Sample records for diverse kunitz inhibitors

  1. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels

    PubMed Central

    Fló, Martín; Margenat, Mariana; Pellizza, Leonardo; Durán, Rosario; Salceda, Emilio; Alvarez, Beatriz

    2017-01-01

    We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. PMID:28192542

  2. Kunitz-type protease inhibitors group B from Solanum palustre.

    PubMed

    Speransky, Anna S; Cimaglia, Fabio; Krinitsina, Anastasya A; Poltronieri, Palmiro; Fasano, Pasqua; Bogacheva, Anna M; Valueva, Tatiana A; Halterman, Dennis; Shevelev, Alexei B; Santino, Angelo

    2007-11-01

    Five Kunitz protease inhibitor group B genes were isolated from the genome of the diploid non-tuber-forming potato species Solanum palustre. Three of five new genes share 99% identity to the published KPI-B genes from various cultivated potato accessions, while others exhibit 96% identity. Spls-KPI-B2 and Spls-KPI-B4 proteins contain unique substitutions of the most conserved residues usually involved to trypsin and chymotrypsin-specific binding sites of Kunitz-type protease inhibitor (KPI)-B, respectively. To test the inhibition of trypsin and chymotrypsin by Spls-KPI proteins, five of them were produced in E. coli purified using a Ni-sepharose resin and ion-exchange chromatography. All recombinant Spls-KPI-B inhibited trypsin; K(i) values ranged from 84.8 (Spls-KPI-B4), 345.5 (Spls-KPI-B1), and 1310.6 nM (Spls-KPI-B2) to 3883.5 (Spls-KPI-B5) and 8370 nM (Spls-KPI-B3). In addition, Spls-KPI-B1 and Spls-KPI-B4 inhibited chymotrypsin. These data suggest that regardless of substitutions of key active-center residues both Spls-KPI-B4 and Spls-KPI-B1 are functional trypsin-chymotrypsin inhibitors.

  3. Novel Peptidase Kunitz Inhibitor from Platypodium elegans Seeds Is Active against Spodoptera frugiperda Larvae.

    PubMed

    Ramalho, Suellen Rodrigues; Bezerra, Cézar da Silva; Lourenço de Oliveira, Daniella Gorete; Souza Lima, Letícia; Maria Neto, Simone; Ramalho de Oliveira, Caio Fernando; Valério Verbisck, Newton; Rodrigues Macedo, Maria Lígia

    2018-02-14

    A novel Kunitz-type inhibitor from Platypodium elegans seeds (PeTI) was purified and characterized. The mass spectrometry analyses of PeTI indicated an intact mass of 19 701 Da and a partial sequence homologous to Kunitz inhibitors. PeTI was purified by ion exchange and affinity chromatographies. A complex with a 1:1 ratio was obtained only for bovine trypsin, showing a K i = 0.16 nM. Stability studies showed that PeTI was stable over a wide range of temperature (37-80 °C) and pH (2-10). The inhibitory activity of PeTI was affected by dithiothreitol (DTT). Bioassays of PeTI on Spodoptera frugiperda showed negative effects on larval development and weight gain, besides extending the insect life cycle. The activities of digestive enzymes, trypsin and chymotrypsin, were reduced by feeding larvae with 0.2% PeTI in an artificial diet. In summary, we describe a novel Kunitz inhibitor with promising biotechnological potential for pest control.

  4. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor.

    PubMed

    Sintsova, Oksana; Gladkikh, Irina; Chausova, Victoria; Monastyrnaya, Margarita; Anastyuk, Stanislav; Chernikov, Oleg; Yurchenko, Ekaterina; Aminin, Dmitriy; Isaeva, Marina; Leychenko, Elena; Kozlovskaya, Emma

    2018-02-20

    Sea anemone mucus, due to its multiple and vital functions, is a valuable substance for investigation of new biologically active peptides. In this work, compounds of Heteractis magnifica mucus were separated by multistage liquid chromatography and resulting fractions were analyzed by MALDI-TOF MS. Peptide maps constructed according to the molecular masses and hydrophobicity showed presence of 326 both new and known peptides. Several major peptides from mucus were identified, including the sodium channel toxin RpII isolated earlier from H. magnifica, and four Kunitz-type proteinase inhibitors identical to H. crispa ones. Kunitz-type transcript diversity was studied and sequences of mature peptides were deduced. New β-defensin α-amylase inhibitor, a homolog of helianthamide from Stichodactyla helianthus, was isolated and structurally characterized. Overall, H. magnifica is a source of biologically active peptides with great pharmacological potential. Proteinase and α-amylase inhibitors along with toxins are major components of H. magnifica mucus which play an important role in the successful existence of sea anemones. Obtained peptide maps create a basis for more accurate identification of peptides during future transcriptomic/genomic studies of sea anemone H. magnifica. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  6. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Soybean contains several biologically active components and one of this belongs to the bioactive peptide group. The objectives of this study were to produce different lunasin-enriched preparations (LEP) and determine the effect of Bowman-Birk inhibitor and Kunitz trypsin concentrations on the stabil...

  8. Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman-Birk protease inhibitor content in soybean seed

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds possess anti-nutritional compounds which inactivate digestive proteases, principally corresponding to two families: Kunitz Trypsin Inhibitors (KTi) and Bowman-Birk Inhibitors (BBI). High levels of raw soybeans/soybean meal in feed mixtures can cause poor weight gain and pancreatic abno...

  9. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    PubMed

    Macedo-Ribeiro, Sandra; Almeida, Carla; Calisto, Bárbara M; Friedrich, Thomas; Mentele, Reinhard; Stürzebecher, Jörg; Fuentes-Prior, Pablo; Pereira, Pedro José Barbosa

    2008-02-20

    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1) pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1) residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  10. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis).

    PubMed

    Franco, Octávio L; Dias, Simoni C; Magalhães, Claudio P; Monteiro, Ana C S; Bloch, Carlos; Melo, Francislete R; Oliveira-Neto, Osmundo B; Monnerat, Rose G; Grossi-de-Sá, Maria Fátima

    2004-01-01

    The cotton boll weevil, Anthonomus grandis, is an economically important pest of cotton in tropical and subtropical areas of several countries in the Americas, causing severe losses due to their damage in cotton floral buds. Enzymatic assays using gut extracts from larval and adult boll weevil have demonstrated the presence of digestive serine proteinase-like activities. Furthermore, in vitro assays showed that soybean Kunitz trypsin inhibitor (SKTI) was able to inhibit these enzymes. Previously, in vivo effects of black-eyed pea trypsin chymotrypsin inhibitor (BTCI) have been demonstrated towards the boll weevil pest. Here, when neonate larvae were reared on an artificial diet containing SKTI at three different concentrations, a reduction of larval weight of up to 64% was observed for highest SKTI concentration 500 microM. The presence of SKTI caused an increase in mortality and severe deformities of larvae, pupae and adult insects. This work therefore represents the first observation of a Kunitz trypsin inhibitor active in vivo and in vitro against A. grandis. Bioassays suggested that SKTI could be used as a tool in engineering crop plants, which might exhibit increased resistance against cotton boll weevil.

  11. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds.

    PubMed

    Cruz, Ana C B; Massena, Fábio S; Migliolo, Ludovico; Macedo, Leonardo L P; Monteiro, Norberto K V; Oliveira, Adeliana S; Macedo, Francisco P; Uchoa, Adriana F; Grossi de Sá, Maria F; Vasconcelos, Ilka M; Murad, Andre M; Franco, Octavio L; Santos, Elizeu A

    2013-09-01

    The present study aims to provide new in vitro and in vivo biochemical information about a novel Kunitz trypsin inhibitor purified from Piptadenia moniliformis seeds. The purification process was performed using TCA precipitation, Trypsin-Sepharose and reversed-phase C18 HPLC chromatography. The inhibitor, named PmTKI, showed an apparent molecular mass of around 19 kDa, visualized by SDS-PAGE, which was confirmed by mass spectrometry MALDI-ToF demonstrating a monoisotopic mass of 19.296 Da. The inhibitor was in vitro active against trypsin, chymotrypsin and papain. Moreover, kinetic enzymatic studies were performed aiming to understand the inhibition mode of PmTKI, which competitively inhibits the target enzyme, presenting Ki values of 1.5 × 10(-8) and 3.0 × 10(-1) M against trypsin and chymotrypsin, respectively. Also, the inhibitory activity was assayed at different pH ranges, temperatures and reduction environments (DTT). The inhibitor was stable in all conditions maintaining an 80% residual activity. N-terminal sequence was obtained by Edman degradation and the primary sequence presented identity with members of Kunitz-type inhibitors from the same subfamily. Finally after biochemical characterization the inhibitory effect was evaluated in vitro on insect digestive enzymes from different orders, PmTKI demonstrated remarkable activity against enzymes from Anthonomus grandis (90%), Plodia interpuncptella (60%), and Ceratitis capitata (70%). Furthermore, in vivo bioinsecticidal assays of C. capitata larvae were also performed and the concentration of PmTKI (w/w) in an artificial diet required to LD50 and ED50 larvae were 0.37 and 0.3% respectively. In summary, data reported here shown the biotechnological potential of PmTKI for insect pest control. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival.

    PubMed

    de Magalhães, Mariana T Q; Mambelli, Fábio S; Santos, Bruno P O; Morais, Suellen B; Oliveira, Sergio C

    2018-03-31

    Proteins containing a Kunitz domain have the typical serine protease inhibition function ranging from sea anemone to man. Protease inhibitors play major roles in infection, inflammation disorders and cancer. This review discusses the role of serine proteases containing a Kunitz domain in immunomodulation induced by helminth parasites. Helminth parasites are associated with protection from inflammatory conditions. Therefore, interest has raised whether worm parasites or their products hold potential as drugs for treatment of immunological disorders. Finally, we also propose the use of recombinant SmKI-1 from Schistosoma mansoni as a potential therapeutic molecule to treat inflammatory diseases. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Characterization and Pharmacological Properties of a Novel Multifunctional Kunitz Inhibitor from Erythrina velutina Seeds

    PubMed Central

    Machado, Richele J. A.; Monteiro, Norberto K. V.; Migliolo, Ludovico; Silva, Osmar N.; Pinto, Michele F. S.; Oliveira, Adeliana S.; Franco, Octávio L.; Kiyota, Sumika; Bemquerer, Marcelo P.; Uchoa, Adriana F.; Morais, Ana H. A.; Santos, Elizeu A.

    2013-01-01

    Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI). Trypsin inhibitors were purified by ammonium sulfate (30–60%), fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2) and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10−8 mol.L−1 and constant inhibition (Ki) of 1.0×10−8 mol.L−1, by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation. PMID

  14. Structural and functional properties of kunitz proteinase inhibitors from leguminosae: a mini review.

    PubMed

    Oliva, Maria Luiza Vilela; Ferreira, Rodrigo da Silva; Ferreira, Joana Gasperazzo; de Paula, Cláudia Alessandra Andrade; Salas, Carlos E; Sampaio, Misako Uemura

    2011-08-01

    Seed proteins that inhibit proteinases are classified in families based on amino acid sequence similarity, nature of reactive site and mechanism of action, and are used as tools for investigating proteinases in physiological and pathological events. More recently, the plant Kunitz family of inhibitors with two disulphide bridges was enlarged with members containing variable number of cysteine residues, ranging from no cysteine at all to more than four residues. The characteristic of these proteins, as well the interactions with their target proteinases, are briefly discussed.

  15. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  16. Effect of the enzymatic inhibitor of Kunitz on the gastric lesions from reserpine, from phenylbutazone, from pyloric ligation and by restraint in the rat

    NASA Technical Reports Server (NTRS)

    Guerrin, F.; Demaille, A.; Merveille, P.; Bel, C.

    1980-01-01

    The protective effects of certain polypeptides on gastric ulcerations caused from reserpine and phenylbutazone in the rate were studied. It was found that the Kunitz enzymatic inhibitor exerts a protective action in regard to gastric lesions. However, the inhibitor did not change the development of Shay ulcers and stress ulcers from restraint.

  17. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus.

    PubMed

    Macedo, Maria Lígia Rodrigues; Freire, Maria das Graças Machado; Franco, Octávio Luiz; Migliolo, Ludovico; de Oliveira, Caio Fernando Ramalho

    2011-02-01

    Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.

  19. Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals

    PubMed Central

    Mourão, Caroline B.F.; Schwartz, Elisabeth F.

    2013-01-01

    The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared. PMID:23771044

  20. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa

    PubMed Central

    Gladkikh, Irina; Monastyrnaya, Margarita; Zelepuga, Elena; Sintsova, Oksana; Tabakmakher, Valentin; Gnedenko, Oksana; Ivanov, Alexis; Hua, Kuo-Feng; Kozlovskaya, Emma

    2015-01-01

    Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCRG2 identified using the Edman degradation method share up to 95% of their identity with the representatives of the HCGS polypeptide multigene subfamily derived from H. crispa cDNA. Polypeptides are characterized by positively charged Arg at the N-terminus as well as P1 Lys residue at their canonical binding loop, identical to those of bovine pancreatic trypsin inhibitor (BPTI). These polypeptides are shown by our current evidence to be more potent inhibitors of trypsin than the known representatives of the HCGS subfamily with P1Thr. The kinetic and thermodynamic characteristics of the intermolecular interactions between inhibitors and serine proteases were determined by the surface plasmon resonance (SPR) method. Residues functionally important for polypeptide binding to trypsin were revealed using molecular modeling methods. Furthermore, HCRG1 and HCRG2 possess anti-inflammatory activity, reducing tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) secretions, as well as proIL-1β expression in lipopolysaccharide (LPS)-activated macrophages. However, there was no effect on nitric oxide (NO) generation. PMID:26404319

  1. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  2. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis.

    PubMed

    Price, Samuel J; Pangloli, Philipus; Krishnan, Hari B; Dia, Vermont P

    2016-12-01

    Soybean contains several biologically active components and one of this belongs to the bioactive peptide group. The objectives of this study were to produce different lunasin-enriched preparations (LEP) and determine the effect of Bowman-Birk inhibitor (BBI) and Kunitz trypsin inhibitor (KTI) concentrations on the stability of lunasin against pepsin-pancreatin hydrolysis (PPH). In addition, the effect of KTI mutation on lunasin stability against PPH was determined. LEP were produced by calcium and pH precipitation methods of 30% aqueous ethanol extract from defatted soybean flour. LEP, lunasin-enriched commercially available products and KTI control and mutant flours underwent PPH and samples were taken after pepsin and pepsin-pancreatin hydrolysis. The concentrations of BBI, KTI, and lunasin all decreased after hydrolysis, but they had varying results. BBI concentration ranged from 167.5 to 655.8μg/g pre-hydrolysis and 171.5 to 250.1μg/g after hydrolysis. KTI concentrations ranged from 0.3 to 122.3μg/g pre-hydrolysis and 9.0 to 18.7μg/g after hydrolysis. Lunasin concentrations ranged from 8.5 to 71.0μg/g pre-hydrolysis and 4.0 to 13.2μg/g after hydrolysis. In all products tested, lunasin concentration after PPH significantly correlated with BBI and KTI concentrations. Mutation in two KTI isoforms led to a lower concentration of lunasin after PPH. This is the first report on the potential role of KTI in lunasin stability against PPH and must be considered in designing lunasin-enriched products that could potentially survive digestion after oral ingestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  4. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    PubMed

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization.

    PubMed

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P

    2012-01-01

    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  6. Defense response in non-genomic model species: methyl jasmonate exposure reveals the passion fruit leaves' ability to assemble a cocktail of functionally diversified Kunitz-type trypsin inhibitors and recruit two of them against papain.

    PubMed

    Botelho-Júnior, Sylvio; Machado, Olga L T; Fernandes, Kátia V S; Lemos, Francisco J A; Perdizio, Viviane A; Oliveira, Antônia E A; Monteiro, Leandro R; Filho, Mauri L; Jacinto, Tânia

    2014-08-01

    Multiplicity of protease inhibitors induced by predators may increase the understanding of a plant's intelligent behavior toward environmental challenges. Information about defense mechanisms of non-genomic model plant passion fruit (Passiflora edulis Sims) in response to predator attack is still limited. Here, via biochemical approaches, we showed its flexibility to build-up a broad repertoire of potent Kunitz-type trypsin inhibitors (KTIs) in response to methyl jasmonate. Seven inhibitors (20-25 kDa) were purified from exposed leaves by chromatographic techniques. Interestingly, the KTIs possessed truncated Kunitz motif in their N-terminus and some of them also presented non-consensus residues. Gelatin-Native-PAGE established multiple isoforms for each inhibitor. Significant differences regarding inhibitors' activity toward trypsin and chymotrypsin were observed, indicating functional polymorphism. Despite its rarity, two of them also inhibited papain, and such bifunctionality suggests a recruiting process onto another mechanistic class of target protease (cysteine-type). All inhibitors acted strongly on midgut proteases from sugarcane borer, Diatraea saccharalis (a lepidopteran insect) while in vivo assays supported their insecticide properties. Moreover, the bifunctional inhibitors displayed activity toward midgut proteases from cowpea weevil, Callosobruchus maculatus (a coleopteran insect). Unexpectedly, all inhibitors were highly effective against midgut proteases from Aedes aegypti a dipteran insect (vector of neglected tropical diseases) opening new avenues for plant-derived PIs for vector control-oriented research. Our results reflect the KTIs' complexities in passion fruit which could be wisely exploited by influencing plant defense conditions. Therefore, the potential of passion fruit as source of bioactive compounds with diversified biotechnological application was strengthened.

  7. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    PubMed

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  8. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    PubMed

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  9. Action of plant proteinase inhibitors on enzymes of physiopathological importance.

    PubMed

    Oliva, Maria Luiza V; Sampaio, Misako U

    2009-09-01

    Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.

  10. AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis.

    PubMed

    Xu, Feng; Previti, Mary Lou; Nieman, Marvin T; Davis, Judianne; Schmaier, Alvin H; Van Nostrand, William E

    2009-04-29

    The amyloid beta-protein precursor (AbetaPP) is best recognized as the precursor to the Abeta peptide that accumulates in the brains of patients with Alzheimer's disease, but less is known about its physiological functions. Isoforms of AbetaPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AbetaPP regulates cerebral thrombosis in vivo (Xu et al., 2005, 2007). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AbetaPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here, we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AbetaPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model, both AbetaPP(-/-) and APLP2(-/-) mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a prothrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage, both AbetaPP(-/-) and APLP2(-/-) mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AbetaPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury.

  11. Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas

    PubMed Central

    Diao, Jian-Bo; Jiang, Li-Ping; Tang, Xing; Liang, Song-Ping

    2008-01-01

    Background Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. Principal Findings Here we report the presence of a new superfamily of KTTs in spiders (Tarantulas: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (ω) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications. Conclusions

  12. Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model

    PubMed Central

    de Souza, Jean Gabriel; Morais, Katia L.P.; Anglés-Cano, Eduardo; Boufleur, Pamela; de Mello, Evandro Sobroza; Maria, Durvanei Augusto; Origassa, Clarice Silvia Taemi; Zampolli, Hamilton de Campos; Câmara, Niels Olsen Saraiva; Berra, Carolina Maria; Bosch, Rosemary Viola; Chudzinski-Tavassi, Ana Marisa

    2016-01-01

    Renal cell carcinoma (RCC), also called kidney cancer or renal adenocarcinoma, is highly resistant to current treatments. It has been previously reported that a Kunitz-type inhibitor domain-containing protein, isolated from the salivary glands of the Amblyomma cajennense tick, triggers apoptosis in murine renal adenocarcinoma cells (Renca) by inhibiting the proteasome and endoplasmic reticulum stress. Of note, Amblyomin-X is the corresponding recombinant protein identified in the cDNA library from A. cajennense salivary glands. Herein, using orthotopic kidney tumors in mice, we demonstrate that Amblyomin-X is able to drastically reduce the incidence of lung metastases by inducing cell cycle arrest and apoptosis. The in vitro assays show that Amblyomin-X is capable of reducing the proliferation rate of Renca cells, promoting cell cycle arrest, and down-regulating the expression of crucial proteins (cyclin D1, Ki67 and Pgp) involved in the aggressiveness and resistance of RCC. Regarding non-tumor cells (NIH3T3), Amblyomin-X produced minor effects in the cyclin D1 levels. Interestingly, observing the image assays, the fluorescence-labelled Amblyomin-X was indeed detected in the tumor stroma whereas in healthy animals it was rapidly metabolized and excreted. Taken the findings together, Amblyomin-X can be considered as a potential anti-RCC drug candidate. PMID:27566592

  13. AβPP/APLP2 Family of Kunitz Serine Proteinase Inhibitors Regulate Cerebral Thrombosis

    PubMed Central

    Xu, Feng; Previti, Mary Lou; Nieman, Marvin T.; Davis, Judianne; Schmaier, Alvin H.; Van Nostrand, William E.

    2009-01-01

    The amyloid β-protein precursor (AβPP) is best recognized as the precursor to the Aβ peptide that accumulates in the brains of patients with Alzheimer’s disease, but less is known about its physiological functions. Isoforms of AβPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AβPP regulates cerebral thrombosis in vivo (Xu et al., 2005 Proc. Natl. Acad. Sci. USA 102:18135–18140; Xu et al. 2007 Stroke 38:2598–2601). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AβPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AβPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model both AβPP−/− and APLP2−/− mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a pro-thrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage both AβPP−/− and APLP2−/− mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AβPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury. PMID:19403832

  14. In vivo neuronal synthesis and axonal transport of Kunitz protease inhibitor (KPI)-containing forms of the amyloid precursor protein.

    PubMed

    Moya, K L; Confaloni, A M; Allinquant, B

    1994-11-01

    We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.

  15. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd; Baig, Mohd Affan; Qureshi, M Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites. Therefore, ASPI

  16. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family

    PubMed Central

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd.; Baig, Mohd. Affan; Qureshi, M. Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    Purpose This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Methods Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. Results ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2–12 showing a decline in the activity around pH 4–5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10–80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. Conclusions To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids

  17. Recombinant expression of Ixolaris, a Kunitz-type inhibitor from the tick salivary gland, for NMR studies.

    PubMed

    De Paula, V S; Silva, F H S; Francischetti, I M B; Monteiro, R Q; Valente, A P

    2017-11-01

    Ixolaris is an anticoagulant protein identified in the tick saliva of Ixodes scapularis. Ixolaris contains 2 Kunitz like domains and binds to Factor Xa or Factor X as a scaffold for inhibition of the Tissue Factor (TF)/Factor VIIa (FVIIa). In contrast to tissue factor pathway inhibitor (TFPI), however, Ixolaris does not bind to the active site cleft of FXa. Instead, complex formation is mediated by the FXa heparin-binding exosite. Due to its potent and long-lasting antithrombotic activity, Ixolaris is a promising agent for anticoagulant therapy. Although numerous functional studies of Ixolaris exist, three-dimensional structure of Ixolaris has not been obtained at atomic resolution. Using the pET32 vector, we successfully expressed a TRX-His 6 -Ixolaris fusion protein. By combining Ni-NTA chromatography, enterokinase protease cleavage, and reverse phase HPLC (RP-HPLC), we purified isotopically labeled Ixolaris for NMR studies. 1D 1 H and 2D 15 N- 1 H NMR analysis yielded high quality 2D 15 N- 1 H HSQC spectra revealing that the recombinant protein is folded. These studies represent the first steps in obtaining high-resolution structural information by NMR for Ixolaris enabling the investigation of the molecular basis for Ixolaris-coagulation factors interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

    PubMed Central

    Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; de Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Garratt, Richard C.

    2005-01-01

    A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å3 Da−1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. PMID:16511193

  19. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    PubMed

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover ( Trifolium repens L.) Kunitz Proteinase Inhibitor ( Tr-KPI ) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1 , Tr-KPI2 , and Tr-KPI5 , was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1 , a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs , particularly Tr-KPI5 , have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  20. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants

    PubMed Central

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P.; McManus, Michael T.

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress. PMID:29046678

  1. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity.

    PubMed

    Medeiros, Amanda Fernandes de; Costa, Izael de Sousa; Carvalho, Fabiana Maria Coimbra de; Kiyota, Sumika; Souza, Beatriz Blenda Pinheiro de; Sifuentes, Daniel Nogoceke; Serquiz, Raphael Paschoal; Maciel, Bruna Leal Lima; Uchôa, Adriana Ferreira; Santos, Elizeu Antunes Dos; Morais, Ana Heloneida de Araújo

    2018-12-01

    A trypsin inhibitor isolated from tamarind seed (TTI) has satietogenic effects in animals, increasing the cholecystokinin (CCK) in eutrophy and reducing leptin in obesity. We purified TTI (pTTI), characterised, and observed its effect upon CCK and leptin in obese Wistar rats. By HPLC, and after amplification of resolution, two protein fractions were observed: Fr1 and Fr2, with average mass of [M + 14H] +  = 19,594,690 Da and [M + 13H] +  = 19,578,266 Da, respectively. The protein fractions showed 54 and 53 amino acid residues with the same sequence. pTTI presented resistance to temperature and pH variations; IC 50 was 2.7 × 10 -10  mol.L -1 and Ki was 2.9 × 10 -11  mol.L -1 . The 2-DE revealed spots with isoelectric points between pH 5 and 6, and one near pH 8. pTTI action on leptin decrease was confirmed. We conclude that pTTI is a Kunitz trypsin inhibitor with possible biotechnological health-related application.

  2. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom.

    PubMed

    He, Ying-Ying; Liu, Shu-Bai; Lee, Wen-Hui; Qian, Jin-Qiao; Zhang, Yun

    2008-10-01

    Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.

  3. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    PubMed

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    PubMed Central

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  5. Defect of Hepatocyte Growth Factor Activator Inhibitor Type 1/Serine Protease Inhibitor, Kunitz Type 1 (Hai-1/Spint1) Leads to Ichthyosis-Like Condition and Abnormal Hair Development in Mice

    PubMed Central

    Nagaike, Koki; Kawaguchi, Makiko; Takeda, Naoki; Fukushima, Tsuyoshi; Sawaguchi, Akira; Kohama, Kazuyo; Setoyama, Mitsuru; Kataoka, Hiroaki

    2008-01-01

    Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1+/+ blastocysts with Hai-1/Spint1−/− embryonic stem cells successfully generated high-chimeric Hai-1/Spint1−/− embryos (B6Hai-1−/−High) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1−/− mice was caused by placental dysfunction. However, newborn B6Hai-1−/−High mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development. PMID:18832587

  6. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    PubMed Central

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  7. Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain

    PubMed Central

    2015-01-01

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes. PMID:24383758

  8. Decoy plasminogen receptor containing a selective Kunitz-inhibitory domain.

    PubMed

    Kumar, Yogesh; Vadivel, Kanagasabai; Schmidt, Amy E; Ogueli, Godwin I; Ponnuraj, Sathya M; Rannulu, Nalaka; Loo, Joseph A; Bajaj, Madhu S; Bajaj, S Paul

    2014-01-28

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2' residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin-KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin-KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.

  9. The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2.

    PubMed

    Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit

    2016-08-01

    Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.

  10. Bio-potency of a 21 kDa Kunitz-type trypsin inhibitor from Tamarindus indica seeds on the developmental physiology of H. armigera.

    PubMed

    Pandey, Prabhash K; Jamal, Farrukh

    2014-11-01

    A trypsin inhibitor purified from the seeds of Tamarindus indica by Sephadex G-75, DEAE-Sepharose and Trypsin-Sepharose CL-4B columns was studied for its antifeedant, larvicidal, pupicidal and growth inhibitory activities against Helicoverpa armigera larvae. Tamarindus trypsin inhibitor (TTI) exhibited inhibitory activity towards total gut proteolytic enzymes of H. armigera (~87%) and bovine trypsin (~84%). Lethal doses which caused mortality and weight reduction by 50% were 1% w/w and 0.50% w/w, respectively. IC50 of TTI against Helicoverpa midgut proteases and bovine trypsin were ~2.10 µg/ml and 1.68 µg/ml respectively. In larval feeding studies the 21 kDa Kunitz-type protein was found to retard growth and development, prolonged the larval-pupal development durations along with adversely affecting the fertility and fecundity of H. armigera. In artificial diet at 0.5% w/w TTI, the efficiency of conversion of ingested food as well as of digested food, relative growth rate, growth index declined whereas approximate digestibility, metabolic cost, relative consumption rate, consumption index and total developmental period enhanced for H. armigera larvae. These results suggest that TTI has toxic and adverse effect on the developmental physiology of H. armigera and could be useful in controlling the pest H. armigera. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis.

    PubMed

    Ceraul, Shane M; Dreher-Lesnick, Sheila M; Mulenga, Albert; Rahman, M Sayeedur; Azad, Abdu F

    2008-11-01

    Here we report the novel bacteriostatic function of a five-domain Kunitz-type serine protease inhibitor (KPI) from the tick Dermacentor variabilis. As ticks feed, they release anticoagulants, anti-inflammatory and immunosuppressive molecules that mediate the formation of the feeding lesion on the mammalian host. A number of KPIs have been isolated and characterized from tick salivary gland extracts. Interestingly, we observe little D. variabilis KPI gene expression in the salivary gland and abundant expression in the midgut. However, our demonstration of D. variabilis KPI's anticoagulant properties indicates that D. variabilis KPI may be important for blood meal digestion in the midgut. In addition to facilitating long-term attachment and blood meal acquisition, gene expression studies of Drosophila, legumes, and ticks suggest that KPIs play some role in the response to microbial infection. Similarly, in this study, we show that challenge of D. variabilis with the spotted fever group rickettsia, Rickettsia montanensis, results in sustained D. variabilis KPI gene expression in the midgut. Furthermore, our in vitro studies show that D. variabilis KPI limits rickettsial colonization of L929 cells (mouse fibroblasts), implicating D. variabilis KPI as a bacteriostatic protein, a property that may be related to D. variabilis KPI's trypsin inhibitory capability. This work suggests that anticoagulants play some role in the midgut during feeding and that D. variabilis KPI may be involved as part of the tick's defense response to rickettsiae.

  12. Functional Characterization and Novel Rickettsiostatic Effects of a Kunitz-Type Serine Protease Inhibitor from the Tick Dermacentor variabilis▿

    PubMed Central

    Ceraul, Shane M.; Dreher-Lesnick, Sheila M.; Mulenga, Albert; Rahman, M. Sayeedur; Azad, Abdu F.

    2008-01-01

    Here we report the novel bacteriostatic function of a five-domain Kunitz-type serine protease inhibitor (KPI) from the tick Dermacentor variabilis. As ticks feed, they release anticoagulants, anti-inflammatory and immunosuppressive molecules that mediate the formation of the feeding lesion on the mammalian host. A number of KPIs have been isolated and characterized from tick salivary gland extracts. Interestingly, we observe little D. variabilis KPI gene expression in the salivary gland and abundant expression in the midgut. However, our demonstration of D. variabilis KPI's anticoagulant properties indicates that D. variabilis KPI may be important for blood meal digestion in the midgut. In addition to facilitating long-term attachment and blood meal acquisition, gene expression studies of Drosophila, legumes, and ticks suggest that KPIs play some role in the response to microbial infection. Similarly, in this study, we show that challenge of D. variabilis with the spotted fever group rickettsia, Rickettsia montanensis, results in sustained D. variabilis KPI gene expression in the midgut. Furthermore, our in vitro studies show that D. variabilis KPI limits rickettsial colonization of L929 cells (mouse fibroblasts), implicating D. variabilis KPI as a bacteriostatic protein, a property that may be related to D. variabilis KPI's trypsin inhibitory capability. This work suggests that anticoagulants play some role in the midgut during feeding and that D. variabilis KPI may be involved as part of the tick's defense response to rickettsiae. PMID:18779339

  13. Novel Kunitz-like Peptides Discovered in the Zoanthid Palythoa caribaeorum through Transcriptome Sequencing.

    PubMed

    Liao, Qiwen; Li, Shengnan; Siu, Shirley Weng In; Yang, Binrui; Huang, Chen; Chan, Judy Yuet-Wa; Morlighem, Jean-Étienne R L; Wong, Clarence Tsun Ting; Rádis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2018-02-02

    Palythoa caribaeorum (class Anthozoa) is a zoanthid that together jellyfishes, hydra, and sea anemones, which are venomous and predatory, belongs to the Phyllum Cnidaria. The distinguished feature in these marine animals is the cnidocytes in the body tissues, responsible for toxin production and injection that are used majorly for prey capture and defense. With exception for other anthozoans, the toxin cocktails of zoanthids have been scarcely studied and are poorly known. Here, on the basis of the analysis of P. caribaeorum transcriptome, numerous predicted venom-featured polypeptides were identified including allergens, neurotoxins, membrane-active, and Kunitz-like peptides (PcKuz). The three predicted PcKuz isotoxins (1-3) were selected for functional studies. Through computational processing comprising structural phylogenetic analysis, molecular docking, and dynamics simulation, PcKuz3 was shown to be a potential voltage gated potassium-channel inhibitor. PcKuz3 fitted well as new functional Kunitz-type toxins with strong antilocomotor activity as in vivo assessed in zebrafish larvae, with weak inhibitory effect toward proteases, as evaluated in vitro. Notably, PcKuz3 can suppress, at low concentration, the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish, which indicated PcKuz3 may have a neuroprotective effect. Taken together, PcKuz3 figures as a novel neurotoxin structure, which differs from known homologous peptides expressed in sea anemone. Moreover, the novel PcKuz3 provides an insightful hint for biodrug development for prospective neurodegenerative disease treatment.

