu; Yamashita, Naoki; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2016-06-01
DNA origami provides a versatile method for the construction of nanostructures with defined shape, size and other properties; such nanostructures may enable a hierarchical assembly of large scale architecture for the placement of other nanomaterials with atomic precision. However, the effective use of these higher order structures as functional components depends on knowledge of their assembly behavior and mechanical properties. This paper demonstrates construction of higher order DNA origami arrays with controlled orientations based on the formation of two types of DNA junctions: anti-parallel and parallel double crossovers. A two-step assembly process, in which preformed rectangular DNA origami monomer structures themselves undergo further self-assembly to form numerically unlimited arrays, was investigated to reveal the influences of assembly parameters. AFM observations showed that when parallel double crossover DNA junctions are used, the assembly of DNA origami arrays occurs with fewer monomers than for structures formed using anti-parallel double crossovers, given the same assembly parameters, indicating that the configuration of parallel double crossovers is not energetically preferred. However, the direct measurement by AFM force-controlled mapping shows that both DNA junctions of anti-parallel and parallel double crossovers have homogeneous mechanical stability with any part of DNA origami.
Imamizu, Hiroshi; Kawato, Mitsuo
2009-07-01
Humans can guide their actions toward the realization of their intentions. Flexible, rapid and precise realization of intentions and goals relies on the brain learning to control its actions on external objects and to predict the consequences of this control. Neural mechanisms that mimic the input-output properties of our own body and other objects can be used to support prediction and control, and such mechanisms are called internal models. We first summarize functional neuroimaging, behavioral and computational studies of the brain mechanisms related to acquisition, modular organization, and the predictive switching of internal models mainly for tool use. These mechanisms support predictive control and flexible switching of intentional actions. We then review recent studies demonstrating that internal models are crucial for the execution of not only immediate actions but also higher-order cognitive functions, including optimization of behaviors toward long-term goals, social interactions based on prediction of others' actions and mental states, and language processing. These studies suggest that a concept of internal models can consistently explain the neural mechanisms and computational principles needed for fundamental sensorimotor functions as well as higher-order cognitive functions.
Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects
NASA Astrophysics Data System (ADS)
Song, Yong-Shun; Shu, Yao-Gen; Zhou, Xin; Ou-Yang, Zhong-Can; Li, Ming
2017-01-01
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Gokhroo, Vandna; Deasy, Kieran; Maimaiti, Aili; Frawley, Mary C.; Phelan, Ciarán; Chormaic, Síle Nic
2015-01-01
Optical nanofibres are used to confine light to sub-wavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magneto-optical trap for 87Rb atoms. The nanofibre, with a waist diameter of ∼700 nm, supports both the fundamental and first group of higher order modes (HOMs) and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger if HOMs are also included. In particular, the signal from HOMs appears to be about six times larger than that obtained for the fundamental mode. Absorption of on-resonance, HOM probe light by the laser-cooled atoms is also observed. These advances should facilitate the realization of atom trapping schemes based on HOM interference.
In Vivo Generalized Diffusion Tensor Imaging (GDTI) Using Higher-Order Tensors (HOT)
Liu, Chunlei; Mang, Sarah C.; Moseley, Michael E.
2009-01-01
Generalized diffusion tensor imaging (GDTI) using higher order tensor statistics (HOT) generalizes the technique of diffusion tensor imaging (DTI) by including the effect of non-Gaussian diffusion on the signal of magnetic resonance imaging (MRI). In GDTI-HOT, the effect of non-Gaussian diffusion is characterized by higher order tensor statistics (i.e. the cumulant tensors or the moment tensors) such as the covariance matrix (the second-order cumulant tensor), the skewness tensor (the third-order cumulant tensor) and the kurtosis tensor (the fourth-order cumulant tensor) etc. Previously, Monte Carlo simulations have been applied to verify the validity of this technique in reconstructing complicated fiber structures. However, no in vivo implementation of GDTI-HOT has been reported. The primary goal of this study is to establish GDTI-HOT as a feasible in vivo technique for imaging non-Gaussian diffusion. We show that probability distribution function (PDF) of the molecular diffusion process can be measured in vivo with GDTI-HOT and be visualized with 3D glyphs. By comparing GDTI-HOT to fiber structures that are revealed by the highest resolution DWI possible in vivo, we show that the GDTI-HOT can accurately predict multiple fiber orientations within one white matter voxel. Furthermore, through bootstrap analysis we demonstrate that in vivo measurement of HOT elements is reproducible with a small statistical variation that is similar to that of DTI. PMID:19953513
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-02-08
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Empowerment theory: clarifying the nature of higher-order multidimensional constructs.