  14. ELISA analysis of soybean trypsin inhibitors in processed foods.

    PubMed

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  15. Using Trypsin & Soybean Trypsin Inhibitor to Teach Principles of Enzyme Kinetics

    ERIC Educational Resources Information Center

    Howard, David R.; Herr, Julie; Hollister, Rhiannon

    2006-01-01

    Trypsin and soybean trypsin inhibitor (Kunitz inhibitor) can be used in a relatively simple and inexpensive student exercise to demonstrate the usefulness of enzyme kinetics. The study of enzyme kinetics is essential to biology because enzymes play such a crucial role in the biochemical pathways of all living organisms. The data from enzyme…

  16. Impact of recombination on polymorphism of genes encoding Kunitz-type protease inhibitors in the genus Solanum.

    PubMed

    Speranskaya, Anna S; Krinitsina, Anastasia A; Kudryavtseva, Anna V; Poltronieri, Palmiro; Santino, Angelo; Oparina, Nina Y; Dmitriev, Alexey A; Belenikin, Maxim S; Guseva, Marina A; Shevelev, Alexei B

    2012-08-01

    The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism. KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. "Hot spots" of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software. The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae). Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases. During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B. The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    PubMed

    Faller, Nicolas; Gautschi, Ivan; Schild, Laurent

    2014-01-01

    Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  18. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor.

    PubMed

    Monastyrnaya, Margarita; Peigneur, Steve; Zelepuga, Elena; Sintsova, Oksana; Gladkikh, Irina; Leychenko, Elena; Isaeva, Marina; Tytgat, Jan; Kozlovskaya, Emma

    2016-12-15

    Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1-APHC3 from H. crispa , and clusters with the peptides from so named "analgesic cluster" of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10 -7 and 7.0 × 10 -7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21-TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides.

  19. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue

    PubMed Central

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen–stigma interactions that regulate pollen tube growth in Nicotiana. PMID:18689443

  20. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue.

    PubMed

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.

  1. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor

    PubMed Central

    Monastyrnaya, Margarita; Peigneur, Steve; Zelepuga, Elena; Sintsova, Oksana; Gladkikh, Irina; Leychenko, Elena; Isaeva, Marina; Tytgat, Jan; Kozlovskaya, Emma

    2016-01-01

    Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1–APHC3 from H. crispa, and clusters with the peptides from so named “analgesic cluster” of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10−7 and 7.0 × 10−7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21–TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides. PMID:27983679

  2. Transient removal of proflavine inhibition of bovine beta-trypsin by the bovine basic pancreatic trypsin inhibitor (Kunitz). A case for "chronosteric effects".

    PubMed

    Antonini, E; Ascenzi, P; Bolognesi, M; Menegatti, E; Guarneri, M

    1983-04-25

    The formation of the bovine beta-trypsin-bovine basic pancreatic trypsin inhibitor (Kunitz) (BPTI) complex was monitored, making use of three different signals: proflavine displacement, optical density changes in the ultraviolet region, and the loss of the catalytic activity. The rates of the reactions indicated by the three different signals were similar at neutral pH, but diverged at low pH. At pH 3.50, proflavine displacement precedes the optical density changes in the ultraviolet and the loss of enzyme activity by several orders of magnitude in time (Antonini, E., Ascenzi, P., Menegatti, E., and Guarneri, M. (1983) Biopolymers 22, 363-375). These data indicated that the bovine beta-trypsin-BPTI complex formation is a multistage process and led to the prediction that, at pH 3.50, BPTI addition to the bovine beta-trypsin-proflavine complex would remove proflavine inhibition and the enzyme would recover transiently its catalytic activity before being irreversibly inhibited by completion of BPTI binding. The kinetic evidences, by completion of BPTI binding. The kinetic evidences, here shown, verified this prediction, indicating that during the bovine beta-trypsin-BPTI complex formation one transient intermediate occurs, which is not able to bind proflavine but may bind and hydrolyze the substrate. Thus, the observed peculiar catalytic behavior is in line with the proposed reaction mechanism for the bovine beta-trypsin-BPTI complex formation, which postulates a sequence of distinct polar and apolar interactions at the contact area.

  3. Fusion to Human Serum Albumin Extends the Circulatory Half-Life and Duration of Antithrombotic Action of the Kunitz Protease Inhibitor Domain of Protease Nexin 2.

    PubMed

    Sheffield, William P; Eltringham-Smith, Louise J; Bhakta, Varsha

    2018-01-01

    The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo.

    PubMed

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E

    2017-07-01

    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    PubMed

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  6. The belonging of gpMuc, a glycoprotein from Mucuna pruriens seeds, to the Kunitz-type trypsin inhibitor family explains its direct anti-snake venom activity.

    PubMed

    Scirè, Andrea; Tanfani, Fabio; Bertoli, Enrico; Furlani, Emiliano; Nadozie, Hope-Onyekwere N; Cerutti, Helena; Cortelazzo, Alessio; Bini, Luca; Guerranti, Roberto

    2011-07-15

    In Nigeria, Mucuna pruriens seeds are locally prescribed as an oral prophylactic for snake bite and it is claimed that when two seeds are swallowed they protect the individual for a year against snake bites. In order to understand the Mucuna pruriens antisnake properties, the proteins from the acqueous extract of seeds were purified by three chromatographic steps: ConA affinity chromatography, tandem anionic-cationic exchange and gel filtration, obtaining a fraction conventionally called gpMucB. This purified fraction was analysed by SDS-PAGE obtaining 3 bands with apparent masses ranging from 20 to 24 kDa, and by MALDI-TOF which showed two main peaks of 21 and 23 kDa and another small peak of 19 kDa. On the other hand, gel filtration analysis of the native protein indicated a molecular mass of about 70 kDa suggesting that in its native form, gpMucB is most likely an oligomeric multiform protein. Infrared spectroscopy of gpMucB indicated that the protein is particularly thermostable both at neutral and acidic pHs and that it is an all beta protein. All data suggest that gpMucB belongs to the Kunitz-type trypsin inhibitor family explaining the direct anti-snake venom activity of Mucuna pruriens seeds. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Polar Desolvation and Position 226 of Pancreatic and Neutrophil Elastases Are Crucial to their Affinity for the Kunitz-Type Inhibitors ShPI-1 and ShPI-1/K13L.

    PubMed

    Hernández González, Jorge Enrique; García-Fernández, Rossana; Valiente, Pedro Alberto

    2015-01-01

    The Kunitz-type protease inhibitor ShPI-1 inhibits human neutrophil elastase (HNE, Ki = 2.35·10-8 M) but does not interact with the porcine pancreatic elastase (PPE); whereas its P1 site variant, ShPI-1/K13L, inhibits both HNE and PPE (Ki = 1.3·10-9 M, and Ki = 1.2·10-8 M, respectively). By employing a combination of molecular modeling tools, e.g., structural alignment, molecular dynamics simulations and Molecular Mechanics Generalized-Born/Poisson-Boltzmann Surface Area free energy calculations, we showed that D226 of HNE plays a critical role in the interaction of this enzyme with ShPI-1 through the formation of a strong salt bridge and hydrogen bonds with K13 at the inhibitor's P1 site, which compensate the unfavorable polar-desolvation penalty of the latter residue. Conversely, T226 of PPE is unable to establish strong interactions with K13, thereby precluding the insertion of K13 side-chain into the S1 subsite of this enzyme. An alternative conformation of K13 site-chain placed at the entrance of the S1 subsite of PPE, similar to that observed in the crystal structure of ShPI-1 in complex with chymotrypsin (PDB: 3T62), is also unfavorable due to the lack of stabilizing pair-wise interactions. In addition, our results suggest that the higher affinity of ShPI-1/K13L for both elastases mainly arises from the lower polar-desolvation penalty of L13 compared to that of K13, and not from stronger pair-wise interactions of the former residue with those of each enzyme. These results provide insights into the PPE and HNE inhibition and may contribute to the design of more potent and/or specific inhibitors toward one of these proteases.

  8. Transthyretin Protects against A-Beta Peptide Toxicity by Proteolytic Cleavage of the Peptide: A Mechanism Sensitive to the Kunitz Protease Inhibitor

    PubMed Central

    Costa, Rita; Ferreira-da-Silva, Frederico; Saraiva, Maria J.; Cardoso, Isabel

    2008-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid β-peptide (A-Beta) in the brain. Transthyretin (TTR) is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1–14) and (15–42) showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an αAPP peptide containing the Kunitz Protease Inhibitor (KPI) domain but not in the presence of the secreted αAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology. PMID:18682830

  9. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    PubMed

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-09

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Crystallization and preliminary X-ray analysis of a protease inhibitor from the latex of Carica papaya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkan, Mohamed; Garcia-Pino, Abel; Dibiani, Rachid

    2006-12-01

    The Kunitz-type trypsin/chymotrypsin inhibitor isolated from C. papaya latex has been crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms are observed, diffracting to 2.6 and 1.7 Å. A Kunitz-type protease inhibitor purified from the latex of green papaya (Carica papaya) fruits was crystallized in the presence and absence of divalent metal ions. Crystal form I, which is devoid of divalent cations, diffracts to a resolution of 2.6 Å and belongs to space group P3{sub 1} or P3{sub 2}. This crystal form is a merohedral twin with two molecules in the asymmetric unit and unit-cell parameters a = bmore » = 74.70, c = 78.97 Å. Crystal form II, which was grown in the presence of Co{sup 2+}, diffracts to a resolution of 1.7 Å and belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.26, b = 81.99, c = 140.89 Å.« less

  11. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus.

    PubMed

    Andreotti, Renato; Cunha, Rodrigo Casquero; Soares, Mariana Aparecida; Guerrero, Felix D; Leite, Fábio P Leivas; de León, Adalberto A Pérez

    2012-10-19

    The cattle tick, Rhipicephalus microplus, is regarded as the most economically important ectoparasite of livestock globally. Control is achieved primarily through the use of acaricides. This approach is hampered by the development of resistance to commercial acaricides among cattle tick populations. Vaccination against R. microplus infestation is another technology that can be integrated for effective cattle tick control. Proteins belonging to the Kunitz-BPTI family are abundant in cattle tick salivary glands, midgut, and ovaries. These organs are attractive targets for the development of a novel cattle tick vaccine. Efficacy assessment against cattle tick infestation in bovines using a vaccine containing the recombinant form of a member of the Kunitz family from R. microplus produced in a yeast expression system is reported for the first time here. The yeast Pichia pastoris was bioengineered to produce the recombinant version of a trypsin inhibitor that is expressed in cattle tick larvae (rRmLTI). Immunization with rRmLTI afforded 32% efficacy against R. microplus. The estimated molecular weight of rRmLTI was 46 kDa. Structural homology to the native form of the larval trypsin inhibitor was documented by recognition of rRmLTI in Western-blots using polyclonal antibodies from mice immunized with cattle tick larval extract or rRmLTI. Bioinformatics analysis of the partial nucleotide and deduced amino acid sequences indicated that the rRmLTI closely resembles BmTI-6, which is a three-headed Kunitz protein present in cattle tick ovary and fat tissue. Published by Elsevier Ltd.

  12. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    PubMed Central

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  13. Stress inducible proteinase inhibitor diversity in Capsicum annuum

    PubMed Central

    2012-01-01

    Background Wound-inducible Pin-II Proteinase inhibitors (PIs) are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L.) proteinase inhibitor (CanPIs) genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS) of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs). Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating plant defenses including

  14. Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy.

    PubMed

    Cohen, Itay; Kayode, Olumide; Hockla, Alexandra; Sankaran, Banumathi; Radisky, Derek C; Radisky, Evette S; Papo, Niv

    2016-05-15

    Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds. © 2016 Authors

  15. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  16. An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-01-01

    A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles’ heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved. PMID:27625656

  17. Bauhinia variegata var. variegata trypsin inhibitor: From isolation to potential medicinal applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Evandro Fei; Wong, Jack Ho; Bah, Clara Shui Fern

    Here we report for the first time of a new Kunitz-type trypsin inhibitor (termed BvvTI) from seeds of the Camel's foot tree, Bauhinia variegata var. variegata. BvvTI shares the same reactive site residues (Arg, Ser) and exhibits a homology of N-terminal amino acid sequence to other Bauhinia protease inhibitors. The trypsin inhibitory activity (K{sub i}, 0.1 x 10{sup -9} M) of BvvTI ranks the highest among them. Besides anti-HIV-1 reverse transcriptase activity, BvvTI could significantly inhibit the proliferation of nasopharyngeal cancer CNE-1 cells in a selective way. This may partially be contributed by its induction of cytokines and apoptotic bodies.more » These results unveil potential medicinal applications of BvvTI.« less

  18. Bauhinia variegata var. variegata trypsin inhibitor: from isolation to potential medicinal applications.

    PubMed

    Fang, Evandro Fei; Wong, Jack Ho; Bah, Clara Shui Fern; Lin, Peng; Tsao, Sai Wah; Ng, Tzi Bun

    2010-06-11

    Here we report for the first time of a new Kunitz-type trypsin inhibitor (termed BvvTI) from seeds of the Camel's foot tree, Bauhinia variegata var. variegata. BvvTI shares the same reactive site residues (Arg, Ser) and exhibits a homology of N-terminal amino acid sequence to other Bauhinia protease inhibitors. The trypsin inhibitory activity (K(i), 0.1 x 10(-9)M) of BvvTI ranks the highest among them. Besides anti-HIV-1 reverse transcriptase activity, BvvTI could significantly inhibit the proliferation of nasopharyngeal cancer CNE-1 cells in a selective way. This may partially be contributed by its induction of cytokines and apoptotic bodies. These results unveil potential medicinal applications of BvvTI. (c) 2010 Elsevier Inc. All rights reserved.

  19. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    PubMed

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  20. Identification of an anti-MRSA dihydrofolate reductase inhibitor from a diversity-oriented synthesis.

    PubMed

    Wyatt, Emma E; Galloway, Warren R J D; Thomas, Gemma L; Welch, Martin; Loiseleur, Olivier; Plowright, Alleyn T; Spring, David R

    2008-10-28

    The screening of a diversity-oriented synthesis library followed by structure-activity relationship investigations have led to the discovery of an anti-MRSA agent which operates as an inhibitor of Staphylococcus aureus dihydrofolate reductase.

  1. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation.

    PubMed

    Pharo, Elizabeth A; Cane, Kylie N; McCoey, Julia; Buckle, Ashley M; Oosthuizen, W H; Guinet, Christophe; Arnould, John P Y

    2016-03-01

    The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Purification, characterization and molecular cloning of chymotrypsin inhibitor peptides from the venom of Burmese Daboia russelii siamensis.

    PubMed

    Guo, Chun-Teng; McClean, Stephen; Shaw, Chris; Rao, Ping-Fan; Ye, Ming-Yu; Bjourson, Anthony J

    2013-05-01

    One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    PubMed

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  5. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility

    NASA Astrophysics Data System (ADS)

    Xu, Zhongli; von Grafenstein, Susanne; Walther, Elisabeth; Fuchs, Julian E.; Liedl, Klaus R.; Sauerbrei, Andreas; Schmidtke, Michaela

    2016-04-01

    Streptococcus pneumoniae is the leading pathogen causing bacterial pneumonia and meningitis. Its surface-associated virulence factor neuraminidase A (NanA) promotes the bacterial colonization by removing the terminal sialyl residues from glycoconjugates on eukaryotic cell surface. The predominant role of NanA in the pathogenesis of pneumococci renders it an attractive target for therapeutic intervention. Despite the highly conserved activity of NanA, our alignment of the 11 NanAs revealed the evolutionary diversity of this enzyme. The amino acid substitutions we identified, particularly those in the lectin domain and in the insertion domain next to the catalytic centre triggered our special interest. We synthesised the representative NanAs and the mutagenized derivatives from E. coli for enzyme kinetics study and neuraminidase inhibitor susceptibility test. Via molecular docking we got a deeper insight into the differences between the two major variants of NanA and their influence on the ligand-target interactions. In addition, our molecular dynamics simulations revealed a prominent intrinsic flexibility of the linker between the active site and the insertion domain, which influences the inhibitor binding. Our findings for the first time associated the primary sequence diversity of NanA with the biochemical properties of the enzyme and with the inhibitory efficiency of neuraminidase inhibitors.

  6. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less

  7. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    DOE PAGES

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying; ...

    2015-07-14

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less

  8. PEGylated DX-1000: pharmacokinetics and antineoplastic activity of a specific plasmin inhibitor.

    PubMed

    Devy, Laetitia; Rabbani, Shafaat A; Stochl, Mark; Ruskowski, Mary; Mackie, Ian; Naa, Laurent; Toews, Mark; van Gool, Reinoud; Chen, Jie; Ley, Art; Ladner, Robert C; Dransfield, Daniel T; Henderikx, Paula

    2007-11-01

    Novel inhibitors of the urokinase-mediated plasminogen (plg) activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pln) (K(i) = 99 pM). When tested in vitro, DX-1000 blocks plasmin-mediated pro-matrix metalloproteinase-9 (proMMP-9) activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor ( approximately 7 kDa) exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP)-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA) and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogen-activated protein kinase (MAPK) in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  9. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    PubMed

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  10. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    PubMed

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Protease inhibitors from several classes work synergistically against Callosobruchus maculatus.

    PubMed

    Amirhusin, Bahagiawati; Shade, Richard E; Koiwa, Hisashi; Hasegawa, Paul M; Bressan, Ray A; Murdock, Larry L; Zhu-Salzman, Keyan

    2007-07-01

    Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.

  12. Mesotrypsin Has Evolved Four Unique Residues to Cleave Trypsin Inhibitors as Substrates.

    PubMed

    Alloy, Alexandre P; Kayode, Olumide; Wang, Ruiying; Hockla, Alexandra; Soares, Alexei S; Radisky, Evette S

    2015-08-28

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration.

    PubMed

    Fang, Evandro Fei; Bah, Clara Shui Fern; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Ye, Xiu Juan; Ng, Tzi Bun

    2012-02-01

    A 20-kDa Kunitz-type trypsin-chymotrypsin inhibitor, Bauhinia purpurea trypsin inhibitor (BPLTI), has been isolated from the seeds of B. purpurea L. by using liquid chromatography procedures that involved ion exchange chromatography on Sp-Sepharose and Mono S and gel filtration on Superdex 75. BPLTI demonstrated protease inhibitory activities of 7226 BAEE units/mg and 65 BTEE units/mg toward trypsin and α-chymotrypsin, respectively. BPLTI was relatively thermal (0-60°C) and pH (3-10) stable and its activity could be decreased by dithiothreitol treatment. BPLTI exhibited a wide spectrum of anti-proliferative and pro-apoptotic activities especially on human hepatocellular carcinoma Hep G2 cells. However, it was devoid of a significant antiproliferative effect on immortal human hepatic WRL 68 cells. We show here that BPLTI stimulates apoptosis in Hep G2 cells, including (1) evoking DNA damage including the production of chromatin condensation and apoptotic bodies; (2) induction of cell apoptosis/necrosis; (3) mitochondrial membrane depolarization; and (4) increasing the production of cytokines. Taken together, our findings show for the first time that purified protease inhibitor from B. purpurea L. seeds is a promising candidate for the treatment of human hepatocellular carcinoma.

  14. Effects of Mucuna pruriens protease inhibitors on Echis carinatus venom.

    PubMed

    Hope-Onyekwere, Nnadozie Stanley; Ogueli, Godwin Ifeanyi; Cortelazzo, Alessio; Cerutti, Helena; Cito, Annarita; Aguiyi, John C; Guerranti, Roberto

    2012-12-01

    The medicinal plant Mucuna pruriens, with reputed anti-snake venom properties has been reported to contain a kunitz-type trypsin inhibitor. This study was undertaken to further evaluate the protease inhibitory potential of gpMuc, a multiform glycoprotein, and other protein fractions from M. pruriens seeds against trypsin, chymotrypsin, Echis carinatus snake venom, ecarin and thrombin. The results showed that gpMuc inhibited both trypsin and chymotrypsin activities and was thermally stable, maintaining its trypsin inhibitory activity at temperatures of up to 50°C. Its structural conformation was also maintained at pH ranges of 4-7. Immunoreactivity study confirms that it contains protease-recognizing epitope on one of its isoforms. The whole protein extract of M. pruriens seeds inhibited prothrombin activation by ecarin and whole E. carinatus venom, and also thrombin-like activity using chromogenic assay. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    PubMed Central

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  16. A study of proteases and protease-inhibitor complexes in biological fluids

    PubMed Central

    Granelli-Piperno, A; Reich, E

    1978-01-01

    We have (a) screened a variety of cell lines and body fluids for plasminogen activators and (b) studied the activity of proteases bound to α2- macroglobulin after exposing the complexes to partial degradation and/or denaturing procedures to unmask proteolytic activity. The respective results show (a) that the plasminogen activators in urine and cell culture media are generally of lower molecular weight than those in plasma; and (b) that proteases bound to α2-macroglobulin recover the ability to attack macromolecular substrates after exposure to sodium dodecyl sulfate while retaining the electrophoretic mobility of the protease inhibitor complex. This indicates that the protease and inhibitor are probably linked by covalent bonds. In contrast, other complexes formed between proteases and inhibitors of lower molecular weight (such as soybean or Kunitz inhibitors) are fully dissociated by sodium dodecyl sulfate (SDS). The experiments described were based on a new procedure for detecting proteolytic enzyme activity in SDS-polyacrylamide gels. The method relies on solutions of nonionic detergents for extracting SDS, after which the electrophoretic gel is applied to an indicator gel consisting of a fibrin- agar mixture. The method is sensitive, permitting the detection of proteinases in less than 1 μl of fresh plasma, and it is effective for resolving small differences in molecular weight. The procedure can be quantitated and, with minor modifications appropriate to each particular system, it has been applied to a broad spectrum of serine enzymes and proenzymes, including some that function in the pathways of fibrinolysis, coagulation and kinin-generation. Other potential applications appear likely. PMID:78958

  17. Purification and characterization of a trypsin inhibitor from the seeds of Artocarpus heterophyllus Lam.

    PubMed

    Lyu, Junchen; Liu, Yuan; An, Tianchen; Liu, Yujun; Wang, Manchuriga; Song, Yanting; Zheng, Feifei; Wu, Dan; Zhang, Yingxia; Deng, Shiming

    2015-05-01

    A proteinaceous inhibitor against trypsin was isolated from the seeds of Artocarpus heterophyllus Lam. by successive ammonium sulfate precipitation, ion-exchange, and gel-filtration chromatography. The trypsin inhibitor, named as AHLTI (A. heterophyllus Lam. trypsin inhibitor), consisted of a single polypeptide chain with a molecular weight of 28.5 kDa, which was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel-filtration chromatography. The N-terminal sequence of AHLTI was DEPPSELDAS, which showed no similarity to other known trypsin inhibitor sequence. AHLTI completely inhibited bovine trypsin at a molar ratio of 1:2 (AHLTI:trypsin) analyzed by native polyacrylamide gel electrophoresis, inhibition activity assay, and gel-filtration chromatography. Moreover, kinetic enzymatic studies were carried out to understand the inhibition mechanism of AHLTI against trypsin. Results showed that AHLTI was a competitive inhibitor with an equilibrium dissociation constant (Ki) of 3.7 × 10(-8) M. However, AHLTI showed weak inhibitory activity toward chymotrypsin and elastase. AHLTI was stable over a broad range of pH 4-8 and temperature 20-80°C. The reduction agent, dithiothreitol, had no obvious effect on AHLTI. The trypsin inhibition assays of AHLTI toward digestive enzymes from insect pest guts in vitro demonstrated that AHLTI was effective against enzymes from Locusta migratoria manilensis (Meyen). These results suggested that AHLTI might be a novel trypsin inhibitor from A. heterophyllus Lam. belonging to Kunitz family, and play an important role in protecting from insect pest. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  19. A plant Kunitz-type inhibitor mimics bradykinin-induced cytosolic calcium increase and intestinal smooth muscle contraction.

    PubMed

    Andrade, Sheila Siqueira; Smaili, Soraya Soubhi; Monteforte, Priscila Totarelli; Miranda, Antônio; Kouyoumdjian, Maria; Sampaio, Misako Uemura; Lopes, Guiomar Silva; Oliva, Maria Luiza V

    2012-09-01

    BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 μm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 μm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.

  20. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Christoffer, E-mail: christoffer.tamm@imbim.uu.se; Galito, Sara Pijuan, E-mail: sara.pijuan@imbim.uu.se; Anneren, Cecilia, E-mail: cecilia.anneren@imbim.uu.se

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt inmore » proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.« less

  1. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21

    PubMed Central

    Wang, Yuefeng; Fisher, John C.; Mathew, Rose; Ou, Li; Otieno, Steve; Sublett, Jack; Xiao, Limin; Chen, Jianhan; Roussel, Martine F.; Kriwacki, Richard W.

    2011-01-01

    Traditionally, well-defined three-dimensional structure was thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently exhibit “binding diversity” by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and herein report that the cyclin-dependent kinase (Cdk) inhibitor, p21Cip1, adaptively binds to and inhibits the various Cdk/cyclin complexes that regulate eukaryotic cell division. Based on results from NMR spectroscopy, and biochemical and cellular assays, we show that structural adaptability of a helical sub-domain within p21 termed LH enables two other sub-domains termed D1 and D2 to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk/cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes. PMID:21358637

  2. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments.

    PubMed

    Desai, Chirayu; Madamwar, Datta

    2007-03-01

    PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.

  3. Peanut Seed Cultivars with Contrasting Resistance to Aspergillus parasiticus Colonization Display Differential Temporal Response of Protease Inhibitors.

    PubMed

    Müller, Virginia; Bonacci, Gustavo; Batthyany, Carlos; Amé, María V; Carrari, Fernando; Gieco, Jorge; Asis, Ramón

    2017-04-01

    Significant efforts are being made to minimize aflatoxin contamination in peanut seeds and one possible strategy is to understand and exploit the mechanisms of plant defense against fungal infection. In this study we have identified and characterized, at biochemical and molecular levels, plant protease inhibitors (PPIs) produced in peanut seeds of the resistant PI 337394 and the susceptible Forman cultivar during Aspergillus parasiticus colonization. With chromatographic methods and 2D-electrophoresis-mass spectrometry we have isolated and identified four variants of Bowman-Birk trypsin inhibitor (BBTI) and a novel Kunitz-type protease inhibitor (KPI) produced in response to A. parasiticus colonization. KPI was detected only in the resistant cultivar, while BBTI was produced in the resistant cultivar in a higher concentration than susceptible cultivar and with different isoforms. The kinetic expression of KPI and BBTI genes along with trypsin inhibitory activity was analyzed in both cultivars during infection. In the susceptible cultivar an early PPI activity response was associated with BBTI occurrence. Meanwhile, in the resistant cultivar a later response with a larger increase in PPI activity was associated with BBTI and KPI occurrence. The biological significance of PPI in seed defense against fungal infection was analyzed and linked to inhibitory properties on enzymes released by the fungus during infection, and to the antifungal effect of KPI.

  4. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    PubMed

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  5. Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells.

    PubMed

    Yamamoto, Koji; Kawaguchi, Makiko; Shimomura, Takeshi; Izumi, Aya; Konari, Kazuomi; Honda, Arata; Lin, Chen-Yong; Johnson, Michael D; Yamashita, Yoshihiro; Fukushima, Tsuyoshi; Kataoka, Hiroaki

    2018-02-20

    Hepatocyte growth factor activator inhibitor (HAI)-1/ SPINT1 and HAI-2/ SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.

  6. Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 1: Triazoles, triazolopyrimidines, triazinoindoles, quinoline hydrazones and arylpiperazines.

    PubMed

    Llona-Minguez, Sabin; Häggblad, Maria; Martens, Ulf; Throup, Adam; Loseva, Olga; Jemth, Ann-Sofie; Lundgren, Bo; Scobie, Martin; Helleday, Thomas

    2017-08-15

    A high-throughput screening campaign using a commercial compound library (ChemBridge DiverSET) revealed diverse chemotypes as inhibitors of the human dCTP pyrophosphatase 1 (dCTPase). Triazole, triazolopyrimidine, triazinoindole, quinoline hydrazone and arylpiperazine hits were clustered, confirmed by IC 50 determinations, and their preliminary structure-activity-relationships (SAR) and ligand efficiency scores are discussed in this letter. Copyright © 2017. Published by Elsevier Ltd.

  7. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth.

    PubMed

    Cruz-Huerta, Elvia; Fernández-Tomé, Samuel; Arques, M Carmen; Amigo, Lourdes; Recio, Isidra; Clemente, Alfonso; Hernández-Ledesma, Blanca

    2015-08-01

    Lunasin is a naturally-occurring peptide demonstrating chemopreventive, antioxidant and anti-inflammatory properties. To exhibit these activities, orally ingested lunasin needs to survive proteolytic attack of digestive enzymes to reach target tissues in active form/s. Preliminary studies suggested the protective role of protease inhibitors, such as the Bowman-Birk inhibitor and Kunitz-trypsin inhibitor, against lunasin's digestion by both pepsin and pancreatin. This work describes in depth the behaviour of lunasin under conditions simulating the transit through the gastrointestinal tract in the absence or presence of soybean Bowman-Birk isoinhibitor 1 (IBB1) in both active and inactive states. By liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS), the remaining lunasin at the end of gastric and gastro-duodenal phases was quantified. Protection against the action of pepsin was independent of the amount of IBB1 present in the analyzed samples, whereas an IBB1 dose-dependent protective effect against trypsin and chymotrypsin was observed. Peptides released from lunasin and inactive IBB1 were identified by MS/MS. The remaining lunasin and IBB1 as well as their derived peptides could be responsible for the anti-proliferative activity against colon cancer cells observed for the digests obtained at the end of simulated gastrointestinal digestion.

  8. Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases.

    PubMed

    Cohen, Itay; Naftaly, Si; Ben-Zeev, Efrat; Hockla, Alexandra; Radisky, Evette S; Papo, Niv

    2018-04-16

    High structural and sequence similarity within protein families can pose significant challenges to the development of selective inhibitors, especially toward proteolytic enzymes. Such enzymes usually belong to large families of closely similar proteases and may also hydrolyze, with different rates, protein- or peptide-based inhibitors. To address this challenge, we employed a combinatorial yeast surface display library approach complemented with a novel pre-equilibrium, competitive screening strategy for facile assessment of the effects of multiple mutations on inhibitor association rates and binding specificity. As a proof of principle for this combined approach, we utilized this strategy to alter inhibitor/protease association rates and to tailor the selectivity of the amyloid β-protein precursor Kunitz protease inhibitor domain (APPI) for inhibition of the oncogenic protease mesotrypsin, in the presence of three competing serine proteases, anionic trypsin, cationic trypsin and kallikrein-6. We generated a variant, designated APPI P13W/M17G/I18F/F34V , with up to 30-fold greater specificity relative to the parental APPI M17G/I18F/F34V protein, and 6500- to 230 000-fold improved specificity relative to the wild-type APPI protein in the presence of the other proteases tested. A series of molecular docking simulations suggested a mechanism of interaction that supported the biochemical results. These simulations predicted that the selectivity and specificity are affected by the interaction of the mutated APPI residues with nonconserved enzyme residues located in or near the binding site. Our strategy will facilitate a better understanding of the binding landscape of multispecific proteins and will pave the way for design of new drugs and diagnostic tools targeting proteases and other proteins. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens.

    PubMed

    Kumar, Ashish; Kaur, Harmeet; Jain, Abha; Nair, Deepak T; Salunke, Dinakar M

    2018-01-12

    Sequence and structural homology suggests that MP-4 protein from Mucuna pruriens belongs to Kunitz-type protease inhibitor family. However, biochemical assays showed that this protein is a poor inhibitor of trypsin. To understand the basis of observed poor inhibition, thermodynamics and molecular dynamics (MD) simulation studies on binding of MP-4 to trypsin were carried out. Molecular dynamics simulations revealed that temperature influences the spectrum of conformations adopted by the loop regions in the MP-4 structure. At an optimal temperature, MP-4 achieves maximal binding while above and below the optimum temperature, its functional activity is hampered due to unfavourable flexibility and relative rigidity, respectively. The low activity at normal temperature is due to the widening of the conformational spectrum of the Reactive Site Loop (RSL) that reduces the probability of formation of stabilizing contacts with trypsin. The unique sequence of the RSL enhances flexibility at ambient temperature and thus reduces its ability to inhibit trypsin. This study shows that temperature influences the function of a protein through modulation in the structure of functional domain of the protein. Modulation of function through appearance of new sequences that are more sensitive to temperature may be a general strategy for evolution of new proteins.

  10. Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-01-01

    ABSTRACT Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development. PMID:27485473

  11. Kunitzins: Prototypes of a new class of protease inhibitor from the skin secretions of European and Asian frogs.

    PubMed

    Chen, Xiaole; Wang, He; Shen, Yue; Wang, Lei; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2016-08-19

    Amphibian skin secretions contain biologically-active compounds, such as anti-microbial peptides and trypsin inhibitors, which are used by biomedical researchers as a source of potential novel drug leads or pharmacological agents. Here, we report the application of a recently developed technique within our laboratory to "shotgun" clone the cDNAs encoding two novel but structurally-related peptides from the lyophilised skin secretions of one species of European frog, Rana esculenta and one species of Chinese frog, Odorrana schmackeri. Bioanalysis of the peptides established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17, which is a canonical Kunitz-type protease inhibitor motif (-CKAAFC-). Due to the presence of this structural attribute, these peptides were named kunitzin-RE (AAKIILNPKFRCKAAFC) and kunitzin-OS (AVNIPFKVHLRCKAAFC). Synthetic replicates of these two novel peptides were found to display a potent inhibitory activity against Escherichia coli but were ineffective at inhibiting the growth of Staphylococcus aureus and Candida albicans at concentrations up to 160 μM, and both showed little haemolytic activity at concentrations up to 120 μM. Subsequently, kunitzin-RE and kunitzin-OS were found to be a potent inhibitor of trypsin with a Ki of 5.56 μM and 7.56 μM that represent prototypes of a novel class of highly-attenuated amphibian skin protease inhibitor. Substitution of Lys-13, the predicted residue occupying the P1 position within the inhibitory loop, with Phe (F) resulted in decrease in trypsin inhibitor effectiveness and antimicrobial activity against Esherichia coli, but exhibits a potential inhibition activity against chymotrypsin. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii

    PubMed Central

    Krishnan, Neeraja M.

    2017-01-01

    Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357

  13. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  14. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  15. Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin.

    PubMed

    Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D

    2018-01-01

    The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.

  16. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  17. Inside HDAC with HDAC inhibitors.

    PubMed

    Bertrand, Philippe

    2010-06-01

    Histone deacetylase inhibitors are a large group of diverse molecules intrinsically able to inhibit cell proliferation in various cancer cell lines. Their apoptotic effects have been linked to the modulation in the expression of several regulatory tumor suppressor genes caused by the modified status of histone acetylation, a key event in chromatin remodelling. As the initial histone deacetylase activity of HDAC has been extended to other proteins, the possible other biological mechanisms modified by HDAC inhibitor treatments are still to be clarified. The need for HDAC isoform selective inhibitors is an important issue to serve this goal. This review discusses the approaches proposed by several research groups working on the synthesis of HDAC inhibitors, based on modelling studies and the way these findings were used to obtain new HDAC inhibitors with possible isoform selectivity. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  18. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    PubMed Central

    Swathi, Marri; Mishra, Prashant K.; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  19. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  20. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lin, Hailan; Lin, Xijian; Zhu, Jiwei; Yu, Xiao-Qiang; Xia, Xiaofeng; Yao, Fengluan; Yang, Guang; You, Minsheng

    2017-02-14

    Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity

  1. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom.

    PubMed

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M; Neves-Ferreira, Ana G C; Sánchez, Elda E; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2016-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1nM). Aprotinin (2nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05nM) was inhibited by 67% following incubation with TP1 (0.1nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2nM) acts like aprotinin (0.4nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori

    PubMed Central

    Duan, Jun; Wang, Genhong; Wang, Lingyan; Li, Youshan; Xiang, Zhonghuai; Xia, Qingyou

    2012-01-01

    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein. PMID:22348050

  3. Properties of a Kunitz-type trypsin inhibitor from Delonix regia seeds against digestive proteinases of Anagasta kuehniella (Z.) and Corcyra cephalonica (S.) (Lepidoptera: Pyralidae).

    PubMed

    Macedo, M L R; Pando, S C; Chevreuil, L R; Marangoni, S

    2009-01-01

    DrTI was effective against trypsin-like enzymes from A. kuehniella and C. cephalonica, however an artificial diet was insufficient to affect the survival and body weight of either insect. The inhibitor stimulated chymotrypsin-like enzymes and probably induced the synthesis of enzymes insensitive to TLCK in neonate larvae.

  4. Structure based design of 11β-HSD1 inhibitors.

    PubMed

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  5. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.

    PubMed

    Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst

    2017-09-28

    Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.

  6. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    PubMed

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.

    PubMed

    Krystek, S; Stouch, T; Novotny, J

    1993-12-05

    An empirical function was used to calculate free energy change (delta G) of complex formation between the following inhibitors and enzymes: Kunitz inhibitor (BPTI) with trypsin, trypsinogen and kallikrein; turkey ovomucoid 3rd domain (OMTKY3) with alpha-chymotrypsin and the Streptomyces griseus protease B; the potato chymotrypsin inhibitor with the protease B; and the barely chymotrypsin inhibitor and eglin-c with subtilisin and thermitase. Using X-ray coordinates of the nine complexes, we estimated the contributions that hydrophobic effect, electrostatic interactions and side-chain conformational entropy make towards the stability of the complexes. The calculated delta G values showed good agreement with the experimentally measured ones, the only exception being the kallikrein/BPTI complex whose X-ray structure was solved at an exceptionally low pH. In complexes with different enzymes, the same inhibitor residues contributed identically towards complex formation (delta G(residue) Spearman rank correlation coefficient 0.7 to 1.0). The most productive enzyme-contacting residues in OMTKY3, eglin-c, and the chymotrypsin inhibitors were found in analogous positions on their respective binding loops; thus, our calculations identified a functional (energetic) motif that parallels the well-known structural similarity of the binding loops. The delta G values calculated for BPTI complexed with trypsin (-21.7 kcal) and trypsinogen (-23.4 kcal) were similar and close to the experimental delta G value of the trypsin/BPTI complex (-18.1 kcal), lending support to the suggestion that the 10(7) difference in the observed stabilities (KA) of these two complexes reflects the energetic cost of conformational changes induced in trypsinogen during the pre-equilibrium stages of complex formation. In almost all of the complexes studied, the stabilization free energy contributed by the inhibitors was larger than that donated by the enzymes. In the trypsin-BPTI complex, the calculated

  8. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes.

    PubMed

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  9. Footprinting of Inhibitor Interactions of In Silico Identified Inhibitors of Trypanothione Reductase of Leishmania Parasite

    PubMed Central

    Venkatesan, Santhosh K.; Dubey, Vikash Kumar

    2012-01-01

    Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471

  10. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity

    PubMed Central

    Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674

  11. Marine-derived angiogenesis inhibitors for cancer therapy.

    PubMed

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-03-15

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.

  12. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors.

    PubMed

    Kato, Nobutaka; Comer, Eamon; Sakata-Kato, Tomoyo; Sharma, Arvind; Sharma, Manmohan; Maetani, Micah; Bastien, Jessica; Brancucci, Nicolas M; Bittker, Joshua A; Corey, Victoria; Clarke, David; Derbyshire, Emily R; Dornan, Gillian L; Duffy, Sandra; Eckley, Sean; Itoe, Maurice A; Koolen, Karin M J; Lewis, Timothy A; Lui, Ping S; Lukens, Amanda K; Lund, Emily; March, Sandra; Meibalan, Elamaran; Meier, Bennett C; McPhail, Jacob A; Mitasev, Branko; Moss, Eli L; Sayes, Morgane; Van Gessel, Yvonne; Wawer, Mathias J; Yoshinaga, Takashi; Zeeman, Anne-Marie; Avery, Vicky M; Bhatia, Sangeeta N; Burke, John E; Catteruccia, Flaminia; Clardy, Jon C; Clemons, Paul A; Dechering, Koen J; Duvall, Jeremy R; Foley, Michael A; Gusovsky, Fabian; Kocken, Clemens H M; Marti, Matthias; Morningstar, Marshall L; Munoz, Benito; Neafsey, Daniel E; Sharma, Amit; Winzeler, Elizabeth A; Wirth, Dyann F; Scherer, Christina A; Schreiber, Stuart L

    2016-10-20

    Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.

  13. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    PubMed

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  14. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.

    PubMed

    Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique

    2011-08-24

    Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different

  15. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    PubMed

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Minimal Pharmacophoric Elements and Fragment Hopping, an Approach Directed at Molecular Diversity and Isozyme Selectivity. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors

    PubMed Central

    Ji, Haitao; Stanton, Benjamin Z.; Igarashi, Jotaro; Li, Huiying; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    Fragment hopping, a new fragment-based approach for de novo inhibitor design focusing on ligand diversity and isozyme selectivity, is described. The core of this approach is the derivation of the minimal pharmacophoric element for each pharmacophore. Sites for both ligand binding and isozyme selectivity are considered in deriving the minimal pharmacophoric elements. Five general-purpose libraries are established: the basic fragment library, the bioisostere library, the rules for metabolic stability, the toxicophore library, and the side chain library. These libraries are employed to generate focused fragment libraries to match the minimal pharmacophoric elements for each pharmacophore and then to link the fragment to the desired molecule. This method was successfully applied to neuronal nitric oxide synthase (nNOS), which is implicated in stroke and neurodegenerative diseases. Starting with the nitroarginine-containing dipeptide inhibitors we developed previously, a small organic molecule with a totally different chemical structure was designed, which showed nanomolar nNOS inhibitory potency and more than 1000-fold nNOS selectivity. The crystallographic analysis confirms that the small organic molecule with a constrained conformation can exactly mimic the mode of action of the dipeptide nNOS inhibitors. Therefore, a new peptidomimetic strategy, referred to as fragment hopping, which creates small organic molecules that mimic the biological function of peptides by a pharmacophore-driven strategy for fragment-based de novo design, has been established as a new type of fragment-based inhibitor design. As an open system, the newly established approach efficiently incorporates the concept of early “ADME/Tox” considerations and provides a basic platform for medicinal chemistry-driven efforts. PMID:18321097

  17. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  18. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    PubMed

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  19. NaStEP: A Proteinase Inhibitor Essential to Self-Incompatibility and a Positive Regulator of HT-B Stability in Nicotiana alata Pollen Tubes1[W][OA

    PubMed Central

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown. PMID:23150644

  20. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity.

    PubMed

    Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.

  1. HAI-2 stabilizes, inhibits and regulates SEA-cleavage-dependent secretory transport of matriptase.

    PubMed

    Nonboe, Annika W; Krigslund, Oliver; Soendergaard, Christoffer; Skovbjerg, Signe; Friis, Stine; Andersen, Martin N; Ellis, Vincent; Kawaguchi, Makiko; Kataoka, Hiroaki; Bugge, Thomas H; Vogel, Lotte K

    2017-06-01

    It has recently been shown that hepatocyte growth factor activator inhibitor-2 (HAI-2) is able to suppress carcinogenesis induced by overexpression of matriptase, as well as cause regression of individual established tumors in a mouse model system. However, the role of HAI-2 is poorly understood. In this study, we describe 3 mutations in the binding loop of the HAI-2 Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non-SEA domain cleaved matriptase in the endoplasmic reticulum (ER). We suggest that, like other known SEA domains, the matriptase SEA domain auto-cleaves and reflects that correct oligomerization, maturation, and/or folding has been obtained. Our results suggest that the HAI-2 Kunitz domain 1 mutants influence the flux of matriptase to the plasma membrane by affecting the oligomerization, maturation and/or folding of matriptase, and as a result the SEA domain cleavage of matriptase. Two of the HAI-2 Kunitz domain 1 mutants investigated (C47F, R48L and C47F/R48L) also displayed a reduced ability to proteolytically silence matriptase. Hence, HAI-2 separately stabilizes matriptase, regulates the secretory transport, possibly via maturation/oligomerization and inhibits the proteolytic activity of matriptase in the ER, and possible throughout the secretory pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors.

    PubMed

    Göring, Stefan; Bensinger, Dennis; Naumann, Eva C; Schmidt, Boris

    2015-03-01

    Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in ∼30 % of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Point mutations in the tyrosine kinase domain (TKD) are observed as primary mutations or are acquired as secondary mutations in FLT3 with internal tandem duplications (ITDs) after treatment with tyrosine kinase inhibitors (TKIs). Although dozens of potent inhibitors against FLT3 ITD have been reported, activating TKD point mutations, especially at residues F691 and D835, remain the leading cause for therapy resistance, highlighting the consistent need for new potent inhibitors. Herein we report the identification and characterization of novel quinoxaline-based FLT3 inhibitors. We used the pharmacophore features of diverse known inhibitors as a starting point for a new optimization algorithm for type II TKIs, starting from an in silico library pharmacophore search and induced-fit docking in the known FLT3 structure. This led to the design of a set of diverse quinoxalinebisarylureas, which were profiled in an FLT3 kinase activity assay. The most promising compounds were further evaluated in a zebrafish embryo phenotype assay. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    PubMed

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  4. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.

    PubMed

    Butler, Georgina S; Dean, Richard A; Tam, Eric M; Overall, Christopher M

    2008-08-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the

  5. Discovery of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors by High-Throughput Screening of Structurally Diverse Libraries

    PubMed Central

    Deschamps, Joshua D.; Gautschi, Jeffrey T.; Whitman, Stephanie; Johnson, Tyler A.; Gassner, Nadine C.; Crews, Phillip; Holman, Theodore R.

    2007-01-01

    Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, antiviral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being α-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for an hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (Ki = 17 µM) and selective over reticulocyte 15-hLO-1 (Ki 15-hLO-1/12-hLO > 30). PMID:17826100

  6. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    PubMed

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  8. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1*

    PubMed Central

    Cale, Jacqueline M.; Li, Shih-Hon; Warnock, Mark; Su, Enming J.; North, Paul R.; Sanders, Karen L.; Puscau, Maria M.; Emal, Cory D.; Lawrence, Daniel A.

    2010-01-01

    Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1. PMID:20061381

  10. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.

    PubMed

    Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen

    2011-08-01

    Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity

    PubMed Central

    Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.

    2011-01-01

    Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377

  12. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China.

    PubMed

    Chang, Hui-Ching; Tsai, Tein-Shun; Tsai, Inn-Ho

    2013-08-26

    This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities. Remarkable variations in five king cobra geographic samples reveal fast evolution and dynamic translational regulation of the venom which probably adapted to different prey ecology as testified by the lethal tests on mice and lizards. Our results predict possible variations of the king cobra envenoming to human and the importance of using local antivenin for snakebite treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The bean. alpha. -amylase inhibitor is encoded by a lectin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, J.; Altabella, T.; Chrispeels, M.J.

    The common bean, Phaseolus vulgaris, contains an inhibitor of insect and mammalian {alpha}-amylases that does not inhibit plant {alpha}-amylase. This inhibitor functions as an anti-feedant or seed-defense protein. We purified this inhibitor by affinity chromatography and found that it consists of a series of glycoforms of two polypeptides (Mr 14,000-19,000). Partial amino acid sequencing was carried out, and the sequences obtained are identical with portions of the derived amino acid sequence of a lectin-like gene. This lectin gene encodes a polypeptide of MW 28,000, and the primary in vitro translation product identified by antibodies to the {alpha}-amylase inhibitor has themore » same size. Co- and posttranslational processing of this polypeptide results in glycosylated polypeptides of 14-19 kDa. Our interpretation of these results is that the bean lectins constitute a gene family that encodes diverse plant defense proteins, including phytohemagglutinin, arcelin and {alpha}-amylase inhibitor.« less

  14. Pharmacoproteomics of a Metalloproteinase Hydroxamate Inhibitor in Breast Cancer Cells: Dynamics of Membrane Type 1 Matrix Metalloproteinase-Mediated Membrane Protein Shedding ▿ ‡

    PubMed Central

    Butler, Georgina S.; Dean, Richard A.; Tam, Eric M.; Overall, Christopher M.

    2008-01-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90α, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the

  15. Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses

    PubMed Central

    Nora, Tamara; Bouchonnet, Francine; Labrosse, Béatrice; Charpentier, Charlotte; Mammano, Fabrizio; Clavel, François; Hance, Allan J

    2008-01-01

    Background Numerous studies have shown that viral quasi-species with genetically diverse envelope proteins (Env) replicate simultaneously in patients infected with the human immunodeficiency virus type 1 (HIV-1). Less information is available concerning the extent that envelope sequence diversity translates into a diversity of phenotypic properties, including infectivity and resistance to entry inhibitors. Methods To study these questions, we isolated genetically distinct contemporaneous clonal viral populations from the plasma of 5 HIV-1 infected individuals (n = 70), and evaluated the infectivity of recombinant viruses expressing Env proteins from the clonal viruses in several target cells. The sensitivity to entry inhibitors (enfuvirtide, TAK-799), soluble CD4 and monoclonal antibodies (2G12, 48d, 2F5) was also evaluated for a subset of the recombinant viruses (n = 20). Results Even when comparisons were restricted to viruses with similar tropism, the infectivity for a given target cell of viruses carrying different Env proteins from the same patient varied over an approximately 10-fold range, and differences in their relative ability to infect different target cells were also observed. Variable region haplotypes associated with high and low infectivity could be identified for one patient. In addition, clones carrying unique mutations in V3 often displayed low infectivity. No correlation was observed between viral infectivity and sensitivity to inhibition by any of the six entry inhibitors evaluated, indicating that these properties can be dissociated. Significant inter-patient differences, independent of infectivity, were observed for the sensitivity of Env proteins to several entry inhibitors and their ability to infect different target cells. Conclusion These findings demonstrate the marked functional heterogeneity of HIV-1 Env proteins expressed by contemporaneous circulating viruses, and underscore the advantage of clonal analyses in characterizing the

  16. Relative increase in Alzheimer's disease of soluble forms of cerebral Abeta amyloid protein precursor containing the Kunitz protease inhibitory domain.

    PubMed

    Moir, R D; Lynch, T; Bush, A I; Whyte, S; Henry, A; Portbury, S; Multhaup, G; Small, D H; Tanzi, R E; Beyreuther, K; Masters, C L

    1998-02-27

    Although a number of studies have examined amyloid precursor protein (APP) mRNA levels in Alzheimer's disease (AD), no clear consensus has emerged as to whether the levels of transcripts for isoforms containing a Kunitz protease inhibitory (KPI)-encoded region are increased or decreased in AD. Here we compare AD and control brain for the relative amounts of APP protein containing KPI to APP protein lacking this domain. APP protein was purified from the soluble subcellular fraction and Triton X-100 membrane pellet extract of one hemisphere of AD (n = 10), normal (n = 7), and neurological control (n = 5) brains. The amount of KPI-containing APP in the purified protein samples was determined using two independent assay methods. The first assay exploited the inhibitory action of KPI-containing APP on trypsin. The second assay employed reflectance analysis of Western blots. The proportion of KPI-containing forms of APP in the soluble subcellular fraction of AD brains is significantly elevated (p < 0.01) compared with controls. Species containing a KPI domain comprise 32-41 and 76-77% of purified soluble APP from control and AD brains, respectively. For purified membrane-associated APP, 72-77 and 65-82% of control and AD samples, respectively, contain a KPI domain. Since KPI-containing species of APP may be more amyloidogenic (Ho, L., Fukuchi, K., and Yonkin, S. G. (1996) J. Biol. Chem. 271, 30929-30934), our findings support an imbalance of isoforms as one possible mechanism for amyloid deposition in sporadic AD.

  17. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  18. Combined pharmacophore and structure-guided studies to identify diverse HSP90 inhibitors.

    PubMed

    Sanam, Ramadevi; Tajne, Sunita; Gundla, Rambabu; Vadivelan, S; Machiraju, Pavan Kumar; Dayam, Raveendra; Narasu, Lakshmi; Jagarlapudi, Sarma; Neamati, Nouri

    2010-02-26

    Heat Shock Protein 90 (HSP90), an ATP-dependent molecular chaperone, has emerged as a promising target in the treatment of cancer. Inhibition of HSP90 represents a new target of antitumor therapy, since it may influence many specific signaling pathways. Many HSP90 inhibitors bind to the ATP-binding pocket, inhibit chaperone function, resulting in cell death. Recent clinical trials for treatment of cancer have put HSP90's importance into focus and have highlighted the need for full scale research into HSP90 related pathways. Here we report five novel HSP90 inhibitors which were identified by using pharmacophore models and docking studies. We used highly discriminative pharmacophore model as a 3D query to search against database of approximately 1 M compounds and cluster analysis results yielded 455 compounds which were further subjected for docking. Glide docking studies suggested 122 compounds as in silico hits and these compounds were further selected for the cytotoxicity assay in the HSP90-over expressing SKBr3 cell line. Of the 122 compounds tested, 5 compounds inhibited cell growth with an IC(50) value less than 50 microM. Copyright 2009 Elsevier Inc. All rights reserved.

  19. HDAC inhibitors and neurodegeneration: at the edge between protection and damage

    PubMed Central

    Dietz, Karen C.; Casaccia, Patrizia

    2010-01-01

    The use of histone deacetylase inhibitors (HDACIs) as a therapeutic tool for neurodegenerative disorders has been examined with great interest in the last decade. The functional response to treatment with broad-spectrum inhibitors however, has been heterogeneous: protective in some cases and detrimental in others. In this review we discuss potential underlying causes for these apparently contradictory results. Because HDACs are part of repressive complexes, the functional outcome has been characteristically attributed to enhanced gene expression due to increased acetylation of lysine residues on nucleosomal histones. However, it is important to take into consideration that the up-regulation of diverse sets of genes (i.e. pro-apoptotic and anti-apoptotic) may orchestrate different responses in diverse cell types. An alternative possibility is that broad-spectrum pharmacological inhibition may target nuclear or cytosolic HDAC isoforms, with distinct non-histone substrates (i.e. transcription factors; cytoskeletal proteins). Thus, for any given neurological disorder, it is important to take into account the effect of HDACIs on neuronal, glial and inflammatory cells and define the relative contribution of distinct HDAC isoforms to the pathological process. This review article addresses how opposing effects on distinct cell types may profoundly influence the overall therapeutic potential of HDAC inhibitors when investigating treatments for neurodegenerative disorders. PMID:20123018

  20. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum.

    PubMed

    Mahajan, Neha S; Dewangan, Veena; Lomate, Purushottam R; Joshi, Rakesh S; Mishra, Manasi; Gupta, Vidya S; Giri, Ashok P

    2015-02-01

    The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.

  1. Use of inhibitors for coastal bacteria and phytoplankton: Application to nitrogen uptake measurement

    NASA Astrophysics Data System (ADS)

    Trottet, Aurore; Fouilland, Eric; Leboulanger, Christophe; Lanouguère, Elodie; Bouvy, Marc

    2011-06-01

    For several decades, prokaryotic and eukaryotic inhibitors have been used to exclude bacteria from microalgal cultures and for investigating prey-predator relationships. Recently there has been considerable interest in using specific inhibitors for studying the interactions between bacteria and phytoplankton, by selective repression of either organism's activity. The effectiveness of chemical inhibitors must be tested before applying them to natural communities to partition metabolic activities between functional groups. Six different antibiotics selected from the most commonly reported in the literature were tested, at concentrations varying from 12.5 to 100 mg L -1, for their effect on bacterial growth and functional diversity of natural communities from Mediterranean coastal waters. Penicillin and streptomycin each at a final concentration of 100 mg L -1 significantly reduced bacterial growth within 2 h. There was a greater impact on bacterial functional diversity when both antibiotics were mixed together. This mixture did not have any significant effect on the growth of selected cultured phytoplankton strains, whereas the eukaryote inhibitor cycloheximide at 100 mg L -1 reduced growth within 2 h of incubation. The penicillin-streptomycin mixture and cycloheximide alone successfully partitioned NH 4+ and NO 3- uptake between bacteria and phytoplankton bi-weekly sampled in a coastal lagoon in Autumn, where bacterial contribution to total NH 4+ and NO 3- uptake averaged 46 and 41%, respectively. The use of specific inhibitors may be a valuable method for studying interactions, such as competition and mutualism, or lack of interaction between the different components of microbial communities and could be used to study their relative importance in biogeochemical fluxes.

  2. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  3. Discovery of novel human acrosin inhibitors by virtual screening

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo

    2011-10-01

    Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.

  4. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    PubMed

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  5. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon

    2012-11-01

    We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.

  6. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    PubMed

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  7. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis.

    PubMed

    Zhang, Lei; Shi, Wanxia; Zeng, Xian-Chun; Ge, Feng; Yang, Mingkun; Nie, Yao; Bao, Aorigele; Wu, Shifen; E, Guoji

    2015-10-14

    Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review.

    PubMed

    Liang, Chengyuan; Tian, Danni; Ren, Xiaodong; Ding, Shunjun; Jia, Minyi; Xin, Minhang; Thareja, Suresh

    2018-05-10

    Bruton's tyrosine kinase (BTK) has emerged as a promising drug target for multiple diseases, particularly haematopoietic malignancies and autoimmune diseases related to B lymphocytes. This review focuses on the diverse, small-molecule inhibitors of BTK kinase that have shown good prospects for clinical application. Individual examples of these inhibitors, including both reversible and irreversible inhibitors and a recently developed reversible covalent inhibitor of BTK, are discussed. Considerable progress has been made in the development of irreversible inhibitors, most of which target the SH3 pocket and the cysteine 481 residue of BTK. The present review also surveys the pharmacological advantages and deficiencies of both reversible and irreversible BTK drugs, with a focus on the structure-activity relationship (SARs) and binding modes of representative drugs, which could inspire critical thinking and new ideas for developing potent BTK inhibitors with less unwanted off-target effects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    PubMed Central

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-01-01

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383

  10. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.

    PubMed

    Tomek, Petr; Palmer, Brian D; Flanagan, Jack U; Sun, Chuanwen; Raven, Emma L; Ching, Lai-Ming

    2017-01-27

    High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC 50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  12. Characteristics of a group of nonnucleoside reverse transcriptase inhibitors with structural diversity and potent anti-human immunodeficiency virus activity.

    PubMed

    Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W

    1995-10-01

    Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide

  13. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    DOE PAGES

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; ...

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less

  14. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the

  15. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): a randomised, controlled, double-blind, phase 3 study

    PubMed Central

    Squires, Kathleen; Kityo, Cissy; Hodder, Sally; Johnson, Margaret; Voronin, Evgeny; Hagins, Debbie; Avihingsanon, Anchalee; Koenig, Ellen; Jiang, Shuping; White, Kirsten; Cheng, Andrew; Szwarcberg, Javier; Cao, Huyen

    2018-01-01

    integrase inhibitor group had plasma HIV-1 RNA less than 50 copies per mL at week 48 compared with 231 (81%) women in the protease inhibitor group (adjusted difference 6·5%; 95% CI 0·4–12·6). No participant had virological failure with resistance in the integrase inhibitor group compared with three participants ([1%]; all Met184Val/Ile) in the protease inhibitor group. 19 women in the protease inhibitor group discontinued because of adverse events compared with five in the integrase inhibitor group. Interpretation WAVES shows that clinical trials of ART regimens in global and diverse populations of treatment-naive women are possible. The findings support guidelines recommending integrase inhibitor based regimens in first-line antiretroviral therapy. PMID:27562742

  16. Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita

    2017-01-01

    Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.

  17. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  18. Discovery of Novel Inhibitors and Fluorescent Probe Targeting NAMPT.

    PubMed

    Wang, Xia; Xu, Tian-Ying; Liu, Xin-Zhu; Zhang, Sai-Long; Wang, Pei; Li, Zhi-Yong; Guan, Yun-Feng; Wang, Shu-Na; Dong, Guo-Qiang; Zhuo, Shu; Le, Ying-Ying; Sheng, Chun-Quan; Miao, Chao-Yu

    2015-07-31

    Nicotinamide phosphoribosyltransferase (NAMPT) is a promising antitumor target. Novel NAMPT inhibitors with diverse chemotypes are highly desirable for development of antitumor agents. Using high throughput screening system targeting NAMPT on a chemical library of 30000 small-molecules, we found a non-fluorescent compound F671-0003 and a fluorescent compound M049-0244 with excellent in vitro activity (IC50: 85 nM and 170 nM respectively) and anti-proliferative activity against HepG2 cells. These two compounds significantly depleted cellular NAD levels. Exogenous NMN rescued their anti-proliferative activity against HepG2 cells. Structure-activity relationship study proposed a binding mode for NAMPT inhibitor F671-0003 and highlighted the importance of hydrogen bonding, hydrophobic and π-π interactions in inhibitor binding. Imaging study provided the evidence that fluorescent compound M049-0244 (3 μM) significantly stained living HepG2 cells. Cellular fluorescence was further verified to be NAMPT dependent by using RNA interference and NAMPT over expression transgenic mice. Our findings provide novel antitumor lead compounds and a "first-in-class" fluorescent probe for imaging NAMPT.

  19. Identification of Broad-Based HIV-1 Protease Inhibitors From Combinatorial Libraries

    PubMed Central

    Chang, Max W.; Giffin, Michael J.; Muller, Rolf; Savage, Jeremiah; Lin, Ying C.; Hong, Sukwon; Jin, Wei; Whitby, Landon R.; Elder, John H.; Boger, Dale L.; Torbett, Bruce E.

    2011-01-01

    Clinically approved inhibitors of HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature, infectious viral particle. Advances in chemical synthesis have led to the development of new chemical libraries with high diversity using rapid in-solution syntheses. These libraries have been previously shown to be effective at disrupting protein-protein and protein-nucleic acid interfaces. We have screened 44,000 compounds from such a library to identify inhibitors of HIV-1 protease. One compound was identified that inhibits wild type protease, as well as a drug-resistant protease with 6 mutations. Moreover, analysis of this compound suggests an allosteric, non-competitive mechanism of inhibition and may represent a starting point for an additional strategy for anti-retroviral therapy. PMID:20507280

  20. Integrated analysis of drug-induced gene expression profiles predicts novel hERG inhibitors.

    PubMed

    Babcock, Joseph J; Du, Fang; Xu, Kaiping; Wheelan, Sarah J; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays.

  1. Integrated Analysis of Drug-Induced Gene Expression Profiles Predicts Novel hERG Inhibitors

    PubMed Central

    Babcock, Joseph J.; Du, Fang; Xu, Kaiping; Wheelan, Sarah J.; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays. PMID:23936032

  2. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    PubMed

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  3. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun

    2017-12-01

    The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.

  4. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src

    PubMed Central

    Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.

    2013-01-01

    Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839

  5. Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera.

    PubMed

    Bhide, Amey J; Channale, Sonal M; Patil, Sucheta S; Gupta, Vidya S; Ramasamy, Sureshkumar; Giri, Ashok P

    2015-09-01

    Helicoverpa armigera (Lepidoptera) feeds on various plants using diverse digestive enzymes as one of the survival tool-kit. The aim of the present study was to understand biochemical properties of recombinant α-amylases of H. armigera viz., HaAmy1 and HaAmy2. The open reading frames of HaAmy1 and HaAmy2 were cloned in Pichia pastoris and expressed heterologously. Purified recombinant enzymes were characterized for their biochemical and biophysical attributes using established methods. Sequence alignment and homology modeling showed that HaAmy1 and HaAmy2 were conserved in their amino acid sequences and structures. HaAmy1 and HaAmy2 showed optimum activity at 60°C; however, they differed in their optimum pH. Furthermore, HaAmy2 showed higher affinity for starch and amylopectin whereas HaAmy1 had higher catalytic efficiency. HaAmy1 and HaAmy2 were inhibited to the same magnitude by a synthetic amylase inhibitor (acarbose) while wheat amylase inhibitor showed about 2-fold higher inhibition of HaAmy1 than HaAmy2 at pH7 while 6-fold difference at pH11. Interactions of HaAmy1 and HaAmy2 with wheat amylase inhibitor revealed 2:1 stoichiometric ratio and much more complex interaction with HaAmy1. The diversity of amylases in perspective of their biochemical and biophysical properties, and their differential interactions with amylase inhibitors signify the potential role of these enzymes in adaptation of H. armigera on diverse plant diets. Characterization of digestive enzymes of H. armigera provides the molecular basis for the polyphagous nature and thus could assist in designing future strategies for the insect control. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014).

    PubMed

    Gehringer, Matthias; Muth, Felix; Koch, Pierre; Laufer, Stefan A

    2015-01-01

    c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials. This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups. Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectivity required for each particular indication and the development of isoform-selective JNK inhibitors still represents a challenge in JNK drug discovery. Moreover, isoform-selective tool compounds are a prerequisite to a comprehensive understanding of the biology of each JNK isoform. Potential approaches towards such compounds include the design of type-II and type-I(1)/2 binders, which are absent in the current JNK inhibitor portfolios, as well as the design of novel allosteric inhibitors. Furthermore, covalent inhibition, which already led to the first high-quality probe for JNKs, might be further exploited for gaining selectivity and in vivo efficacy. With regard to a potential therapeutic application, the recently proposed concept of covalent reversible inhibitors is expected to be attractive.

  7. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  8. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

    PubMed

    Roller, Devin G; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J; Conaway, Mark R; Petricoin, Emanuel F; Gioeli, Daniel; Weber, Michael J

    2016-01-19

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes ("back-seat drivers") and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway.

  9. Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1.

    PubMed

    Law, Jason M; Stark, Sebastian C; Liu, Ke; Liang, Norah E; Hussain, Mahmud M; Leiendecker, Matthias; Ito, Daisuke; Verho, Oscar; Stern, Andrew M; Johnston, Stephen E; Zhang, Yan-Ling; Dunn, Gavin P; Shamji, Alykhan F; Schreiber, Stuart L

    2016-10-13

    Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma. Here, we report the discovery of a potent (IC 50 = 50 nM) series of IDH1-R132H inhibitors having 8-membered ring sulfonamides as exemplified by the compound BRD2879. The inhibitors suppress ( R )-2-hydroxyglutarate production in cells without apparent toxicity. Although the solubility and pharmacokinetic properties of the specific inhibitor BRD2879 prevent its use in vivo , the scaffold presents a validated starting point for the synthesis of future IDH1-R132H inhibitors having improved pharmacological properties.