Peterson, N Andrew
2014-03-01
Development of empowerment theory has focused on defining the construct at different levels of analysis, presenting new frameworks or dimensions, and explaining relationships between empowerment-related processes and outcomes. Less studied, and less conceptually developed, is the nature of empowerment as a higher-order multidimensional construct. One critical issue is whether empowerment is conceptualized as a superordinate construct (i.e., empowerment is manifested by its dimensions), an aggregate construct (i.e., empowerment is formed by its dimensions), or rather as a set of distinct constructs. To date, researchers have presented superordinate models without careful consideration of the relationships between dimensions and the higher-order construct of empowerment. Empirical studies can yield very different results, however, depending on the conceptualization of a construct. This paper represents the first attempt to address this issue systematically in empowerment theory. It is argued that superordinate models of empowerment are misspecified and research that tests alternative models at different levels of analysis is needed to advance theory, research, and practice in this area. Recommendations for future work are discussed.
Molecular Behavior of DNA Origami in Higher-Order Self-Assembly
Li, Zhe; Liu, Minghui; Lei, Wang; Nangreave, Jeanette; Yan, Hao; Liu, Yan
2010-09-08
DNA-based self-assembly is a unique method for achieving higher-order molecular architectures made possible by the fact that DNA is a programmable information-coding polymer. In the past decade, two main types of DNA nanostructures have been developed: branch-shaped DNA tiles with small dimensions (commonly up to ~20 nm) and DNA origami tiles with larger dimensions (up to ~100 nm). Here we aimed to determine the important factors involved in the assembly of DNA origami superstructures. We constructed a new series of rectangular-shaped DNA origami tiles in which parallel DNA helices are arranged in a zigzag pattern when viewed along the DNA helical axis, a design conceived in order to relax an intrinsic global twist found in the original planar, rectangular origami tiles. Self-associating zigzag tiles were found to form linear arrays in both diagonal directions, while planar tiles showed significant growth in only one direction. Although the series of zigzag tiles were designed to promote two-dimensional array formation, one-dimensional linear arrays and tubular structures were observed instead. We discovered that the dimensional aspect ratio of the origami unit tiles and intertile connection design play important roles in determining the final products, as revealed by atomic force microscopy imaging. This study provides insight into the formation of higher-order structures from self-assembling DNA origami tiles, revealing their unique behavior in comparison with conventional DNA tiles having smaller dimensions.
Pecka, Shannon; Schmid, Kendra; Pozehl, Bunny
2014-12-01
This article describes development of the Pecka Grading Rubric (PGR) as a strategy to facilitate and evaluate students' higher-order thinking in discussion boards. The purpose of this study was to describe psychometric properties of the PGR. Rubric reliability was pilot tested on a discussion board assignment used by 15 senior student registered nurse anesthetist enrolled in an Advanced Principles of Anesthesia course. Interrater and intrarater reliabilities were tested using an interclass correlation coefficient (ICC) to evaluate absolute agreement of scoring. Raters gave each category a score, scores of the categories were summed, and a total score was calculated for the entire rubric. Interrater (ICC = 0.939, P < .001) and intrarater (ICC = 0.902 to 0.994, P < .001) reliabilities were excellent for total point scores. A content validity index was used to evaluate content validity. Raters evaluated content validity of each cell of the PGR. The content validity index (0.8-1.0) was acceptable. Known-group validity was evaluated by comparing graduate student registered nurse anesthetists (N = 7) with undergraduate senior nursing students (N = 13). Beginning evidence indicates a valid and reliable instrument that measures higher-order thinking in the student registered nurse anesthetist.
Higher order thinking skills competencies required by outcomes-based education from learners.