  10. Target engagement imaging of PARP inhibitors in small-cell lung cancer.

    PubMed

    Carney, Brandon; Kossatz, Susanne; Lok, Benjamin H; Schneeberger, Valentina; Gangangari, Kishore K; Pillarsetty, Naga Vara Kishore; Weber, Wolfgang A; Rudin, Charles M; Poirier, John T; Reiner, Thomas

    2018-01-12

    Insufficient chemotherapy response and rapid disease progression remain concerns for small-cell lung cancer (SCLC). Oncologists rely on serial CT scanning to guide treatment decisions, but this cannot assess in vivo target engagement of therapeutic agents. Biomarker assessments in biopsy material do not assess contemporaneous target expression, intratumoral drug exposure, or drug-target engagement. Here, we report the use of PARP1/2-targeted imaging to measure target engagement of PARP inhibitors in vivo. Using a panel of clinical PARP inhibitors, we show that PARP imaging can quantify target engagement of chemically diverse small molecule inhibitors in vitro and in vivo. We measure PARP1/2 inhibition over time to calculate effective doses for individual drugs. Using patient-derived xenografts, we demonstrate that different therapeutics achieve similar integrated inhibition efficiencies under different dosing regimens. This imaging approach to non-invasive, quantitative assessment of dynamic intratumoral target inhibition may improve patient care through real-time monitoring of drug delivery.

  11. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  12. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions.

    PubMed

    Larrosa-Garcia, Maria; Baer, Maria R

    2017-06-01

    The receptor tyrosine kinase fms -like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    PubMed

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  14. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  15. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production.

    PubMed

    Cam, Judy A; Zerbinatti, Celina V; Knisely, Jane M; Hecimovic, Silva; Li, Yonghe; Bu, Guojun

    2004-07-09

    The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.

  16. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors

    PubMed Central

    Xu, Peng; Andreasen, Peter A.; Huang, Mingdong

    2017-01-01

    This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases. PMID:29104489

  17. Proton pump inhibitor-refractory gastroesophageal reflux disease: challenges and solutions

    PubMed Central

    Mermelstein, Joseph; Chait Mermelstein, Alanna; Chait, Maxwell M

    2018-01-01

    A significant percentage of patients with gastroesophageal reflux disease (GERD) will not respond to proton pump inhibitor (PPI) therapy. The causes of PPI-refractory GERD are numerous and diverse, and include adherence, persistent acid, functional disorders, nonacid reflux, and PPI bioavailability. The evaluation should start with a symptom assessment and may progress to imaging, endoscopy, and monitoring of esophageal pH, impedance, and bilirubin. There are a variety of pharmacologic and procedural interventions that should be selected based on the underlying mechanism of PPI failure. Pharmacologic treatments can include antacids, prokinetics, alginates, bile acid binders, reflux inhibitors, and antidepressants. Procedural options include laparoscopic fundoplication and LINX as well as endoscopic procedures, such as transoral incisionless fundoplication and Stretta. Several alternative and complementary treatments of possible benefit also exist. PMID:29606884

  18. 2-Guanidino-quinazolines as a novel class of translation inhibitors.

    PubMed

    Komarova Andreyanova, E S; Osterman, I A; Pletnev, P I; Ivanenkov, Y A; Majouga, A G; Bogdanov, A A; Sergiev, P V

    2017-02-01

    A variety of structurally unrelated organic compounds has been reported to have antibacterial activity. Among these, certain small-molecule translation inhibitors have attracted a great deal of attention, due to their relatively high selectivity against prokaryotes, and an appropriate therapeutic index with minor "off target" effects. However, ribosomes are being considered as poorly druggable biological targets, thereby making some routine computational-based approaches to rational drug design and its development rather ineffective. Taking this into account, diversity-oriented biological screening can reasonably be considered as the most advantageous strategy. Thus, using a high-throughput screening (HTS) platform, we applied a unique biological assay for in vitro evaluation of thousands of organic molecules, especially targeted against bacterial ribosomes and translation. As a result, we have identified a series of structurally diverse small-molecule compounds that induce a reporter strain sensitive to translation and DNA biosynthesis inhibitors. In a cell free system, several molecules were found to strongly inhibit protein biosynthesis. Among them, compounds bearing a 2-guanidino-quinazoline core demonstrated the most promising antibacterial activity. With regard to the preliminary structure-activity relationship (SAR) study, we revealed that relatively small substituents at positions 4, 6 and 8 of the quinazoline ring significantly enhance the target activity whereas modification of the guanidine group leads to decrease or loss of antibacterial potency. This novel class of translation inhibitors can properly be regarded as a promising starting point for the development of novel antibacterial therapeutic or screening tools. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Screening of benzamidine-based thrombin inhibitors via a linear interaction energy in continuum electrostatics model

    NASA Astrophysics Data System (ADS)

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Convertino, Marino; Leonetti, Francesco; Pisani, Leonardo; Carotti, Angelo

    2010-02-01

    A series of 27 benzamidine inhibitors covering a wide range of biological activity and chemical diversity was analysed to derive a Linear Interaction Energy in Continuum Electrostatics (LIECE) model for analysing the thrombin inhibitory activity. The main interactions occurring at the thrombin binding site and the preferred binding conformations of inhibitors were explicitly biased by including into the LIECE model 10 compounds extracted from X-ray solved thrombin-inhibitor complexes available from the Protein Data Bank (PDB). Supported by a robust statistics ( r 2 = 0.698; q 2 = 0.662), the LIECE model was successful in predicting the inhibitory activity for about 76% of compounds ( r ext 2 ≥ 0.600) from a larger external test set encompassing 88 known thrombin inhibitors and, more importantly, in retrieving, at high sensitivity and with better performance than docking and shape-based methods, active compounds from a thrombin combinatorial library of 10240 mimetic chemical products. The herein proposed LIECE model has the potential for successfully driving the design of novel thrombin inhibitors with benzamidine and/or benzamidine-like chemical structure.

  20. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    PubMed

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  1. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect.

    PubMed

    Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun

    2016-01-01

    Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.

  2. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    PubMed

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  3. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    PubMed

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  4. Multicomplex-based pharmacophore-guided 3D-QSAR studies of N-substituted 2'-(aminoaryl)benzothiazoles as Aurora-A inhibitors.

    PubMed

    He, Gu; Qiu, Minghua; Li, Rui; Ouyang, Liang; Wu, Fengbo; Song, Xiangrong; Cheng, Li; Xiang, Mingli; Yu, Luoting

    2012-06-01

    Aurora-A has been known as one of the most important targets for cancer therapy, and some Aurora-A inhibitors have entered clinical trails. In this study, combination of the ligand-based and structure-based methods is used to clarify the essential quantitative structure-activity relationship of known Aurora-A inhibitors, and multicomplex-based pharmacophore-guided method has been suggested to generate a comprehensive pharmacophore of Aurora-A kinase based on a collection of crystal structures of Aurora-A-inhibitor complex. This model has been successfully used to identify the bioactive conformation and align 37 structurally diverse N-substituted 2'-(aminoaryl)benzothiazoles derivatives. The quantitative structure-activity relationship analyses have been performed on these Aurora-A inhibitors based on multicomplex-based pharmacophore-guided alignment. These results may provide important information for further design and virtual screening of novel Aurora-A inhibitors. © 2012 John Wiley & Sons A/S.

  5. Virtual screening of B-Raf kinase inhibitors: A combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy calculation studies.

    PubMed

    Zhang, Wen; Qiu, Kai-Xiong; Yu, Fang; Xie, Xiao-Guang; Zhang, Shu-Qun; Chen, Ya-Juan; Xie, Hui-Ding

    2017-10-01

    B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔG bind ) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC 50 <50μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs. Copyright © 2017. Published by Elsevier Ltd.

  6. Intrapatient viral diversity and treatment outcome in patients with genotype 3a hepatitis C virus infection on sofosbuvir-containing regimens.

    PubMed

    Bhardwaj, N; Ragonnet-Cronin, M; Murrell, B; Chodavarapu, K; Martin, R; Chang, S; Miller, M D; Feld, J J; Sulkowski, M; Mangia, A; Wertheim, J O; Osinusi, A; McNally, J; Brainard, D; Mo, H; Svarovskaia, E S

    2018-04-01

    Treatment with the direct-acting antiviral agent (DAA) sofosbuvir (SOF), an NS5B inhibitor, and velpatasvir (VEL), an NS5A inhibitor, demonstrates viral cure rates of ≥95% in hepatitis C virus (HCV) genotypes (GT) 1-6. Here, we investigated intrapatient HCV diversity in NS5A and NS5B using Shannon entropy to examine the relationship between viral diversity and treatment outcome. At baseline, HCV diversity was lowest in patients infected with HCV GT3 as compared to the other GTs, and viral diversity was greater in NS5A than NS5B (P < .0001). Treatment outcome with SOF/VEL or the comparator regimen of SOF with ribavirin (RBV) was not correlated with baseline diversity. However, among persons treated with SOF/VEL, a decrease in diversity from baseline was observed at relapse in the majority virologic failures, consistent with a viral bottleneck event at relapse. In contrast, an increase in diversity was observed in 27% of SOF+RBV virologic failures. We investigated whether the increase in diversity was due to an increase in the transition rate, one mode of potential RBV-mediated mutagenesis; however, we found no evidence of this mechanism. Overall, we did not observe that viral diversity at baseline influenced treatment outcome, but the diversity changes observed at relapse can improve our understanding of RBV viral suppression in vivo. © 2017 John Wiley & Sons Ltd.

  7. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    PubMed

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  9. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups.

    PubMed

    Park, Hwangseo; Kim, Sukyoung; Kim, Yong Eun; Lim, Soo-Jeong

    2010-04-06

    The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small-molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC(50) values ranging from 1 to 100 muM. These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N-[1,3,4]thiadiazol-2-yl sulfonamide, N-thiazol-2-yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure-activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.

  10. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  11. Hsp90 molecular chaperone inhibitors: Are we there yet?

    PubMed Central

    Neckers, Len; Workman, Paul

    2011-01-01

    Heat shock protein (Hsp) 90 is an ATP-dependent molecular chaperone exploited by malignant cells to support activated oncoproteins, including many cancer-associated kinases and transcription factors, and is essential for oncogenic transformation. Originally viewed with skepticism, Hsp90 inhibitors are now actively pursued by the pharmaceutical industry, with 17 agents having entered clinical trials. Hsp90’s druggability was established using the natural products geldanamycin and radicicol which mimic the unusual ATP structure adopted in the chaperone’s N-terminal nucleotide-binding pocket and cause potent and selective blockade of ATP binding/hydrolysis, inhibit chaperone function, deplete oncogenic clients, and demonstrate antitumor activity. Preclinical data with these natural products have heightened interest in Hsp90 as a drug target, and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) has demonstrated clinical activity (as defined by RECIST criteria) in HER2+ breast cancer. Many optimized synthetic small molecule Hsp90 inhibitors from diverse chemotypes are now in clinical trials. We review the discovery and development of Hsp90 inhibitors and assess their future potential. There has been significant learning from experience in both the basic biology and the translational drug development around Hsp90, enhanced by the use of Hsp90 inhibitors as chemical probes. Success will likely lie in treating cancers addicted to particular driver oncogene products, such as HER2, ALK, EGFR and BRAF, that are sensitive Hsp90 clients, as well as in malignancies, especially multiple myeloma, where buffering of proteotoxic stress is critical for survival. We discuss approaches to enhancing the effectiveness of Hsp90 inhibitors and highlight new chaperone and stress response pathway targets, including HSF1 and Hsp70. PMID:22215907

  12. Synthesis, antimalarial properties, and SAR studies of alkoxyurea-based HDAC inhibitors.

    PubMed

    Hansen, Finn K; Skinner-Adams, Tina S; Duffy, Sandra; Marek, Linda; Sumanadasa, Subathdrage D M; Kuna, Krystina; Held, Jana; Avery, Vicky M; Andrews, Katherine T; Kurz, Thomas

    2014-03-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of potential antimalarial drugs. We investigated the antiplasmodial properties of 16 alkoxyurea-based HDAC inhibitors containing various cap and zinc binding groups (ZBGs). Ten compounds displayed sub-micromolar activity against the 3D7 line of Plasmodium falciparum. Structure-activity relationship studies revealed that a hydroxamic acid ZBG is crucial for antiplasmodial activity, and that the introduction of bulky alkyl substituents to cap groups increases potency against asexual blood-stage parasites. We also demonstrate that selected compounds cause hyperacetylation of P. falciparum histone H4, indicating inhibition of one or more PfHDACs. To assess the selectivity of alkoxyurea-based HDAC inhibitors for parasite over normal mammalian cells, the cytotoxicity of representative compounds was evaluated against neonatal foreskin fibroblast (NFF) cells. The most active compound, 6-((3-(4-(tert-butyl)phenyl)ureido)oxy)-N-hydroxyhexanamide (1 e, Pf3D7 IC50 : 0.16 μM) was 31-fold more toxic against the asexual blood stages than towards normal mammalian cells. Moreover, a subset of four structurally diverse HDAC inhibitors revealed moderate activity against late-stage (IV-V) gametocytes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.

    PubMed

    Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho

    2018-01-30

    Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify

  14. Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis.

    PubMed

    Kim, Okseon; Jeong, Yujeong; Lee, Hyunseung; Hong, Sun-Sun; Hong, Sungwoo

    2011-04-14

    Phosphatidylinositol 3-kinase α (PI3Kα) is an important regulator of intracellular signaling pathways, controlling remarkably diverse arrays of physiological processes. Because the PI3K pathway is frequently up-regulated in human cancers, the inhibition of PI3Kα can be a promising approach to cancer therapy. In this study, we have designed and synthesized a new series of imidazo[1,2-a]pyridine derivatives as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3- and 6-positions of imidazo[1,2-a]pyridines, we studied the structure-activity relationships (SAR) profiles and identified a series of potent PI3Kα inhibitors. Representative derivatives showed good activity in cellular proliferation and apoptosis assays. Moreover, these inhibitors exhibited noteworthy antiangiogenic activity.

  15. High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction.

    PubMed

    Carlson, Hans K; Mullan, Mark R; Mosqueda, Lorraine A; Chen, Steven; Arkin, Michelle R; Coates, John D

    2017-06-20

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive, and corrosive. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to identify potent and selective inhibitors of SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Zinc pyrithione is the most potent inhibitor of sulfidogenesis that we identified, and is several orders of magnitude more potent than commonly used industrial biocides. Both zinc and copper pyrithione are also moderately selective against SRM. The high-throughput (HT) approach we present can be readily adapted to target SRM in diverse environments and similar strategies could be used to quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant to efforts to engineer environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  16. Helodermatine, a kallikrein-like, hypotensive enzyme from the venom of Heloderma horridum horridum (Mexican beaded lizard)

    PubMed Central

    1986-01-01

    We have purified and characterized the major N-benzoyl-L-arginine ethyl ester hydrolase from the venom of Heloderma horridum horridum. The enzyme belongs to the serine proteinase family, and its activity vs. peptide amide substrates and human high-molecular-weight kininogen suggests a similarity to the family of kallikreins. This interpretation is corroborated by its reactivity with the natural inhibitors soybean trypsin inhibitor and Kunitz-type bovine pancreatic trypsin inhibitor (aprotinin). Injection of the enzyme (2-16 micrograms/kg) into anesthetized rabbits leads to a rapid dose-dependent transient decrease of the arterial blood pressure. Like glandular kallikrein it specifically converts single-chain tissue type plasminogen activator into its double chain form. In contrast to other kallikrein-like enzymes from snake venoms it shows no thrombin-like or plasminogen activator activity. The enzyme is a single-chain glycoprotein (Mr 63,000). The N-terminal sequence revealed significant homology to pig pancreatic kallikrein and to kallikrein like enzymes from Crotalus atrox and Crotalus adamanteus venom. This enzyme, which we name Helodermatine, is the first purified from Sauria with kallikrein-like properties. PMID:3537191

  17. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  18. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity

    PubMed Central

    Brew, Keith; Nagase, Hideaki

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP–MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology. PMID:20080133

  19. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    PubMed

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  20. Screening for small molecule inhibitors of Toxoplasma gondii.

    PubMed

    Kortagere, Sandhya

    2012-12-01

    Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.

  1. The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan

    PubMed Central

    2010-01-01

    Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively. Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to

  2. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    PubMed

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  3. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors

    PubMed Central

    Issaq, Sameer H; Teicher, Beverly A; Monks, Anne

    2014-01-01

    Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy. PMID:24553119

  4. Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full- length transcripts (cDNA) and proteins

    PubMed Central

    Francischetti, Ivo M. B.; My-Pham, Van; Harrison, Jim; Garfield, Mark K.; Ribeiro, José M. C.

    2010-01-01

    The venom gland of the snake Bitis gabonica (Gaboon viper) was used for the first time to construct a unidirectional cDNA phage library followed by high-throughput sequencing and bioinformatic analysis. Hundreds of cDNAs were obtained and clustered into contigs. We found mostly novel full-length cDNA coding for metalloproteases (P-II and P-III classes), Lys49-phospholipase A2, serine proteases with essential mutations in the active site, Kunitz protease inhibitors, several C-type lectins, bradykinin-potentiating peptide, vascular endothelial growth factor, nucleotidases and nucleases, nerve growth factor, and L-amino acid oxidases. Two new members of the recently described short coding region family of disintegrin, displaying RGD and MLD motifs are reported. In addition, we have identified for the first time a cytokine-like molecule and a multi-Kunitz protease inhibitor in snake venoms. The CLUSTAL alignment and the unrooted cladograms for selected families of B. gabonica venom proteins are also presented. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be identified. This paper also reports the N-terminus of the 15 most abundant venom proteins and the sequences matching their corresponding transcripts. The electronic version of this manuscript, available on request, contains spreadsheets with hyperlinks to FASTA-formatted files for each contig and the best match to the GenBank and Conserved Domain Databases, in addition to CLUSTAL alignments of each contig. We have thus generated a comprehensive catalog of the B. gabonica venom gland, containing for each secreted protein: i) the predicted molecular weight, ii) the predicted isoelectric point, iii) the accession number, and iv) the putative function. The role of these molecules is discussed in the context of the envenomation caused by the Gaboon viper. PMID:15276202

  5. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases.

    PubMed

    Liu, Chunliang; Dunaway-Mariano, Debra; Mariano, Patrick S

    2017-03-10

    In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (K i ) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The K i of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants.

    PubMed

    Matthew, Ashley N; Zephyr, Jacqueto; Hill, Caitlin J; Jahangir, Muhammad; Newton, Alicia; Petropoulos, Christos J; Huang, Wei; Kurt-Yilmaz, Nese; Schiffer, Celia A; Ali, Akbar

    2017-07-13

    A substrate envelope-guided design strategy is reported for improving the resistance profile of HCV NS3/4A protease inhibitors. Analogues of 5172-mcP1P3 were designed by incorporating diverse quinoxalines at the P2 position that predominantly interact with the invariant catalytic triad of the protease. Exploration of structure-activity relationships showed that inhibitors with small hydrophobic substituents at the 3-position of P2 quinoxaline maintain better potency against drug resistant variants, likely due to reduced interactions with residues in the S2 subsite. In contrast, inhibitors with larger groups at this position were highly susceptible to mutations at Arg155, Ala156, and Asp168. Excitingly, several inhibitors exhibited exceptional potency profiles with EC 50 values ≤5 nM against major drug resistant HCV variants. These findings support that inhibitors designed to interact with evolutionarily constrained regions of the protease, while avoiding interactions with residues not essential for substrate recognition, are less likely to be susceptible to drug resistance.

  7. Identification by Virtual Screening and In Vitro Testing of Human DOPA Decarboxylase Inhibitors

    PubMed Central

    Cellini, Barbara; Macchiarulo, Antonio; Giardina, Giorgio; Bossa, Francesco; Borri Voltattorni, Carla

    2012-01-01

    Dopa decarboxylase (DDC), a pyridoxal 5′-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the “in vitro” activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with Ki values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with Ki values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a Ki value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery. PMID:22384042

  8. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    PubMed

    Daidone, Frederick; Montioli, Riccardo; Paiardini, Alessandro; Cellini, Barbara; Macchiarulo, Antonio; Giardina, Giorgio; Bossa, Francesco; Borri Voltattorni, Carla

    2012-01-01

    Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  9. Dipeptidyl Peptidase-4 Inhibitor Development and Post-authorisation Programme for Vildagliptin - Clinical Evidence for Optimised Management of Chronic Diseases Beyond Type 2 Diabetes.

    PubMed

    Strain, William David; Paldánius, Päivi M

    2017-08-01

    The last decade has witnessed the role of dipeptidyl peptidase-4 (DPP-4) inhibitors in producing a conceptual change in early management of type 2 diabetes mellitus (T2DM) by shifting emphasis from a gluco-centric approach to holistically treating underlying pathophysiological processes. DPP-4 inhibitors highlighted the importance of acknowledging hypoglycaemia and weight gain as barriers to optimised care in T2DM. These complications were an integral part of diabetes management before the introduction of DPP-4 inhibitors. During the development of DPP-4 inhibitors, regulatory requirements for introducing new agents underwent substantial changes, with increased emphasis on safety. This led to the systematic collection of adjudicated cardiovascular (CV) safety data, and, where 95% confidence of a lack of harm could not be demonstrated, the standardised CV safety studies. Furthermore, the growing awareness of the worldwide extent of T2DM demanded a more diverse approach to recruitment and participation in clinical trials. Finally, the global financial crisis placed a new awareness on the health economics of diabetes, which rapidly became the most expensive disease in the world. This review encompasses unique developments in the global landscape, and the role DPP-4 inhibitors, specifically vildagliptin, have played in research advancement and optimisation of diabetes care in a diverse population with T2DM worldwide.

  10. Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease.

    PubMed

    Sperandio, David; Gangloff, Anthony R; Litvak, Joane; Goldsmith, Richard; Hataye, Jason M; Wang, Vivian R; Shelton, Emma J; Elrod, Kyle; Janc, James W; Clark, James M; Rice, Ken; Weinheimer, Steve; Yeung, Kap-Sun; Meanwell, Nicholas A; Hernandez, Dennis; Staab, Andrew J; Venables, Brian L; Spencer, Jeffrey R

    2002-11-04

    Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.

  11. Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates.

    PubMed

    Covaleda, Giovanni; Trejo, Sebastian A; Salas-Sarduy, Emir; Del Rivero, Maday Alonso; Chavez, Maria Angeles; Aviles, Francesc X

    2017-08-08

    Proteases and their inhibitors have become molecules of increasing fundamental and applicative value. Here we report an integrated strategy to identify and analyze such inhibitors from Caribbean marine invertebrates extracts by a fast and sensitive functional proteomics-like approach. The strategy works in three steps: i) multiplexed enzymatic inhibition kinetic assays, ii) Intensity Fading MALDI-TOF MS to establish a link between inhibitory molecules and the related MALDI signal(s) detected in the extract(s), and iii) ISD-CID-T 3 MS fragmentation on the parent MALDI signals selected in the previous step, enabling the partial or total top-down sequencing of the molecules. The present study has allowed validation of the whole approach, identification of a substantial number of novel protein protease inhibitors, as well as full or partial sequencing of reference molecular species and of many unknown ones, respectively. Such inhibitors correspond to six protease subfamilies (metallocarboxypeptidases-A and -B, pepsin, papain, trypsin and subtilisin), are small (1-10KDa) disulfide-rich proteins, and have been found at diverse frequencies among the invertebrates (13 to 41%). The overall procedure could be tailored to other enzyme-inhibitor and protein interacting systems, analyzing samples at medium-throughput level and leading to the functional and structural characterization of proteinaceous ligands from complex biological extracts. Invertebrate animals, and marine ones among, display a remarkable diversity of species and contained biomolecules. Many of their proteins-peptides have high biological, biotechnological and biomedical potential interest but, because of the lack of sequenced genomes behind, their structural and functional characterization constitutes a great challenge. Here, looking at the small, disulfide-rich, proteinaceous inhibitors of proteases found in them, it is shown that such problem can be significatively facilitated by integrative multiplexed

  12. Rapid identification of Keap1-Nrf2 small-molecule inhibitors through structure-based virtual screening and hit-based substructure search.

    PubMed

    Zhuang, Chunlin; Narayanapillai, Sreekanth; Zhang, Wannian; Sham, Yuk Yin; Xing, Chengguo

    2014-02-13

    In this study, rapid structure-based virtual screening and hit-based substructure search were utilized to identify small molecules that disrupt the interaction of Keap1-Nrf2. Special emphasis was placed toward maximizing the exploration of chemical diversity of the initial hits while economically establishing informative structure-activity relationship (SAR) of novel scaffolds. Our most potent noncovalent inhibitor exhibits three times improved cellular activation in Nrf2 activation than the most active noncovalent Keap1 inhibitor known to date.

  13. Characterization of Two Distinct Structural Classes of Selective Aldehyde Dehydrogenase 1A1 Inhibitors

    DOE PAGES

    Morgan, Cynthia A.; Hurley, Thomas D.

    2015-01-29

    Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid in illuminating the role of this enzyme in disease processes. However, there are no commercially available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar inhibition constants, but have different mechanisms of inhibition. The crystal structuresmore » of these compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. Lastly, these two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the contributions of ALDH1A1 to normal biology and to disease states.« less

  14. Dipeptidyl Peptidase-4 Inhibitor Development and Post-authorisation Programme for Vildagliptin — Clinical Evidence for Optimised Management of Chronic Diseases Beyond Type 2 Diabetes

    PubMed Central

    Paldánius, Päivi M

    2017-01-01

    Abstract The last decade has witnessed the role of dipeptidyl peptidase-4 (DPP-4) inhibitors in producing a conceptual change in early management of type 2 diabetes mellitus (T2DM) by shifting emphasis from a gluco-centric approach to holistically treating underlying pathophysiological processes. DPP-4 inhibitors highlighted the importance of acknowledging hypoglycaemia and weight gain as barriers to optimised care in T2DM. These complications were an integral part of diabetes management before the introduction of DPP-4 inhibitors. During the development of DPP-4 inhibitors, regulatory requirements for introducing new agents underwent substantial changes, with increased emphasis on safety. This led to the systematic collection of adjudicated cardiovascular (CV) safety data, and, where 95% confidence of a lack of harm could not be demonstrated, the standardised CV safety studies. Furthermore, the growing awareness of the worldwide extent of T2DM demanded a more diverse approach to recruitment and participation in clinical trials. Finally, the global financial crisis placed a new awareness on the health economics of diabetes, which rapidly became the most expensive disease in the world. This review encompasses unique developments in the global landscape, and the role DPP-4 inhibitors, specifically vildagliptin, have played in research advancement and optimisation of diabetes care in a diverse population with T2DM worldwide. PMID:29632609

  15. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  16. Synthesis and Biological Evaluation of Botulinum Neurotoxin A Protease Inhibitors

    PubMed Central

    Li, Bing; Pai, Ramdas; Cardinale, Steven C.; Butler, Michelle M.; Peet, Norton P.; Moir, Donald T.; Bavari, Sina; Bowlin, Terry L.

    2010-01-01

    NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogs have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC50 = 2.5 µM, FRET assay), which is 4.4-fold more potent than the lead structure, and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity. PMID:20155918

  17. Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.

    PubMed

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.

  18. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  19. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata

    2017-11-01

    The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.

  20. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders.

    PubMed

    Ong, Wei-Yi; Farooqui, Tahira; Kokotos, George; Farooqui, Akhlaq A

    2015-06-17

    Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.

  1. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    PubMed

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  2. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers

    PubMed Central

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A.; Gupta, Piyush B.; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-01

    The use of proteasome inhibitors to target cancer’s dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers. PMID:28028240

  3. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My.

    PubMed

    Jayasena, Achala S; Fisher, Mark F; Panero, Jose L; Secco, David; Bernath-Levin, Kalia; Berkowitz, Oliver; Taylor, Nicolas L; Schilling, Edward E; Whelan, James; Mylne, Joshua S

    2017-06-01

    The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

    PubMed Central

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-01-01

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497

  5. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  6. Maximizing the Therapeutic Potential of Hsp90 Inhibitors

    PubMed Central

    Butler, Lisa M.; Ferraldeschi, Roberta; Armstrong, Heather K.; Centenera, Margaret M.; Workman, Paul

    2015-01-01

    Hsp90 is required for maintaining the stability and activity of a diverse group of client proteins, including protein kinases, transcription factors and steroid hormone receptors involved in cell signaling, proliferation, survival, oncogenesis and cancer progression. Inhibition of Hsp90 alters the Hsp90-client protein complex, leading to reduced activity, misfolding, ubiquitination and, ultimately, proteasomal degradation of client proteins. Hsp90 inhibitors have demonstrated significant antitumor activity in a wide variety of preclinical models with evidence of selectivity for cancer versus normal cells. In the clinic however, the efficacy of this class of therapeutic agents has been relatively limited to date, with promising responses mainly observed in breast and lung cancer, but no major activity seen in other tumor types. In addition, adverse events and some significant toxicities have been documented. Key to improving these clinical outcomes is a better understanding of the cellular consequences of inhibiting Hsp90 that may underlie treatment response or resistance. This review considers the recent progress that has been made in the study of Hsp90 and its inhibitors, and highlights new opportunities to maximize their therapeutic potential. PMID:26219697

  7. Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations

    NASA Astrophysics Data System (ADS)

    Hao, Ge-Fei; Tan, Ying; Yu, Ning-Xi; Yang, Guang-Fu

    2011-03-01

    Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of PPO inhibitors and used as agriculture herbicides for decades. Most importantly, diphenyl-ether inhibitors have been found recently to possess the potential in Photodynamic therapy (PDT) to treat cancer. Herein, molecular dynamics simulations, approximate free energy calculations and hydrogen bond energy calculations were integrated together to uncover the structure-activity relationships of this type of PPO inhibitors. The calculated binding free energies are correlated very well with the values derived from the experimental k i data. According to the established computational models and the results of approximate free energy calculation, the substitution effects at different position were rationalized from the view of binding free energy. Some outlier ( e.g. LS) in traditional QSAR study can also be explained reasonably. In addition, the hydrogen bond energy calculation and interaction analysis results indicated that the carbonyl oxygen on position-9 and the NO2 group at position-8 are both vital for the electrostatic interaction with Arg98, which made a great contribution to the binding free energy. These insights from computational simulations are not only helpful for understanding the molecular mechanism of PPO-inhibitor interactions, but also beneficial to the future rational design of novel promising PPO inhibitors.

  8. Oxabicyclooctane-Linked Novel Bacterial Topoisomerase Inhibitors as Broad Spectrum Antibacterial Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sheo B.; Kaelin, David E.; Wu, Jin

    Bacterial resistance is eroding the clinical utility of existing antibiotics necessitating the discovery of new agents. Bacterial type II topoisomerase is a clinically validated, highly effective, and proven drug target. This target is amenable to inhibition by diverse classes of inhibitors with alternative and distinct binding sites to quinolone antibiotics, thus enabling the development of agents that lack cross-resistance to quinolones. Described here are novel bacterial topoisomerase inhibitors (NBTIs), which are a new class of gyrase and topo IV inhibitors and consist of three distinct structural moieties. The substitution of the linker moiety led to discovery of potent broad-spectrum NBTIsmore » with reduced off-target activity (hERG IC50 > 18 μM) and improved physical properties. AM8191 is bactericidal and selectively inhibits DNA synthesis and Staphylococcus aureus gyrase (IC50 = 1.02 μM) and topo IV (IC50 = 10.4 μM). AM8191 showed parenteral and oral efficacy (ED50) at less than 2.5 mg/kg doses in a S. aureus murine infection model. A cocrystal structure of AM8191 bound to S. aureus DNA-gyrase showed binding interactions similar to that reported for GSK299423, displaying a key contact of Asp83 with the basic amine at position-7 of the linker.« less

  9. YCZ-18 Is a New Brassinosteroid Biosynthesis Inhibitor

    PubMed Central

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Ogawa, Atushi; Yamada, Kazuhiro; Suzuki, Ryuichiro; Sawada, Takayuki; Fujioka, Shozo; Yoshizawa, Yuko; Nakano, Takeshi

    2015-01-01

    Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation. PMID:25793645

  10. Gibberellin inhibitors improve embryogenic tissue initiation in conifers.

    PubMed

    Pullman, Gerald S; Mein, J; Johnson, S; Zhang, Y

    2005-02-01

    Somatic embryogenesis (SE), the most promising technology to multiply high-value coniferous trees from advanced breeding and genetic engineering programs, is expected to play an important role in increasing productivity, sustainability, and uniformity of future forests in the United States. For commercial use, SE technology must work with a variety of genetically diverse trees. Initiation in loblolly pine (LP; Pinus taeda L.), our main focus species, is often recalcitrant for desirable genotypes. Initiation of LP, slash pine (SP; Pinus elliottii), Douglas-fir (DF; Pseudotsuga menziesii), and Norway spruce (NS; Picea abies) were improved through the use of paclobutrazol, a gibberellin synthesis inhibitor. Paclobutrazol was effective at concentrations ranging from 0.25 mg/l to 3.0 mg/l (0.85-10.2 microM) and optimal in LP at 1.0 mg/l. Using control media (no paclobutrazol) and 0.33-1.0 mg/l paclobutrazol, initiation percentages in LP, SP, DF, and NS were improved from 37.7% to 44.2% (across experiments), 19.3% to 28.5%, 16.9% to 23.7%, and 38.8% to 48.5%, respectively. Other gibberellin inhibitors such as flurprimidol, chlormequat-Cl, and daminozide also caused statistically significant increases in LP initiation when added to the medium at concentrations of 0.34, 10.0, and 1.0 microM, respectively. No detrimental effects on subsequent embryo development were observed when 29 new initiations from medium without GA inhibitor and 28 new initiations from medium containing paclobutrazol were tracked through culture capture, liquid culture establishment, cotyledonary embryo development, and germination.

  11. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species

    PubMed Central

    2018-01-01

    ABSTRACT Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. PMID:29382732

  12. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.

    PubMed

    Bush, Karen

    2015-11-01

    β-Lactamase inhibitors (BLIs) have played an important role in combatting β-lactam resistance in Gram-negative bacteria, but their effectiveness has diminished with the evolution of diverse and deleterious varieties of β-lactamases. In this review, a new generation of BLIs and inhibitor combinations is presented, describing epidemiological information, pharmacodynamic studies, resistance identification and current clinical status. Novel serine BLIs of major interest include the non-β-lactams of the diazabicyclo[3.2.1]octanone (DBO) series. The DBOs avibactam, relebactam and RG6080 inhibit most class A and class C β-lactamases, with selected inhibition of class D enzymes by avibactam. The novel boronic acid inhibitor RPX7009 has a similar inhibitory profile. All of these inhibitors are being developed in combinations that are targeting primarily carbapenemase-producing Gram-negative pathogens. Two BLI combinations (ceftolozane/tazobactam and ceftazidime/avibactam) were recently approved by the US Food and Drug Administration (FDA) under the designation of a Qualified Infectious Disease Product (QIDP). Other inhibitor combinations that have at least completed phase 1 clinical trials are ceftaroline fosamil/avibactam, aztreonam/avibactam, imipenem/relebactam, meropenem/RPX7009 and cefepime/AAI101. Although effective inhibitor combinations are in development for the treatment of infections caused by Gram-negative bacteria with serine carbapenemases, better options are still necessary for pathogens that produce metallo-β-lactamases (MBLs). The aztreonam/avibactam combination demonstrates inhibitory activity against MBL-producing enteric bacteria owing to the stability of the monobactam to these enzymes, but resistance is still an issue for MBL-producing non-fermentative bacteria. Because all of the inhibitor combinations are being developed as parenteral drugs, an orally bioavailable combination would also be of interest. Copyright © 2015 Elsevier B.V. and the

  13. [Pharmacological differences between inhibitor drugs of the renin-angiotensin aldosterone system].

    PubMed

    Méndez-Durán, Antonio

    2011-01-01

    The activation of the renin-angiotensin-aldosterone cascade is a mechanism that generates high blood pressure. The structure has been identified and can be blocked through specific enzymatic pathways or receptors. We have a diversity of medications that act on this system. It is useful to develop the skill in clinical practice for selecting a drug from a wide variety. Renin-angiotensin system inhibitors share many pharmacological and pharmacokinetic characteristics but not all them are equivalent. Knowledge based on scientific evidence allows the clinician to choose the ideal drug for each patient.

  14. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    PubMed

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  15. Venomics of the Australian eastern brown snake (Pseudonaja textilis): Detection of new venom proteins and splicing variants.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Trusch, Maria; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho; Arni, Raghuvir K; Schlüter, Hartmut; Betzel, Christian; Mirtschin, Peter; Dunstan, Nathan; Spencer, Patrick Jack

    2015-12-01

    The eastern brown snake is the predominant cause of snakebites in mainland Australia. Its venom induces defibrination coagulopathy, renal failure and microangiopathic hemolytic anemia. Cardiovascular collapse has been described as an early cause of death in patients, but, so far, the mechanisms involved have not been fully identified. In the present work, we analysed the venome of Pseudonaja textilis by combining high throughput proteomics and transcriptomics, aiming to further characterize the components of this venom. The combination of these techniques in the analysis and identification of toxins, venom proteins and putative toxins allowed the sequence description and the identification of the following: prothrombinase coagulation factors, neurotoxic textilotoxin phospholipase A2 (PLA2) subunits and "acidic PLA2", three-finger toxins (3FTx) and the Kunitz-type protease inhibitor textilinin, venom metalloproteinase, C-type lectins, cysteine rich secretory proteins, calreticulin, dipeptidase 2, as well as evidences of Heloderma lizard peptides. Deep data-mining analysis revealed the secretion of a new transcript variant of venom coagulation factor 5a and the existence of a splicing variant of PLA2 modifying the UTR and signal peptide from a same mature protein. The transcriptome revealed the diversity of transcripts and mutations, and also indicates that splicing variants can be an important source of toxin variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Novel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis - a patent evaluation.

    PubMed

    Schoenberger, Matthias; Althaus, Mike

    2013-10-01

    Novel molecular platforms for epithelial sodium channel (ENaC) modulators are claimed in the following six patents: WO2012035158(A1); WO2009074575(A2); WO2011028740(A1); WO2009150137(A2); WO2011079087(A1); WO2008135557(A1). These ENaC inhibitors may be used in blocking transepithelial sodium and consequently water absorption across airway epithelia. This may result in airway rehydration and enhanced mucociliary clearance in patients with cystic fibrosis (CF) lung disease. All inhibitors resemble the classical ENaC blocker amiloride but follow different strategies to increase structural diversity in a sterically tolerant region. These substitutions can be modified to i) enhance potency of ENaC inhibition; ii) reduce epithelial permeability; and iii) broaden applicability in order to be used as potential drugs for CF therapy. Most of the claims and patent data are supported by the currently available literature. The patents deliver a solid chemical basis for a variety of chemical modifications of the ENaC inhibitor amiloride. These modifications may result in the development of a novel, applicable ENaC inhibitors which may have lasting effects on diseased airways and may achieve airway rehydration and enhanced mucociliary clearance in CF lung disease.

  17. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching

    PubMed Central

    2014-01-01

    Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets

  18. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance Among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil.

    PubMed

    Delatorre, Edson; Silva-de-Jesus, Carlos; Couto-Fernandez, José Carlos; Pilotto, Jose H; Morgado, Mariza G

    2017-01-01

    Antiretroviral (ARV) resistance mutations in human immunodeficiency virus type 1 (HIV-1) infection may reduce the efficacy of prophylactic therapy to prevent mother-to-child transmission (PMTCT) and future treatment options. This study evaluated the diversity and the prevalence of transmitted drug resistance (TDR) in protease (PR) and reverse transcriptase (RT) regions of HIV-1 pol gene among 87 ARV-naive HIV-1-infected pregnant women from Rio de Janeiro, Brazil, between 2012 and 2015. The viral diversity comprised HIV-1 subtypes B (67.8%), F1 (17.2%), and C (4.6%); the circulating recombinant forms 12_BF (2.3%), 28/29_BF, 39_BF, 02_AG (1.1% each) and unique recombinants forms (4.5%). The overall prevalence of any TDR was 17.2%, of which 5.7% for nucleoside RT inhibitors, 5.7% for non-nucleoside RT inhibitors, and 8% for PR inhibitors. The TDR prevalence found in this population may affect the virological outcome of the standard PMTCT ARV-regimens, reinforcing the importance of continuous monitoring.

  19. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.

    PubMed

    Goel, Parul; Jumpertz, Thorsten; Tichá, Anežka; Ogorek, Isabella; Mikles, David C; Hubalek, Martin; Pietrzik, Claus U; Strisovsky, Kvido; Schmidt, Boris; Weggen, Sascha

    2018-05-01

    Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Discovery of novel Ponatinib analogues for reducing KDR activity as potent FGFRs inhibitors.

    PubMed

    Liu, Yang; Peng, Xia; Guan, Xiaocong; Lu, Dong; Xi, Yong; Jin, Shiyu; Chen, Hui; Zeng, Limin; Ai, Jing; Geng, Meiyu; Hu, Youhong

    2017-01-27

    FGF receptors (FGFRs) are tyrosine kinases that are overexpressed in diverse tumors by genetic alterations such as gene amplifications, somatic mutations and translocations. Owing to this characteristic, FGFRs are attractive targets for cancer treatment. It has been demonstrated that most multi-targeted, ATP competitive tyrosine kinase inhibitors are active against FGFRs as well as other kinases. The design of new and more selective inhibitors of FGFRs, which might be reduced off-target and side effects, is a difficult yet significant challenge. The results of the current investigation, show that novel Ponatinib analogues are highly active as FGFR inhibitors and that they possess reduced kinase insert domain receptor (KDR) activities. Observations made in a structure and activity relationship (SAR) investigation led to the development of a promising, orally available lead compound 4, which displays a 50-100 fold in vitro selectivity for inhibition of FGFR1-3 over KDR. In addition, biological evaluation of compound 4 showed that it displays significant antitumor activities in FGFR1-amplificated H1581 and FGFR2-amplificated SNU-16 xenograft models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. HDACs and HDAC inhibitors in urothelial carcinoma - perspectives for an antineoplastic treatment.

    PubMed

    Pinkerneil, Maria; Hoffmann, Michèle J; Schulz, Wolfgang A; Niegisch, Günter

    2017-01-11

    Histone deacetylases (HDACs) influence diverse cellular processes and may contribute to tumor development and progression by multiple mechanisms. Class I HDACs are often overexpressed in cancers contributing to a genome-wide epigenetic state permitting increased proliferation, and diminished apoptosis and cell differentiation. Class IIA and IIB isoenzymes may likewise contribute to tumorigenesis as components of specific intranuclear repressor complexes or regulators of posttranslational protein modifications. As HDAC inhibitors may counteract these tumorigenic effects several of these compounds are currently tested in clinical trials. HDAC inhibitors are also considered for urothelial carcinoma, where novel therapeutic drugs are urgently required. However, only modest antineoplastic activity has been observed with isoenzyme-unspecific pan-HDAC inhibitors. Therefore, inhibition of specific HDAC isoenzymes might be more efficacious and tumor-specific. Here, we systematically review knowledge on the expression, function and suitability as therapeutic targets of the 11 classical HDACs in UC. Overall, the class I HDACs HDAC1 and HDAC2 are the most promising targets for antineoplastic treatment. In contrast, targeting HDAC8 and HDAC6 is likely to be of minor relevance in urothelial carcinoma. Class IIA HDACs like HDAC4 require further study, since their downregulation rather than upregulation could be involved in urothelial carcinoma pathogenesis.

  2. Novel Inhibitor Cystine Knot Peptides from Momordica charantia

    PubMed Central

    Clark, Richard J.; Tang, Jun; Zeng, Guang-Zhi; Franco, Octavio L.; Cantacessi, Cinzia; Craik, David J.; Daly, Norelle L.; Tan, Ning-Hua

    2013-01-01

    Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III), were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK) motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature. PMID:24116036

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drugmore » alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.« less

  4. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  5. Consensus QSAR model for identifying novel H5N1 inhibitors.

    PubMed

    Sharma, Nitin; Yap, Chun Wei

    2012-08-01

    Due to the importance of neuraminidase in the pathogenesis of influenza virus infection, it has been regarded as the most important drug target for the treatment of influenza. Resistance to currently available drugs and new findings related to structure of the protein requires novel neuraminidase 1 (N1) inhibitors. In this study, a consensus QSAR model with defined applicability domain (AD) was developed using published N1 inhibitors. The consensus model was validated using an external validation set. The model achieved high sensitivity, specificity, and overall accuracy along with low false positive rate (FPR) and false discovery rate (FDR). The performance of model on the external validation set and training set were comparable, thus it was unlikely to be overfitted. The low FPR and low FDR will increase its accuracy in screening large chemical libraries. Screening of ZINC library resulted in 64,772 compounds as probable N1 inhibitors, while 173,674 compounds were defined to be outside the AD of the consensus model. The advantage of the current model is that it was developed using a large and diverse dataset and has a defined AD which prevents its use on compounds that it is not capable of predicting. The consensus model developed in this study is made available via the free software, PaDEL-DDPredictor.

  6. Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants

    NASA Astrophysics Data System (ADS)

    Vijayendran, Krishna Gajan

    Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.

  7. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    PubMed

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  8. Efforts towards the optimization of a bi-aryl class of potent IRAK4 inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanisak, Jennifer; Seganish, W. Michael; McElroy, William T.

    2016-09-01

    IRAK4 has been identified as potential therapeutic target for inflammatory and autoimmune diseases. Herein we report the identification and initial SAR studies of a new class of pyrazole containing IRAK4 inhibitors designed to expand chemical diversity and improve off target activity of a previously identified series. These compounds maintain potent IRAK4 activity and desirable ligand efficiency. Rat clearance and a variety of off target activities were also examined, resulting in encouraging data with tractable SAR.

  9. Polyphenol oxidase inhibitor(s) from German cockroach (Blattella germanica) extract

    USDA-ARS?s Scientific Manuscript database

    An extract from German cockroach appears effective in inhibiting browning on apples and potatoes. Successful identification of inhibitor(s) of PPO from German cockroach would be useful to the fruit and vegetable segments of the food industry, due to the losses they incur from enzymatic browning. Ide...

  10. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    NASA Astrophysics Data System (ADS)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  11. Dipeptidyl peptidase-IV inhibitor use associated with increased risk of ACE inhibitor-associated angioedema.

    PubMed

    Brown, Nancy J; Byiers, Stuart; Carr, David; Maldonado, Mario; Warner, Barbara Ann

    2009-09-01

    Dipeptidyl peptidase-IV (DPP-IV) inhibitors decrease degradation of the incretins. DPP-IV inhibitors also decrease degradation of peptides, such as substance P, that may be involved in the pathogenesis of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema. This study tested the hypothesis that DPP-IV inhibition affects risk of clinical angioedema, by comparing the incidence of angioedema in patients treated with the DPP-IV inhibitor vildagliptin versus those treated with comparator in Phase III randomized clinical trials. Prospectively defined angioedema-related events were adjudicated in a blinded fashion by an internal medicine adjudication committee and expert reviewer. Concurrent ACE inhibitor or angiotensin receptor blocker exposure was ascertained from case report forms. Study drug exposure was ascertained from unblinded data from phase III studies. Odds ratios and 95% confidence intervals comparing angioedema risk in vildagliptin-treated and comparator-treated patients were calculated for the overall population and for patients taking ACE inhibitors or angiotensin receptor blockers, using both an analysis of pooled data and a meta-analysis (Peto method). Overall, there was no association between vildagliptin use and angioedema. Among individuals taking an ACE inhibitor, however, vildagliptin use was associated with an increased risk of angioedema (14 confirmed cases among 2754 vildagliptin users versus 1 case among 1819 comparator users: odds ratio 4.57 [95% confidence interval 1.57 to 13.28]) in the meta-analysis. Vildagliptin use may be associated with increased risk of angioedema among patients taking ACE inhibitors, although absolute risk is small. Physicians confronted with angioedema in a patient taking an ACE inhibitor and DPP-IV inhibitor should consider this possible drug-drug interaction.

  12. Removal of inhibitor(s) of the polymerase chain reaction from formalin fixed, paraffin wax embedded tissues.

    PubMed

    An, S F; Fleming, K A

    1991-11-01

    A problem associated with use of the polymerase chain reaction to amplify specific DNA fragments from formalin fixed, paraffin wax embedded tissues is the not infrequent failure of amplification. One possible reason for this could be the presence of inhibitor(s), which interfere with the activity of the reaction. It has been shown that such inhibitor(s) exist when amplifying the human beta globin gene (which exists in human genomic DNA as a single copy gene) from routine clinical samples. A variety of methods to remove such inhibitor(s) were investigated. The results indicate that inhibitor(s) are removed by proteinase K digestion, followed by purification with phenol/chloroform, and centrifugation through a Centricon-30 membrane (30,000 molecular weight cut off). Other factors, including the length and concentration of the DNA sequence to be amplified, can also affect amplification.

  13. QSAR analyses on avian influenza virus neuraminidase inhibitors using CoMFA, CoMSIA, and HQSAR

    NASA Astrophysics Data System (ADS)

    Zheng, Mingyue; Yu, Kunqian; Liu, Hong; Luo, Xiaomin; Chen, Kaixian; Zhu, Weiliang; Jiang, Hualiang

    2006-09-01

    The recent wide spreading of the H5N1 avian influenza virus (AIV) in Asia, Europe and Africa and its ability to cause fatal infections in human has raised serious concerns about a pending global flu pandemic. Neuraminidase (NA) inhibitors are currently the only option for treatment or prophylaxis in humans infected with this strain. However, drugs currently on the market often meet with rapidly emerging resistant mutants and only have limited application as inadequate supply of synthetic material. To dig out helpful information for designing potent inhibitors with novel structures against the NA, we used automated docking, CoMFA, CoMSIA, and HQSAR methods to investigate the quantitative structure-activity relationship for 126 NA inhibitors (NIs) with great structural diversities and wide range of bioactivities against influenza A virus. Based on the binding conformations discovered via molecular docking into the crystal structure of NA, CoMFA and CoMSIA models were successfully built with the cross-validated q 2 of 0.813 and 0.771, respectively. HQSAR was also carried out as a complementary study in that HQSAR technique does not require 3D information of these compounds and could provide a detailed molecular fragment contribution to the inhibitory activity. These models also show clearly how steric, electrostatic, hydrophobicity, and individual fragments affect the potency of NA inhibitors. In addition, CoMFA and CoMSIA field distributions are found to be in well agreement with the structural characteristics of the corresponding binding sites. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction should be useful in developing novel potent NA inhibitors.

  14. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors.

    PubMed

    Cangoz, S; Chang, Y-Y; Chempakaseril, S J; Guduru, R C; Huynh, L M; John, J S; John, S T; Joseph, M E; Judge, R; Kimmey, R; Kudratov, K; Lee, P J; Madhani, I C; Shim, P J; Singh, S; Singh, S; Ruchalski, C; Raffa, R B

    2013-10-01

    A novel class of antidiabetic drugs - SGLT2 (Na(+) /glucose cotransporter type 2) inhibitors - target renal reabsorption of glucose and promote normal glucose levels, independent of insulin production or its action at receptors. We review this new mechanistic approach and the reported efficacy and safety of clinical testing of lead compounds. Information was obtained from various bibliographic sources, including PubMed and others, on the basic science and the clinical trials of SGLT2 inhibitors. The information was then summarized and evaluated from the perspective of contribution to a fuller understanding of the potential and current status of the lead clinical candidates. Diabetes mellitus is a spectrum of disorders that involves inadequate insulin function resulting in adverse health sequelae due to acute and chronic hyperglycaemia. Current antidiabetic pharmacotherapy primarily addresses either insulin production at the pancreatic β-cells or insulin action at insulin receptors. These drugs have less than full clinical effectiveness and sometimes therapy-limiting adverse effects. The third major component of glucose balance, namely elimination, has not been a significant therapeutic target to date. SGLT2 inhibitors are a novel approach. A sufficient number of clinical trials have been conducted on sufficiently chemically diverse SGLT2 inhibitors to reasonably conclude that they have efficacy (HbA1c reductions of 0·4-1%), and thus far, the majority of adverse effects have been mild and transitory or treatable, with the caveat of possible association with increased risk of breast cancer in women and bladder cancer in men. © 2013 John Wiley & Sons Ltd.

  15. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    PubMed Central

    Karanth, Santhosh; Tran, Vy My; Kuberan, Balagurunathan; Schlegel, Amnon

    2013-01-01

    SUMMARY Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs) and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr. PMID:24057001

  16. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors.

    PubMed

    Kaur, Rimaljeet; Kaur, Narinder; Gupta, Anil Kumar

    2014-11-01

    α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Carboxylesterase inhibitors

    PubMed Central

    Hatfield, M. Jason; Potter, Philip M.

    2011-01-01

    Introduction Carboxylesterases play major roles in the hydrolysis of numerous therapeutically active compounds. This is, in part, due to the prevalence of the ester moiety in these small molecules. However, the impact these enzymes may play on drug stability and pharmacokinetics is rarely considered prior to molecule development. Therefore, the application of selective inhibitors of this class of proteins may have utility in modulating the metabolism, distribution and toxicity of agents that are subjected to enzyme hydrolysis. Areas covered This review details the development of all such compounds dating back to 1986, but principally focuses on the very recent identification of selective human carboxylesterases inhibitors. Expert opinion The implementation of carboxylesterase inhibitors may significantly revolutionize drug discovery. Such molecules may allow for improved efficacy of compounds inactivated by this class of enzymes and/or reduce the toxicity of agents that are activated by these proteins. Furthermore, since lack of carboxylesterase activity appears to have no obvious biological consequence, these compounds could be applied in combination with virtually any esterified drug. Therefore, inhibitors of these proteins may have utility in altering drug hydrolysis and distribution in vivo. The characteristics, chemical and biological properties, and potential uses of such agents, are discussed here. PMID:21609191

  18. Development of a high-throughput screen to detect inhibitors of TRPS1 sumoylation.

    PubMed

    Brandt, Martin; Szewczuk, Lawrence M; Zhang, Hong; Hong, Xuan; McCormick, Patricia M; Lewis, Tia S; Graham, Taylor I; Hung, Sunny T; Harper-Jones, Amber D; Kerrigan, John J; Wang, Da-Yuan; Dul, Edward; Hou, Wangfang; Ho, Thau F; Meek, Thomas D; Cheung, Mui H; Johanson, Kyung O; Jones, Christopher S; Schwartz, Benjamin; Kumar, Sanjay; Oliff, Allen I; Kirkpatrick, Robert B

    2013-06-01

    Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK₁₂₀₁TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC₅₀ values of 12.5 μM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.

  19. Insight into the Structural Determinants of Imidazole Scaffold-Based Derivatives as TNF-α Release Inhibitors by in Silico Explorations.

    PubMed

    Wang, Yuan; Wu, Mingwei; Ai, Chunzhi; Wang, Yonghua

    2015-08-25

    Presently, 151 widely-diverse pyridinylimidazole-based compounds that show inhibitory activities at the TNF-α release were investigated. By using the distance comparison technique (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) methods, the pharmacophore models and the three-dimensional quantitative structure-activity relationships (3D-QSAR) of the compounds were explored. The proposed pharmacophore model, including two hydrophobic sites, two aromatic centers, two H-bond donor atoms, two H-bond acceptor atoms, and two H-bond donor sites characterizes the necessary structural features of TNF-α release inhibitors. Both the resultant CoMFA and CoMSIA models exhibited satisfactory predictability (with Q(2) (cross-validated correlation coefficient) = 0.557, R(2)ncv (non-cross-validated correlation coefficient) = 0.740, R(2)pre (predicted correlation coefficient) = 0.749 and Q(2) = 0.598, R(2)ncv = 0.767, R(2)pre = 0.860, respectively). Good consistency was observed between the 3D-QSAR models and the pharmacophore model that the hydrophobic interaction and hydrogen bonds play crucial roles in the mechanism of actions. The corresponding contour maps generated by these models provide more diverse information about the key intermolecular interactions of inhibitors with the surrounding environment. All these models have extended the understanding of imidazole-based compounds in the structure-activity relationship, and are useful for rational design and screening of novel 2-thioimidazole-based TNF-α release inhibitors.

  20. Insight into the Structural Determinants of Imidazole Scaffold-Based Derivatives as TNF-α Release Inhibitors by in Silico Explorations

    PubMed Central

    Wang, Yuan; Wu, Mingwei; Ai, Chunzhi; Wang, Yonghua

    2015-01-01

    Presently, 151 widely-diverse pyridinylimidazole-based compounds that show inhibitory activities at the TNF-α release were investigated. By using the distance comparison technique (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) methods, the pharmacophore models and the three-dimensional quantitative structure-activity relationships (3D-QSAR) of the compounds were explored. The proposed pharmacophore model, including two hydrophobic sites, two aromatic centers, two H-bond donor atoms, two H-bond acceptor atoms, and two H-bond donor sites characterizes the necessary structural features of TNF-α release inhibitors. Both the resultant CoMFA and CoMSIA models exhibited satisfactory predictability (with Q2 (cross-validated correlation coefficient) = 0.557, R2ncv (non-cross-validated correlation coefficient) = 0.740, R2pre (predicted correlation coefficient) = 0.749 and Q2 = 0.598, R2ncv = 0.767, R2pre = 0.860, respectively). Good consistency was observed between the 3D-QSAR models and the pharmacophore model that the hydrophobic interaction and hydrogen bonds play crucial roles in the mechanism of actions. The corresponding contour maps generated by these models provide more diverse information about the key intermolecular interactions of inhibitors with the surrounding environment. All these models have extended the understanding of imidazole-based compounds in the structure-activity relationship, and are useful for rational design and screening of novel 2-thioimidazole-based TNF-α release inhibitors. PMID:26307982

  1. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.

    PubMed

    Reddy, Rallabandi Harikrishna; Kim, Hackyoung; Cha, Seungbin; Lee, Bongsoo; Kim, Young Jun

    2017-05-28

    Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

  2. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.

    PubMed

    Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack

    2010-02-26

    The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  3. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less

  4. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Jung, Jinjoo; Koo, Jaeyoung; Cho, Wansang; Lee, Won Seok; Kim, Chanwoo; Park, Wonwoo; Park, Seung Bum

    2016-10-01

    Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.

  5. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots.

    PubMed

    Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian

    2003-04-01

    Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.

  6. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    PubMed

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  7. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors.

    PubMed

    Altaf, Mudassar; Miller, Christopher H; Bellows, David S; O'Toole, Ronan

    2010-11-01

    The objective of this study was to measure the efficacy of Mycobacterium smegmatis as a surrogate in vitro model for the detection of compounds which are inhibitory to the growth of Mycobacterium tuberculosis. A chemical screen of the LOPAC library for anti-mycobacterial compounds was performed using M. smegmatis. Parallel screens were conducted with another tuberculosis model, Mycobacterium bovis BCG, and with M. tuberculosis under identical growth conditions and the inhibitors detected across the three species were compared. 50% of compounds that were detected as active against M. tuberculosis were not detected using M. smegmatis compared to 21% of compounds using M. bovis BCG. To examine whether these findings were unique to LOPAC, screens were performed with the NIH Diversity Set and Spectrum Collection. An even higher proportion of M. tuberculosis inhibitors were not detected from the NIH Diversity Set and Spectrum Collection using M. smegmatis compared to M. bovis BCG. These data reveal that a significant proportion of M. tuberculosis inhibitors are missed in library screening with M. smegmatis. The basis of the variation in the inhibitory profiles of M. smegmatis and M. tuberculosis has yet to be fully determined, however, our genomic comparisons indicate that approximately 30% of M. tuberculosis proteins lack conserved orthologues in M. smegmatis compared to 3% being absent in M. bovis BCG. In conclusion, although M. smegmatis offers some technical benefits such as a shorter generation time and negligible risk to laboratory workers, it is significantly less effective in the detection of anti-M. tuberculosis compounds relative to M. bovis BCG. This limitation needs to be taken into consideration when selecting an in vitro screening model for tuberculosis drug discovery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  9. Discovery of highly selective inhibitors of p38alpha.

    PubMed

    Popa-Burke, Ioana; Birkos, Steve; Blackwell, Leonard; Cheatham, Lynn; Clark, Jennifer; Dickson, John K; Galasinski, Scott; Janzen, William P; Mendoza, Jose; Miller, Jennifer L; Mohney, Robert P; Steed, Paul M; Hodge, C Nicholas

    2005-01-01

    The p38 MAP kinases are a family of serine/threonine protein kinases that play a key role in cellular pathways leading to pro-inflammatory responses. We have developed and implemented a method for rapidly identifying and optimizing potent and selective p38alpha inhibitors, which is amenable to other targets and target classes. A diverse library of druggable, purified and quantitated molecules was assembled and standardized enzymatic assays were performed in a microfluidic format that provided very accurate and precise inhibition data allowing for development of SAR directly from the primary HTS. All compounds were screened against a collection of more than 60 enzymes (kinases, proteases and phosphatases), allowing for removal of promiscuous and non-selective inhibitors very early in the discovery process. Follow-up enzymological studies included measurement of concentration of compound in buffer, yielding accurate determination of K(i) and IC50 values, as well as mechanism of action. In addition, active compounds were screened against less desirable properties such as inhibition of the enzyme activity by aggregation, irreversible binding, and time-dependence. Screening of an 88,634-compound library through the above-described process led to the rapid identification of multiple scaffolds (>5 active compounds per scaffold) of potential drug leads for p38alpha that are highly selective against all other enzymes tested, including the three other p38 isoforms. Potency and selectivity data allowed prioritization of the identified scaffolds for optimization. Herein we present results around our 3-thio-1,2,4-triazole lead series of p38- selective inhibitors, including identification, SAR, synthesis, selectivity profile, enzymatic and cellular data in their progression towards drug candidates.

  10. Serotonin uptake inhibitors: uses in clinical therapy and in laboratory research.

    PubMed

    Fuller, R W

    1995-01-01

    Fluoxetine, zimelidine, sertraline, paroxetine, fluvoxamine, indalpine and citalopram are the selective inhibitors of serotonin uptake that have been most widely studied. Some of these compounds are or have been used clinically in the treatment of mental depression, obsessive-compulsive disorder and bulimia, and therapeutic benefit has been claimed in additional diseases as well. By blocking the membrane uptake carrier which transports serotonin from the extracellular space to inside the serotonin nerve terminals, these compounds increase extracellular concentrations of serotonin and amplify signals sent by serotonin neurons. Because serotonin neurons are widespread in the central nervous system, the functional consequences of blocking serotonin uptake are diverse, but are generally subtle. Animals treated with serotonin uptake inhibitors look normal in gross appearance, but effects such as reduced aggressive behavior, decreased food intake and altered food selection, analgesia, anticonvulsant activity, endocrine changes and neurochemical changes have been demonstrated and characterized. Serotonin uptake inhibitors have helped in revealing some dynamics of serotonin neurons; for example, when uptake is inhibited and extracellular serotonin concentration increases, presynaptic as well as postsynaptic receptors for serotonin are activated to a greater degree. A consequence of increased activation of autoreceptors on serotonin cell bodies and nerve terminals is a reduction in firing of serotonin neurons and a decrease in serotonin synthesis and release. The result is a limit on the degree to which extracellular serotonin and serotonergic neurotransmission are increased.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles.

    PubMed

    Janciauskiene, S

    2001-03-26

    Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.

  12. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach.

    PubMed

    Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z

    2010-05-17

    Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    PubMed Central

    Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio

    2008-01-01

    Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843

  14. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)

    PubMed Central

    Salah Ud-Din, Abu Iftiaf Md; Tikhomirova, Alexandra; Roujeinikova, Anna

    2016-01-01

    General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections. PMID:27367672

  15. Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts.

    PubMed

    Lovelock, Joshua D; Baker, Andrew H; Gao, Feng; Dong, Jing-Fei; Bergeron, Angela L; McPheat, Willie; Sivasubramanian, Natarajan; Mann, Douglas L

    2005-02-01

    The balance between matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), plays a critical role in cardiac remodeling. Although a number of studies have characterized the pathophysiological role of MMPs in the heart, very little is known with respect to the role of TIMPs in the heart. To delineate the role of TIMPs in the heart we examined the effects of adenovirus-mediated overexpression of TIMP-1, -2, -3, and -4 in cardiac fibroblasts. Infection of cardiac fibroblasts with adenoviral constructs containing human recombinant TIMP (AdTIMP-1, -2, -3, and -4) provoked a significant (P < 0.0001) 1.3-fold in increase in bromodeoxyuridine (BrdU) incorporation. Similarly, treatment of cardiac fibroblasts with AdTIMP-1-, -2-, -3-, and -4-conditioned medium led to a 1.2-fold increase in BrdU incorporation (P < 0.0001) that was abolished by pretreatment with anti-TIMP-1, -2, -3, and -4 antibodies. The effects of TIMPs were not mimicked by treating the cells with RS-130830, a broad-based MMP inhibitor, suggesting that the effects of TIMPs were independent of their ability to inhibit MMPs. Infection with AdTIMP-1, -2, -3, and -4 led to a significant increase in alpha-smooth muscle actin staining, consistent with TIMP-induced phenotypic differentiation into myofibroblasts. Finally, infection with AdTIMP-2 resulted in a significant increase in collagen synthesis, whereas infection with AdTIMP-3 resulted in a significant increase in fibroblast apoptosis. TIMPs exert overlapping as well as diverse effects on isolated cardiac fibroblasts. The observation that TIMPs stimulate fibroblast proliferation as well as phenotypic differentiation into myofibroblasts suggests that TIMPs may play an important role in tissue repair in the heart that extends beyond their traditional role as MMP inhibitors.

  16. New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation.

    PubMed

    Blair, Wade S; Cao, Joan; Fok-Seang, Juin; Griffin, Paul; Isaacson, Jason; Jackson, R Lynn; Murray, Edward; Patick, Amy K; Peng, Qinghai; Perros, Manos; Pickford, Chris; Wu, Hua; Butler, Scott L

    2009-12-01

    A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.