Chabeli, M M
2006-08-01
Outcomes-Based Education (OBE) brought about a significant paradigm shift in the education and training of learners in South Africa. OBE requires a shift from focusing on the teacher input (instruction offerings or syllabuses expressed in terms of content), to focusing on learner outcomes. OBE is moving away from 'transmission' models to constructivistic, learner-centered models that put emphasis on learning as an active process (Nieburh, 1996:30). Teachers act as facilitators and mediators of learning (Norms and Standards, Government Gazette vol 415, no 20844 of 2000). Facilitators are responsible to create the environment that is conducive for learners to construct their own knowledge, skills and values through interaction (Peters, 2000). The first critical cross-field outcome accepted by the South African Qualification Framework (SAQA) is that learners should be able to identify and solve problems by using critical and creative thinking skills. This paper seeks to explore some higher order thinking skills competencies required by OBE from learners such as critical thinking, reflective thinking, creative thinking, dialogic / dialectic thinking, decision making, problem solving and emotional intelligence and their implications in facilitating teaching and learning from the theoretical perspective. The philosophical underpinning of these higher order thinking skills is described to give direction to the study. It is recommended that a study focusing on the assessment of these intellectual concepts be made. The study may be qualitative, quantitative or mixed methods in nature (Creswell 2005).
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher order dispersion in the propagation of a gravity wave packet
NASA Technical Reports Server (NTRS)
Yeh, K. C.; Dong, B.
1989-01-01
To the first order of approximation, the complex amplitude of a wave packet in an anisotropic and dispersive medium is convected with the group of velocity. However, a gravity wave is a vector wave. Its wave packet must be formed by superposition of various wave numbers with corresponding frequencies, as is the case for scalar waves, and additionally by superposing many eigenmodes which also depend on the wave number. To represent the vector wave packet self-consistently, it is found that a gradient term must be included in the expansion. For a Guassian wave packet, this gradient term is shown to have important implications on the velocity vector as represented by its hodograph. Numerical results show that the hodograph is influenced by the location of the relative position of interest from the center of a Gaussian pulse. Higher order expansion shows that an initial Gaussian wave packet will retain its Gaussian shape as it propagates, but the pulse will spread in all directions with its major axis undergoing a rotation. Numerical results indicate that these higher order dispersive effects may be marginally observable in the atmosphere.
The impedance problem of wave diffraction by a strip with higher order boundary conditions
NASA Astrophysics Data System (ADS)
Castro, L. P.; Simões, A. M.
2013-10-01
This work is devoted to analyse an impedance boundary-transmission problem for the Helmholtz equation originated by a problem of wave diffraction by an infinite strip with higher order imperfect boundary conditions. A constructive approach of operator relations is built, which allows a transparent interpretation of the problem in an operator theory framework. In particular, different types of operator relations are exhibited for different types of operators acting between Lebesgue and Sobolev spaces on a finite interval and the positive half-line. All this has consequences in the understanding of the structure of this type of problems. In particular, a Fredholm characterization of the problem is obtained in terms of the initial space order parameters. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained an error in the title of the article. The original title appeared as: "The Impedance Problem of Wave Diffraction by a trip with Higher Order Boundary Conditions." This article has been replaced and the title now appears correctly online. The corrected article was published on 8 November 2013.
Silva, Carlos A B; Rodrigues, Clóves G; Ramos, J Galvão; Luzzi, Roberto
2015-06-01
Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description.
Surface-enhanced Raman scattering as a higher-order Raman process
NASA Astrophysics Data System (ADS)
Mueller, Niclas S.; Heeg, Sebastian; Reich, Stephanie
2016-08-01
We propose to understand surface-enhanced Raman scattering (SERS) as a higher-order Raman process that contains the plasmonic excitation. The SERS amplitudes are calculated with third- and fourth-order perturbation theory. Treating the plasmonic excitation as a quasiparticle, we derive analytic expressions for all coupling matrix elements. This leads to a general theory of plasmonic enhancement in SERS that can be applied to arbitrary plasmonic nanostructures. We obtain the plasmon eigenvectors of a gold nanosphere and a nanosphere dimer. They are used to calculate the enhancement of the Raman cross section of a molecule coupled to the dipole plasmon mode. The enhancement of the cross section is up to three orders of magnitude stronger than predicted by the theory of electromagnetic enhancement. The difference is most pronounced in vacuum and decreases with increasing dielectric constant of the embedding medium. The predictions from understanding SERS as a higher-order Raman process agree well with recent experiments; they highlight the dominance of plasmonic enhancement in SERS.
Cross-ratio identities and higher-order poles of CHY-integrand
NASA Astrophysics Data System (ADS)
Cardona, Carlos; Feng, Bo; Gomez, Humberto; Huang, Rijun
2016-09-01
The evaluation of generic Cachazo-He-Yuan(CHY)-integrands is a big challenge and efficient computational methods are in demand for practical evaluation. In this paper, we propose a systematic decomposition algorithm by using cross-ratio identities, which provides an analytic and easy to implement method for the evaluation of any CHY-integrand. This algorithm aims to decompose a given CHY-integrand containing higher-order poles as a linear combination of CHY-integrands with only simple poles in a finite number of steps, which ultimately can be trivially evaluated by integration rules of simple poles. To make the method even more efficient for CHY-integrands with large number of particles and complicated higher-order pole structures, we combine the Λ-algorithm and the cross-ratio identities, and as a by-product it provides us a way to deal with CHY-integrands where the Λ-algorithm was not applicable in its original formulation.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Improvements to local projective noise reduction through higher order and multiscale refinements
NASA Astrophysics Data System (ADS)
Moore, Jack Murdoch; Small, Michael; Karrech, Ali
2015-06-01
The broad spectrum characteristic of signals from nonlinear systems obstructs noise reduction techniques developed for linear systems. Local projection was developed to reduce noise while preserving nonlinear deterministic structures, and a second order refinement to local projection which was proposed ten years ago does so particularly effectively. It involves adjusting the origin of the projection subspace to better accommodate the geometry of the attractor. This paper describes an analytic motivation for the enhancement from which follows further higher order and multiple scale refinements. However, the established enhancement is frequently as or more effective than the new filters arising from solely geometric considerations. Investigation of the way that measurement errors reinforce or cancel throughout the refined local projection procedure explains the special efficacy of the existing enhancement, and leads to a new second order refinement offering widespread gains. Different local projective filters are found to be best suited to different noise levels. At low noise levels, the optimal order increases as noise increases. At intermediate levels second order tends to be optimal, while at high noise levels prototypical local projection is most effective. The new higher order filters perform better relative to established filters for longer signals or signals corresponding to higher dimensional attractors.
The impedance problem of wave diffraction by a strip with higher order boundary conditions
Castro, L. P.; Simões, A. M.
2013-10-17
This work is devoted to analyse an impedance boundary-transmission problem for the Helmholtz equation originated by a problem of wave diffraction by an infinite strip with higher order imperfect boundary conditions. A constructive approach of operator relations is built, which allows a transparent interpretation of the problem in an operator theory framework. In particular, different types of operator relations are exhibited for different types of operators acting between Lebesgue and Sobolev spaces on a finite interval and the positive half-line. All this has consequences in the understanding of the structure of this type of problems. In particular, a Fredholm characterization of the problem is obtained in terms of the initial space order parameters. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained an error in the title of the article. The original title appeared as: 'The Impedance Problem of Wave Diffraction by a trip with Higher Order Boundary Conditions.' This article has been replaced and the title now appears correctly online. The corrected article was published on 8 November 2013.
Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments
NASA Astrophysics Data System (ADS)
Rotavera, B.; Petersen, E. L.
2013-07-01
Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.
Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models
Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: mpdabfz@wmf.univ.szczecin.pl
2009-01-15
We derive the most general junction conditions for the fourth-order brane gravity constructed of arbitrary functions of curvature invariants. We reduce these fourth-order theories to second order theories at the expense of introducing new scalar and tensor fields - the scalaron and the tensoron. In order to obtain junction conditions we apply the method of generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. After assuming the continuity of the scalaron and the tensoron on the brane, we recover junction conditions for such general brane universe models previously obtained by different methods. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.
Perry, Kristin J; Ostrov, Jamie M
2017-04-11
This study assessed how the forms and functions of aggression fit into a higher order model of internalizing and externalizing behavior, for children in early childhood (N = 332, M age = 47.11 months, SD = 7.32). The lower order internalizing factors were depressed affect, anxious-fearfulness, and asocial behavior (i.e., social withdrawal) and the lower order externalizing factors were deception and hyperactivity. The forms and functions of aggression were crossed to create four factors: reactive relational, reactive physical, proactive relational, and proactive physical aggression. Seven confirmatory factor models were tested. Results supported a two-factor externalizing model where reactive and proactive relational aggression and deception loaded on one externalizing factor and reactive and proactive physical aggression and hyperactivity loaded on another externalizing factor.