  17. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  18. Unexpected Biotransformation of the HDAC Inhibitor Vorinostat Yields Aniline-Containing Fungal Metabolites.

    PubMed

    Adpressa, Donovon A; Stalheim, Kayla J; Proteau, Philip J; Loesgen, Sandra

    2017-07-21

    The diversity of genetically encoded small molecules produced by filamentous fungi remains largely unexplored, which makes these fungi an attractive source for the discovery of new compounds. However, accessing their full chemical repertoire under common laboratory culture conditions is a challenge. Epigenetic manipulation of gene expression has become a well-established tool for overcoming this obstacle. Here, we report that perturbation of the endophytic ascomycete Chalara sp. 6661, producer of the isofusidienol class of antibiotics, with the HDAC inhibitor vorinostat resulted in the production of four new modified xanthones. The structures of chalanilines A (1) and B (2) and adenosine-coupled xanthones A (3) and B (4) were determined by extensive NMR spectroscopic analyses, and the bioactivities of 1-4 were tested in antibiotic and cytotoxicity assays. Incorporation studies with deuterium-labeled vorinostat indicate that the aniline moiety in chalalanine A is derived from vorinostat itself. Our study shows that Chalara sp. is able to metabolize the HDAC inhibitor vorinostat to release aniline. This is a rare report of fungal biotransformation of the popular epigenetic modifier vorinostat into aniline-containing polyketides.

  19. Natural product-based amyloid inhibitors.

    PubMed

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R; Xu, Bin

    2017-09-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Natural product-based amyloid inhibitors

    PubMed Central

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R.; Xu, Bin

    2018-01-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. PMID:28390938

  1. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    PubMed

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.

  3. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease.

    PubMed

    Liu, Wei; Lang, Ming; Youdim, Moussa B H; Amit, Tamar; Sun, Yewei; Zhang, Zaijun; Wang, Yuqiang; Weinreb, Orly

    2016-10-01

    Current novel therapeutic approach suggests that multifunctional compounds with diverse biological properties and a single bioavailability and pharmacokinetic metabolism, will produce higher significant advantages in treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Based on this rational, a new class of cholinesterase (ChE)-monoamine oxidase (MAO) inhibitors were designed and synthesized by amalgamating the propargyl moiety of the irreversible selective MAO-B inhibitor, neuroprotective/neurorestorative anti-Parkinsonian drug, rasagiline, into the "N-methyl" position of the ChE inhibitor, anti-AD drug rivastigmine. Initially, we examined the MAO and ChE inhibitory effect of these novel compounds, MT series in vitro and in vivo. Among MT series, MT-031 exhibited higher potency as a dual MAO-A and ChE inhibitor compared to other compounds in acute-treated mice. Additionally, MT-031 was found to increase the striatal levels of dopamine (DA), serotonin (5-HT) and norepinephrine (NE), and prevent the metabolism of DA and 5-HT. Finally, we have demonstrated that MT-031 exerted neuroprotective effect against H2O2-induced neurotoxicity and reactive oxygen species generation in human neuroblastoma SH-SY5Y cells. These findings provide evidence that MT-031 is a potent brain permeable novel multifunctional, neuroprotective and MAO-A/ChE inhibitor, preserves in one molecule entity some of the beneficial properties of its parent drugs, rasagiline and rivastigmine, and thus may be indicated as novel therapeutic approach for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combined treatment with MAO-A inhibitor and MAO-B inhibitor increases extracellular noradrenaline levels more than MAO-A inhibitor alone through increases in beta-phenylethylamine.

    PubMed

    Kitaichi, Yuji; Inoue, Takeshi; Nakagawa, Shin; Boku, Shuken; Izumi, Takeshi; Koyama, Tsukasa

    2010-07-10

    Monoamine oxidase inhibitors (MAO inhibitors) have been widely used as antidepressants. However, it remains unclear whether a difference exists between non-selective MAO inhibitors and selective MAO-A inhibitors in terms of their antidepressant effects. Using in vivo microdialysis methods, we measured extracellular noradrenaline and serotonin levels following administration of Ro 41-1049, a reversible MAO-A inhibitor and/or lazabemide, a reversible MAO-B inhibitor in the medial prefrontal cortex (mPFC) of rats. We examined the effect of local infusion of beta-phenylethylamine to the mPFC of rats on extracellular noradrenaline and serotonin levels. Furthermore, the concentrations of beta-phenylethylamine in the tissue of the mPFC after combined treatment with Ro 41-1049 and lazabemide were measured. The Ro 41-1049 alone and the combined treatment significantly increased extracellular noradrenaline levels compared with vehicle and lazabemide alone. Furthermore, the combined treatment increased noradrenaline levels significantly more than Ro 41-1049 alone did. The Ro 41-1049 alone and the combined treatment significantly increased extracellular serotonin levels compared with vehicle and lazabemide alone, but no difference in serotonin levels was found between the combined treatment group and the Ro 41-1049 group. Local infusion of low-dose beta-phenylethylamine increased extracellular noradrenaline levels, but not that of serotonin. Only the combined treatment significantly increased beta-phenylethylamine levels in tissues of the mPFC. Our results suggest that the combined treatment with a MAO-A inhibitor and a MAO-B inhibitor strengthens antidepressant effects because the combined treatment increases extracellular noradrenaline levels more than a MAO-A inhibitor alone through increases in beta-phenylethylamine. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Diverse Classrooms, Diverse Curriculum, Diverse Complications: Three Teacher Perspectives

    ERIC Educational Resources Information Center

    Ungemah, Lori D.

    2015-01-01

    Racial, ethnic, linguistic, and religious diversity continues to increase in classrooms. Many call for a more diverse curriculum, but curricular diversity brings its own challenges to both teachers and students. These three vignettes are drawn from my ethnographic data at Atlantic High School in Brooklyn, New York, where I worked for ten years as…

  6. Natural products as zinc-dependent histone deacetylase inhibitors.

    PubMed

    Tan, Shuai; Liu, Zhao-Peng

    2015-03-01

    Zinc-dependent histone deacetylases (HDACs), a family of hydrolases that remove acetyl groups from lysine residues, play an important role in the regulation of multiple processes, from gene expression to protein activity. The dysregulation of HDACs is associated with many diseases including cancer, neurological disorders, cellular metabolism disorders, and inflammation. Molecules that act as HDAC inhibitors (HDACi) exhibit a variety of related bioactivities. In particular, HDACi have been applied clinically for the treatment of cancers. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small-molecule chemotypes, including a number of natural products. This review provides a systematic introduction of natural HDACi, with an emphasis on their enzyme inhibitory potency, selectivity, and biological activities, highlighting their various binding modes with HDACs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.

    PubMed

    Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram

    2013-08-07

    Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization.

  8. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.

    PubMed

    Mohammed, M Z; Vyjayanti, V N; Laughton, C A; Dekker, L V; Fischer, P M; Wilson, D M; Abbotts, R; Shah, S; Patel, P M; Hickson, I D; Madhusudan, S

    2011-02-15

    Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.

  9. Exploring the structural diversity in inhibitors of α-synuclein amyloidogenic folding, aggregation and neurotoxicity

    NASA Astrophysics Data System (ADS)

    Das, Sukanya; Pukala, Tara L.; Smid, Scott D.

    2018-05-01

    Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson’s disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2', 3', 4' trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favourable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 hrs incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that i

  10. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics

    PubMed Central

    Corsino, Patrick E.; Narayan, Satya

    2015-01-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non–ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non–ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. PMID:26018905

  11. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Syk inhibitors.

    PubMed

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  13. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings.

    PubMed

    Hirai, Go; Sodeoka, Mikiko

    2015-05-19

    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  14. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of

  15. The interplay of diversity training and diversity beliefs on team creativity in nationality diverse teams.

    PubMed

    Homan, Astrid C; Buengeler, Claudia; Eckhoff, Robert A; van Ginkel, Wendy P; Voelpel, Sven C

    2015-09-01

    Attaining value from nationality diversity requires active diversity management, which organizations often employ in the form of diversity training programs. Interestingly, however, the previously reported effects of diversity training are often weak and, sometimes, even negative. This situation calls for research on the conditions under which diversity training helps or harms teams. We propose that diversity training can increase team creativity, but only for teams with less positive pretraining diversity beliefs (i.e., teams with a greater need for such training) and that are sufficiently diverse in nationality. Comparing the creativity of teams that attended nationality diversity training versus control training, we found that for teams with less positive diversity beliefs, diversity training increased creative performance when the team's nationality diversity was high, but undermined creativity when the team's nationality diversity was low. Diversity training had less impact on teams with more positive diversity beliefs, and training effects were not contingent upon these teams' diversity. Speaking to the underlying process, we showed that these interactive effects were driven by the experienced team efficacy of the team members. We discuss theoretical and practical implications for nationality diversity management. (c) 2015 APA, all rights reserved).

  16. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries

    PubMed Central

    Hochgürtel, Matthias; Kroth, Heiko; Piecha, Dorothea; Hofmann, Michael W.; Nicolau, Claude; Krause, Sonja; Schaaf, Otmar; Sonnenmoser, Gabriele; Eliseev, Alexey V.

    2002-01-01

    Neuraminidase, a key enzyme responsible for influenza virus propagation, has been used as a template for selective synthesis of small subsets of its own inhibitors from theoretically highly diverse dynamic combinatorial libraries. We show that the library building blocks, aldehydes and amines, form significant amounts of the library components resulting from their coupling by reductive amination only in the presence of the enzyme. The target amplifies the best hits at least 120-fold. The dynamic libraries synthesized and screened in such an in vitro virtual mode form the components that possess high inhibitory activity, as confirmed by enzyme assays with independently synthesized individual compounds. PMID:11891312

  18. Comparative analyses of structural features and scaffold diversity for purchasable compound libraries.

    PubMed

    Shang, Jun; Sun, Huiyong; Liu, Hui; Chen, Fu; Tian, Sheng; Pan, Peichen; Li, Dan; Kong, Dexin; Hou, Tingjun

    2017-04-21

    Large purchasable screening libraries of small molecules afforded by commercial vendors are indispensable sources for virtual screening (VS). Selecting an optimal screening library for a specific VS campaign is quite important to improve the success rates and avoid wasting resources in later experimental phases. Analysis of the structural features and molecular diversity for different screening libraries can provide valuable information to the decision making process when selecting screening libraries for VS. In this study, the structural features and scaffold diversity of eleven purchasable screening libraries and Traditional Chinese Medicine Compound Database (TCMCD) were analyzed and compared. Their scaffold diversity represented by the Murcko frameworks and Level 1 scaffolds was characterized by the scaffold counts and cumulative scaffold frequency plots, and visualized by Tree Maps and SAR Maps. The analysis demonstrates that, based on the standardized subsets with similar molecular weight distributions, Chembridge, ChemicalBlock, Mucle, TCMCD and VitasM are more structurally diverse than the others. Compared with all purchasable screening libraries, TCMCD has the highest structural complexity indeed but more conservative molecular scaffolds. Moreover, we found that some representative scaffolds were important components of drug candidates against different drug targets, such as kinases and guanosine-binding protein coupled receptors, and therefore the molecules containing pharmacologically important scaffolds found in screening libraries might be potential inhibitors against the relevant targets. This study may provide valuable perspective on which purchasable compound libraries are better for you to screen. Graphical abstract Selecting diverse compound libraries with scaffold analyses.

  19. 'Candidatus Phytoplasma phoenicium' associated with almond witches'-broom disease: from draft genome to genetic diversity among strain populations.

    PubMed

    Quaglino, Fabio; Kube, Michael; Jawhari, Maan; Abou-Jawdah, Yusuf; Siewert, Christin; Choueiri, Elia; Sobh, Hana; Casati, Paola; Tedeschi, Rosemarie; Lova, Marina Molino; Alma, Alberto; Bianco, Piero Attilio

    2015-07-30

    Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.

  20. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  1. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  2. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  3. Phosphodiesterase 4 inhibitors.

    PubMed

    Zebda, Rema; Paller, Amy S

    2018-03-01

    Historically, drugs available for treating atopic dermatitis (AD) have been limited to topical corticosteroids and topical calcineurin inhibitors, with systemic immunosuppressants and phototherapy reserved for severe AD. Despite their efficacy and infrequent adverse events, phobia about the use of topical steroids and calcineurin inhibitors has limited their use. More targeted options with fewer systemic and cutaneous side effects are needed for treating AD. Phosphodiesterase 4 (PDE4) is involved in the regulation of proinflammatory cytokines via the degradation of cyclic adenosine monophosphate. PDE4 activity is increased in the inflammatory cells of patients with AD, leading to increased production of proinflammatory cytokines and chemokines. Targeting PDE4 reduces the production of these proinflammatory mediators in AD. Both topical and oral PDE4 inhibitors have a favorable safety profile. Crisaborole 2% ointment, a topical PDE4, is now US Food and Drug Administration-approved for children older than 2 years and adults in the treatment of AD. Crisaborole 2% ointment shows early and sustained improvement in disease severity and pruritus and other AD symptoms, with burning and/or stinging upon application as the only related adverse event. Other PDE4 inhibitors are currently in trials with promising efficacy and safety. Copyright © 2017. Published by Elsevier Inc.

  4. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice.

    PubMed

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan

    2018-01-01

    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Generation of tricyclic imidazo[1,2-a]pyrazines as novel PI3K inhibitors by application of a conformational restriction strategy.

    PubMed

    Martínez González, Sonia; Rodríguez-Arístegui, Sonsoles; Hernández, Ana Isabel; Varela, Carmen; González Cantalapiedra, Esther; Álvarez, Rosa María; Rodríguez Hergueta, Antonio; Bischoff, James R; Albarrán, María Isabel; Cebriá, Antonio; Cendón, Elena; Cebrián, David; Alfonso, Patricia; Pastor, Joaquín

    2017-06-01

    The involvement of the phosphoinositide 3-kinases (PI3Ks) in several diseases, especially in the oncology area, has singled it as one of the most explored therapeutic targets in the last two decades. Many different inhibitor classes have been developed by the industry and academia with a diverse selectivity profile within the PI3K family. In the present manuscript we report a further exploration of our lead PI3K inhibitor ETP-46321 (Martínez González et al., 2012) 1 by the application of a conformational restriction strategy. For that purpose we have successfully synthesized novel tricyclic imidazo[1,2-a]pyrazine derivatives as PI3K inhibitors. This new class of compounds had enable the exploration of the solvent-accessible region within PI3K and resulted in the identification of molecule 8q with the best selectivity PI3Kα/δ isoform profile in vitro, and promising in vivo PK data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Generation of the first structure-based pharmacophore model containing a selective "zinc binding group" feature to identify potential glyoxalase-1 inhibitors.

    PubMed

    Al-Balas, Qosay; Hassan, Mohammad; Al-Oudat, Buthina; Alzoubi, Hassan; Mhaidat, Nizar; Almaaytah, Ammar

    2012-11-22

    Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a "zinc binding group" which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available "Zinc Clean Drug-Like Database" that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the "zinc binding group" with the highest consensus scoring from docking.

  7. Traditional cheeses: rich and diverse microbiota with associated benefits.

    PubMed

    Montel, Marie-Christine; Buchin, Solange; Mallet, Adrien; Delbes-Paus, Céline; Vuitton, Dominique A; Desmasures, Nathalie; Berthier, Françoise

    2014-05-02

    The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in

  8. Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation, and Neurotoxicity

    PubMed Central

    Das, Sukanya; Pukala, Tara L.; Smid, Scott D.

    2018-01-01

    Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson's disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2′, 3′, 4′ trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favorable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 h incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol, and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that (i

  9. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  10. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Konrath, Eduardo Luis; Passos, Carolina dos Santos; Klein, Luiz Carlos; Henriques, Amélia T

    2013-12-01

    The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure-activity relationship (SAR) and docking studies. Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors. The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD. © 2013 Royal Pharmaceutical Society.

  11. Identification of a New Isoindole-2-yl Scaffold as a Qo and Qi Dual Inhibitor of Cytochrome bc 1 Complex: Virtual Screening, Synthesis, and Biochemical Assay.

    PubMed

    Azizian, Homa; Bagherzadeh, Kowsar; Shahbazi, Sophia; Sharifi, Niusha; Amanlou, Massoud

    2017-09-18

    Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.

  12. Phytochemical diversity drives plant–insect community diversity

    PubMed Central

    Richards, Lora A.; Dyer, Lee A.; Forister, Matthew L.; Smilanich, Angela M.; Dodson, Craig D.; Leonard, Michael D.; Jeffrey, Christopher S.

    2015-01-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores. PMID:26283384

  13. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors

    PubMed Central

    Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted

    2012-01-01

    The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661

  14. Reversal of Acetylcholinesterase Inhibitor Toxicity In Vivo by Inhibitors of Choline Transport.

    DTIC Science & Technology

    1983-10-31

    the increased interaction of acetylcholine with the receptor resulting from the inhibition of the enzyme acetylcholinesterase. . Acetylcholinesterase...competitive inhibitors of acetylcholine at the enzyme receptor. The second category, "reversible" cholinesterase inhibitors, form covalent bonds with the...method of Ellman et al. (46) was used to determine the acetyicholinesterase activity in mouse brain homogenates. Briefly, the enzyme activity was

  15. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  16. Rho kinase inhibitors: a patent review (2012 - 2013).

    PubMed

    Feng, Yangbo; LoGrasso, Philip V

    2014-03-01

    The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.

  17. [Fish ovarian fluid contains protease inhibitors].

    PubMed

    Minin, A A; Ozerova, S G

    2015-01-01

    Studies of the conditions under which fish egg is activated spontaneously without the sperm showed that the egg retains the ability for fertilization in the ovarian (coelomic) fluid, which surrounds it in the gonad cavity after ovulation. Earlier, we showed that, in artificial media, the spontaneous activation is suppressed by protease inhibitors. In this study, we investigated the presence of natural protease inhibitors in the ovarian fluid and showed that the ovarian fluid of zebrafish and loach contains protease inhibitors, in particular, type I serpin a, a protein inhibitor of trypsin proteases.

  18. Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors.

    PubMed

    Starostina, Natalia G; Kipreos, Edward T

    2012-01-01

    The mammalian CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors (CKIs) comprises three proteins--p21(Cip1/WAF1), p27(Kip1), and p57(Kip2)--that bind and inhibit cyclin-CDK complexes, which are key regulators of the cell cycle. CIP/KIP CKIs have additional independent functions in regulating transcription, apoptosis and actin cytoskeletal dynamics. These divergent functions are performed in distinct cellular compartments and contribute to the seemingly contradictory observation that the CKIs can both suppress and promote cancer. Multiple ubiquitin ligases (E3s) direct the proteasome-mediated degradation of p21, p27 and p57. This review analyzes recent data highlighting our current understanding of how distinct E3 pathways regulate subpopulations of the CKIs to control their diverse functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  20. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Sang, Jim; Friedland, Julie C; He, Suqin; Sequeira, Manuel; Zhang, Chaohua; Wada, Yumiko; Proia, David A

    2012-12-01

    Mutant KRAS is a feature of more than 25% of non-small cell lung cancers (NSCLC) and represents one of the most prevalent oncogenic drivers in this disease. NSCLC tumors with oncogenic KRAS respond poorly to current therapies, necessitating the pursuit of new treatment strategies. Targeted inhibition of the molecular chaperone Hsp90 results in the coordinated blockade of multiple oncogenic signaling pathways in tumor cells and has thus emerged as an attractive avenue for therapeutic intervention in human malignancies. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90 currently in clinical trials for NSCLCs in a panel of lung cancer cell lines harboring a diverse spectrum of KRAS mutations. In vitro, ganetespib was potently cytotoxic in all lines, with concomitant destabilization of KRAS signaling effectors. Combinations of low-dose ganetespib with MEK or PI3K/mTOR inhibitors resulted in superior cytotoxic activity than single agents alone in a subset of mutant KRAS cells, and the antitumor efficacy of ganetespib was potentiated by cotreatment with the PI3K/mTOR inhibitor BEZ235 in A549 xenografts in vivo. At the molecular level, ganetespib suppressed activating feedback signaling loops that occurred in response to MEK and PI3K/mTOR inhibition, although this activity was not the sole determinant of combinatorial benefit. In addition, ganetespib sensitized mutant KRAS NSCLC cells to standard-of-care chemotherapeutics of the antimitotic, topoisomerase inhibitor, and alkylating agent classes. Taken together, these data underscore the promise of ganetespib as a single-agent or combination treatment in KRAS-driven lung tumors.

  1. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.

    PubMed

    Su, Bo-Han; Huang, Yi-Syuan; Chang, Chia-Yun; Tu, Yi-Shu; Tseng, Yufeng J

    2013-10-31

    There is a compelling need to discover type II inhibitors targeting the unique DFG-out inactive kinase conformation since they are likely to possess greater potency and selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a currently available and approved drug or inhibitor, as a template to design new drugs via computational de novo design is helpful when working with known ligand-receptor interactions. This study proposes a new template-based de novo design protocol to discover new inhibitors that preserve and also optimize the binding interactions of the type II kinase template. First, sorafenib (Nexavar) and nilotinib (Tasigna), two type II inhibitors with different ligand-receptor interactions, were selected as the template compounds. The five-step protocol can reassemble each drug from a large fragment library. Our procedure demonstrates that the selected template compounds can be successfully reassembled while the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the algorithm is able to construct more potent compounds, we considered kinase inhibitors and other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization was initiated using a template compound possessing a less than optimal activity from a series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives inhibiting AChE respectively. Three compounds with greater potency than the template compound were discovered that were also included in the original congeneric series. This template-based lead optimization protocol with the fragment library can help to design compounds with preferred binding interactions of known inhibitors automatically and further optimize the compounds in the binding pockets.

  2. Histone Deacetylase Inhibitors as Anticancer Drugs.

    PubMed

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  3. Histone Deacetylase Inhibitors as Anticancer Drugs

    PubMed Central

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-01-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities. PMID:28671573

  4. Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells

    PubMed Central

    Corominas-Faja, Bruna; Cuyàs, Elisabet; Lozano-Sánchez, Jesús; Cufí, Sílvia; Verdura, Sara; Fernández-Arroyo, Salvador; Borrás-Linares, Isabel; Martin-Castillo, Begoña; Martin, Ángel G; Lupu, Ruth; Nonell-Canals, Alfons; Micol, Vicente; Joven, Jorge; Segura-Carretero, Antonio; Menendez, Javier A

    2018-01-01

    Abstract Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24−/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations. PMID:29452350

  5. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  6. [ACE inhibitors and the kidney].

    PubMed

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  7. Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model.

    PubMed

    Hilden, Ida; Lauritzen, Brian; Sørensen, Brit Binow; Clausen, Jes Thorn; Jespersgaard, Christina; Krogh, Berit Olsen; Bowler, Andrew Neil; Breinholt, Jens; Gruhler, Albrecht; Svensson, L Anders; Petersen, Helle Heibroch; Petersen, Lars Christian; Balling, Kristoffer W; Hansen, Lene; Hermit, Mette Brunsgaard; Egebjerg, Thomas; Friederichsen, Birgitte; Ezban, Mirella; Bjørn, Søren Erik

    2012-06-14

    Hemophilia is treated by IV replacement therapy with Factor VIII (FVIII) or Factor IX (FIX), either on demand to resolve bleeding, or as prophylaxis. Improved treatment may be provided by drugs designed for subcutaneous and less frequent administration with a reduced risk of inhibitor formation. Tissue factor pathway inhibitor (TFPI) down-regulates the initiation of coagulation by inhibition of Factor VIIa (FVIIa)/tissue factor/Factor Xa (FVIIa/TF/FXa). Blockage of TFPI inhibition may facilitate thrombin generation in a hemophilic setting. A high-affinity (K(D) = 25pM) mAb, mAb 2021, against TFPI was investigated. Binding of mAb 2021 to TFPI effectively prevented inhibition of FVIIa/TF/FXa and improved clot formation in hemophilia blood and plasma. The binding epitope on the Kunitz-type protease inhibitor domain 2 of TFPI was mapped by crystallography, and showed an extensive overlap with the FXa contact region highlighting a structural basis for its mechanism of action. In a rabbit hemophilia model, an intravenous or subcutaneous dose significantly reduced cuticle bleeding. mAb 2021 showed an effect comparable with that of rFVIIa. Cuticle bleeding in the model was reduced for at least 7 days by a single intravenous dose of mAb 2021. This study suggests that neutralization of TFPI by mAb 2021 may constitute a novel treatment option in hemophilia.

  8. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis.

    PubMed

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-02-28

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms-that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  9. Inhibitors of Ethylene Biosynthesis and Signaling.

    PubMed

    Schaller, G Eric; Binder, Brad M

    2017-01-01

    Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.

  10. Hit identification of novel heparanase inhibitors by structure- and ligand-based approaches.

    PubMed

    Gozalbes, Rafael; Mosulén, Silvia; Ortí, Leticia; Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J; Melnyk, Patricia; Pineda-Lucena, Antonio

    2013-04-01

    Heparanase is a key enzyme involved in the dissemination of metastatic cancer cells. In this study a combination of in silico techniques and experimental methods was used to identify new potential inhibitors against this target. A 3D model of heparanase was built from sequence homology and applied to the virtual screening of a library composed of 27 known heparanase inhibitors and a commercial collection of drugs and drug-like compounds. The docking results from this campaign were combined with those obtained from a pharmacophore model recently published based in the same set of chemicals. Compounds were then ranked according to their theoretical binding affinity, and the top-rated commercial drugs were selected for further experimental evaluation. Biophysical methods (NMR and SPR) were applied to assess experimentally the interaction of the selected compounds with heparanase. The binding site was evaluated via competition experiments, using a known inhibitor of heparanase. Three of the selected drugs were found to bind to the active site of the protein and their KD values were determined. Among them, the antimalarial drug amodiaquine presented affinity towards the protein in the low-micromolar range, and was singled out for a SAR study based on its chemical scaffold. A subset of fourteen 4-arylaminoquinolines from a global set of 249 analogues of amodiaquine was selected based on the application of in silico models, a QSAR solubility prediction model and a chemical diversity analysis. Some of these compounds displayed binding affinities in the micromolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A crystalline protein-proteinase inhibitor from pinto bean seeds.

    PubMed

    Wang, D

    1975-06-26

    A crystalline protein-proteinase inhibitor has been isolated from seeds of Pinto bean (Phaseolus vulgaris cultvar. Pinto). It has an average molecular weight of 19 000 as estimated by gel filtration. This crystalline inhibitor is highly active against both bovine pancreatic trypsin and alpha-chymotrypsin. Complexes of both trypsin-inhibitor and alpha-chymotrypsin-inhibitor have been isolated. The inhibitor which was derived from the dissociated trypsin-inhibitor complex was only 62% as effective as the original compound against either enzyme. In contrast, the inhibitor obtained from alpha-chymotrypsin-inhibitor complex retained its full original inhibitory activity for trypsin, but only 25% of its original activity against alpha-chymotrypsin. The dissociated inhibitor from alpha-chymotrypsin-inhibitor compex, despite its full inhibitory activity, had been modified to such an extent that it could no longer form any precipitable complex with trypsin. The crystalline protein-proteinase inhibitor is not homogeneous and has been resolved into two distinct inhibitors in terms of their physical and chemical properties. These two inhibitors are designated as Pinto bean proteinase inhibitor I and II and their respective minimum molecular weights are 9100 and 10 000. They differ most strikingly in their amino acid composition in that inhibitor II is void of both valine and methionine.

  12. Identification of Diet-Derived Constituents as Potent Inhibitors of Intestinal Glucuronidation

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Lazarus, Philip; Graf, Tyler N.; Oberlies, Nicholas H.

    2014-01-01

    Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance–drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance–drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC50 determination. The IC50 values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC50 determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance–drug interactions that warrant advanced modeling and simulation to inform clinical assessment. PMID:25008344

  13. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils

    DOE PAGES

    Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; ...

    2017-08-03

    Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serinemore » with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.« less

  14. Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer.

    PubMed

    Dine, Jennifer; Gordon, RuthAnn; Shames, Yelena; Kasler, Mary Kate; Barton-Burke, Margaret

    2017-01-01

    Cancer survival rates are generally increasing in the United States. These trends have been partially attributed to improvement in therapeutic strategies. Cancer immunotherapy is an example of one of the newer strategies used to fight cancer, which primes or activates the immune system to produce antitumor effects. The first half of this review paper concisely describes the cell mechanisms that control antitumor immunity and the major immunotherapeutic strategies developed to target these mechanisms. The second half of the review discusses in greater depth immune checkpoint inhibitors that have recently demonstrated tremendous promise for the treatment of diverse solid tumor types, including melanoma, non-small cell lung cancer, and others. More specifically, the mechanisms of action, side effects, and patient and family management and education concerns are discussed to provide oncology nurses up-to-date information relevant to caring for cancer-affected patients treated with immune checkpoint inhibitors. Future directions for cancer immunotherapy are considered.

  15. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isotype-selective inhibition

    PubMed Central

    Torbett, Neil E; Luna, Antonio; Knight, Zachary A.; Houk, Andrew; Moasser, Mark; Weiss, William; Shokat, Kevan M.; Stokoe, David

    2011-01-01

    Synopsis The Phosphoinositide-3-kinase (PI3K) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we demonstrate that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110α inhibitors were generally effective in inhibiting the phosphorylation of Akt and S6, two downstream components of PI3K signaling, in most cell lines examined. In contrast, 110β selective inhibitors only reduced Akt phosphorylation in PTEN mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing a cell cycle arrest in the G1 phase of the cell cycle, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signaling pathways. Taken together our data indicates that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts. PMID:18498248

  16. [The primary structure of the alpha-amylase inhibitor Hoe 467A from Streptomyces tendae 4158. A new class of inhibitors].

    PubMed

    Aschauer, H; Vértesy, L; Nesemann, G; Braunitzer, G

    1983-10-01

    The native or modified alpha-amylase inhibitor Hoe 467A - isolated from the culture medium of Streptomyces tendae 4158 - and overlapping peptides were degraded by the automatic Edman technique. The oxidized or aminoethylated or oxidized and maleoylated inhibitor was digested with trypsin and the native inhibitor with pepsin. Further digestion with Staphylococcus aureus proteinase was also carried out. After peptic digestion two cystin peptides were isolated, which allowed the establishment of the disulfide bonds. The alpha-amylase inhibitor is a polypeptid consisting of 74 amino-acid residues with a molecular mass of 7958 Da. The inhibitor is composed of all naturally occurring amino acids except methionine and phenylalanine and shows no sequence homology to known inhibitors. The clinical and pharmacological importance in respect to the inhibitors ability for inactivation of human salivary and pancreatic alpha-amylase is discussed. Especially the proteinase resistance of the inhibitor enables a clinical application in human (e.g. Diabetes mellitus) per os.

  17. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  18. Effect of phosphodiesterase inhibitors in the bladder.

    PubMed

    Chughtai, Bilal; Ali, Aizaz; Dunphy, Claire; Kaplan, Steven A

    2015-01-01

    Many aging men will experience lower urinary tract symptoms (LUTS). Phosphodiesterase type 5 (PDE5) inhibitors have shown promise in treating LUTS in these patients. PDE5 inhibitors mediate their effects through several pathways including cAMP, NO/cGMP, K-channel modulated pathways, and the l -cysteine/H 2 S pathway. PDE5 inhibitors exert their effect in muscle cells, nerve fibers, and interstitial cells (ICs). The use of PDE5 inhibitors led to improvement in LUTS. This included urodynamic parameters. PDE5 inhibitors may play a significant role in LUTS due to their effect on the bladder rather than the prostate.

  19. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    PubMed Central

    Liu, Chi; He, Gu; Jiang, Qinglin; Han, Bo; Peng, Cheng

    2013-01-01

    Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents. PMID:23839093

  20. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    PubMed

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  1. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II.

    PubMed

    Bobovská, Adela; Tvaroška, Igor; Kóňa, Juraj

    2016-05-01

    Human Golgi α-mannosidase II (GMII), a zinc ion co-factor dependent glycoside hydrolase (E.C.3.2.1.114), is a pharmaceutical target for the design of inhibitors with anti-cancer activity. The discovery of an effective inhibitor is complicated by the fact that all known potent inhibitors of GMII are involved in unwanted co-inhibition with lysosomal α-mannosidase (LMan, E.C.3.2.1.24), a relative to GMII. Routine empirical QSAR models for both GMII and LMan did not work with a required accuracy. Therefore, we have developed a fast computational protocol to build predictive models combining interaction energy descriptors from an empirical docking scoring function (Glide-Schrödinger), Linear Interaction Energy (LIE) method, and quantum mechanical density functional theory (QM-DFT) calculations. The QSAR models were built and validated with a library of structurally diverse GMII and LMan inhibitors and non-active compounds. A critical role of QM-DFT descriptors for the more accurate prediction abilities of the models is demonstrated. The predictive ability of the models was significantly improved when going from the empirical docking scoring function to mixed empirical-QM-DFT QSAR models (Q(2)=0.78-0.86 when cross-validation procedures were carried out; and R(2)=0.81-0.83 for a testing set). The average error for the predicted ΔGbind decreased to 0.8-1.1kcalmol(-1). Also, 76-80% of non-active compounds were successfully filtered out from GMII and LMan inhibitors. The QSAR models with the fragmented QM-DFT descriptors may find a useful application in structure-based drug design where pure empirical and force field methods reached their limits and where quantum mechanics effects are critical for ligand-receptor interactions. The optimized models will apply in lead optimization processes for GMII drug developments. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Thiopurine Drugs Repositioned as Tyrosinase Inhibitors

    PubMed Central

    Choi, Joonhyeok; Lee, You-Mie; Jee, Jun-Goo

    2017-01-01

    Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors. PMID:29283382

  3. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening.