Rodrigues, Clóves G; Silva, Carlos A B; Ramos, José G; Luzzi, Roberto
2017-02-01
A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.
Two-photon or higher-order absorbing optical materials for generation of reactive species
NASA Technical Reports Server (NTRS)
Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)
2007-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra
Sezgin, Necmettin
2012-01-01
The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379
A higher order GUP with minimal length uncertainty and maximal momentum II: Applications
NASA Astrophysics Data System (ADS)
Pedram, Pouria
2012-12-01
In a recent paper, we presented a nonperturbative higher order Generalized Uncertainty Principle (GUP) that is consistent with various proposals of quantum gravity such as string theory, loop quantum gravity, doubly special relativity, and predicts both a minimal length uncertainty and a maximal observable momentum. In this Letter, we find exact maximally localized states and present a formally self-adjoint and naturally perturbative representation of this modified algebra. Then we extend this GUP to D dimensions that will be shown it is noncommutative and find invariant density of states. We show that the presence of the maximal momentum results in upper bounds on the energy spectrum of the free particle and the particle in box. Moreover, this form of GUP modifies blackbody radiation spectrum at high frequencies and predicts a finite cosmological constant. Although it does not solve the cosmological constant problem, it gives a better estimation with respect to the presence of just the minimal length.
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Romero, V. J.
2002-01-01
The usefulness of piecewise polynomials with C1 and C2 derivative continuity for response surface construction method is examined. A Moving Least Squares (MLS) method is developed and compared with four other interpolation methods, including kriging. First the selected methods are applied and compared with one another in a two-design variables problem with a known theoretical response function. Next the methods are tested in a four-design variables problem from a reliability-based design application. In general the piecewise polynomial with higher order derivative continuity methods produce less error in the response prediction. The MLS method was found to be superior for response surface construction among the methods evaluated.
Solutions to higher-order anisotropic parabolic equations in unbounded domains
NASA Astrophysics Data System (ADS)
Kozhevnikova, L. M.; Leont'ev, A. A.
2014-01-01
The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,\\infty)\\times\\Omega, where \\Omega\\subset R^n, n\\geq 3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t\\to \\infty is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.
Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Quartin, Miguel; Amendola, Luca
2014-06-01
We present the new method DALI (Derivative Approximation for LIkelihoods) for reconstructing and forecasting posteriors. DALI extends the Fisher matrix formalism but allows for a much wider range of posterior shapes. While the Fisher matrix formalism is limited to yield ellipsoidal confidence contours, our method can reproduce the often observed flexed, deformed or curved shapes of known posteriors. This gain in shape fidelity is obtained by expanding the posterior to higher order in derivatives with respect to parameters such that non-Gaussianity in the parameter space is taken into account. The resulting expansion is positive definite and normalizable at every order. Here, we present the new technique, highlight its advantages and limitations and show a representative application to a posterior of dark energy parameters from supernovae measurements.
Performance of Higher Order Campbell methods, Part I: review and numerical convergence study
NASA Astrophysics Data System (ADS)
Elter, Zs.; Bakkali, M.; Jammes, C.; Pázsit, I.
2016-06-01
This paper investigates, through numerical simulations, the performance of a signal analysis method by which a high temperature fission chamber can be used over a wide range of count rates. Results reported in a previous paper (Elter et al., 2015 [1]) indicated that the traditional Campbell method and the pulse mode cannot provide a sufficient overlap at medium count rates. Hence the use of the so-called Higher Order Campbell (HOC) methods is proposed and their performance is investigated. It is shown that the HOC methods can guarantee the linearity (i.e. correctness) of the neutron flux estimation over a wide count rate, even during transient conditions. The capabilities of these methods for suppressing parasitic noise (originating from various sources) are verified.
Substance and artifact in the higher-order factors of the Big Five.
McCrae, Robert R; Yamagata, Shinji; Jang, Kerry L; Riemann, Rainer; Ando, Juko; Ono, Yutaka; Angleitner, Alois; Spinath, Frank M
2008-08-01
J. M. Digman (1997) proposed that the Big Five personality traits showed a higher-order structure with 2 factors he labeled alpha and beta. These factors have been alternatively interpreted as heritable components of personality or as artifacts of evaluative bias. Using structural equation modeling, the authors reanalyzed data from a cross-national twin study and from American cross-observer studies and analyzed new multimethod data from a German twin study. In all analyses, artifact models outperformed substance models by root-mean-square error of approximation criteria, but models combining both artifact and substance were slightly better. These findings suggest that the search for the biological basis of personality traits may be more profitably focused on the 5 factors themselves and their specific facets, especially in monomethod studies.
Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope {alpha}{sup '} are analyzed through the order {alpha}{sup '8} showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R{sup 5} terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order {alpha}{sup '8} like the absence of {zeta}(2){zeta}(3)R{sup 6} terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
Higher-order chromatin structure in DSB induction, repair and misrepair.
Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav
2010-01-01
Double-strand breaks (DSBs), continuously introduced into DNA by cell metabolism, ionizing radiation and some chemicals, are the biologically most deleterious type of genome damage, and must be accurately repaired to protect genomic integrity, ensure cell survival, and prevent carcinogenesis. Although a huge amount of information has been published on the molecular basis and biological significance of DSB repair, our understanding of DSB repair and its spatiotemporal arrangement is still incomplete. In particular, the role of higher-order chromatin structure in DSB induction and repair, movement of DSBs and the mechanism giving rise to chromatin exchanges, and many other currently disputed questions are discussed in this review. Finally, a model explaining the formation of chromosome translocations is proposed.
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark
1998-01-01
A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.
Bio-molecule Surfaces Construction via a Higher-Order Level-Set Method.
Bajaj, Chandrajit L; Xu, Guo-Liang; Zhang, Qin
2008-11-01
We present a general framework for a higher-order spline level-set (HLS) method and apply this to bio-molecule surfaces construction. Starting from a first order energy functional, we obtain a general level set formulation of geometric partial differential equation, and provide an efficient approach to solve this partial differential equation using a C(2) spline basis. We also present a fast cubic spline interpolation algorithm based on convolution and the Z-transform, which exploits the local relationship of interpolatory cubic spline coefficients with respect to given function data values. One example of our HLS method is demonstrated, which is the construction of bio-molecule surfaces (an implicit solvation interface) with their individual atomic coordinates and solvated radii as prerequisite.
Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng
2002-12-01
We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.
Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer.
Ricci, F; Löffler, W; van Exter, M P
2012-09-24
Higher-order optical vortices are inherently unstable in the sense that they tend to split up in a series of vortices with unity charge. We demonstrate this vortex-splitting phenomenon in beams produced with holograms and spatial light modulators and discuss its generic and practically unavoidable nature. To analyze the splitting phenomena in detail, we use a multi-pinhole interferometer to map the combined amplitude and phase profile of the optical field. This technique, which is based on the analysis of the far-field interference pattern observed behind an opaque screen perforated with multiple pinholes, turns out to be very robust and can among others be used to study very 'dark' regions of electromagnetic fields. Furthermore, the vortex splitting provides an ultra-sensitive measurement method of unwanted scattering from holograms and other phase-changing optical elements.
Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald
2005-01-01
Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Spontaneous breakdown of Lorentz symmetry in scalar QED with higher order derivatives
Polonyi, Janos; Siwek, Alicja
2011-10-15
Scalar QED is studied with higher order derivatives for the scalar-field kinetic energy. A local potential is generated for the gauge field due to the covariant derivatives and the vacuum with nonvanishing expectation value for the scalar field, and the vector potential is constructed in the leading-order saddle-point expansion. This vacuum breaks the global gauge and Lorentz symmetry spontaneously. The unitarity of time evolution is assured in the physical, positive norm subspace, and the linearized equations of motion are calculated. The Goldstone theorem always keeps the radiation field massless. A particular model is constructed where the full set of standard Maxwell equations is recovered on the tree level, thereby relegating the effects of broken Lorentz symmetry to the level of radiative corrections.