    PubMed

    Turk, Samo; Kovac, Andreja; Boniface, Audrey; Bostock, Julieanne M; Chopra, Ian; Blanot, Didier; Gobec, Stanislav

    2009-03-01

    The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add L-Ala, D-Glu, meso-A(2)pm or L-Lys, and D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute 'Diversity Set' on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC(50)=10 microM) and one novel MurF inhibitor (IC(50)=63 microM).

  4. Diverse Thinking about Diversity

    ERIC Educational Resources Information Center

    Kaplan, Sandra N.

    2013-01-01

    This article focuses on the concept of diversity in educational decision making. It is noted that the differences that distinguish the needs, interests and abilities are identified by educators. It lists misconceptions resulting from not attending to within-group diversity, and states that a "loss of self" for individual members of…

  5. The multiple functions of plant serine protease inhibitors

    PubMed Central

    Giri, Ashok P; Kaur, Harleen; Baldwin, Ian T

    2011-01-01

    Plant protease inhibitors (PIs) are a diverse group of proteins which have been intensely investigated due to their potential function in protecting plants against herbivorous insects by inhibiting digestive proteases. Although this mechanism has been well documented for a number of single PIs and their target enzymes, whether this mechanism protects plants in nature remains unclear. Moreover, many plants express a number of different PIs and it was unknown if these proteins work synergistically as defenses or if they also have other functions. We recently identified four serine PIs (SPI) of Solanum nigrum and demonstrated that they differ substantially in substrate specificity, accumulation patterns, and their effect against different natural herbivorous insects in field- and glasshouse experiments. These differences suggest that SPIs have at least partially diversified to provide protection against different attackers. Although we could not detect effects on plant development or growth when silencing SPIs, gene- and tissue-specific expression patterns suggest multiple functions in generative tissues, including a possible involvement in development. PMID:22004998

  6. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    PubMed

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  7. Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

    PubMed Central

    2012-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686

  8. Histone Deacetylase Inhibitors as a Novel Targeted Therapy Against Non-small Cell Lung Cancer: Where Are We Now and What Should We Expect?

    PubMed

    Damaskos, Christos; Tomos, Ioannis; Garmpis, Nikolaos; Karakatsani, Anna; Dimitroulis, Dimitrios; Garmpi, Anna; Spartalis, Eleftherios; Kampolis, Christos F; Tsagkari, Eleni; Loukeri, Angeliki A; Margonis, Georgios-Antonios; Spartalis, Michael; Andreatos, Nikolaos; Schizas, Dimitrios; Kokkineli, Stefania; Antoniou, Efstathios A; Nonni, Afroditi; Tsourouflis, Gerasimos; Markatos, Konstantinos; Kontzoglou, Konstantinos; Kostakis, Alkiviadis; Tomos, Periklis

    2018-01-01

    Non-small cell lung cancer constitutes the most common type of lung cancer, accounting for 85-90% of lung cancer, and is a leading cause of cancer-related death. Despite the progress during the past years, poor prognosis remains a challenge and requires further research and development of novel antitumor treatment. Recently, the role of histone deacetylases in gene expression has emerged showing their regulation of the acetylation of histone proteins and other non-histone protein targets and their role in chromatin organization, while their inhibitors, the histone deacetylase inhibitors, have been proposed to have a potential therapeutic role in diverse malignancies, including non-small cell lung cancer. This review article focuses on the role of histone deacetylase inhibitors in the treatment of non-small cell lung cancer and the major molecular mechanisms underlying their antitumor activity recognized so far. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. The existence of imidazoline corrosion inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J.A.; Valone, F.W.

    1985-05-01

    Spectroscopic methods, i.e., Fourier transform infrared (FT-IR), carbon-13 nuclear magnetic reasonance (/sup 13/C NMR), and ultraviolet (UV) spectroscopy, were used to investigate the actual chemical composition of oilfield corrosion inhibitors. Inhibitor formulations consisting of an amide or imidazoline reacted with a dimer-trimer acid, along with an ethoxylated surfactant and an aromatic solvent, were used for these studies. /sup 13/C NMR and FT-IR spectra of these inhibitors, as well as spectra of pure imidazolines, showed that the imidazoline functional group was fairly rapidly hydrolyzed to the amide form. For instance, in FT-IR studies, the imine functional group decreased in intensity asmore » a function of time. Coincident with this was an increase in the intensities of the vibrational resonances attributed to the amide functionality. The relative molar ratio of imidazoline to amide in a corrosion inhibitor could be calculated via UV spectroscopy. Within a 20 day interval after inhibitor synthesis, this ratio decreased by a factor greater than 20. These results, as well as a discussion of their economic impact on oilfield corrosion inhibitor formulation, are presented in this paper.« less

  10. Cholinesterase inhibitors: a patent review (2007 - 2011).

    PubMed

    de los Ríos, Cristóbal

    2012-08-01

    Cholinesterase inhibitors participate in the maintenance of the levels of the neurotransmitter acetylcholine by inhibiting the enzymes implicated in its degradation, namely, butyrylcholinesterase and acetylcholinesterase. This pharmacological action has an important role in several diseases, including neurodegenerative diseases such as Alzheimer's. This article reviews recent advances in the development of cholinesterase enzyme inhibitors, covering the development of new chemical entities, new pharmaceutical formulations with known inhibitors or treatments in combination with other drug families. The development of cholinesterase inhibitors has to face several issues, including the fact that the principal indication for these drugs, Alzheimer's disease, is not currently believed to derivate from a cholinergic deficiency, although most of the drugs clinically used for these disease are cholinesterase inhibitors. Moreover, the adverse effects found when administering cholinesterase inhibitors limit their use in other diseases, such as gastrointestinal diseases, glaucoma, or analgesia.

  11. Molecular Diversity by Olefin Cross-Metathesis on Solid Support. Generation of Libraries of Biologically Promising β-Lactam Derivatives.

    PubMed

    Méndez, Luciana; Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2018-05-16

    The application of the reagent-based diversification strategy for generation of libraries of biologically promising β-lactam derivatives is described. Key features are the versatility of the linker used and the cross-metathesis functionalization at the cleavage step. From an immobilized primary library, diversity was expanded by applying different cleavage conditions, leading to a series of cholesterol absorption inhibitor analogues together with interesting hybrid compounds through incorporation of a chalcone moiety.

  12. [Syk inhibitors].

    PubMed

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  13. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inhibitor development in non-severe haemophilia across Europe.

    PubMed

    Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael

    2015-10-01

    Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.

  15. Design, synthesis, in vitro Evaluation and docking studies on dihydropyrimidine-based urease inhibitors.

    PubMed

    Iftikhar, Fatima; Ali, Yousaf; Ahmad Kiani, Farooq; Fahad Hassan, Syed; Fatima, Tabeer; Khan, Ajmal; Niaz, Basit; Hassan, Abbas; Latif Ansari, Farzana; Rashid, Umer

    2017-10-01

    In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC 50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Notch Inhibitors for Cancer Treatment

    PubMed Central

    Espinoza, Ingrid; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been developed. Most of these inhibitors had shown anti-tumor effects in preclinical studies. At the same time, the combinatorial effect of these inhibitors with current chemotherapeutical drugs still under study in different clinical trials. In this review, we describe the basics of Notch signaling and the role of Notch in normal and cancer stem cells as a logic way to develop different Notch inhibitors and their current stage of progress for cancer patient’s treatment. PMID:23458608

  17. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    PubMed

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  18. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  19. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  20. A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus

    PubMed Central

    Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors

  1. Discovery of a Dual PRMT5-PRMT7 Inhibitor.

    PubMed

    Smil, David; Eram, Mohammad S; Li, Fengling; Kennedy, Steven; Szewczyk, Magdalena M; Brown, Peter J; Barsyte-Lovejoy, Dalia; Arrowsmith, Cheryl H; Vedadi, Masoud; Schapira, Matthieu

    2015-04-09

    The protein arginine methyltransferases PRMT7 and PRMT5, respectively, monomethylate and symmetrically dimethylate arginine side-chains of proteins involved in diverse cellular mechanisms, including chromatin-mediated control of gene transcription, splicing, and the RAS to ERK transduction cascade. It is believed that PRMT5 and PRMT7 act in conjunction to methylate their substrates, and genetic deletions support the notion that these enzymes derepress cell proliferation and migration in cancer. Using available structures of PRMT5, we designed DS-437, a PRMT5 inhibitor with an IC50 value of 6 μM against both PRMT5 and PRMT7 that is inactive against 29 other human protein-, DNA-, and RNA-methyltransferases and inhibits symmetrical dimethylation of PRMT5 substrates in cells. This compound behaves as a cofactor competitor and represents a valid scaffold to interrogate the potential of the PRMT5-PRMT7 axis as a target for therapy.

  2. Biological abatement of cellulase inhibitors

    USDA-ARS?s Scientific Manuscript database

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  3. Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors

    PubMed Central

    2017-01-01

    Cytochrome P450 aromatase (CYP19A1) plays a key role in the development of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line of treatment for the past three decades. The development of potent, selective and safer inhibitors is ongoing with in silico screening methods playing a more prominent role in the search for promising lead compounds in bioactivity-relevant chemical space. Here we present a set of comprehensive binding affinity prediction models for CYP19A1 using our automated Linear Interaction Energy (LIE) based workflow on a set of 132 putative and structurally diverse aromatase inhibitors obtained from a typical industrial screening study. We extended the workflow with machine learning methods to automatically cluster training and test compounds in order to maximize the number of explained compounds in one or more predictive LIE models. The method uses protein–ligand interaction profiles obtained from Molecular Dynamics (MD) trajectories to help model search and define the applicability domain of the resolved models. Our method was successful in accounting for 86% of the data set in 3 robust models that show high correlation between calculated and observed values for ligand-binding free energies (RMSE < 2.5 kJ mol–1), with good cross-validation statistics. PMID:28776988

  4. Tyrosine Kinase Inhibitor-Induced Hypertension.

    PubMed

    Agarwal, Megha; Thareja, Nidhi; Benjamin, Melody; Akhondi, Andre; Mitchell, George D

    2018-06-21

    The purpose of this paper is to identify commonly used tyrosine kinase inhibitors (TKIs) that are associated with hypertension, primarily, vascular endothelial growth factor (VEGF) signaling pathway (VSP) inhibitors. We review the incidence, mechanism, and strategies for management of TKI-induced HTN. We hope to provide clinicians with guidance on how to manage similar clinical scenarios. Many of the newer VSP inhibitors are reviewed here, including cediranib, axitinib, pazopanib, and ponatinib. Trials utilizing prophylactic treatment with angiotensin system inhibitors (ASIs) are discussed as well as recent data showing an improvement in overall survival and progression-free survival in patients on ASIs and TKI-induced hypertension. The incidence of TKI-induced HTN among the VEGF inhibitors ranges from 5 to 80% and is dose dependent. Newer generation small-molecule TKIs has a lower incidence. The mechanism of action involves VSP inhibition, leading to decreased nitric oxide and increased endothelin production, which causes vasoconstriction, capillary rarefaction, and hypertension. ASIs and calcium channel blockers are first-line therapy for treatment and are associated with improved overall survival. Nitrates and beta-blockers are associated with in vitro cancer regression; however, there is a paucity of trials regarding their use as an anti-hypertensive agent in the TKI-induced HTN patient population.

  5. Working with "Diverse Bodies, Diverse Identities": An Approach to Professional Education about "Diversity"

    ERIC Educational Resources Information Center

    D'Cruz, Heather

    2007-01-01

    The complexity and diversity of populations in contemporary Western societies is becoming a significant public policy issue. The concept of "diversity" has come to represent cultural, ethnic, racial and religious differences between the "dominant group" and immigrant and indigenous populations. "Diversity training" is…

  6. High-throughput screening (HTS) and hit validation to identify small molecule inhibitors with activity against NS3/4A proteases from multiple hepatitis C virus genotypes.

    PubMed

    Lee, Hyun; Zhu, Tian; Patel, Kavankumar; Zhang, Yan-Yan; Truong, Lena; Hevener, Kirk E; Gatuz, Joseph L; Subramanya, Gitanjali; Jeong, Hyun-Young; Uprichard, Susan L; Johnson, Michael E

    2013-01-01

    Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.

  7. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions.

    PubMed

    Wang, Meining; Shen, Aijun; Zhang, Chi; Song, Zilan; Ai, Jing; Liu, Hongchun; Sun, Liping; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2016-06-23

    Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.

  8. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive networkmore » of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.« less

  9. Relative lipophilicities and structural-pharmacological considerations of various angiotensin-converting enzyme (ACE) inhibitors.

    PubMed

    Ranadive, S A; Chen, A X; Serajuddin, A T

    1992-11-01

    Lipophilicities of seven structurally diverse angiotensin-converting enzyme (ACE) inhibitors, viz., captopril, zofenoprilat, enalaprilat, ramiprilat, lisinopril, fosinoprilat, and ceronapril (SQ29852), were compared by determining their octanol-water distribution coefficients (D) under physiological pH conditions. The distribution co-efficients of zofenopril, enalapril, ramipril and fosinopril, which are the prodrug forms of zofenoprilat, enalaprilat, ramiprilat, and fosinoprilat, respectively, were also determined. Attempts were made to correlate lipophilicities with the reported data for oral absorption, protein binding, ACE inhibitory activity, propensity for biliary excretion, and penetration across the blood-brain barrier for these therapeutic entities. Better absorption of prodrugs compared to their respective active forms is in agreement with their greater lipophilicities. Captopril, lisinopril, and ceronapril are orally well absorbed despite their low lipophilicities, suggesting involvement of other factors such as a carrier-mediated transport process. Of all the compounds studied, the two most lipophilic ACE inhibitors, fosinoprilat and zofenoprilat, exhibit a rank-order correlation with respect to biliary excretion. This may explain the dual routes of elimination (renal and hepatic) observed with fosinoprilat in humans. The more lipophilic compounds also exhibit higher protein binding. Both the lipophilicity and a carrier-mediated process may be involved in penetration of some of these drugs into brain. For structurally similar compounds, in vitro ACE inhibitory activity increased with the increase in lipophilicity. However, no clear correlation between lipophilicity and ACE inhibitory activity emerged when different types of inhibitors are compared, possibly because their interactions with enzymes are primarily ionic in nature.

  10. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    PubMed

    Fayad, Walid; Fryknäs, Mårten; Brnjic, Slavica; Olofsson, Maria Hägg; Larsson, Rolf; Linder, Stig

    2009-10-02

    Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  11. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  12. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish

    PubMed Central

    Evason, Kimberley J.; Francisco, Macrina T.; Juric, Vladislava; Balakrishnan, Sanjeev; Lopez Pazmino, Maria del Pilar; Gordan, John D.; Kakar, Sanjay; Spitsbergen, Jan; Goga, Andrei; Stainier, Didier Y. R.

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding β-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated β-catenin. By 2 months post fertilization (mpf), 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate β-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK) inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor) that suppressed this phenotype. We further found that activated β-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated β-catenin. The β-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for β-catenin-induced liver tumors. PMID:26134322

  13. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    PubMed

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  14. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  15. Synthesis and Biological Evaluation of Macrocyclized Betulin Derivatives as a Novel Class of Anti-HIV-1 Maturation Inhibitors.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffery, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A

    2014-01-01

    A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed.

  16. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors.

    PubMed

    Shen, Tianlin; Stieglmeier, Michaela; Dai, Jiulan; Urich, Tim; Schleper, Christa

    2013-07-01

    Nitrification inhibitors have been used for decades to improve nitrogen fertilizer utilization in farmland. However, their effect on ammonia-oxidizing Archaea (AOA) in soil is little explored. Here, we compared the impact of diverse inhibitors on nitrification activity of the soil archaeon Ca. Nitrososphaera viennensis EN76 and compared it to that of the ammonia-oxidizing bacterium (AOB) Nitrosospira multiformis. Allylthiourea, amidinothiourea, and dicyandiamide (DCD) inhibited ammonia oxidation in cultures of both N. multiformis and N. viennensis, but the effect on N. viennensis was markedly lower. In particular, the effective concentration 50 (EC50) of allylthiourea was 1000 times higher for the AOA culture. Among the tested nitrification inhibitors, DCD was the least potent against N. viennensis. Nitrapyrin had at the maximal soluble concentration only a very weak inhibitory effect on the AOB N. multiformis, but showed a moderate effect on the AOA. The antibiotic sulfathiazole inhibited the bacterium, but barely affected the archaeon. Only the NO-scavenger carboxy-PTIO had a strong inhibitory effect on the archaeon, but had little effect on the bacterium in the concentrations tested. Our results reflect the fundamental metabolic and cellular differences of AOA and AOB and will be useful for future applications of inhibitors aimed at distinguishing activities of AOA and AOB in soil environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Cocrystal Structures of Primed Side-Extending α-Ketoamide Inhibitors Reveal Novel Calpain-Inhibitor Aromatic Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian,J.; Cuerrier, D.; Davies, P.

    Calpains are intracellular cysteine proteases that catalyze the cleavage of target proteins in response to Ca2+ signaling. When Ca2+ homeostasis is disrupted, calpain overactivation causes unregulated proteolysis, which can contribute to diseases such as postischemic injury and cataract formation. Potent calpain inhibitors exist, but of these many cross-react with other cysteine proteases and will need modification to specifically target calpain. Here, we present crystal structures of rat calpain 1 protease core ({mu}I-II) bound to two a-ketoamide-based calpain inhibitors containing adenyl and piperazyl primed-side extensions. An unexpected aromatic-stacking interaction is observed between the primed-side adenine moiety and the Trp298 side chain.more » This interaction increased the potency of the inhibitor toward {mu}I-II and heterodimeric m-calpain. Moreover, stacking orients the adenine such that it can be used as a scaffold for designing novel primed-side address regions, which could be incorporated into future inhibitors to enhance their calpain specificity.« less

  18. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  19. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  20. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffrey, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Johns, Brian A

    2017-06-15

    A new class of betulin-derived α-keto amides was identified as HIV-1 maturation inhibitors. Through lead optimization, GSK8999 was identified with IC 50 values of 17nM, 23nM, 25nM, and 8nM for wild type, Q369H, V370A, and T371A respectively. When tested in a panel of 62 HIV-1 isolates covering a diversity of CA-SP1 genotypes including A, AE, B, C, and G using a PBMC based assay, GSK8999 was potent against 57 of 62 isolates demonstrating an improvement over the first generation maturation inhibitor BVM. The data disclosed here also demonstrated that the new α-keto amide GSK8999 has a mechanism of action consistent with inhibition of the proteolytic cleavage of CA-SP1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi

    PubMed Central

    Campos, Pollyanna Fernandes; Andrade-Silva, Débora; Zelanis, André; Paes Leme, Adriana Franco; Rocha, Marisa Maria Teixeira; Menezes, Milene Cristina; Serrano, Solange M.T.; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2016-01-01

    Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution. PMID:27412610

  2. NADPH oxidase inhibitors: a patent review.

    PubMed

    Kim, Jung-Ae; Neupane, Ganesh Prasad; Lee, Eung Seok; Jeong, Byeong-Seon; Park, Byung Chul; Thapa, Pritam

    2011-08-01

    NADPH oxidases, a family of multi-subunit enzyme complexes, catalyze the production of reactive oxygen species (ROS), which may contribute to the pathogenesis of a variety of diseases. In addition to the first NADPH oxidase found in phagocytes, four non-phagocytic NADPH oxidase isoforms have been identified, which all differ in their catalytic subunit (Nox1-5) and tissue distribution. This paper provides a comprehensive review of the patent literature on NADPH oxidase inhibitors, small molecule Nox inhibitors, peptides and siRNAs. Since each member of the NADPH oxidase family has great potential as a therapeutic target, several different compounds have been registered as NADPH oxidase inhibitors in the patent literature. As yet, none have gone through clinical trials, and some have not completed preclinical trials, including safety and specificity evaluation. Recently, small molecule pyrazolopyridine and triazolopyrimidine derivatives have been submitted as potent NADPH oxidase inhibitors and reported as first-in-class inhibitors for idiopathic pulmonary fibrosis and acute stroke, respectively. Further clinical efficacy and safety data are warranted to prove their actual clinical utility.

  3. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance

    PubMed Central

    Stogios, Peter J.; Spanogiannopoulos, Peter; Evdokimova, Elena; Egorova, Olga; Shakya, Tushar; Todorovic, Nick; Capretta, Alfredo; Wright, Gerard D.; Savchenko, Alexei

    2013-01-01

    SYNOPSIS Activity of the aminoglycoside phosphotransferase APH(3’)-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. Previously we demonstrated that eukaryotic protein kinase (ePK) inhibitors could inhibit APH enzymes, due to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. As well, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. Here, we structurally and functionally characterize inhibition of APH(3’)-Ia by three diverse chemical scaffolds – anthrapyrazolone, 4-anilinoquinazoline and pyrazolopyrimidine (PP) – and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3’)-Ia versus ePKs. Using this observation, we identify PP-derivatives that select against ePKs, attenuate APH(3’)-Ia activity and rescue aminoglycoside antibiotic activity against a resistant E. coli strain. The structures presented here and these inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance. PMID:23758273

  4. Production diversity and dietary diversity in smallholder farm households

    PubMed Central

    Sibhatu, Kibrom T.; Krishna, Vijesh V.; Qaim, Matin

    2015-01-01

    Undernutrition and micronutrient malnutrition remain problems of significant magnitude in large parts of the developing world. Improved nutrition requires not only better access to food for poor population segments, but also higher dietary quality and diversity. Because many of the poor and undernourished people are smallholder farmers, diversifying production on these smallholder farms is widely perceived as a useful approach to improve dietary diversity. However, empirical evidence on the link between production and consumption diversity is scarce. Here, this issue is addressed with household-level data from Indonesia, Kenya, Ethiopia, and Malawi. Regression models show that on-farm production diversity is positively associated with dietary diversity in some situations, but not in all. When production diversity is already high, the association is not significant or even turns negative, because of foregone income benefits from specialization. Analysis of other factors reveals that market access has positive effects on dietary diversity, which are larger than those of increased production diversity. Market transactions also tend to reduce the role of farm diversity for household nutrition. These results suggest that increasing on-farm diversity is not always the most effective way to improve dietary diversity in smallholder households and should not be considered a goal in itself. Additional research is needed to better understand how agriculture and food systems can be made more nutrition-sensitive in particular situations. PMID:26261342

  5. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    PubMed Central

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors. PMID:26641933

  6. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    PubMed

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  7. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  8. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  9. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  10. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function

    PubMed Central

    Sawant, Dwitiya B.; Majumder, Shubhra; Perkins, Jennifer L.; Yang, Ching-Hui; Eyers, Patrick A.; Fisk, Harold A.

    2015-01-01

    Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes. PMID:26354417

  11. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  12. Phosphodiesterase inhibitors in clinical urology.

    PubMed

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  13. Biological abatement of cellulase inhibitors.

    PubMed

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors.

    PubMed

    Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier

    2004-05-01

    The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.

  15. Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011.

    PubMed

    Cram, Erik D; Rockey, Daniel D; Dolan, Brian P

    2017-04-24

    Chlamydia species are obligate intracellular bacteria that infect a broad range of mammalian hosts. Members of related genera are pathogens of a variety of vertebrate and invertebrate species. Despite the diversity of Chlamydia, all species contain an outer membrane lipooligosaccharide (LOS) that is comprised of a genus-conserved, and genus-defining, trisaccharide 3-deoxy-D-manno-oct-2-ulosonic acid Kdo region. Recent studies with lipopolysaccharide inhibitors demonstrate that LOS is important for the C. trachomatis developmental cycle during RB- > EB differentiation. Here, we explore the effects of one of these inhibitors, LPC-011, on the developmental cycle of five chlamydial species. Sensitivity to the drug varied in some of the species and was conserved between others. We observed that inhibition of LOS biosynthesis in some chlamydial species induced formation of aberrant reticulate bodies, while in other species, no change was observed to the reticulate body. However, loss of LOS production prevented completion of the chlamydial reproductive cycle in all species tested. In previous studies we found that C. trachomatis and C. caviae infection enhances MHC class I antigen presentation of a model self-peptide. We find that treatment with LPC-011 prevents enhanced host-peptide presentation induced by infection with all chlamydial-species tested. The data demonstrate that LOS synthesis is necessary for production of infectious progeny and inhibition of LOS synthesis induces aberrancy in certain chlamydial species, which has important implications for the use of LOS synthesis inhibitors as potential antibiotics.

  16. Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening.

    PubMed

    Yang, Bin; Lamb, Michelle L; Zhang, Tao; Hennessy, Edward J; Grewal, Gurmit; Sha, Li; Zambrowski, Mark; Block, Michael H; Dowling, James E; Su, Nancy; Wu, Jiaquan; Deegan, Tracy; Mikule, Keith; Wang, Wenxian; Kaspera, Rüdiger; Chuaqui, Claudio; Chen, Huawei

    2014-12-11

    KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.

  17. Novel Mycosin Protease MycP1 Inhibitors Identified by Virtual Screening and 4D Fingerprints

    PubMed Central

    2015-01-01

    The rise of drug-resistant Mycobacterium tuberculosis lends urgency to the need for new drugs for the treatment of tuberculosis (TB). The identification of a serine protease, mycosin protease-1 (MycP1), as the crucial agent in hydrolyzing the virulence factor, ESX-secretion-associated protein B (EspB), potentially opens the door to new tuberculosis treatment options. Using the crystal structure of mycobacterial MycP1 in the apo form, we performed an iterative ligand- and structure-based virtual screening (VS) strategy to identify novel, nonpeptide, small-molecule inhibitors against MycP1 protease. Screening of ∼485 000 ligands from databases at the Genomics Research Institute (GRI) at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC50 values against the MycP1 target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification of promising structural scaffolds, such as the MycP1 inhibitors. PMID:24628123

  18. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    PubMed Central

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  19. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Li, Dan; Hou, Tingjun

    2013-10-01

    LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.

  20. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, David H.; Zhang, Yaoping; Ong, Irene M.

    2014-08-13

    Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and proteinmore » levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.« less

  1. Bruton's Tyrosine Kinase Small Molecule Inhibitors Induce a Distinct Pancreatic Toxicity in Rats.

    PubMed

    Erickson, Rebecca I; Schutt, Leah K; Tarrant, Jacqueline M; McDowell, Michelle; Liu, Lichuan; Johnson, Adam R; Lewin-Koh, Sock-Cheng; Hedehus, Maj; Ross, Jed; Carano, Richard A D; Staflin, Karin; Zhong, Fiona; Crawford, James J; Zhong, Shelly; Reif, Karin; Katewa, Arna; Wong, Harvey; Young, Wendy B; Dambach, Donna M; Misner, Dinah L

    2017-01-01

    Bruton's tyrosine kinase (BTK) is a member of the Tec family of cytoplasmic tyrosine kinases involved in B-cell and myeloid cell signaling. Small molecule inhibitors of BTK are being investigated for treatment of several hematologic cancers and autoimmune diseases. GDC-0853 ((S)-2-(3'-(hydroxymethyl)-1-methyl-5-((5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)pyridin-2-yl)amino)-6-oxo-1,6-dihydro-[3,4'-bipyridin]-2'-yl)-7,7-dimethyl-3,4,7,8-tetrahydro-2H-cyclopenta[4,5]pyrrolo[1,2-a]pyrazin-1(6H)-one) is a selective and reversible oral small-molecule BTK inhibitor in development for the treatment of rheumatoid arthritis and systemic lupus erythematosus. In Sprague-Dawley (SD) rats, administration of GDC-0853 and other structurally diverse BTK inhibitors for 7 days or longer caused pancreatic lesions consisting of multifocal islet-centered hemorrhage, inflammation, fibrosis, and pigment-laden macrophages with adjacent lobular exocrine acinar cell atrophy, degeneration, and inflammation. Similar findings were not observed in mice or dogs at much higher exposures. Hemorrhage in the peri-islet vasculature emerged between four and seven daily doses of GDC-0853 and was histologically similar to spontaneously occurring changes in aging SD rats. This suggests that GDC-0853 could exacerbate a background finding in younger animals. Glucose homeostasis was dysregulated following a glucose challenge; however, this occurred only after 28 days of administration and was not directly associated with onset or severity of pancreatic lesions. There were no changes in other common serum biomarkers assessing endocrine and exocrine pancreatic function. Additionally, these lesions were not readily detectable via Doppler ultrasound, computed tomography, or magnetic resonance imaging. Our results indicate that pancreatic lesions in rats are likely a class effect of BTK inhibitors, which may exacerbate an islet-centered pathology that is unlikely to be relevant to humans. Copyright © 2016 by

  2. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.

    PubMed

    Fang, Jiansong; Yang, Ranyao; Gao, Li; Zhou, Dan; Yang, Shengqian; Liu, Ai-Lin; Du, Guan-hua

    2013-11-25

    Butyrylcholinesterase (BuChE, EC 3.1.1.8) is an important pharmacological target for Alzheimer's disease (AD) treatment. However, the currently available BuChE inhibitor screening assays are expensive, labor-intensive, and compound-dependent. It is necessary to develop robust in silico methods to predict the activities of BuChE inhibitors for the lead identification. In this investigation, support vector machine (SVM) models and naive Bayesian models were built to discriminate BuChE inhibitors (BuChEIs) from the noninhibitors. Each molecule was initially represented in 1870 structural descriptors (1235 from ADRIANA.Code, 334 from MOE, and 301 from Discovery studio). Correlation analysis and stepwise variable selection method were applied to figure out activity-related descriptors for prediction models. Additionally, structural fingerprint descriptors were added to improve the predictive ability of models, which were measured by cross-validation, a test set validation with 1001 compounds and an external test set validation with 317 diverse chemicals. The best two models gave Matthews correlation coefficient of 0.9551 and 0.9550 for the test set and 0.9132 and 0.9221 for the external test set. To demonstrate the practical applicability of the models in virtual screening, we screened an in-house data set with 3601 compounds, and 30 compounds were selected for further bioactivity assay. The assay results showed that 10 out of 30 compounds exerted significant BuChE inhibitory activities with IC50 values ranging from 0.32 to 22.22 μM, at which three new scaffolds as BuChE inhibitors were identified for the first time. To our best knowledge, this is the first report on BuChE inhibitors using machine learning approaches. The models generated from SVM and naive Bayesian approaches successfully predicted BuChE inhibitors. The study proved the feasibility of a new method for predicting bioactivities of ligands and discovering novel lead compounds.

  3. Beyond the Diversity Crisis Model: Decentralized Diversity Planning and Implementation

    ERIC Educational Resources Information Center

    Williams, Damon A.

    2008-01-01

    This article critiques the diversity crises model of diversity planning in higher education and presents a decentralized diversity planning model. The model is based on interviews with the nation's leading diversity officers, a review of the literature and the authors own experiences leading diversity change initiatives in higher education. The…

  4. Predicting DPP-IV inhibitors with machine learning approaches

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  5. Selective JAK inhibitors in development for rheumatoid arthritis.

    PubMed

    Norman, Peter

    2014-08-01

    The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.

  6. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia

    PubMed Central

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O’Brien, Susan; Keating, Michael J.; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G.; Burger, Jan A.

    2017-01-01

    The BTK inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of the malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology we characterized the diversity of TCRβ chains in peripheral blood T cells from 15 CLL patients before and after one year of ibrutinib therapy. We noted elevated CD4+ and CD8+ T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After one year of ibrutinib therapy, elevated PB T cell numbers and T-cell related cytokine levels had normalized and T cell repertoire diversity significantly increased. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones significantly increased during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. PMID:28077600

  7. HIV-1 IN Inhibitors: 2010 Update and Perspectives

    PubMed Central

    Marchand, Christophe; Maddali, Kasthuraiah; Metifiot, Mathieu; Pommier, Yves

    2010-01-01

    Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress®) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation strand transfer inhibitors (STI), recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS. PMID:19747122

  8. Aromatase inhibitors and breast cancer prevention.

    PubMed

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  9. Heterocyclic HIV-protease inhibitors.

    PubMed

    Calugi, C; Guarna, A; Trabocchi, A

    2013-01-01

    In the panorama of HIV protease inhibitors (HIV PIs), many efforts have been devoted to the development of new compounds with reduced peptidic nature in order to improve pharmacokinetics and pharmacodynamics features. The introduction of cyclic scaffolds in the design of new chemical entities reduces flexibility and affords more rigid inhibitors. Specifically, common dipeptide isosteres are replaced by a central cyclic scaffold designed to address the key interactions with catalytic aspartic acids and residues belonging to the flap region of the active site. The current interest in cyclic chemotypes addressing key interactions of HIV protease is motivated by the different nature of interactions formed with the enzyme, although maintaining key structural resemblance to a peptide substrate, hopefully giving rise to novel HIV-1 PIs displaying an improved profile towards multidrug resistant strains. This approach has been demonstrated for Tipranavir, which is a potent FDA approved HIV-1 PI representing the most famous example of heterocyclic aspartic protease inhibitors.

  10. Characterization of Covalent-Reversible EGFR Inhibitors

    PubMed Central

    2017-01-01

    Within the spectrum of kinase inhibitors, covalent-reversible inhibitors (CRIs) provide a valuable alternative approach to classical covalent inhibitors. This special class of inhibitors can be optimized for an extended drug-target residence time. For CRIs, it was shown that the fast addition of thiols to electron-deficient olefins leads to a covalent bond that can break reversibly under proteolytic conditions. Research groups are just beginning to include CRIs in their arsenal of compound classes, and, with that, the understanding of this interesting set of chemical warheads is growing. However, systems to assess both characteristics of the covalent-reversible bond in a simple experimental setting are sparse. Here, we have developed an efficient methodology to characterize the covalent and reversible properties of CRIs and to investigate their potential in targeting clinically relevant variants of the receptor tyrosine kinase EGFR.

  11. Monoamine Oxidase B Inhibitors in Parkinson's Disease.

    PubMed

    Dezsi, Livia; Vecsei, Laszlo

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with a prevalence increasing with age. Oxidative stress and glutamate toxicity are involved in its pathomechanism. There are still many unmet needs of PD patients, including the alleviation of motor fluctuations and dyskinesias, and the development of therapies with neuroprotective potential. To give an overview of the pharmacological properties, the efficacy and safety of the monoamine oxidase B (MAO-B) inhibitors in the treatment of PD, with special focus on the results of randomized clinical trials. A literature search was conducted in PubMed for 'PD treatment', 'MAO-B inhibitors', 'selegiline', 'rasagiline', 'safinamide' and 'clinical trials' with 'MAO-B inhibitors' in 'Parkinson' disease'. MAO-B inhibitors have a favorable pharmacokinetic profile, improve the dopamine deficient state and may have neuroprotective properties. Safinamide exhibits an anti-glutamatergic effect as well. When applied as monotherapy, MAO-B inhibitors provide a modest, but significant improvement of motor function and delay the need for levodopa. Rasagiline and safinamide were proven safe and effective when added to a dopamine agonist in early PD. As add-on to levodopa, MAO-B inhibitors significantly reduced off-time and were comparable in efficacy to COMT inhibitors. Improvements were achieved as regards certain non-motor symptoms as well. Due to the efficacy shown in clinical trials and their favorable side-effect profile, MAO-B inhibitors are valuable drugs in the treatment of PD. They are recommended as monotherapy in the early stages of the disease and as add-on therapy to levodopa in advanced PD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    PubMed

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  13. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent development of small molecule glutaminase inhibitors.

    PubMed

    Song, Minsoo; Kim, Soong-Hyun; Im, Chun Young; Hwang, Hee-Jong

    2018-05-24

    Glutaminase (GLS) which is responsible for the conversion of glutamine to glutamate plays vital role in up-regulating cell metabolism for tumor cell growth, and is considered as a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed from both academia and industries. Most importantly, Calithera Biosciences Inc. is actively developing glutaminase inhibitor CB-839 for the treatment of various cancers in phase 1 and 2 clinical trials at present. In this review, it is discussed about recent efforts to develop small molecule glutaminase inhibitors targeting glutamine metabolism both in the preclinical and clinical studies. In particular, more emphasis is placed on CB-839 since it is the only small molecule GLS inhibitor being studied in clinical setting. Inhibition mechanism is discussed based on x-ray structure study of thiadiazole derivatives as well. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are given herein in the hope of providing useful information for GLS inhibitors of the next generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Skin problems and EGFR-tyrosine kinase inhibitor

    PubMed Central

    Kozuki, Toshiyuki

    2016-01-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities. PMID:26826719

  16. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica.

    PubMed

    Ratelade, Julien; Verkman, A S

    2014-11-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, Rhoji; Murray, David B.; Metz, Thomas O.

    2012-03-01

    Advanced glycation or glycoxidation end-products (AGE) increase in tissue proteins with age, and their rate of accumulation is increased in diabetes, nephropathy and inflammatory diseases. AGE inhibitors include a range of compounds that are proposed to act by trapping carbonyl and dicarbonyl intermediates in AGE formation. However, some among the newer generation of AGE inhibitors lack reactive functional groups that would trap reaction intermediates, indicating an alternative mechanism of action. We propose that AGE inhibitors function primarily as chelators, inhibiting metal-catalyzed oxidation reactions. The AGE-inhibitory activity of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers is also consistent with their chelatingmore » activity. Finally, compounds described as AGE breakers, or their hydrolysis products, also have strong chelating activity, suggesting that these compounds also act through their chelating activity. We conclude that chelation is the common, and perhaps the primary, mechanism of action of AGE inhibitors and breakers, and that chronic, mild chelation therapy should prove useful in treatment of diabetes and age-related diseases characterized by oxidative stress, inflammation and increased chemical modification of tissue proteins by advanced glycoxidation and lipoxidation end-products.« less

  18. Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis.

    PubMed

    Frankowski, Kevin J; Wang, Chen; Patnaik, Samarjit; Schoenen, Frank J; Southall, Noel; Li, Dandan; Teper, Yaroslav; Sun, Wei; Kandela, Irawati; Hu, Deqing; Dextras, Christopher; Knotts, Zachary; Bian, Yansong; Norton, John; Titus, Steve; Lewandowska, Marzena A; Wen, Yiping; Farley, Katherine I; Griner, Lesley Mathews; Sultan, Jamey; Meng, Zhaojing; Zhou, Ming; Vilimas, Tomas; Powers, Astin S; Kozlov, Serguei; Nagashima, Kunio; Quadri, Humair S; Fang, Min; Long, Charles; Khanolkar, Ojus; Chen, Warren; Kang, Jinsol; Huang, Helen; Chow, Eric; Goldberg, Esthermanya; Feldman, Coral; Xi, Romi; Kim, Hye Rim; Sahagian, Gary; Baserga, Susan J; Mazar, Andrew; Ferrer, Marc; Zheng, Wei; Shilatifard, Ali; Aubé, Jeffrey; Rudloff, Udo; Marugan, Juan Jose; Huang, Sui

    2018-05-16

    Metastasis remains a leading cause of cancer mortality due to the lack of specific inhibitors against this complex process. To identify compounds selectively targeting the metastatic state, we used the perinucleolar compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, obtained through optimization of a screening hit, disassembles PNCs in multiple cancer cell lines, inhibits invasion in vitro, suppresses metastatic development in three mouse models of human cancer, and extends survival of mice in a metastatic pancreatic cancer xenograft model with no organ toxicity or discernable adverse effects. Metarrestin disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription, at least in part by interacting with the translation elongation factor eEF1A2. Thus, metarrestin represents a potential therapeutic approach for the treatment of metastatic cancer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems.

    PubMed

    Darvesh, Sultan; Macdonald, Ian R; Martin, Earl

    2013-07-01

    Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer's disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer's disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    PubMed Central

    Fayad, Walid; Fryknäs, Mårten; Brnjic, Slavica; Olofsson, Maria Hägg; Larsson, Rolf; Linder, Stig

    2009-01-01

    Background Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. Method and Findings A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. Conclusions The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids. PMID:19798419

  1. Identification and Characterization of Influenza Virus Entry Inhibitors through Dual Myxovirus High-Throughput Screening.

    PubMed

    Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Golden, Jennifer E; Lowen, Anice C; Natchus, Michael G; Plemper, Richard K

    2016-08-15

    Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. This study is one of the first to apply a

  2. Identification and Characterization of Influenza Virus Entry Inhibitors through Dual Myxovirus High-Throughput Screening

    PubMed Central

    Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Lowen, Anice C.; Natchus, Michael G.

    2016-01-01

    ABSTRACT Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. IMPORTANCE This study is one of

  3. Potential non-oncological applications of histone deacetylase inhibitors.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  4. Potential non-oncological applications of histone deacetylase inhibitors

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  5. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  6. Identification and preliminary structure-activity relationships of 1-Indanone derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors.

    PubMed

    Gao, Dingding; Li, Yingxia

    2017-07-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a vital role in the catabolism of tryptophan along with the kynurenine pathway which is involved in many human diseases including cancer, Alzheimer's disease, etc. In this study, compound 1 bearing a 1-Indanone scaffold was identified as a novel IDO1 inhibitor by structure-based virtual screening, with moderate to good enzymatic and cellular inhibitory activities. Also, surface plasmon resonance analysis validated the direct interaction between compound 1 and IDO1 protein. The preliminary SAR was further explored and the binding mode with IDO1 protein was predicted by experiment along with molecular docking. Subsequent ADME properties of these active compounds were analyzed in silico, and the results showed good pharmacokinetic efficiencies. We believe this study contributes a lot to the structural diversity for the future development of highly potent IDO1 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  7. Inhibitors of cyclin-dependent kinases as cancer therapeutics.

    PubMed

    Whittaker, Steven R; Mallinger, Aurélie; Workman, Paul; Clarke, Paul A

    2017-05-01

    Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fungal chitinases: diversity, mechanistic properties and biotechnological potential.

    PubMed

    Hartl, Lukas; Zach, Simone; Seidl-Seiboth, Verena

    2012-01-01

    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.

  9. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  10. p21-activated kinase inhibitors.

    PubMed

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Chernoff, Jonathan

    2013-01-01

    The p21-activated kinases (PAKs) are Ser/Thr kinases in the STE20 kinase family with important roles in regulating cytoskeletal organization, cell migration, and signaling. The PAK enzyme family comprises six members subdivided into two groups: Group I, represented by PAK1, 2, and 3, and Group II, represented by PAK 4, 5, and 6, based on sequence and structural homology. Individual PAK isoforms were found to be overexpressed and amplified in a variety of human cancers, and in vitro and in vivo studies using genetically engineered systems as well as small-molecule tool compounds have suggested therapeutic utility of PAKs as oncology targets. The identification of potent and kinome-selective ATP-competitive PAK inhibitors has proven challenging, likely caused by the openness and unique plasticity of the ATP-binding site of PAK enzymes. Progress in achieving increased kinase selectivity has been achieved with certain inhibitors but at the expense of increased molecular weight. Allosteric inhibitors, such as IPA-3, leverage the unique Group I PAK autoregulatory domain for selective inhibition, and this approach might provide an outlet to evade the kinase selectivity challenges observed with ATP-competitive PAK inhibitors. © 2013 Elsevier Inc. All rights reserved.

  11. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  12. Molecular design of new aggrecanases-2 inhibitors.

    PubMed

    Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun

    2013-10-01

    Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Skin problems and EGFR-tyrosine kinase inhibitor.

    PubMed

    Kozuki, Toshiyuki

    2016-04-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Plant Biofilm Inhibitors to Discover Biofilm Genes

    DTIC Science & Technology

    2011-04-08

    REPORT Final Report for Plant Biofilm Inhibitors to Discover Biofilm Genes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: To control biofilms , we have...synthesized the natural biofilm inhibitor (5Z)-4-bromo-5-(bromomethylene) -3-butyl-2(5H)-furanone from the red alga Delisea pulchra and determined that...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS biofilms , biofilm inhibitors Thomas K. Wood Texas Engineering

  15. Potent Elastase Inhibitors from Cyanobacteria: Structural Basis and Mechanisms Mediating Cytoprotective and Anti-inflammatory Effects in Bronchial Epithelial Cells

    PubMed Central

    Salvador, Lilibeth A.; Taori, Kanchan; Biggs, Jason S.; Jakoncic, Jean; Ostrov, David A.; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. SAR and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B and IL8. Compound 1 exhibited activity comparable to the clinically-approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays. PMID:23350733

  16. Evaluation of cysteine proteases of Plasmodium vivax as antimalarial drug targets: sequence analysis and sensitivity to cysteine protease inhibitors.

    PubMed

    Na, Byoung-Kuk; Kim, Tong-Soo; Rosenthal, Philip J; Lee, Jong-Koo; Kong, Yoon

    2004-10-01

    Cysteine proteases perform critical roles in the life cycles of malaria parasites. In Plasmodium falciparum, treatment of cysteine protease inhibitors inhibits hemoglobin hydrolysis and blocks the parasite development in vitro and in vivo, suggesting that plasmodial cysteine proteases may be interesting targets for new chemotherapeutics. To determine whether sequence diversity may limit chemotherapy against Plasmodium vivax, we analyzed sequence variations in the genes encoding three cysteine proteases, vivapain-1, -2 and -3, in 22 wild isolates of P. vivax. The sequences were highly conserved among wild isolates. A small number of substitutions leading to amino acid changes were found, while they did not modify essential residues for the function or structure of the enzymes. The substrate specificities and sensitivities to synthetic cysteine protease inhibitors of vivapain-2 and -3 from wild isolates were also very similar. These results support the suggestion that cysteine proteases of P. vivax are promising antimalarial chemotherapeutic targets.

  17. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae)

    PubMed Central

    Vatanparast, Mohammad; Shetty, Prateek; Chopra, Ratan; Doyle, Jeff J.; Sathyanarayana, N.; Egan, Ashley N.

    2016-01-01

    Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean. PMID:27356763

  18. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  19. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis*

    PubMed Central

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; Cohen, Itay; Henin, Rachel D.; Hockla, Alexandra; Soares, Alexei S.; Papo, Niv; Caulfield, Thomas R.; Radisky, Evette S.

    2016-01-01

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. PMID:27810896

  20. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism*

    PubMed Central

    Kumar, Ashish; Gupta, Chitra; Salunke, Dinakar M.

    2016-01-01

    Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism. PMID:26987900

  1. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae).

    PubMed

    Vatanparast, Mohammad; Shetty, Prateek; Chopra, Ratan; Doyle, Jeff J; Sathyanarayana, N; Egan, Ashley N

    2016-06-30

    Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.

  2. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies.

    PubMed

    Zhao, Luping; Chen, Yeming; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2013-10-09

    Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.

  3. Development of a High-Throughput Screening Cancer Cell-Based Luciferase Refolding Assay for Identifying Hsp90 Inhibitors

    PubMed Central

    Sadikot, Takrima; Swink, Megan; Eskew, Jeffery D.; Brown, Douglas; Zhao, Huiping; Kusuma, Bhaskar R.; Rajewski, Roger A.; Blagg, Brian S. J.; Matts, Robert L.; Holzbeierlein, Jeffrey M.

    2013-01-01

    Abstract The 90 kDa heat-shock protein (Hsp90) and other cochaperones allow for proper folding of nascent or misfolded polypeptides. Cancer cells exploit these chaperones by maintaining the stability of mutated and misfolded oncoproteins and allowing them to evade proteosomal degradation. Inhibiting Hsp90 is an attractive strategy for cancer therapy, as the concomitant degradation of multiple oncoproteins may lead to effective anti-neoplastic agents. Unfortunately, early clinical trials have been disappointing with N-terminal Hsp90 inhibitors, as it is unclear whether the problems that plague current Hsp90 inhibitors in clinical trials are related to on-target or off-target activity. One approach to overcome these pitfalls is to identify structurally diverse scaffolds that improve Hsp90 inhibitory activity in the cancer cell milieu. Utilizing a panel of cancer cell lines that express luciferase, we have designed an in-cell Hsp90-dependent luciferase refolding assay. The assay was optimized using previously identified Hsp90 inhibitors and experimental novobiocin analogues against prostate, colon, and lung cancer cell lines. This assay exhibits good interplate precision (% CV), a signal-to-noise ratio (S/N) of ≥7, and an approximate Z-factor ranging from 0.5 to 0.7. Novobiocin analogues that revealed activity in this assay were examined via western blot experiments for client protein degradation, a hallmark of Hsp90 inhibition. Subsequently, a pilot screen was conducted using the Prestwick library, and two compounds, biperiden and ethoxyquin, revealed significant activity. Here, we report the development of an in-cell Hsp90-dependent luciferase refolding assay that is amenable across cancer cell lines for the screening of inhibitors in their specific milieu. PMID:24127661

  4. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss.

    PubMed

    Hiscox, Stephen; Barrett-Lee, Peter; Borley, Annabel C; Nicholson, Robert I

    2010-08-01

    Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  6. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    DOE PAGES

    Battles, Michael B.; Langedijk, Johannes P.; Furmanova-Hollenstein, Polina; ...

    2015-12-07

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. In this paper, we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitorsmore » or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Finally and collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.« less

  7. Sulphonamides as corrosion inhibitor: Experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Obayes, Hasan R.; Al-Amiery, Ahmed A.; Alwan, Ghadah H.; Abdullah, Thamer Adnan; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2017-06-01

    Inhibitors are synthetic and natural molecules have various functional groups like double or triple bonds and heteroatoms; N, O or S, which permit adsorption onto the MS (metal surface). These inhibitors have the ability to adsorb onto the MS and block the active site that was reducing the corrosion rate. Inhibition efficiencies of the investigated compounds: Sulfacetamide (SAM), Sulfamerazine (SMR), Sulfapyridine (SPY) and Sulfathiazole (STI), as inhibitors in corrosive solution were evaluated based on weight loss technique. Nitro and Amino groups were chosen for the study of the substituted reaction of four corrosion inhibitor compounds: SAM, SMR, SPY and STI, theoretically utilizing the thickness capacities hypothesis DFT (density functions theory) method with the level [rB3LYP/6-311G(d,p)]. Our research demonstrated that the nitration of studied molecules lead to a diminishing in inhibition efficiencies, group lead to an increase in inhibition efficiency. Compared with corrosion inhibitor molecules these results gave a significant improvement in inhibition efficiency for corrosion inhibitor molecules.

  8. An Updated Review of Tyrosinase Inhibitors

    PubMed Central

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  9. MMP Inhibitors: Past, present and future.

    PubMed

    Cathcart, Jillian M; Cao, Jian

    2015-06-01

      Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.

  10. Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease.

    PubMed

    Batson, Jennifer; Toop, Hamish D; Redondo, Clara; Babaei-Jadidi, Roya; Chaikuad, Apirat; Wearmouth, Stephen F; Gibbons, Brian; Allen, Claire; Tallant, Cynthia; Zhang, Jingxue; Du, Chunyun; Hancox, Jules C; Hawtrey, Tom; Da Rocha, Joana; Griffith, Renate; Knapp, Stefan; Bates, David O; Morris, Jonathan C

    2017-03-17

    Serine/arginine-protein kinase 1 (SRPK1) regulates alternative splicing of VEGF-A to pro-angiogenic isoforms and SRPK1 inhibition can restore the balance of pro/antiangiogenic isoforms to normal physiological levels. The lack of potency and selectivity of available compounds has limited development of SRPK1 inhibitors, with the control of alternative splicing by splicing factor-specific kinases yet to be translated. We present here compounds that occupy a binding pocket created by the unique helical insert of SRPK1, and trigger a backbone flip in the hinge region, that results in potent (<10 nM) and selective inhibition of SRPK1 kinase activity. Treatment with these inhibitors inhibited SRPK1 activity and phosphorylation of serine/arginine splicing factor 1 (SRSF1), resulting in alternative splicing of VEGF-A from pro-angiogenic to antiangiogenic isoforms. This property resulted in potent inhibition of blood vessel growth in models of choroidal angiogenesis in vivo. This work identifies tool compounds for splice isoform selective targeting of pro-angiogenic VEGF, which may lead to new therapeutic strategies for a diversity of diseases where dysfunctional splicing drives disease development.

  11. Inhibitors of the Hepatitis C Virus Polymerase; Mode of Action and Resistance.

    PubMed

    Eltahla, Auda A; Luciani, Fabio; White, Peter A; Lloyd, Andrew R; Bull, Rowena A

    2015-09-29

    The hepatitis C virus (HCV) is a pandemic human pathogen posing a substantial health and economic burden in both developing and developed countries. Controlling the spread of HCV through behavioural prevention strategies has met with limited success and vaccine development remains slow. The development of antiviral therapeutic agents has also been challenging, primarily due to the lack of efficient cell culture and animal models for all HCV genotypes, as well as the large genetic diversity between HCV strains. On the other hand, the use of interferon-α-based treatments in combination with the guanosine analogue, ribavirin, achieved limited success, and widespread use of these therapies has been hampered by prevalent side effects. For more than a decade, the HCV RNA-dependent RNA polymerase (RdRp) has been targeted for antiviral development, and direct-acting antivirals (DAA) have been identified which bind to one of at least six RdRp inhibitor-binding sites, and are now becoming a mainstay of highly effective and well tolerated antiviral treatment for HCV infection. Here we review the different classes of RdRp inhibitors and their mode of action against HCV. Furthermore, the mechanism of antiviral resistance to each class is described, including naturally occurring resistance-associated variants (RAVs) in different viral strains and genotypes. Finally, we review the impact of these RAVs on treatment outcomes with the newly developed regimens.

  12. Molecular basis underlying resistance to Mps1/TTK inhibitors

    PubMed Central

    Koch, A; Maia, A; Janssen, A; Medema, R H

    2016-01-01

    Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment. PMID:26364596

  13. Molecular basis underlying resistance to Mps1/TTK inhibitors.

    PubMed

    Koch, A; Maia, A; Janssen, A; Medema, R H

    2016-05-12

    Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment.

  14. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    PubMed Central

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  15. Structures of Human Golgi-resident Glutaminyl Cyclase and Its Complexes with Inhibitors Reveal a Large Loop Movement upon Inhibitor Binding*

    PubMed Central

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H.-J.

    2011-01-01

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05–1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC. PMID:21288892

  16. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    PubMed

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  17. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K; Hong, Zhi

    2006-08-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.

  18. Novel Nonnucleoside Inhibitors That Select Nucleoside Inhibitor Resistance Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase

    PubMed Central

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K.; Hong, Zhi

    2006-01-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies. PMID:16870771

  19. Helicase-primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections.

    PubMed

    Biswas, Subhajit; Sukla, Soumi; Field, Hugh J

    2014-01-01

    Helicase-primase inhibitors (HPIs) are the first new family of potent herpes virus (herpes simplex and varicella-zoster virus) inhibitors to go beyond the preliminary stages of investigation since the emergence of the original nucleoside analog inhibitors. To consider the clinical future of HPIs, this review puts the exciting new findings with two HPIs, amenamevir and pritelivir, into the historical context of antiviral development for the prevention and treatment of herpes simplex virus over the last century and, on this basis, the authors speculate on the potential evolution of these and other non-nucleoside inhibitors in the future.

  20. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    PubMed Central

    Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2016-01-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  1. Effect of water content on thermal behavior of freeze-dried soy whey and their isolated proteins.

    PubMed

    Sobral, Pablo A; Palazolo, Gonzalo G; Wagner, Jorge R

    2011-04-27

    Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors.

  2. A Low Molecular Weight Protein from the Sea Anemone Anemonia viridis with an Anti-Angiogenic Activity

    PubMed Central

    Loret, Erwann P.; Luis, José; Nuccio, Christopher; Villard, Claude; Mansuelle, Pascal; Lebrun, Régine; Villard, Pierre Henri

    2018-01-01

    Sea anemones are a remarkable source of active principles due to a decentralized venom system. New blood vessel growth or angiogenesis is a very promising target against cancer, but the few available antiangiogenic compounds have limited efficacy. In this study, a protein fraction, purified from tentacles of Anemonia viridis, was able to limit endothelial cells proliferation and angiogenesis at low concentration (14 nM). Protein sequences were determined with Edman degradation and mass spectrometry in source decay and revealed homologies with Blood Depressing Substance (BDS) sea anemones. The presence of a two-turn alpha helix observed with circular dichroism and a trypsin activity inhibition suggested that the active principle could be a Kunitz-type inhibitor, which may interact with an integrin due to an Arginine Glycin Aspartate (RGD) motif. Molecular modeling showed that this RGD motif was well exposed to solvent. This active principle could improve antiangiogenic therapy from existing antiangiogenic compounds binding on the Vascular Endothelial Growth Factor (VEGF). PMID:29671760

  3. Development of scale inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, J.S.

    1996-12-01

    During the last fifty years, scale inhibition has gone from an art to a science. Scale inhibition has changed from simple pH adjustment to the use of optimized dose of designer polymers from multiple monomers. The water-treatment industry faces many challenges due to the need to conserve water, availability of only low quality water, increasing environmental regulations of the water discharge, and concern for human safety when using acid. Natural materials such as starch, lignin, tannin, etc., have been replaced with hydrolytically stable organic phosphates and synthetic polymers. Most progress in scale inhibition has come from the use of synergisticmore » mixtures and copolymerizing different functionalities to achieve specific goals. Development of scale inhibitors requires an understanding of the mechanism of crystal growth and its inhibition. This paper discusses the historic perspective of scale inhibition and the development of new inhibitors based on the understanding of the mechanism of crystal growth and the use of powerful tools like molecular modeling to visualize crystal-inhibitor interactions.« less

  4. Diabetes therapies in hemodialysis patients: Dipeptidase-4 inhibitors

    PubMed Central

    Nakamura, Yuya; Hasegawa, Hitomi; Tsuji, Mayumi; Udaka, Yuko; Mihara, Masatomo; Shimizu, Tatsuo; Inoue, Michiyasu; Goto, Yoshikazu; Gotoh, Hiromichi; Inagaki, Masahiro; Oguchi, Katsuji

    2015-01-01

    Although several previous studies have been published on the effects of dipeptidase-4 (DPP-4) inhibitors in diabetic hemodialysis (HD) patients, the findings have yet to be reviewed comprehensively. Eyesight failure caused by diabetic retinopathy and aging-related dementia make multiple daily insulin injections difficult for HD patients. Therefore, we reviewed the effects of DPP-4 inhibitors with a focus on oral antidiabetic drugs as a new treatment strategy in HD patients with diabetes. The following 7 DPP-4 inhibitors are available worldwide: sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin, anagliptin, and saxagliptin. All of these are administered once daily with dose adjustments in HD patients. Four types of oral antidiabetic drugs can be administered for combination oral therapy with DPP-4 inhibitors, including sulfonylureas, meglitinide, thiazolidinediones, and alpha-glucosidase inhibitor. Nine studies examined the antidiabetic effects in HD patients. Treatments decreased hemoglobin A1c and glycated albumin levels by 0.3% to 1.3% and 1.7% to 4.9%, respectively. The efficacy of DPP-4 inhibitor treatment is high among HD patients, and no patients exhibited significant severe adverse effects such as hypoglycemia and liver dysfunction. DPP-4 inhibitors are key drugs in new treatment strategies for HD patients with diabetes and with limited choices for diabetes treatment. PMID:26131325

  5. Multimodal HDAC Inhibitors with Improved Anticancer Activity.

    PubMed

    Schobert, Rainer; Biersack, Bernhard

    2018-01-01

    Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Teaching for Diversity: Addressing Diversity Issues in Responsive ESL Instruction

    ERIC Educational Resources Information Center

    Fu, Jing

    2013-01-01

    Student diversity has become a typical phenomenon in American public schools. The impact of increasing diversity on literacy instruction is unchallenged. Teachers reinforce this message by often citing ESL student diversity as a barrier for literacy teaching. In order to better understand the complexity of diversity issues, I explored two ESL…

  7. Evaluation of Corrosion Inhibitors as Lubricity Improvers

    DTIC Science & Technology

    1988-07-01

    IF AFWAL-TR-88-2036 I. ov EVALUATION OF CORROSION , INHIBITORS AS LUBRICITY IMPROVERS 0 T.B. Biddle W. H. Edwards United Technologies Corporation...TASK WORK UNIT ELEMENT NO. NO. NO. NO. ITL (include Security C.aulf.cal.on) 6220 F .--- 3048-_ 05 51 valuation of Corrosion Inhibitors as Lubricity...numkr) o GROUP SUB. GR. Bal12nQ ylinder Lubricity)Eva ator, BOCLE, Corrosion Inhibitor , Fuel 01 03 Lubricity, MIL!AI5017, QPL-2 17 Reverse Phase) High

  8. Diverse Small Molecule Inhibitors of Human Apurinic/Apyrimidinic Endonuclease APE1 Identified from a Screen of a Large Public Collection

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Vyjayanti, Vaddadi N.; Maloney, David J.; Jadhav, Ajit; Wilson, David M.; Simeonov, Anton

    2012-01-01

    The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment. PMID:23110144

  9. Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection.

    PubMed

    Dorjsuren, Dorjbal; Kim, Daemyung; Vyjayanti, Vaddadi N; Maloney, David J; Jadhav, Ajit; Wilson, David M; Simeonov, Anton

    2012-01-01

    The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.

  10. Epithelial tissue hyperplasia induced by the RAF inhibitor PF-04880594 is attenuated by a clinically well-tolerated dose of the MEK inhibitor PD-0325901.

    PubMed

    Torti, Vince R; Wojciechowicz, Donald; Hu, Wenyue; John-Baptiste, Annette; Evering, Winston; Troche, Gabriel; Marroquin, Lisa D; Smeal, Tod; Yamazaki, Shinji; Palmer, Cynthia L; Burns-Naas, Leigh Ann; Bagrodia, Shubha

    2012-10-01

    Clinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models. Because these findings raise safety concerns about RAF inhibitor development, we further investigated the underlying mechanisms. We showed that the RAF inhibitor PF-04880594 induces ERK phosphorylation and RAF dimerization in those epithelial tissues that undergo hyperplasia. Hyperplasia and ERK hyperphosphorylation are prevented by treatment with the mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor PD-0325901 at exposures that extrapolate to clinically well-tolerated doses. To facilitate mechanistic and toxicologic studies, we developed a three-dimensional cell culture model of epithelial layering that recapitulated the RAF inhibitor-induced hyperplasia and reversal by MEK inhibitor in vitro. We also showed that PF-04880594 stimulates production of the inflammatory cytokine interleukin 8 in HL-60 cells, suggesting a possible mechanism for the skin flushing observed in dogs. The complete inhibition of hyperplasia by MEK inhibitor in epithelial tissues does not seem to reduce RAF inhibitor efficacy and, in fact, allows doubling of the PF-04880594 dose without toxicity usually associated with such doses. These findings indicated that combination treatment with MEK inhibitors might greatly increase the safety and therapeutic index of RAF inhibitors for the treatment of melanoma and other cancers. ©2012 AACR.

  11. HDAC inhibitors: a 2013-2017 patent survey.

    PubMed

    Faria Freitas, Micaela; Cuendet, Muriel; Bertrand, Philippe

    2018-04-19

    Zinc-dependent histone deacetylases (HDAC) inhibitors represent an important class of biologically active compounds with four of them approved by the FDA. A wide range of molecules has been reported for applications in several human diseases.Area covered: This review covers recent efforts in the synthesis and applications of HDAC inhibitors from 2013-2017.Expert opinion: HDAC inhibitors represent an important class of biologically active compounds for single or combination therapies. The current synthetic methodologies are oriented towards selective HDAC isoforms to achieve better therapeutic effects. Among the recent patents available, most of them focus on HDAC6 selective inhibitors. Beside this search for isoform selectivity, the quest for zinc binding groups with better pharmacokinetic properties and high potency against HDACs only motivates medicinal chemists, as well as the design of inhibitors targeting HDACs and at the same time another biological target. If the major applications are for anticancer activity, one can note the emerging applications in neurological or metabolic disorders or for the stimulation of the immune system.

  12. NASFAA Diversity and Inclusion: Recommendations of the Professional Diversity Caucus

    ERIC Educational Resources Information Center

    National Association of Student Financial Aid Administrators, 2015

    2015-01-01

    NASFAA's Diversity and Inclusion Report emphasizes the importance of diversity and inclusivity to NASFAA. Included in this report is a diversity statement developed by NASFAA's Professional Diversity Caucus, and approved by NASFAA's Board in March of 2015. The Caucus convened in the summer of 2014 to better understand issues related to diversity…

  13. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline andmore » L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.« less

  14. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  15. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  16. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  17. Capturing the Diversity in Lexical Diversity

    ERIC Educational Resources Information Center

    Jarvis, Scott

    2013-01-01

    The range, variety, or diversity of words found in learners' language use is believed to reflect the complexity of their vocabulary knowledge as well as the level of their language proficiency. Many indices of lexical diversity have been proposed, most of which involve statistical relationships between types and tokens, and which ultimately…

  18. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  19. Discovery of a Dual PRMT5–PRMT7 Inhibitor

    PubMed Central

    2015-01-01

    The protein arginine methyltransferases PRMT7 and PRMT5, respectively, monomethylate and symmetrically dimethylate arginine side-chains of proteins involved in diverse cellular mechanisms, including chromatin-mediated control of gene transcription, splicing, and the RAS to ERK transduction cascade. It is believed that PRMT5 and PRMT7 act in conjunction to methylate their substrates, and genetic deletions support the notion that these enzymes derepress cell proliferation and migration in cancer. Using available structures of PRMT5, we designed DS-437, a PRMT5 inhibitor with an IC50 value of 6 μM against both PRMT5 and PRMT7 that is inactive against 29 other human protein-, DNA-, and RNA-methyltransferases and inhibits symmetrical dimethylation of PRMT5 substrates in cells. This compound behaves as a cofactor competitor and represents a valid scaffold to interrogate the potential of the PRMT5–PRMT7 axis as a target for therapy. PMID:25893041

  20. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.

    PubMed

    Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

    2015-01-01

    Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.