Fundamental measure theory for smectic phases: Scaling behavior and higher order terms
NASA Astrophysics Data System (ADS)
Wittmann, René; Marechal, Matthieu; Mecke, Klaus
2014-08-01
The recent extension of Rosenfeld's fundamental measure theory to anisotropic hard particles predicts nematic order of rod-like particles. Our analytic study of different aligned shapes provides new insights into the structure of this density functional, which is basically founded on experience with hard spheres. We combine scaling arguments with dimensional crossover and motivate a modified expression, which enables an appropriate description of smectic layering. We calculate the nematic-smectic-A transition of monodisperse hard spherocylinders with and without orientational degrees of freedom and present the equation of state and phase diagram including these two liquid crystalline phases in good agreement with simulations. We also find improved results related to the isotropic-nematic interface. We discuss the quality of empirical corrections and the convergence towards an exact second virial coefficient, including higher order terms.
Simultaneous silence organizes structured higher-order interactions in neural populations
Shimazaki, Hideaki; Sadeghi, Kolia; Ishikawa, Tomoe; Ikegaya, Yuji; Toyoizumi, Taro
2015-01-01
Activity patterns of neural population are constrained by underlying biological mechanisms. These patterns are characterized not only by individual activity rates and pairwise correlations but also by statistical dependencies among groups of neurons larger than two, known as higher-order interactions (HOIs). While HOIs are ubiquitous in neural activity, primary characteristics of HOIs remain unknown. Here, we report that simultaneous silence (SS) of neurons concisely summarizes neural HOIs. Spontaneously active neurons in cultured hippocampal slices express SS that is more frequent than predicted by their individual activity rates and pairwise correlations. The SS explains structured HOIs seen in the data, namely, alternating signs at successive interaction orders. Inhibitory neurons are necessary to maintain significant SS. The structured HOIs predicted by SS were observed in a simple neural population model characterized by spiking nonlinearity and correlated input. These results suggest that SS is a ubiquitous feature of HOIs that constrain neural activity patterns and can influence information processing. PMID:25919985
Solutions to higher-order anisotropic parabolic equations in unbounded domains
Kozhevnikova, L M; Leont'ev, A A
2014-01-31
The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,∞)×Ω, where Ω⊂R{sup n}, n≥3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t→∞ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
NASA Astrophysics Data System (ADS)
Rodrigues, Clóves G.; Silva, Carlos A. B.; Ramos, José G.; Luzzi, Roberto
2017-02-01
A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.
Higher-order wavelet reconstruction/differentiation filters and Gibbs phenomena
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Acevedo, Ramiro; Kuczala, Alexander; Keys, Kerry P.; Goodrich, Carl P.; Johnson, Bruce R.
2016-01-01
An orthogonal wavelet basis is characterized by its approximation order, which relates to the ability of the basis to represent general smooth functions on a given scale. It is known, though perhaps not widely known, that there are ways of exceeding the approximation order, i.e., achieving higher-order error in the discretized wavelet transform and its inverse. The focus here is on the development of a practical formulation to accomplish this first for 1D smooth functions, then for 1D functions with discontinuities and then for multidimensional (here 2D) functions with discontinuities. It is shown how to transcend both the wavelet approximation order and the 2D Gibbs phenomenon in representing electromagnetic fields at discontinuous dielectric interfaces that do not simply follow the wavelet-basis grid.
Numerical calculation of beam shifts for higher-order Laguerre-Gaussian beams upon transmission
NASA Astrophysics Data System (ADS)
Prajapati, Chandravati
2017-04-01
We study numerically the spatial and angular contributions to Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts for higher-order (| l | ≥ 1) Laguerre-Gaussian (LG) beams upon transmission from a planar interface separating two media. Two kinds of spin-orbit interaction and their role in beam shifts are discussed. Firstly, the interaction between the spin and intrinsic orbital angular momentum (OAM) of the LG beam that produces polarization dependent angular shift which is further coupled to the angular momentum structure of the beam and gives rise to spatial shift in orthogonal direction. Secondly, the interaction between the intrinsic and extrinsic OAM of the beam which produces polarization independent transverse shift, called orbital-Hall effect (OHE). Since the angular and spatial shifts are coupled and the angular shift is dependent on the beam waist, the beam shifts can be tuned to maximize or reduce the resultant shifts for LG beams.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.